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ABSTRACT

Recent advances in deep learning have significantly improved medical image de-
noising, particularly through supervised convolutional neural network—based ap-
proaches. However, these rely on large-scale paired noisy—clean datasets, which
limits their practical deployment in clinical settings where clean references are
rarely available. Self-supervised methods mitigate this issue but typically depend
on multi-volume data or temporal consistency, making them unsuitable for sin-
gle 3D volume data like magnetic resonance angiography (MRA). We propose a
novel self-supervised denoising framework for single noisy volume that leverages
spatial coherence across adjacent slices to construct training pairs without clean la-
bels or repeated scans. At its core is a conditional denoising diffusion model with
expectation-only sampling, enabling robust signal recovery. To further enhance
anatomical fidelity, we introduce a patch-wise adaptive post-processing module
that refines spatially localized features to better preserve anatomical accuracy.
Validated on 7T and 3T time-of-flight MRA datasets, our method significantly
improves vessel visibility while suppressing noise, offering a clinically practical
denoising approach tailored to real-world imaging workflows.

1 INTRODUCTION

High-resolution medical imaging modalities such as magnetic resonance imaging (MRI) and com-
puted tomography (CT) are critical for clinical diagnosis and treatment planning [Van Geuns et al.
(1999); [ILiguori et al.| (2015). However, acquiring high-resolution volumetric data often involves
trade-offs with scan time, increased radiation exposure, or hardware limitations, resulting in noisy
acquisitions [Zhu et al| (2009); (Costello et al| (2013). In clinical workflows, noisy 3D vol-
umes—often acquired as single-shot scans due to practical constraints—pose persistent challenges
for downstream analysis such as segmentation or abnormal detection Saladi & Amutha Prabha
2017).

Conventional denoising techniques—ranging from spatial filtering Wink & Roerdink|(2004); Buades
et al.| (2005)); [Manjon et al.|(2008)) to deep supervised models|Zhang et al.|(2017);|Chen et al.|(2017);
Zhang et al.[(2018)—struggle in this setting. Classical methods tend to oversmooth anatomical struc-
tures due to rigid noise assumptions, while supervised learning approaches require large-scale paired
clean-noisy datasets that are rarely available in clinical workflows. This is particularly problematic
in scenarios such as high-resolution MRI , where acquiring clean ground-truth scans is impractical
or even infeasible.

Self-supervised learning Batson & Royer| (2019);|Quan et al.| (2020); |Kang et al.|(2024) has emerged
as a promising alternative by learning to denoise directly from noisy data, removing the reliance on
clean labels during training. Commonly adopted strategies in self-supervised frameworks, such
as masked-pixel prediction or blind-spot networks, aim to prevent identity mapping during training.
However, these approaches can blur or inadvertently suppress sparsely represented anatomical struc-
tures. In modalities like MRA, this often leads to the attenuation or loss of fine vascular features
such as small peripheral arteries, which occupy only a small portion of the volume but are crucial
for clinical interpretation.

Recently, most existing self-supervised denoising methods using generative models rely on assump-
tions such as temporal consistency, multi-view redundancy, or repeated acquisitions. These assump-
tions do not hold in routine clinical workflows involving single 3D volume imaging. As a result,
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existing frameworks may struggle to generalize to single-volume clinical data, limiting their practi-
cal utility in real-world diagnostic scenarios.

To address these limitations, we propose Di-Flow, a self-supervised denoising framework designed
specifically for a single noisy medical volume. Rather than relying on external redundancy, Di-
Flow leverages structural consistency within a single volume via a slice-aware multi-slice averaging
(MSA) strategy that constructs pseudo training pairs directly from the noisy input. Building on
these pairs, a conditional diffusion model with expectation-only inference produces deterministic
restorations without requiring clean labels. In addition, we introduce a patch-wise adaptive post-
processing (PAP) module that enhances fine anatomical detail and suppresses residual structured
noise. Across 7T and 3T TOF-MRA datasets, Di-Flow consistently improves vascular SNR/CNR
and preserves peripheral vessel continuity compared with classical, self-supervised, and diffusion-
based baselines, demonstrating robustness to acquisition settings and practical suitability for clinical
workflows.

2 RELATED WORK

2.1 TRADITIONAL AND SUPERVISED DENOISING METHODS

Early medical image denoising relied on non-learning algorithms including Gaussian smooth-
ing Wink & Roerdink| (2004), wavelet shrinkage (Ouahabi| (2013)), and non-local means filter-
ing Buades et al.| (2005); Manjon et al.| (2008)), which suppress noise by leveraging spatial redun-
dancy in anatomical structures. Advanced methods like BM3D Daboyv et al.|(2007) and BM4D Mag-
gioni et al.[(2012) introduced collaborative filtering of matched patches in transform domains. These
traditional approaches assume stationary noise and use fixed filtering rules, making them less effec-
tive for clinical images with spatially varying noise and often causing oversmoothing of diagnosti-
cally important details [Kulathilake et al.|(2022). Their lack of adaptability to heterogeneous noise
and anatomy has led to the rise of learning-based methods, which offer superior preservation of
diagnostically relevant structures [Thakur et al.|(2024)).

The rise of deep learning enabled supervised convolutional neural networks (CNNs) to achieve
superior performance through methods like DnCNN [Zhang et al.| (2017) with residual learning;
RED-CNN |Chen et al.| (2017) which leverages a residual encoder-decoder architecture; and FFD-
Net|Zhang et al.|(2018)) for handling diverse noise levels efficiently. While these models effectively
learn anatomical structures and noise patterns from paired data, clinical deployment remains chal-
lenging due to the requirement for large paired clean-noisy datasets, which are rarely available in
medical settings and ethically problematic to acquire, as doing so typically requires repeated scans
under controlled conditions—thereby increasing patient risk, scan time, and costs—and often intro-
ducing motion artifacts.

2.2  SELF-SUPERVISED DENOISING METHODS

To overcome the limitations of supervised approaches, recent studies have explored self-supervised
denoising frameworks that do not require clean reference images. Noise2Noise [Lehtinen et al.
(2018)) demonstrated that clean targets are unnecessary when training on pairs of noisy images
with independent, zero-mean noise. Building on this insight, Noise2Void [Krull et al.| (2019),
Noise2Self Batson & Royer (2019), and Self2Self |Quan et al.| (2020) enable training from single
noisy images through blind-spot networks, J-invariant prediction, and dropout-based augmentation
respectively. Multidimensional Self2Self |Kang et al.| (2024) extends this framework by leveraging
redundancy in repeated multidimensional MRI acquisitions. Despite promising results in general
MRI denoising, these methods struggle in challenging scenarios where noise and underlying signal
distributions overlap, such as angiographic imaging with sparse vasculature and similar-intensity
background structures |Li et al.| (2021)). Extensions like Noisier2Noise Moran et al.| (2020) and
Neighbor2Neighbor Huang et al.| (2021)) aim to improve performance under severe noise conditions
by refining pixel selection strategies or enforcing consistency between pairs of noisy images. Nev-
ertheless, reliably preserving the continuity and topology of fine vascular anatomy remains difficult
for these methods.
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Figure 1: Overview of the proposed Di-Flow framework. The top panels illustrate the training and
inference pipelines. During training, the model learns to denoise both the target-weighted input
zo and the contextual prior . using a dual-noise prediction scheme. During inference, only z. is
required, and the final output is reconstructed through expectation-only sampling. The bottom-left
panel describes the Multi-Slice Averaging (MSA) strategy, which constructs zy and x.. The bottom-
right panel shows the reverse denoising process at each timestep ¢, where the conditional diffusion
model predicts noise e from the noisy input z, timestep embedding, and contextual prior x..

2.3 GENERATIVE AND DIFFUSION-BASED METHODS

More recently, generative modeling approaches, particularly diffusion-based models, have shown
significant promise in medical image denoising tasks due to their ability to model the full distribution
of underlying clean images and iteratively refine noisy inputs. Methods such as DDM?Xiang et al.
(2023) and Di-FusionWu et al| (2025) have reported outstanding results, especially in diffusion-
weighted MRI, by leveraging J-invariant property within temporal or multi-volume redundancy.
However, these approaches typically depend on multiple acquisitions or repeated imaging, and
therefore cannot be directly applied to common 3D imaging modalities. This motivates the need
for novel diffusion-based methods specifically designed to leverage spatial coherence within single
noisy volumes without external redundancy.

3 METHODOLOGY

We introduce Di-Flow, a self-supervised denoising framework tailored for single noisy MRA vol-
umes. Our framework comprises three main components: (1) a Multi-Slice Averaging (MSA)
module to create pseudo-training data, (2) conditional denoising diffusion models for robust signal
restoration, and (3) a Patch-wise Adaptive Post-processing (PAP) module to refine local anatomical
consistency. The following subsections provide a detailed description of each component.

3.1 MULTI-SLICE AVERAGING FOR DATA CONSTRUCTION

Given a noisy volume Y = {y;} ,, where each slice y; € R”*"W represents the i-th axial image,
we construct pseudo-training pairs using the MSA module. The underlying assumption is that noise
across slices is independent, thus statistically attenuated when averaging multiple scans, while co-
herent anatomical signals are preserved. Di-Flow exploits imaging characteristics by constructing
two complementary inputs from K adjacent slices of around the target slice y;: The target-enhanced
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pseudo-clean images xo, emphasizing the target slice y;; The contextual prior image x., representing
averaged neighboring slices without the target.

WYi + D ek ots Yk 1
Zo = ’U}-'-K—l ) mc*K—l Z Yk,

(D

where the weighting factor w controls the relative emphasis on the target slice y;.

This averaging across slices significantly reduces effective noise power proportionally as the number
of slices K increases, directly enhancing the signal-to-noise ratio (SNR) of the pseudo-training pairs.
By doing so, we can utilize anatomical continuity across adjacent slices to preserve anatomical
structure while learning to suppress noise, especially for fine through-plane vasculature. Leveraging
flow context from neighboring slices prevents subtle peripheral vessels, which are often obscured
when denoising each slice in isolation, from being suppressed. By emulating paired data from within
a single noisy volume, this design allows the model to operate in a self-supervised regime, as it does
not rely on ground-truth images.

3.2 INTER-SLICE CONTEXTUAL DENOISING DIFFUSION MODEL

To recover clean target signals from the constructed pseudo pairs, we propose a denoising diffusion
probabilistic framework based on DDPM |Ho et al.| (2020), with two coordinated branches. The
primary branch reconstructs the target-enhanced image x( using a conditional diffusion model that
incorporates the contextual prior z. at each step, enabling the model to utilize spatial context from
adjacent slices during denoising. In parallel, an auxiliary self-reconstruction branch is trained to
denoise the contextual prior x. using self-conditioning, where both the noisy input and the condi-
tioning context are set to x.. This approach allows the network to restore anatomical structures that
are robustly preserved through spatial averaging of neighboring slices, while effectively suppressing
inherent noise components.

For each timestep ¢, the forward diffusion process corrupts xg with Gaussian noise as in Eq.

xt:\/aw()‘F\/l*dtea GNN(Ov]:)a (2)

where a; = Hizl a, controls the cumulative noise strength. The neural network €y, based on a
U-Net architecture, predicts the noise given the noisy input z, the diffusion timestep ¢, and the
conditioning context z.. Training then minimizes the mean-squared error in Eq. 3]

Lnise = Epq.c[l€ = olar, ) 3] G

This two-branch configuration enables the model to distinguish and recover the true underlying sig-
nal by simultaneously leveraging adjacent spatial context for denoising the target in the primary
branch, while ensuring that only repeatable, shared information within the neighborhood is pre-
served in the auxiliary self-reconstruction branch. During the reverse diffusion process, the frame-
work inherently suppresses stochastic noise while maintaining anatomically coherent features across
slices. By optimizing both branches in parallel within a unified framework, the model is encouraged
robust denoising for both target and contextual regions, without requiring any clean or external su-
pervision.

3.2.1 INFERENCE VIA EXPECTATION-ONLY SAMPLING

In conventional DDPM inference, a stochastic sampling approach is typically adopted, x;—1 ~
N (,ug (w4, t, ), 071 ), where randomness allows diverse outcomes suitable for generative tasks.
However, for medical imaging applications, such variability can compromise the reliability neces-
sary for clinical decision-making. To address this, we employ an expectation-only sampling strategy
at inference. Rather than sampling from a distribution, we directly use the conditional mean pre-
diction at each timestep (Eq. d), which eliminates stochasticity and ensures stable preservation of
anatomical details.
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At inference, we generate two reconstructions: 2, a reconstruction including the target slice and its
neighbors, and %, the denoised contextual input. The final denoised target slice ¢; is then recovered
by analytically inverting the MSA averaging process according to Eq. [5] This explicit inversion
disentangles the contribution of the contextual prior from the pseudo-target, allowing isolation of
the denoised target slice.

K-1. K-1
W f0 — B.. )
w w

i =

3.2.2 RELATION TO J-INVARIANT.

This inversion results in a J-invariant reconstruction. The final procedure corresponds to the con-
ditional expectation E[y;|z.], which is theoretically provided by the minimum mean squared error
estimate under J-invariance assumptions, thereby enabling robust denoising without requiring clean
supervision. (See Appendix[A]for details.)

3.3 PATCH-WISE ADAPTIVE POST-PROCESSING

Despite the effectiveness of diffusion-based generative denoising methods, subtle anatomical in-
accuracies or generated residual artifacts can persist, especially in vessel-rich modalities such as
angiography. In these cases, small errors in reconstructing fine vascular structures can undermine
clinical interpretability. To address this, we introduce a Patch-Wise Adaptive Post-processing (PAP)
module that locally refines the denoised output by correcting voxel intensities based on patch-level
statistical characteristics.

Calculation of Difference Map. The PAP module begins by identifying residual errors that re-
main after initial denoising. To this end, we compute a voxel-wise difference map D = y; — ¥,
where y; is the original noisy slice and ; is its denoised counterpart. Ideally, D should resemble a
noise distribution with a mean near zero if denoising has preserved anatomical structures accurately.
However, in practice, localized deviation near vascular regions often signal structural degradation or
artifacts, underscoring the need for targeted correction.

Local Patch Classification. Different anatomical regions require different correction strategies.
To capture local characteristics, each slice is divided into overlapping patches { P, }. For each patch
centered at voxel v, we compute the local mean p, and standard deviation o,,:

1 1
Hy = 757 Yj, Oy = =7 (y - ,LLU)Q- (6)
17 2 \/P”| J; ’

JjePy

Using these statistics, patches are categorized as vessel-dominant (high intensity and high variabil-
ity), background-dominant (low intensity and low variability), or normal regions (high intensity and
low variability). This classification enables region-specific correction.

Adaptive Histogram-Based Correction. To selectively restore vessel signals while suppress-
ing noise, we apply histogram-based clipping to the difference map D using adaptive thresholds
[tiow, thigh] for each patch class. These thresholds are determined as confidence intervals of the dif-
ference histogram within each patch, reflecting the expected distribution of noise as well as potential
signal loss or artifact emergence:

D, iftiow < Dy < thign,
D;:}orrected = ¢ tiow, if Dy < tiow, @
thigh, if Dy > thigh-

Vessel-dominant patches use narrower thresholds to recover small vascular signals, while
background-dominant patches apply wider thresholds to suppress noise. By applying this correction
strategy, the PAP module enables targeted refinement: true vascular structures can be restored if lost
during denoising, while aggressive noise suppression is achieved in non-vascular regions. The final
output after correction exhibits enhanced vessel fidelity and reduced spurious artifacts.
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The corrected difference D™ jg subtracted from the original noisy slice y; to obtain the final
refined output:

ygeﬁned =y — D;:)orrected (8)
This operation effectively removes only the noise components identified through adaptive clipping,
while preserving or recovering true vessel signals that may have been lost during denoising. Patch-
wise correction is sequentially applied along the axial, sagittal, and coronal planes, yielding the final
output after all three passes to ensure isotropic anatomical accuracy.

4 EXPERIMENTS

We evaluate the denoising performance of Di-Flow in comparison with state-of-the-art base-
line methods. The baselines include both slice-wise and volumetric denoising methods, encom-
passing a traditional algorithm (BM3D Dabov et al.| (2007)), self-supervised approaches (Nois-
ier2Noise [Moran et al.| (2020), Neighbor2Neighbor |[Huang et al.| (2021)), and diffusion-based self-
supervised methods (DDMinang et al.| (2023)), Di-FusionWu et al.| (2025)). We evaluated our
method on clinically relevant high-resolution high-resolution time-of-flight (TOF) MRA datasets
acquired at different field strengths.

4.1 EXPERIMENTAL SETUP

Experiments were conducted on high-resolution TOF-MRA datasets acquired at 7 Tesla (7T, MAG-
NETOM Terra) and 3 Tesla (3T, MAGNETOM Vida) scanners (Siemens Healthineers, Erlangen,
Germany) from healthy volunteers. For both the 7T and 3T datasets, images were obtained from 5
subjects for training and 2 subjects for validation. The 7T TOF-MRA dataset comprises images with
a spatial resolution of 800 x 624 pixels, resulting in 1,260 training slices and 504 validation slices.
Similarly, the 3T TOF-MRA dataset contains images at a resolution of 450 x 576 pixels, with the
same number of training and validation slices. Notably, all experiments were performed using only
single-acquisition noisy volumes to emulate realistic clinical scenarios, where clean ground-truth
references are unfeasible.

4.2 IMPLEMENTATION DETAILS

Di-Flow Configuration. Pseudo-training pairs (z, z.) were generated using the proposed MSA
strategy, combining K — 1 adjacent slices with a target slice weighted by w. Specifically, parameters
were determined as K = 5, w = 6 for the 7T dataset, and K = 9, w = 6 for the 3T dataset,
respectively, based on slice thickness and dataset-specific SNR characteristics (see Appendix[B). The
denoising framework was implemented as a conditional DDPM with a U-Net backbone comprising
four resolution levels and channel multipliers of (1,2,4,8). At every diffusion step, noisy input
z; and contextual prior z. were concatenated along the channel dimension and jointly fed into the
network. The model was trained using the Adam optimizer with a learning rate of 8 x 107>, a batch
size of 12, and a sampling timestep of 1000. For data augmentation, we applied random cropping
to 256 x 256 and horizontal flipping. Expectation-only sampling was applied during inference.
All experiments were implemented in PyTorch 2.4.1 with Python 3.8.5 and conducted on NVIDIA
GeForce RTX 3090 GPUs with 24 GB memory.

Competing Methods. All methods were implemented using official codes with necessary adapta-
tions for single-volume scenarios. BM3D was applied slice-wise with optimized parameters. Nois-
ier2Noise and Neighbor2Neighbor were trained on identical single-acquisition volumes and data
splits as Di-Flow, also using optimized parameters based on the recommendations in the original pa-
pers. DDM? and Di-Fusion are originally designed for multi-acquisition scenarios, we adapted these
methods to leverage adjacent slices within single volumes instead of corresponding slices across
multiple acquisitions. Specifically, temporal redundancy was replaced with spatial redundancy by
selecting the nearest NV adjacent slices (where N matches original multi-acquisition count). Net-
work architectures and training procedures followed original specifications with hyperparameters
tuned for our datasets.
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Table 1: Quantitative evaluation on 7T and 3T TOF-MRA datasets. Mean vascular SNR and CNR
(with standard deviation shown below each mean) are reported for all methods. Higher values
indicate better vascular signal clarity and vessel-to-background contrast.

7T TOF-MRA 3T TOF-MRA
Vascular SNR (1) Vascular CNR (1) Vascular SNR (1) Vascular CNR ()

Noisy slice 27'09i7.39 20-74i5.68 15-61i6.11 9-30i3.88
BM3D Dabov et al{(2007)  58.11432.50 44.50 194 97 19.38 19 55 11.5015 75
NR2N Moran et al|(2020) ~ 45.81.11546 347611400 19.05.15 23 11.2045 o7
NB2NB |Huang et a1.| (12021[) 46.45i19.70 36.69i15.63 17-41i7.18 10.16i4.32
DDM2 |X1ang et al| (12023[) 29~77i10.07 22-9418.08 15-25i5.72 9~55i3.81
Di-Fusion !!u et al. w 41-47i16.25 30-92i12.09 18-59i8.23 10-54i4478
Di-Flow (Ours) 61.30:|:32_30 46.17:|:24_41 22.36:|:11_56 12'17:t6.51

Noisy slice BM3D NR2N NB2NB DDM? Di-Fusion Di-Flow (Ours)

7T TOF-MRA

3T TOF-MRA

Figure 2: Visual and qualitative comparisons on 7T and 3T TOF-MRA. Each row shows denoised
outputs from competing methods on representative slices. Insets highlight differences in vascular
preservation and background suppression.

4.3 RESULTS

Quantitative Evaluation. Table[T]summarizes quantitative performance on 7T and 3T TOF-MRA
datasets, with evaluation based on vascular signal-to-noise ratio (SNR) and contrast-to-noise ratio
(CNR) metrics that respectively quantify vessel visibility and the ability to distinguish vessels from
background tissue. On the 7T dataset, Di-Flow achieves the best results in both SNR and CNR,
outperforming conventional, self-supervised, and diffusion-based methods. On the more challenging
3T dataset, where lower field strength yields reduced image quality, Di-Flow maintains its leading
performance across all metrics. Competing methods, including recent self-supervised and diffusion-
based approaches, show a pronounced drop in vessel clarity and background separation. In contrast,
Di-Flow robustly suppresses noise and consistently improves vessel delineation, demonstrating its
generalizability even in low-SNR regimes.

Qualtitative Analysis. Figure |2| presents denoised 7T and 3T TOF-MRA slices for all methods.
BM3D effectively suppress background noise but frequently blur vessel structures and reduce edge
definition. Noisier2Noise maintains overall contrast but can oversmooth soft tissue regions, while
Neighbor2Neighbor achieves strong denoising yet sometimes obscures fine vascular detail and ves-
sel boundaries. DDM? shows limited noise suppression in single-volume settings, and Di-Fusion
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produces natural-appearing results but with diminished vessel conspicuity. In contrast, Di-Flow
preserves sharp vessel edges and subtle vascular branches, balancing robust noise reduction with
accurate anatomical detail. Highlighted insets confirm that Di-Flow consistently maintains small
vessel visibility without introducing artifacts, supporting its quantitative advantage.

Impact on MIP Renderings. Figure [3further demonstrates the clinical relevance of the proposed
method using Maximum Intensity Projection (MIP) renderings. In the original noisy image, vessel
structures appear fragmented, and small arterial branches are barely visualized due to background
noise. After denoising, these structures exhibit noticeably improved continuity and become more
visually discernible, including low-contrast peripheral vessels that were previously obscured. Our
approach effectively enables clearer visualization of vascular continuity while suppressing noise and
maintaining anatomical fidelity.

NS A Lgt ¥ NS4
(a) Input noisy MIP (b) Proposed denoised MIP

Figure 3: Qualitative visualization of denoising results on 3D MRA data. (a) Original noisy MIP
image, and (b) denoised output from our proposed method. The bottom row shows zoomed-in
regions corresponding to the red boxes, where fine peripheral vessels that were previously obscured
by noise become clearly visible in (b), as indicated by green arrows.

4.4 ABLATION STUDY

Analysis on Expectation-Only Sampling. We ablate
the inference strategy by comparing expectation-only
sampling with standard stochastic sampling (Figuref). In
medical imaging, determinism is critical for reproducibil-
ity and diagnostic reliability: stochastic sampling intro-
duces run-to-run variability that can subtly alter vessel
visibility. Empirically, expectation-only sampling yields
more clearer restorations while enhancing vessel visi-
bility with homogeneous background and consistently ; N
sharper tissue boundaries, whereas stochastic standard (a) Standard Sampling (b) Expectation-Only Sampling
sampling exhibits background texture fluctuations and oc- Figure 4: Comparison of sampling
casional spurious high-intensity artifacts (highlighted yel- strategies.

low boxes).

Analysis on PAP. Evaluation of the
PAP module revealed further im-
provements in local anatomical ac-
curacy.  Figure [j] illustrates that
the effectiveness of the PAP module
is demonstrated by comparing out-
puts with and without its application.
Without PAP, generative denoising
can lead to over-suppression or artifi-
cial generation of high-intensity ves-
sel regions, resulting in either miss-
ing or spurious vascular structures.
When PAP is incorporated, these ef-
fects are substantially mitigated. The
final output maintains effective noise
removal while refining only subtle local differences, particularly within vessel-rich regions. High-
lighted regions in Figure 5] show that vessel boundaries become more coherent and faint vessels are
preserved, confirming that PAP leverages patch statistics to restore anatomical fidelity. However,
when compared to other methods, these approaches are less effective with the PAP module, as their

(a) Noisy input (b) Denoised output (w/o PAP) (c) Denoised output (w/ PAP)

Figure 5: Effect of the PAP module. Red and orange boxes
indicate refined vascular details after applying PAP, while
green boxes highlight regions where the denoising effect is
maintained.
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difference map histograms exibit instability under threshold-based clipping. This demonstrates that
both the deterministic expectation-only sampling and the patch-wise adaptive correction indepen-
dently and jointly enhance the quality and reliability of the final denoised output.

5 DISCUSSIONS

Limitation of MSA. The effectiveness of MSA relies on the assumption that anatomical structures
exhibit sufficient coherence across adjacent slices. This assumption is well-founded for thin-slice
acquisitions typical in high-resolution MRA, where vascular structures maintain consistent morphol-
ogy across neighboring sections. However, in protocols with larger inter-slice gaps, the structural
similarity between adjacent slices may diminish, potentially leading to suboptimal pseudo-clean tar-
get generation. In such cases, averaging could attenuate subtle slice-specific details or introduce
mild blurring at structural boundaries, which may limit the generalizability of the approach.

Dataset Generalization. Our experiments were performed on TOF-MRA data acquired at both
3T and 7T in healthy volunteers. Across these settings, the method consistently enhanced vascular
SNR and CNR, suggesting robustness to variations in field strength and acquisition quality. These
results indicate promising potential for broader applicability, and further validation on more exten-
sive, multi-vendor, and pathological datasets would strengthen evidence for its clinical utility.

6 CONCLUSION

We presented Di-Flow, a fully self-supervised denoising framework tailored for single noisy MR
angiography volume, which operates without clean reference data, repeated acquisitions, or temporal
consistency. To overcome the limitations of prior methods in low-redundancy settings, Di-Flow
introduces a slice-aware pseudo-pairing strategy that leverages intra-volume structural coherence
to construct effective supervision from a single volume. During inference, a conditional diffusion
model is combined with expectation-only sampling and patch-wise anatomical refinement, enabling
suppression of noise while preserving fine-grained structural details.

We validated our method on 7T and 3T TOF-MRA datasets. Di-Flow consistently demonstrated su-
perior denoising performance compared to conventional, self-supervised, and diffusion-based base-
lines. In particular, it effectively restored weak vascular signals and enhanced anatomical continuity,
especially in challenging imaging conditions such as low SNR or sparse contrast. While our exper-
iments focused on TOF-MRA, the core framework of Di-Flow does not rely on specific anatomical
priors or acquisition redundancy, suggesting its potential applicability to other volumetric modali-
ties. These findings highlight the practical value of Di-Flow as a general-purpose denoising solution
in retrospective or resource-limited clinical workflows.
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A J-INVARIANT IN DI-FLow

In this Appendix, we provide additional technical details on the relationship between the J-invariant
property and the Di-Flow framework. Specifically, we clarify how Di-Flow leverages J-invariance
through the Multi-Slice Averaging (MSA) strategy and the expectation-only sampling approach,
distinguishing it from prior methods such as blind-spot networks or pixel-replacement strategies.

A.1 J-INVARIANT PROPERTY

The J-invariance concept was originally proposed in the Noise2Self framework Batson & Royer
(2019) and has since been foundational to self-supervised denoising approaches. This concept is
particularly valuable in clinical scenarios where paired noisy—clean datasets are unavailable, making
supervised methods impractical.

Definition. Letx € R™ be an image, and let 7 = {J1, ..., Jx } be a partition of the pixel indices
{1,...,m}. A function

f:R™ - R™

is called J-invariant if, for every subset J € 7, the output f(x); is independent of the input values
z . Formally,

f(LC)JJ_CEJ7 vJeJ. &)

Intuitively, this condition ensures that predictions for pixels in J depend only on pixels outside of
J, preventing trivial identity solutions and enforcing meaningful spatial correlations.

Proposition. Let f be J-invariant and assume independent pixel noise. If f is an unbiased estima-
tor of the clean image y, then for each J € 7,

E[llf(x)s —zs1?] = E[llf(x)s —wslI’] + Ellys — 7] (10)

Minimizing the left-hand side (self-supervised loss) thus equivalently minimizes the supervised loss
plus a constant noise variance term. The optimal J-invariant predictor is

[ (x); = Elys | =], (11

where y denotes the clean image and J¢ the complement of J.
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A.2 RELATION TO DI-FLOW

In prior methods, enforcing J-invariance typically involved explicit architectural constraints such
as blind-spot networks [Krull et al.| (2019); [Laine et al.| (2019); Wu et al|(2020) or masking strate-
gies |[Lehtinen et al.| (2018)); Batson & Royer| (2019). The Di-Flow framework, however, achieves
J-invariance implicitly by combining the Multi-Slice Averaging (MSA) strategy with expectation-
only sampling during inference.

Formally, given a set of noisy slices {yx } xc k', We construct two averaged images with target weight
w = 1:

1

To = > vk = So + no, (12)
keK
P >y =Ss+ (13)
= Yr = Sy +nye,
keEK jc

where Sy, Sj. are averaged clean signals and ng,n . are averaged noise terms. Under unbiased,
independent noise,

]E[LL()] = So, ]E[LLC] = SJC. (14)

During inference, Di-Flow generates two denoised estimates via expectation-only sampling: one
from the full average x( and another from the contextual-only average x.. The clean target signal s
is then recovered by

E[sy|xs] =K-E[So|zse] — (K —1)-E[Sse | xe]. (15)

which exactly matches the optimal J-invariant predictor. By doing so, Di-Flow inherently enforces
J-invariance, extracting clean anatomical structures without explicit architectural constraints or spe-
cialized loss formulations. Thus, the combination of MSA and expectation-only sampling provides
a theoretical grounding for achieving optimal self-supervised denoising performance in practical
clinical scenarios.

B HYPERPARAMETER SELECTION FOR MULTI-SLICE AVERAGING (MSA)

Rationale. We provide detailed analysis of how MSA parameters K, number of slices, and w,
target weight, were selected based on dataset characteristics and clinical requirements. Given a
target index ¢ and its neighborhood N (7) (of size K), the MSA output is

o = UYL E Dkentingn U (16)
’ w+ (K —1) '

For interpretability, we also report the normalized target contribution

w a(K-1)
= — = = —. 17
“ w+ (K —1) v 11—« {17)
Small w (low «) yields stronger averaging/blur; large w (high o) preserves the target slice but leaves
more noise.

Metric ROIs. To quantify the trade-offs, we define vessel and background regions of interest
(ROIs) within selected image patches. The vessel ROI captures high-intensity vascular structures,
while the background ROI corresponds to the most homogeneous region (minimum variance) within
the same neighborhood. We then compute:

SNR = Nvessel’ CNR = Hvessel — Hbg ) (18)
Obg Obg
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Analysis of Slice Number K. We fix « (i.e., adjust w per K so that « stays constant) and analyze
SNR/CNR vs. K to isolate the benefit of adding more slices from the confound of changing the
target weight. For 7T we fix a=0.60 and sweep K € {3,5,7,9}; for 3T we fix «=0.55 and sweep
K € {5,7,9,11,13}. This supports selecting smaller K for high-SNR, thin slices (7T) and larger
K for lower-SNR, thicker slices (3T), while staying on the plateau to avoid unnecessary compute
and z-axis blurring. Based on this analysis, we selected K = 5 for 7T and K = 9 for 3T, where
both datasets achieve optimal SNR and CNR simultaneously.

Analysis of Target Weight w. We fix the clinically reasonable K values determined above (K=5
for 7T, K=9 for 3T) and vary w to examine the blur<snoise trade-off. Small w provides clean
background but blurs thin vessels, while large w sharpens vessels but introduces visible noise speckle
in low-signal regions. Through systematic evaluation, we identified w = 6 for both datasets as the
optimal balance point where noise levels remain acceptably low while avoiding excessive blurring
of fine vascular structures. This moderate weighting preserves vessel fidelity without compromising
the noise suppression benefits of multi-slice averaging.
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