
Transformers Can Learn To Solve Linear-Inverse
Problems In-Context

Kabir Ahuja∗
University of Washington

kahuja@cs.washington.edu

Madhur Panwar∗
Microsoft Research India

t-mpanwar@microsoft.com

Navin Goyal
Microsoft Research India
navingo@microsoft.com

Abstract

In-context learning is one of the surprising and useful features of large language
models. How it works is an active area of research. Recently, stylized meta-
learning-like setups have been devised that train these models on a sequence of
input-output pairs (x, f(x)) from a function class using the language modeling
loss and observe generalization to unseen functions from the same class. One of
the main discoveries in this line of research has been that for several problems such
as linear regression, trained transformers learn algorithms for learning functions in
context. We extend this setup to different types of linear-inverse problems and show
that transformers are able to in-context learn these problems as well. Additionally,
we show that transformers are able to recover the solutions in fewer-measurements
than the number of unknowns, leveraging the structure of these problems and
are in accordance with the recovery bounds given by Chandrasekaran et al. [4].
Finally, we also discuss the multi-task setup, where the transfromer is pre-trained
on multiple types of linear-inverse problems at once and show that at inference time,
given the measurements, they are able to identify the correct problem structure and
solve the inverse problem efficiently.

1 Introduction

In-context learning (ICL) is one of the ingredients behind the astounding performance of large
language models (LLMs) [2, 21]. Unlike traditional learning, ICL is the ability to learn new functions
f without weight updates during inference from input-output examples (x, f(x)); in other words,
learning happens in context. For instance, given prompt up -> down, low -> high, small ->
a pretrained LLM will likely produce output big. It infers that the function in the two examples is the
antonym of the input and applies it on the new input. This behaviour extends to more sophisticated
and novel functions unlikely to have been seen during training e.g. [13, 24, 12, 10, 5]. Apart from its
applications in NLP, more broadly ICL can also be viewed as providing a method for meta-learning
[16, 18, 8] where the model learns to learn a class of functions.

Theoretical understanding of ICL is an active area of research. Since the real-world datasets used for
LLM training are difficult to model theoretically and are very large, ICL has also been studied in styl-
ized setups [25, 3, 6, 23, 7]. In this paper we focus on the framework of Garg et al. [6] which is closely
related to meta-learning. Unlike in NLP where training is done on documents for next-token predic-
tion task, here the training data consists of input of the form ((x 1, f(x 1)), . . . , (xk, f(xk)),xk+1)
and output is f(xk+1), where x i ∈ Rd and are chosen i.i.d. from a distribution and f : Rd → R is a
function from a class of functions, for example, linear functions or shallow neural networks. We call
this setup Meta-ICL (or MICL). A striking discovery in Garg et al. [6] was that for several function
classes, transfromer-based language models during pretraining learn to implicitly implement well-
known algorithms for learning those functions in-context. For example, when shown 20 examples of

∗Equal contribution

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

the form (x ,wTx), where x ,w ∈ R20, the model correctly outputs wT
testx test on test input x test.

A follow-up work Akyürek et al. [1] shows that for linear regression, high-capacity transfromers
match the minimum Bayes risk solution during ICL.

In our work, we extend the above setup to different linear inverse problems. Inverse problems (IPs)
are ubiquitous in different areas of science and engineering and involve inferring the state of a system
from a (finite) set of measurements. In linear inverse problems (LIPs), the state of the system can be
mapped to the measurements using a linear operator, i.e., y = Xw , where y ∈ Rk corresponds to the
k measurements, w ∈ Rd is the state of the system and X ∈ Rk×d is the linear map (observed). We
are particularly interested in ill-posed LIPs in our work, where the number of measurements is fewer
than the problem size i.e. k < d. Prior information about w can be used to impose well-formedness
to the LIP by utilizing penalty functions [4] or regularized objectives [20], or by performing Bayesian
inference [17]. In our work, we ask the question: When pre-trained with functions sampled from a
class of linear inverse problems (with a fixed prior), do transformers learn to utilize prior information
about the problem to solve it effectively? In other words to what extent do transformers behave as
penalty based solvers or Bayesian-predictors during in-context learning for solving LIPs?

Our contributions can be summarized as follows. (1) We extend the experiments in Garg et al. [6] to
multiple linear-inverse problems like sign-vector regression, low-rank regression, skewed-covariance
regression and re-study sparse-regression through a Bayesian perspective . We show transformers
remarkably agree with the penalty function based solvers from [4]. Further, we find that transformers
also agree with the Bayesian predictor (wherever it is tractable). (2) We generalize the MICL setup to
work with multiple function classes i.e. during pre-training the function f is sampled from a mixture
of function classes (e.g. dense regression and sparse regression) instead of a single function class. We
call this setup Hierarchical-Meta-ICL or HMICL. (3) We show that transformers are able to solve the
LIPs in the HMICL setup as well, and their performance on each constituent function class is identical
to the transformer model trained on that single function class. (4) Our work strengthens the Bayesian
hypothesis for in-context learning [25] by showing that transformers can leverage information from
different types of priors from pre-training data to effectively solve ill-posed LIPs.

2 Background

We first discuss the in-context learning setup for learning function classes as introduced in [6] (
MICL). Let DX be a probability distribution on Rd. Let F be a family of functions f : Rd → R and
let DF be a distribution on F . For simplicity, we often use f ∼ F to mean f ∼ DF . We overload
the term function class to encompass both function definition as well as priors on its parameters.
Hence, linear regression with a standard gaussian prior and a sparse prior will be considered different
function classes based on our notation.

To construct a prompt P =
(
x 1, f(x i), · · · ,x p, f(x p),x p+1

)
, we sample inputs x i ∼ DX i.i.d.

for i ∈ {1, · · · p + 1}. A transformer model Mθ is trained to predict f(x p+1) given P , using the
objective:

min
θ

E
f,x1:p

[
1

p+ 1

p∑
i=0

ℓ
(
Mθ(P

i), f(x i+1)
)]

, (1)

where P i denotes the sub-prompt containing the first i input-output examples as well as the (i+ 1)-th
input, i.e.

(
x 1, f(x 1), · · · ,x i, f(x i),x i+1

)
and x 1:p = (x 1, . . . ,x p). Since we study regression

problems we use the squared-error loss (i.e., ℓ(y, y′) = (y − y′)2) in accordance with Garg et al. [6].

At test time, we present the model with prompts Ptest that were unseen during training with
high probability and compute the error when provided k in-context examples: loss@k =
Ef,Ptest

[
ℓ
(
Mθ(P

k), f(xk+1)
)]

, for k ∈ {1, · · · , p}. A test for in-context learning for a model
can be performed by measuring loss@k at increasing values of k and checking if the error goes down
as more examples are provided [14].

2.1 Hierarchical Meta-ICL

We generalize the MICL setup, where we train transformers on functions sampled from a mixture
of function classes instead of functions sampled from a single function class. Formally, we define
a mixture of m function classes by a set F = {F1, · · · ,Fm} and sampling probabilities α =

2

[α1, · · ·αm]T with
∑m

i=1 αi = 1. We assume the input distribution DX to be same for each class Fi.
More concretely, the sampling process for P is defined as:

Fi ∼ F s.t. P(F = Fi) = αi

f ∼ Fi

x j ∼ DX ,∀j ∈ {1, · · · , p}
Finally, P =

(
x 1, f(x 1), · · ·x p, f(x p),x p+1

)
We call this setup Hierarchical Meta-ICL (or HMICL), as there is an additional first step for
sampling the function class in the sampling procedure. Note that the MICL setup can be viewed as a
special case of HMICL where m = 1. The HMICL setting presents a more advanced scenario to
validate whether the Bayesian inference can be used to explain the behavior of in-context learning in
transformers. Further, our HMICL setup is also arguably closer to the in-context learning in practical
LLMs which can realize different classes of tasks (sentiment analysis, QA, summarization etc.)
depending upon the inputs provided.

Bayesian Predictor. An ideal language model (LM) with unlimited training data and compute
would learn the pretraining distribution as that results in the smallest loss. Such an LM produces the
output by simply sampling from the pretraining distribution conditioned on the input prompt aka the
Bayesian predictor. Specifically, for the MICL and HMICL setup, predictions of this ideal model can
be computed using the posterior mean estimator (PME) from Bayesian statistics. For each prompt
length i we can compute PME by taking the corresponding summand in (1) which will be given by
Mθ(P

i) = Ef

[
f(x i+1) |P i

]
for all i ≤ p. This is the optimal solution for prompt P , which we

refer to as PME. Please refer to §A.1 for technical details behind this computation.

2.2 Model and training details

We use the decoder-only transformer architecture [22, 15] with 12 layers, 8 heads, and a hidden size
of 256 in the architecture (unless specified otherwise). We use batch size of 64 and train the model
for 500k steps. For encoding the inputs x i’s and f(x i)’s, we use the same scheme as Garg et al. [6]
which uses a linear map E ∈ Rdh×d to embed the inputs x i’s as Ex i and f(x i)’s as Efpad(x i),
where fpad(x i) = [f(x i),0d−1]

T ∈ Rd. In all of our experiments we choose DX as the standard
normal distribution i.e. N (0, 1), unless specified otherwise. For complete details of the experimental
setup please check the Appendix (§A.2)

To accelerate training, we also use curriculum learning like Garg et al. [6] for all our experiments
where we start with simpler function distributions (lower values of d and p) at the beginning of
training and increase the complexity as we train the model. Please refer to §A.2 in Appendix for a
detailed discussion on the experimental setup.

3 In-context learning of linear inverse problems

We consider linear functions of the form, i.e. F =
{
f : x 7→ wTx |w ∈ Rd

}
; what varies across

the different function classes is the distribution of w for different types of LIPs. Below we discuss
different types of LIPs that we study:

Dense Regression. This represents the simplest case of linear regression, where the prior on w is
the standard Gaussian i.e. w ∼ N (0d, I). Gaussian prior enables explicit computation of the PME
which is equal to the minimum L2-norm solution of the equations forming the in-context examples,
i.e. minw ∥w∥2 s.t. wTx i = f(x i),∀i ≤ k. Standard Ordinary Least Squares (OLS) solvers return
the min L2-norm solution and can be used to compute the Bayesian predictor.

Skewed-Covariance Regression. This setup is similar to dense-regression, except that we assume
the following prior on weight vector: w ∼ N (0,Σ), where Σ ∈ Rd×d is the covariance matrix with
eigenvalues proportional to 1/i2, where i ∈ [1, d]. For this prior on w , we can use the same (but
more general) argument for dense regression above to obtain the Bayes-optimal predictor that can be
obtained by minimizing wTΣ−1w w.r.t to the constraints wTx i = f(x i).

3

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

l
o
s
s
@
k

Bound

Skewed-Covariance Regression ICL

Transformer

OLS

Minimize wTΣ−1w

(a)

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

l
o
s
s
@
k

Bound

Sparse Regression ICL

Transformer

OLS

Lasso

(b)

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

l
o
s
s
@
k Bound

Sign-Vector Regression ICL

Transformer

OLS

Minimize L∞

(c)

0 20 40 60 80 100
k

(# in-context examples)

0.0

0.5

1.0

l
o
s
s
@
k

Bound

Low-Rank Regression ICL

Transformer

OLS

Minimize ‖W‖∗

(d)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Skewed-Covariance Regression ICL

(wprobe, w)

(wprobe, wOLS)

(wprobe, wPME−Skew)

(e)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Sparse Regression ICL

(wprobe, w)

(wprobe, wOLS)

(wprobe, wLasso)

(f)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Sign-Vector Regression ICL

(wprobe, w)

(wprobe, wOLS)

(wprobe, wL∞)

(g)

0 20 40 60 80 100
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Low Rank Regression ICL

(wprobe, w)

(wprobe, wOLS)

(wprobe, wL∗)

(h)

Figure 1: Comparing ICL in transformers for different linear functions with the relevant baselines.
Top: loss@k values for transformers and baselines on skewed covariance, sparse, sign-vector, and
low-rank regression tasks. Bottom: Comparing the errors between the implicit weights recovered
from transformers wprobe with the ground truth weights w and weights computed by different base-
lines. wPME-Skew denotes the weights obtained by minimizing wTΣ−1w for the skewed covariance
regression task.

Sparse Regression. Here we assume w to be an s-sparse vector in Rd i.e. out of its d components
only s are non-zero. Following Garg et al. [6], to sample w for constructing prompts P , we first
sample w ∼ N (0d, I) and then randomly set its d − s components as 0. We consider s = 3
throughout our experiments. While computing the exact PME appears to be intractable here, the
MAP solution can be estimated using Lasso by assuming a Laplacian prior on w [19].

Sign-Vector Regression. Here, we assume w to be a sign vector in {−1,+1}d. For constructing
prompts P , we sample d independent Bernoulli random variables bj with a mean of 0.5 and obtain
w = [2b1 − 1, · · · , 2bd − 1]T . While computing the exact PME remains intractable in this case as
well, the optimal solution for k > d/2 can be obtained by minimizing the L∞-norm ∥w∥∞ w.r.t. the
constraints specified by the input-output examples [11].

Low-Rank Regression. In this case, w ∈ Rd is assumed to be a flattened version of a matrix
W ∈ Rq×q (d = q2) with a rank r, where r ≪ q. A strong baseline, in this case, is to minimize the
nuclear norm L∗ of W , i.e. ∥W ∥∗ subject to constraints wTx i = f(x i). To sample the rank-r
matrix W , we sample A ∼ N (0, 1), s.t. A ∈ Rq×r and independently a matrix B of the same
shape and distribution, and set W = ABT .

For each function class above, there is a bound on the minimum number of in-context examples
needed for exact recovery of the solution vector w . The bounds for sparse, sign-vector and low-rank
regression are 2s log(d/s) + 5s/4, d/2, and 3r(2q − r) respectively [4].

Note that the LIP is solved implicitly by the transformer and what it predicts is the output of the
forward problem for a new input i.e. wTx test. To obtain the implied weight vectors, we use the
approach by Akyürek et al. [1] that involves generating model’s predictions {y′i} on the randomly
sampled test inputs {x ′

i}2di=1 ∼ DX (given X in the context) and then solving the system of equations
to recover wprobe. This gives us the solution to the LIP as implied by transformer during ICL.

3.1 Results

MICL Results. We train transformer-based models on the five tasks following §2.2. Each model
is trained with d = 20 and p = 40, excluding Low-Rank Regression where we train with d = 100,
p = 114, and r = 1. Figures 1b-1d compare the loss@k values on these tasks with different baselines.
Additionally, we also compare the implied weights wprobe with the ground truth weights w as well
as the solutions from different baselines (Figures 1f-1h).

4

0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

1.25

Bound

Evaluation on Sparse Regression Prompts

k (# in-context examples)

Transformer (F{DR,SR})

Transformer (FDR)

Transformer (FSR)

OLS

Lasso

0 10 20 30 40
k

(# in-context examples)

0.00

0.05

0.10

0.15

0.20

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Dense Regression Prompts

(wprobe
{DR,SR}, w

probe
DR)

(wprobe
{DR,SR}, w

OLS)

(wprobe
{DR,SR}, w

lasso)

0 10 20 30 40
k

(# in-context examples)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Sparse Regression Prompts

(wprobe
{DR,SR}, w

probe
SR)

(wprobe
{DR,SR}, w

OLS)

(wprobe
{DR,SR}, w

lasso)

0 10 20 30 40
k

(# in-context examples)

0.00

0.05

0.10

0.15

0.20

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Dense Regression Prompts

(wprobe
{DR,SR}, w

probe
DR)

(wprobe
{DR,SR}, w

OLS)

(wprobe
{DR,SR}, w

lasso)

0 10 20 30 40
k

(# in-context examples)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Sparse Regression Prompts

(wprobe
{DR,SR}, w

probe
SR)

(wprobe
{DR,SR}, w

OLS)

(wprobe
{DR,SR}, w

lasso)

Figure 2: Comparing the performance of a transformer model trained on dense and sparse regression
mixture F{DR, SR} with baselines, as well as single task models, trained on FDR and FSR individually.

Since results for dense regression have been already covered in Akyürek et al. [1], we do not repeat
them here, but for completeness provide them in Figure 3 of Appendix. For skewed-covariance
regression, we observe that the transformer follows the Bayesian solution very closely both in terms
of the loss@k values (Figure 1a) as well as the recovered weights for which the error between wprobe

and wPME−Skew (weights obtained by minimizing wTΣ−1w) is close to zero at all prompt lengths
(Figure 1e). On all the remaining tasks as well, the models perform better than OLS and are able to
solve the problem with < d samples i.e. in underdetermined region. The error curves of transformers
for the tasks align closely with the errors of Lasso (Figure 1b), L∞ minimization (Figure 1c), and
L∗ minimization (Figure 1d) baselines for the respective tasks . Interestingly, transformer performs
better than L∗ minimization baseline for low-rank regression. However, due to larger dimensionality
of low-rank problem (d = 100), it requires a bigger model: 24 layers, 16 heads, 512 hidden size.

HMICL Results. We now discuss the results of transformers pre-trained on multiple types of
linear-inverse problems. Due to scarcity of space, we report results for the mixture of Dense and
Sparse regression (F{DR, SR}), but we have consistent observations for F{DR, Skew-DR}, F{DR, SVR}
and F{DR, SR, SVR} as well that we report in Appendix §A.3. During the evaluation, we test the
mixture model on the prompts sampled from each of the function classes in the mixture. We consider
the model to have in-context learned the mixture of tasks if it obtains similar performance as the
single-task models specific to the test function class, e.g., a transformer model trained on the dense
and sparse regression mixture (Transformer F{DR, SR}) should obtain performance similar to the
single-task model trained on dense regression function class (Transformer FDR) when prompted with
a function f ∼ FDR (and similar for sparse).

As can be observed in Figure 2 (left), the transformer model trained on F{DR, SR} obtains performance
close to the OLS baseline as well as the transformer model specifically trained on the dense regression
function class FDR when evaluated on dense regression prompts. On the other hand, when evaluated
on sparse regression prompts, the same model follows Lasso and single-task sparse regression model
(Transformer (FSR)) closely. As a check, note that the single-task models when prompted with
functions from a family different from what they were trained on, yield much higher errors. We also
recover the weights from the multi-task models when given prompts from each function class. In
Figure 2 (right), we observe that the weights recovered by the mixture model start to agree with
task-specific models once sufficient in-context examples are provided (≈ recovery bound).

4 Conclusion

We showed that transformers can learn to solve different types of linear-inverse problems and their
mixtures in-context. There are many interesting directions for future work. Due to difficulties in
computing the Bayesian predictor, we were unable to establish for many LIPs that transformers do
Bayesian prediction. This is an interesting theoretical challenge to resolve. Further, while we deal
with linear-inverse problems in our paper and mainly study them to understand in-context learning
in transformers, it would be interesting to explore if transformers can serve as solvers for practical
inverse problems. Finally, in this paper we treated transformers as blackboxes: opening the box and
uncovering the underlying mechanisms transformers use to do Bayesian prediction would be very
interesting.

5

References
[1] Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning

algorithm is in-context learning? investigations with linear models. CoRR, abs/2211.15661,
2022. doi: 10.48550/arXiv.2211.15661. URL https://doi.org/10.48550/arXiv.2211.
15661.

[2] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learn-
ers. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[3] Stephanie C. Y. Chan, Ishita Dasgupta, Junkyung Kim, Dharshan Kumaran, Andrew K.
Lampinen, and Felix Hill. Transformers generalize differently from information stored in
context vs in weights. CoRR, abs/2210.05675, 2022. doi: 10.48550/arXiv.2210.05675. URL
https://doi.org/10.48550/arXiv.2210.05675.

[4] Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan S. Willsky. The convex
geometry of linear inverse problems. Foundations of Computational Mathematics, 12(6):
805–849, oct 2012. doi: 10.1007/s10208-012-9135-7. URL https://doi.org/10.1007%
2Fs10208-012-9135-7.

[5] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing
Xu, Lei Li, and Zhifang Sui. A survey on in-context learning, 2023.

[6] Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can trans-
formers learn in-context? a case study of simple function classes. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-
ral Information Processing Systems, volume 35, pages 30583–30598. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf.

[7] Michael Hahn and Navin Goyal. A theory of emergent in-context learning as implicit structure
induction. CoRR, abs/2303.07971, 2023. doi: 10.48550/arXiv.2303.07971. URL https:
//doi.org/10.48550/arXiv.2303.07971.

[8] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. Meta-learning in neural networks: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(09):5149–5169,
sep 2022. ISSN 1939-3539. doi: 10.1109/TPAMI.2021.3079209.

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

[10] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Comput. Surv., 55(9):195:1–195:35, 2023. doi: 10.1145/3560815. URL
https://doi.org/10.1145/3560815.

[11] O.L. Mangasarian and Benjamin Recht. Probability of unique integer solution to a system of
linear equations. European Journal of Operational Research, 214(1):27–30, 2011. ISSN 0377-
2217. doi: https://doi.org/10.1016/j.ejor.2011.04.010. URL https://www.sciencedirect.
com/science/article/pii/S0377221711003511.

6

https://doi.org/10.48550/arXiv.2211.15661
https://doi.org/10.48550/arXiv.2211.15661
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2210.05675
https://doi.org/10.1007%2Fs10208-012-9135-7
https://doi.org/10.1007%2Fs10208-012-9135-7
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://doi.org/10.48550/arXiv.2303.07971
https://doi.org/10.48550/arXiv.2303.07971
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3560815
https://www.sciencedirect.com/science/article/pii/S0377221711003511
https://www.sciencedirect.com/science/article/pii/S0377221711003511

[12] Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learning to
learn in context. In Proceedings of the 2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 2791–2809,
Seattle, United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.naacl-main.201. URL https://aclanthology.org/2022.naacl-main.201.

[13] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work?
In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pages 11048–11064, Abu Dhabi, United Arab Emirates, December 2022. Association for
Computational Linguistics. URL https://aclanthology.org/2022.emnlp-main.759.

[14] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain,
Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson
Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan,
Sam McCandlish, and Chris Olah. In-context learning and induction heads. Transformer
Circuits Thread, 2022. https://transformer-circuits.pub/2022/in-context-learning-and-induction-
heads/index.html.

[15] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. https: // d4mucfpksywv. cloudfront.
net/ better-language-models/ language-models. pdf , 1(8):9, 2019.

[16] Jurgen Schmidhuber. Evolutionary principles in self-referential learning. on learning now to
learn: The meta-meta-meta...-hook. Diploma thesis, Technische Universitat Munchen, Germany,
14 May 1987. URL http://www.idsia.ch/~juergen/diploma.html.

[17] A. M. Stuart. Inverse problems: A bayesian perspective. Acta Numerica, 19:451–559, 2010.
doi: 10.1017/S0962492910000061.

[18] Sebastian Thrun and Lorien Pratt, editors. Learning to Learn. Springer Science and Business
Media, 2012.

[19] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996. doi: https://doi.org/10.
1111/j.2517-6161.1996.tb02080.x. URL https://rss.onlinelibrary.wiley.com/doi/
abs/10.1111/j.2517-6161.1996.tb02080.x.

[20] Andrei Nikolaevich Tikhonov. On the regularization of ill-posed problems. In Doklady Akademii
Nauk, volume 153, pages 49–52. Russian Academy of Sciences, 1963.

[21] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. 2023.

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[23] Xinyi Wang, Wanrong Zhu, and William Yang Wang. Large language models are implicitly
topic models: Explaining and finding good demonstrations for in-context learning. CoRR,
abs/2301.11916, 2023. doi: 10.48550/arXiv.2301.11916. URL https://doi.org/10.48550/
arXiv.2301.11916.

[24] Albert Webson and Ellie Pavlick. Do prompt-based models really understand the meaning of
their prompts? In Proceedings of the 2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 2300–2344,
Seattle, United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.naacl-main.167. URL https://aclanthology.org/2022.naacl-main.167.

7

https://aclanthology.org/2022.naacl-main.201
https://aclanthology.org/2022.emnlp-main.759
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://www.idsia.ch/~juergen/diploma.html
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1996.tb02080.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1996.tb02080.x
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.48550/arXiv.2301.11916
https://doi.org/10.48550/arXiv.2301.11916
https://aclanthology.org/2022.naacl-main.167

[25] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of
in-context learning as implicit bayesian inference. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.
URL https://openreview.net/forum?id=RdJVFCHjUMI.

8

https://openreview.net/forum?id=RdJVFCHjUMI

A Appendix

A.1 PME Theoretical Details

We mentioned earlier that an ideal LM would learn the pretraining distribution. This happens when
using the cross-entropy loss. Since we use the square loss in the ICL training objective, the predictions
of the model can be computed using the posterior mean estimator (PME) from Bayesian statistics.
For each prompt length i we can compute PME by taking the corresponding summand in the ICL
training objective

min
θ

E
f,x1:i

ℓ
(
Mθ(P

i), f(x i+1)
)
= min

θ
E

f,P i
ℓ
(
Mθ(P

i), f(x i+1)
)

= min
θ

E
P i

E
f

[
ℓ
(
Mθ(P

i), f(x i+1)
)
|P i

]
= E

P i
min
θ

E
f

[
ℓ
(
Mθ(P

i), f(x i+1)
)
|P i

]
.

The inner minimization is seen to be achieved by Mθ(P
i) = Ef

[
f(x i+1) |P i

]
. This is the optimal

solution for prompt P i and what we refer to as PME.

PME for a task mixture. We describe the PME for a mixture of function classes. For simplicity we
confine ourselves to mixtures of two function classes; extension to more function classes is analogous.
Let F1 and F2 be two function classes specified by probability distributions DF1 and DF2 , resp.
As in the single function class case, the inputs x are chosen i.i.d. from a common distribution DX .
For α1, α2 ∈ [0, 1] with α1 + α2 = 1, an (α1, α2)-mixture F of F1 and F2 is the meta-task in
which the prompt P =

(
x 1, f(x i), · · · ,x p, f(x p),x p+1

)
is constructed by first picking task Fi

with probability αi for i ∈ {1, 2} and then picking f ∼ DFi
. Thus pF (f) = α1pF1

(f) + α2pF2
(f),

where pF (·) is the probability density under function class F which defines DF . For conciseness in
the following we use p1(·) for pF1

(·) etc. Now recall that PME for function class F is given by

Mθ,F (P) = E
f∼DF

[f(x p+1) |P] =

∫
pF (f |P) f(x) df. (2)

We would like to compute this in terms of PMEs for F1 and F2. To this end, we first compute

pF (f |P) =
pF (P |f)pF (f)

pF (P)
=

p(P |f)pF (f)

pF (P)
=

p(P |f)
pF (P)

[
α1p1(f) + α2p2(f)

]
=

α1p1(P)

pF (P)

p(P |f)p1(f)
p1(P)

+
α2p2(P)

pF (P)

p(P |f)p2(f)
p2(P)

=
α1p1(P)

pF (P)
p1(f |P) +

α2p2(P)

pF (P)
p2(f |P)

= β1 p1(f |P) + β2 p2(f |P),

where β1 = α1p1(P)
pF (P) and β2 = α2p2(P)

pF (P) . Plugging this in (2) we get

Mθ,F (P) = β1

∫
p1(f |P) f(x) df + β2

∫
p2(f |P) f(x) df = β1Mθ,F1

(P) + β2Mθ,F2
(P).

(3)

Table 1: The values of curriculum attributes used for each experiment. Cd and Cp denote the
curriculum on number of input dimensions (d) and number of points (p) respectively.

Experiment Section Cd Cp

Dense, Sparse and Sign-Vector Regression §3 [5, 20, 1, 2000] [10, 40, 2, 2000]
Low-Rank Regression §3 Fixed (d = 100) Fixed (p = 114)

9

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k Bound

Dense Regression ICL

Transformer

OLS

Ridge (0.01)

(a)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Dense Regression ICL

(wprobe, w)

(wprobe, wOLS)

(wprobe, wRidge)

(b)

Figure 3: Results on the Dense Regression tasks mentioned in section §3.1.

Table 2: Normalization constants used for different tasks to define normalized mixtures for multi-task
ICL experiments. Here d denotes the size of the weight vectors used in linear-inverse problems. s
refers to the sparsity of sparse regression problems.

Function Family Normalization Constant
Dense Regression

√
d

Sparse Regression
√
s

Sign-Vector Regression
√
d

Skewed-Covariance Regression
√
d

A.2 Experimental Setup

We use the decoder-only transformer architecture [22, 15] with 12 layers, 8 heads, and a hidden
size (dh) of 256 in the architecture (unless specified otherwise). We use a batch size of 64 and train
the model for 500k steps. For encoding the inputs x i’s and f(x i)’s, we use the same scheme as
Garg et al. [6] which uses a linear map E ∈ Rdh×d to embed the inputs x i’s as Ex i and f(x i)’s
as Efpad(x i), where fpad(x i) = [f(x i),0d−1]

T ∈ Rd. In all of our experiments we choose DX as
the standard normal distribution i.e. N (0, 1), unless specified otherwise.

Training and Implementation Details. We use Adam optimizer [9] to train our models. Our
experiments were conducted on a system comprising 32 NVIDIA V100 16GB GPUs. The cumulative
training time of all models for this project was ∼ 15,000 GPU hours. While reporting the results,
the error is averaged over 1280 prompts and shaded regions denote a 90% confidence interval over
1000 bootstrap trials. We adapt Garg et al. [6] code-base for our experiments. We use Pytorch2 and
Huggingface Transformers3 libraries to implement the model architecture and training procedure. For
the baselines against which we compare transformers, we use scikit-learn’s 4 implementation of
OLS, Ridge and Lasso, and for L∞ and L∗ norm minimization given the linear constraints we use
CVXPY5.

Curriculum Learning. To accelerate training, we also use curriculum learning like Garg et al. [6]
for all our experiments where we start with simpler function distributions (lower values of d and
p) at the beginning of training and increase the complexity as we train the model. We observe that
curriculum helps in faster convergence, i.e., the same optima can also be achieved by training the
model for more training steps as also noted by Garg et al. [6]. Table 1 states the curriculum used
for each experiment, where the syntax followed for each column specifying curriculum is [start,

2https://pytorch.org/, citation to be added in final version
3https://huggingface.co/docs/transformers/index, citation to be added in final version
4https://scikit-learn.org/stable/index.html
5https://www.cvxpy.org/

10

https://pytorch.org/
https://huggingface.co/docs/transformers/index
https://www.cvxpy.org/

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

Evaluation on Sign-Vector Regression Prompts

Transformer (F{DR,SVR})

Transformer (FDR)

Transformer (FSVR)

OLS

Minimize `∞

(a)

0 10 20 30 40
k

(# in-context examples)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Dense Regression Prompts

(wprobe
{DR,SVR}, w

probe
DR)

(wprobe
{DR,SVR}, w

OLS)

(wprobe
{DR,SVR}, w

L∞)

(b)

0 10 20 30 40
k

(# in-context examples)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Sign Vector Regression Prompts

(wprobe
{DR,SVR}, w

probe
SVR)

(wprobe
{DR,SVR}, w

OLS)

(wprobe
{DR,SVR}, w

L∞)

(c)

Figure 4: Comparing the performance of a Transformer model trained on dense and sign-vector
regression mixture F{DR, SVR} with baselines, as well as single task models, trained on FDR and FSVR
individually. Top: Comparing loss@k values of the mixture model with single-task models with
different prompt distributions. Bottom: Comparing the errors between the weights recovered from
the mixture model and different single task models and baselines while evaluating on FDR and FSVR
prompts.

end, increment, interval]. The value of the said attribute goes from start to end, increasing
by increment every interval train steps.

Normalization. We perform task normalization by ensuring that the outputs f(x) for all the tasks
have the same variance, which results in all the tasks providing a similar training signal to the model.
To perform normalization, we simply divide the weights w sampled for the tasks by a normalization
constant, which is decided according to the nature of the task. With this, we make sure that the output
y = wTx has a unit variance. The normalization constants for different tasks are provided in Table 2.

A.3 ICL on task mixtures

Here we detail some of the experiments with task mixtures that we discuss in passing in §3.1.
Particularly, we describe the results for the mixtures F{DR, SVR}, F{DR, Skew-DR} and F{DR, SR, SVR}.
As can be seen in Figure 4, the transformer model trained on F{DR, SVR} mixture, behaves close
to OLS when prompted with f ∈ FDR and close to the L∞ minimization baseline when provided
sign-vector regression prompts (f ∈ FSVR). We also have similar observations for the F{DR, Skew-DR}
mixture case in Figure 5, where the multi-task ICL model follows the Bayesian-predictor of both
tasks when sufficient examples are provided from the respective task. Similarly, for the model trained
on the tertiary mixture F{DR, SR, SVR} (as can be seen in Figure 6), the multi-task model can simulate
the behavior of the three single-task models depending on the distribution of in-context examples.
On FSR and FSVR prompts the multi-task model performs slightly worse compared to the single-task
models trained on FSR and FSVR respectively, however once sufficient examples are provided (still
< 20), they do obtain close errors.

11

0 10 20 30 40
k

(# in-context examples)

0.0

0.5

1.0

1.5

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

l
o
s
s
@
k

Bound

Evaluation on Skewed-Covariance Regression Prompts

Transformer (F{DR,Skew−DR})

Transformer (FDR)

Transformer (FSkew−DR)

OLS

Minimize wTΣ−1w

(a)

0 5 10 15 20 25 30 35 40
k

(# in-context examples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Dense Regression Prompts

(wprobe
{DR,Skew−DR}, w

probe
DR)

(wprobe
{DR,Skew−DR}, w

OLS)

(wprobe
{DR,Skew−DR}, w

PME−Skew)

(b)

0 10 20 30 40
k

(# in-context examples)

0.00

0.02

0.04

0.06

0.08

0.10

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Skewed-Covariance Regression Prompts

(wprobe
{DR,Skew−DR}, w

probe
Skew−DR)

(wprobe
{DR,Skew−DR}, w

OLS)

(wprobe
{DR,Skew−DR}, w

PME−Skew)

(c)

Figure 5: Comparing the performance of a Transformer model trained on dense and skewed-
covariance regression mixture F{DR, Skew-DR} with baselines, as well as single task models, trained
on FDR and FSkew-DR individually. Top: Comparing loss@k values of the mixture model with
single-task models with different prompt distributions. Red (OLS) and orange (Transformer (FDR))
curves overlap very closely, so are a bit hard to distinguish in the plots. Similarly in the top right plot,
purple (Minimize wTΣ−1w) and green (Transformer FSkew-DR) curves overlap. Bottom: Comparing
the errors between the weights recovered from the mixture model and different single task models
and baselines while evaluating on FDR and FSkew-DR prompts.

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

l
o
s
s
@
k

Bound

Evaluation on Sparse Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

l
o
s
s
@
k

Bound

Evaluation on Sign-Vector Regression Prompts

Transformer (F{DR,SR,SVR})

Transformer (FDR)

Transformer (FSR)

Transformer (FSVR)

Figure 6: Comparing the performance of transformer model trained to in-context learn F{DR, SR, SVR}
mixture family with the corresponding single task models.

12

	Introduction
	Background
	Hierarchical Meta-ICL
	Model and training details

	In-context learning of linear inverse problems
	Results

	Conclusion
	Appendix
	PME Theoretical Details
	Experimental Setup
	ICL on task mixtures

