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ABSTRACT

A striking neuroscience study once placed a dead salmon in an fMRI scanner and
showed it images of humans in social situations. Astonishingly, standard analyses
reported brain regions predictive of social emotions. The explanation, of course,
was not supernatural cognition but a cautionary tale about misapplied statistical
inference. In AI interpretability, reports of similar “dead salmon” artifacts abound:
feature attribution, probing, sparse auto–encoding, and even causal analyses can
produce plausible-looking explanations for randomly initialized neural networks.
In this work, we argue for a fundamental statistical–causal reframing: explana-
tions of computational systems should be treated as parameters of a (statistical)
model, inferred from computational traces. This perspective goes beyond sim-
ply measuring statistical variability of explanations due to finite sampling of input
data; interpretability methods become statistical estimators and findings should be
tested against explicit and meaningful alternative computational hypotheses. It
also highlights important theoretical issues, such as the identifiability of explana-
tions, which we argue is critical to understand the field’s susceptibility to false
discoveries. We illustrate this reframing with a toy scenario recasting probing
as hypothesis testing against null distributions derived from random computation.
The statistical–causal perspective opens many avenues for future work aiming to
turn AI interpretability into a rigorous science.

1 INTRODUCTION

AI systems are increasingly deployed in high-stakes real-world settings, where their decisions di-
rectly affect human lives. In such contexts, interpretability is essential for transparency, accountabil-
ity, and error diagnosis (Mehrabi et al., 2021; Barnes & Hutson, 2024; Ramachandram et al., 2025).
Regulators have recognized these risks: under both the GDPR and the EU AI Act, explainability is
now a legal requirement1 (Lorè et al., 2023; Fresz et al., 2024; Kiseleva et al., 2022; Bengio et al.,
2024).

Interpretability methods have already uncovered critical failure modes in safety-sensitive domains
such as autonomous driving (Kim & Canny, 2017), medical decision support (Zech et al., 2018;
Caruana et al., 2015), and large language models (Meng et al., 2022; Monea et al., 2024). They
promise levers for mitigating bias and correcting errors (Arrieta et al., 2019; Kristofik, 2025), and
they enable human–AI collaboration, where operators can meaningfully supervise, understand, and
override automated decisions when needed (Felzmann et al., 2020; Kim et al., 2018). At the societal
level, interpretability supports communication and trust: non-experts are more willing to accept,
contest, or regulate AI systems when their behavior can be faithfully explained (Poursabzi-Sangdeh
et al., 2021; Buçinca et al., 2021; for Economic Co-operation & Development, 2023).

Despite these urgent needs, our ability to explain modern AI systems remains in what may be called
a pre-scientific era. A now-classic cautionary tale from neuroscience illustrates the danger of mis-
applied statistical inference. Researchers placed a dead salmon in an fMRI scanner, showed it pho-
tographs of humans, and ostensibly asked it to judge their emotions (Bennett et al., 2009). Standard
pipelines identified several brain regions as predictive. The explanation, of course, was not super-
natural cognition but a failure to correct for multiple comparisons.

1Regulation (EU) 2016/679, https://eur-lex.europa.eu/eli/reg/2016/679/oj; Regula-
tion (EU) 2024/1689, https://eur-lex.europa.eu/eli/reg/2024/1689/oj/eng
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In AI interpretability, “dead salmons” take the form of randomly initialized neural networks, and our
field collects report of examples where plausible explanations are extracted from random networks.
This phenomenon has been documented across feature attribution (Adebayo et al., 2018), probing
(Ravichander et al., 2021), sparse autoencoders (Heap et al., 2025), and even causal approaches like
circuit discovery or causal abstraction (Méloux et al., 2025; Sutter et al., 2025).

Beyond these striking false positives, interpretability methods also display statistical fragility. Small
perturbations to the input (Ghorbani et al., 2019; Kindermans et al., 2019; Zhang et al., 2025) or
changes in random initialization (Adebayo et al., 2018; Zafar et al., 2021) can drastically change the
explanations. In mechanistic interpretability, interventions on identified circuits often fail to gener-
alize: edits that succeed in one context may break in another (Hoelscher-Obermaier et al., 2023).
Conversely, multiple incompatible explanations can be found for the exact same behavior (Méloux
et al., 2025; Dombrowski et al., 2019).

In this work, we synthesize evidence to argue that existing methods are particularly prone to false
discovery with dead salmon artifacts as the most extreme and embarrassing instances. As road for-
ward, we propose a unifying statistical-causal perspective: interpretability should be framed as a
task of statistical-causal inference, where explanations are treated as parameters to be inferred from
computational traces. This reframing yields the principled tools of identifiability, uncertainty esti-
mation, and hypothesis testing. It also opens promising avenues for future work, such as Bayesian
approaches to interpretability. To illustrate this perspective, we present a toy example showing how
hypothesis testing against a null distribution of random computations can trivially eliminate dead
salmon artifacts.

2 THE DEAD SALMONS OF AI INTERPRETABILITY

Adebayo et al. (2018) showed that saliency maps can survive randomization and still look visually
plausible. Several benchmarking efforts also demonstrated that many feature attribution methods
perform little better than random (Kindermans et al., 2019; Nguyen et al., 2021). Complementing
these negative results, Dombrowski et al. (2019) demonstrated that gradient-based explanations can
be manipulated by small perturbations that leave predictions unchanged, also producing spurious at-
tributions. From a theoretical perspective, Bilodeau et al. (2024) proved impossibility results show-
ing that no attribution method can simultaneously satisfy intuitive desiderata across broad model
classes. This formal perspective helps explain the empirical tendency toward false positives and
instability.

Unsupervised concept-discovery pipelines such as sparse autoencoders (SAEs) (Cunningham et al.,
2023; Yun et al., 2021) also display analogous pathologies. Heap et al. (2025) showed that SAEs
recover apparently interpretable components even in randomly initialized transformers. Additional
studies confirm that SAE-discovered features often fail to generalize (Heindrich et al., 2025; Kan-
tamneni et al., 2025), hinting they may not capture fundamental properties of the representations
computed by the neural network.

Probing (Adi et al., 2017; Conneau et al., 2018), an operationally simple and widely used method,
suffers from related limitations. Probes ask whether a representation contains information, not
whether the model uses it. Ravichander et al. (2021) show that probes can extract features merely
encoded (e.g., inherited from embeddings) even if unused during inference. Defenses such as probe-
capacity controls (Belinkov, 2022) mitigate but do not resolve this core issue: predicting is not un-
derstanding (D’Amour et al., 2022; Teney et al., 2022). Probing thus remains prone to false positives
and dead-salmon style errors, where signals are detected without computational relevance.

Recent work has shifted toward intervention-based approaches (Vig et al., 2020; Meng et al., 2022;
Goyal et al., 2019; Feder et al., 2021; Monea et al., 2024). These methods place models in coun-
terfactual states, allowing researchers to isolate and characterize causal factors (Meng et al., 2022;
Kramár et al., 2024; Monea et al., 2024), often through causal mediation analysis (Vig et al., 2020;
Mueller et al., 2024). This line of work has coalesced into what is often termed mechanistic in-
terpretability (MI): the effort to reverse-engineer the computation of complex neural networks into
simple human-understandable algorithm (Olah et al., 2020). One of the main task concerns the iden-
tification of sparse subnetworks or “circuits” responsible for particular behaviors (Olah et al., 2020;
Syed et al., 2023; Hanna et al., 2024b). A related strand relies on the theory of causal abstraction,
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which formalizes when a high-level causal model validly represents a more complex system, namely,
when their causal effects under interventions align (Chalupka et al., 2016; Rubenstein et al., 2017;
Beckers & Halpern, 2019; Beckers et al., 2020; Geiger et al., 2022a). Applied to interpretability,
the goal is to discover high-level abstractions that capture essential computational mechanisms of
a network while remaining simple (Geiger et al., 2022a; Wu et al., 2023).

Yet these interventionist approaches also exhibit critical failure modes. Makelov et al. (2023)
showed that subspace patching can produce interpretability illusion by activating alternate pathways
rather than the hypothesized mechanism. Exhaustive studies on toy models reveal that both circuit
discovery and causal abstraction often return multiple incompatible explanations, even for random
networks, highlighting non-identifiability issues (Méloux et al., 2025). This is also true of larger
networks, in which applying multiple circuit discovery methodologies yields inconsistent results
(Zhang & Nanda, 2024). Finally, Sutter et al. (2025) proved that without the linear representa-
tion assumption, existing causal-abstraction methods will output explanations for random networks.
Despite their grounding in causal reasoning, causal pattern analyses still suffer from false positives.

2.1 DISCUSSION: STATISTICAL FRAMING, NON-IDENTIFIABILITY, AND UNCERTAINTY

The concrete pathologies documented above are not mere engineering quirks; they reflect a coher-
ent statistical and philosophical diagnosis arising from the lack of proper grounding within rigorous
inferential procedure. For predictive approaches like probing or SAE, their problem is inherited
from standard issues in machine learning like overfitting (Belinkov, 2022) and underspecifica-
tion (D’Amour et al., 2022; Teney et al., 2022), making them not generalize to settings where
interventions are performed on the computations (Elazar et al., 2021). A predictive explanation
method can predict a behavior without being a meaningful explanation for it (Ravichander et al.,
2021). Solving this requires going beyond absolute predictive power towards relative predictive
performance against meaningful computational alternatives (as the ones explored in Sec 4).

These observed problems remain puzzling for causal analysis methods, which, at first glance, appear
to implement the causal inference framework at the heart of scientific rigor that should enable gener-
alizable explanations. A likely explanation is causal complexity: AI systems are large, distributed
computational systems with many interacting components, creating many causal pathways linking
inputs to outputs. Philosophers and complex systems scientists have already argued that complex,
nonlinear systems commonly admit many interacting pathways and context-dependent mechanisms,
which makes it practically infeasible to single out one causal path (Potochnik, 2017), e.g., the com-
plex system problem (CSP) in neuroscience (Tononi et al., 1994; Loosemore, 2012; Sarkar, 2022).
Because of causal complexity, finding stories within complex computational systems becomes too
easy (Lindsay & Bau, 2023).

This diagnosis, for both predictive and causal approaches, can be made more formal through the
notion of identifiability, a statistical concept stating that the parameters of an explanatory statisti-
cal model are identifiable if they can be uniquely determined from observations (Casella & Berger,
2024). Identifiability is typically a prerequisite for inference in the natural sciences; without it, ex-
planations remain ambiguous. Since identifiability is not a property of the system itself, but of the
type of questions we ask before observing it, a lot of work has been dedicated to building identi-
fiable models and queries in statistics (Casella & Berger, 2024; Allman et al., 2009), unsupervised
learning (Locatello et al., 2019; Khemakhem et al., 2020), and causal inference (Shpitser & Pearl,
2008).

Currently, identifiability serves only as an analogy, since interpretability has not yet been consen-
sually formalized as a problem of statistical inference. Thus, it cannot produce precise diagnoses
of non-identifiability, and only observes the empirical consequences. These include explanations
that fail to generalize across domains (Ravichander et al., 2021; Heindrich et al., 2025; Kantam-
neni et al., 2025) and incompatible explanations for the same behavior (Dombrowski et al., 2019;
Méloux et al., 2025). All are symptomatic of a deeper problem: a tendency of current methods
to produce false positive discoveries. The most striking of such false discoveries are dead salmon
types of artifacts, when methods generate plausible-looking explanations from clearly meaningless
computations. If such a formalism were adopted, explanations could be treated as parameters of a
statistical model to be inferred from computational traces produced by the network. The statistical
model would encode the assumptions that a given method makes about how explanations manifest
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in those traces. Then, an interpretability query is identifiable if all candidate explanations can, in
principle, be distinguished by some available data. We argue that this is the path we should take to
advance interpretability research.

3 THE STATISTICAL INFERENCE PERSPECTIVE

Let X denote the random input to a neural network (e.g. tokens in language models or pixels in
vision models). We represent the network as a directed acyclic graph (DAG) f : X → Y , whose
nodes correspond to computational units (neurons, channels, or other units of computation) and
whose directed edges encode information flow determined by parameterized maps (weights).

Formally, let V be the set of nodes in the computation graph G, including the designated output
node(s) Y ∈ V. Each node v ∈ V computes a measurable function of its parents pa(v) ⊂ V,
parameterized by weights Wv:

hv = gv
(
{hu : u ∈ pa(v)}, Wv

)
, v ∈ V,

where inputs are treated as source nodes without parents. The network output(s) are given by the
activation(s) at the designated output node(s).

Behavior of interest. We study the behaviour of the network relative to an input distribution PX,
which specifies the task or environment of interest. Different interpretability tasks naturally corre-
spond to different choices of PX.

Structural causal model. The pair (f, PX) induces a structural causal model (SCM) in the sense
of Pearl (Pearl, 2009; Pearl & Mackenzie, 2018). Concretely, we may represent the computation as
an SCM C = (G, V, X, f, PX), where:

• Endogenous variables: V are the network’s computational variables (hidden activations,
outputs);

• Exogenous variables: the inputs X to the model, and the input distribution PX, which
specifies the marginal distribution of the corresponding source variable(s);

• Structural assignments: the deterministic/parameterized maps gv define the structural
equations of the model;

• Causal graph: G is the network’s computation graph.

This SCM entails a unique observational distribution over all computational variables V. Sampling
from it corresponds to drawing inputs from PX, executing a forward pass, and recording intermedi-
ate activations. Crucially, an SCM encodes not only this observational distribution but also a family
of interventional and counterfactual distributions. This SCM view of neural network corresponds to
the standard perspective taken by mechanistic interpretability (Olah et al., 2018; Cammarata et al.,
2020; Geiger et al., 2022b; 2025).

Interventions and counterfactuals. For a subset of variables I ⊆ V, a hard intervention do(I =
i) replaces the structural assignments for variables in I with constant functions taking the value i.
The intervened SCM, denoted C; do(I = i), induces the interventional distribution P

C;do(I=i)
V , also

defined over V.

Counterfactual distributions in an SCM are carried out in two standard steps (abduction, interven-
tion):

1. Abduction: condition on observed evidence E = e and update beliefs about the exogenous
variables via the posterior PX|E=e;

2. Intervention: modify the model by applying an intervention do(I = i);

The abduced and intervened model C | E = e; do(I = i) induces the counterfactual distribution
over V: P

C|E=e;do(I=i)
V . In many neural-network settings, when we observe some evidence, we

typically know exactly which single input instance x is observed, so the abduction step is trivial
(conditioning on X = x fixes the corresponding source node). A counterfactual query also reduces
to an interventional query analyzing the model’s behavior on a single input instance.

4
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Figure 1: Illustration of the statistical-causal perspective. The input distribution and the neural
network form an SCM C from which it is possible to draw causal queries (properties of its observa-
tional, interventional, and counterfactual distributions). An interpretability task is a choice of causal
queries to explain (represented by a distribution µ over queries), a hypothesis space E of surrogate
models, the candidate explanation, and a measure of error of candidate explanations on selected
causal queries.

Causal query. A causal query q(C) is any measurable functional or distribution that can be eval-
uated from the SCM (possibly after conditioning or intervention). Examples include: the marginal
distribution of V; the effect on the output distribution of ablating a set of neurons; or the coun-
terfactual output for a specific input under a surgical change to the computation. This definition
aligns with the standard notion of estimands in causal inference: classical causal estimands (average
treatment effects, conditional causal effects, etc.) are causal queries.

3.1 EXPLANATIONS AS SURROGATE MODELS FOR QUERY ANSWERING

We formalise explanations as surrogate models designed to answer a chosen collection of causal
queries. Suppose we have a measurable space of queries (Q,F) together with a probability measure
µ on Q (the query distribution) that encodes which queries are important or likely to be asked for the
interpretability task at hand. Classical causal inference corresponds to concentrating µ on a single
query; interpretability addresses the task of answering many queries drawn from a nontrivial µ by a
surrogate model. The framework is visually illustrated for circuit discovery in Fig. 1.

Let E be a hypothesis class of candidate surrogates (circuits, probes, feature-maps, small causal
models, . . . ). Each surrogate e ∈ E defines a query-answering map Se, so that Se(q) is the surro-
gate’s predicted answer for query q.

To measure fidelity of the explanation (the surrogate model), we can, for example, choose a diver-
gence D between probability measures (total-variation, Kullback–Leibler where defined, Wasser-
stein, or a suitable MMD) and define the population risk by

Lµ(e) = Eq∼µ

[
D
(
q(C) ∥Se(q)

) ]
.

The interpretability task is defined by the tuple (µ, E , D) which specifies the query distribution, the
hypothesis space of surrogate models, and the error measurement D. We call the explanatory task
identifiable if Lµ admits a unique minimiser in E (uniqueness may be relaxed to hold only up to
allowed symmetries of the surrogate class). Identifiability captures whether the chosen surrogate
class can, in principle, be distinguished using the queries deemed relevant by µ.

Estimation. In practice, we only observe a finite set of queries q1, . . . , qn
i.i.d.∼ µ, and for each

query we collect a finite number of computational traces obtained by sampling inputs and executing
the model. Denote by Tn the resulting finite dataset of traces. An interpretability method M acts
as a statistical estimator that maps Tn to an estimated surrogate ê := M(Tn). A natural approach
with the above framing is to search for the explanation e ∈ E that minimizes the empirical risk
L̂µ(e). Finite-sample uncertainty arises both from sampling queries and from the limited number of
traces per query. The intuitive notion of consistency of such estimators (convergence of ê in E as the
amount of data grows) is a question of both statistical consistency and computational tractability: for
instance, exhaustively testing all possible interventions is infeasible because the intervention space
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is (in general) infinite. A relevant question is then how many intervention queries are needed to be
confident that a faithful circuit has been discovered (Hanna et al., 2024a).

Interpretation of common methods. We provide in Table 1 a high-level description of how com-
mon methods could be reframed within the statistical-causal inference framework.

Method Hypothesis space E Causal queries and error measure-
ment D

Benchmarking Single numerical statistic (e.g. ac-
curacy) representing performance.

Observational query: output distribu-
tion under PX; error measured by
difference between estimated accuracy
and true accuracy (standard parameter
inference in statistical inference).

Probes Simple classifiers (often linear
models) mapping hidden activa-
tions to labels.

Observational queries: conditional dis-
tribution of labels given hidden activa-
tions; error measured by classification
loss or divergence between predicted
and true conditional distributions.

Feature attribution
/ saliency

Attribution scores or saliency
maps over inputs.

Counterfactual queries: effect of per-
turbing/intervening on input features
on outputs; error measured by devi-
ation of surrogate scores from actual
effect of interventions. We note that
Senetaire et al. (2023) already propose
a framing of feature attributions as sta-
tistical inference.

Circuit discovery Subgraphs of the original compu-
tation graph connecting inputs to
outputs.

Interventional invariance queries: be-
havior under ablations of parts of the
computation; error measured by dis-
crepancy between outputs of surrogate
circuit and full model (e.g. predictive
accuracy or divergence).

Causal tracing Numerical score of importance for
the target computational unit.

Counterfactual queries of the type of
mediation analysis: natural direct ef-
fect of a component when mediating
the causal link between inputs to out-
puts; error measured by the difference
between true and estimated direct ef-
fects.

Causal abstraction High-level causal models (abstract
variables and mappings from low-
level variables V).

Interventional invariance queries:
preservation of distributions that are
valid under abstraction mapping; error
measured by divergence between
abstract model predictions and true
interventional distributions.

Table 1: Common interpretability methods expressed in the framework of surrogate models: hy-
pothesis space, causal queries, and error measurement.

Takeaway. Viewing interpretability as the construction of a surrogate that approximates a distri-
bution of causal queries makes explicit the (often implicit) choices practitioners must make: which
queries matter (the measure µ), how closely they must be matched (the divergence D), and what
should the surrogate be (the hypothesis class E and any potential regulariser). This perspective

6
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brings the standard apparatus of statistical and causal inference (estimands, identifiability, risk,
finite-sample error, . . . ) into interpretability research. Conceptually, it highlights that explanation
is a form of computational compression: the surrogate compresses some aspects of the network’s
computation of interests, the ones encoded by the query distribution µ.

4 TOY ILLUSTRATION: PROBING AS HYPOTHESIS TESTING

The formalism above naturally yields an empirical risk objective

argmin
e

Lµ(e) + Ω(e),

as an explanation discovery strategy, where Ω(e) is a regulariser that can favor simpler explana-
tions. Empirical risk minimization (ERM) may identify the best-fitting surrogate within a class E ,
but by itself it does not establish whether the fit of the discovered explanation is meaningful. Hy-
pothesis testing provides a principled tool for assessing this question, offering a way to control false
discoveries by comparing against relevant null hypotheses.

A small empirical loss may arise spuriously, for example, because the architecture or trivial correla-
tions allow many surrogates to perform well, creating an illusion of explanatory validity. In striking
examples of dead salmon artifacts, explanations with a good fit are found on random networks.

This is analogous to the well-known “dead salmon” problem, where statistical procedures spuri-
ously detect meaningful signals in random data. To guard against such false discoveries, one can
test explanations against null models that randomize the network computation. This measures not
only whether the explanation produces a good fit, but if it fits better than what would be expected
from attempting to explain random computation. Concretely, we can test whether the discovered ex-
planation e⋆ = M(C) predicts the true network’s answers to a chosen set of queries Q more reliably
than explanations derived from randomized counterparts of C.

Illustration: probing as hypothesis testing. Consider the task of assessing whether a neural net-
work has learned to detect loops when classifying handwritten digits. A common probing approach
is to train a classifier on the network’s activations and declare that the concept is learned if the probe
predicts the presence of loops above random guessing on test images. However, even a randomly
initialized network, implementing an arbitrary but fixed transformation of the input, can contain
enough information to support above-chance probe accuracy.

The formalism developed above allows us to recast probing as a hypothesis test against a null dis-
tribution of random computations. Let Vℓ denote the representation at layer ℓ. A probe trained on
Dtrain yields a classifier ê = Probe(Vℓ;Dtrain). Define the population accuracy

S(ê;C) = Pr
(X,Y )∼PXY

[ê(Vℓ(X)) = Y ] ,

and its empirical estimate on a test set Dtest,

Ŝ(ê;C) =
1

m

m∑
i=1

1{ê(Vℓ(xi)) = yi}.

For each randomized network C̃(b), we repeat the probing procedure to obtain ê(b) and evaluate
Ŝ(b) = Ŝ(ê(b); C̃(b)) on the same Dtest. The one-sided Monte Carlo p-value (alternative: the true
representation yields higher accuracy than randomized computations) is

p̂probe =
1 +

∑B
b=1 1

{
Ŝ(b) ≥ Ŝ(ê;C)

}
B + 1

.

This quantifies the likelihood of achieving the observed probe accuracy under randomized computa-
tion. A low p-value provides evidence that the network representation genuinely encodes the probed
concept. Many different randomization procedures can be considered (full model random initializa-
tion, layer-specific randomization, weight shuffling, . . . ). By design, explaining random networks
will fall within the null distribution and yield a high p-value, eliminating dead salmon issues.

7
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Toy example. We illustrate with a three-layer random MLP (128 neurons per layer) on MNIST
digits. The explanatory task is to classify whether digits contain a loop using probe classifiers trained
and tested on balanced subsets of data. Standard probes achieve above-chance accuracy at all layers,
which is an instance of a dead salmon artifact. Importantly, reporting only the variability due to
finite-sample uncertainty of the test set (e.g., 95% confidence intervals via bootstrap resampling
of the test set) is insufficient: the probe accuracy exceeds random chance with high confidence.
In contrast, the hypothesis test against randomized computation correctly fails to reject the null,
yielding large p-values and eliminating false positives.

5 DISCUSSION

Layer Probe acc. p-value (ours)

1 0.85 (0.81, 0.89) 0.47
2 0.82 (0.77, 0.87) 0.52
3 0.79 (0.71, 0.86) 0.55

Table 2: Comparison of standard probes versus
our hypothesis test on a 3-layer random MLP.
Standard probes falsely detect the target con-
cept, while our test eliminates false discoveries.

We have argued for a statistical–causal perspec-
tive on post-hoc interpretability and introduced
one preliminary instantiation of such a frame-
work. While alternative formalizations are pos-
sible, the present approach illustrates the poten-
tial of grounding interpretability in rigorous sta-
tistical inference. This perspective can shift in-
terpretability research from a set of heuristics to-
ward one of principled hypothesis testing, thereby
opening a broad research agenda. A natural next
step is to reformulate other interpretability meth-
ods within this statistical–causal framework, clar-
ify the theoretical conditions under which particular explanations are identifiable and understand
their consistency properties. The simple hypothesis tests against randomized computations demon-
strate how to eliminate embarrassing “dead salmon” artifacts and can, more generally, reduce the
false discoveries so prevalent in our field.

Several challenges and opportunities arise from this perspective Senetaire et al. (2023). First, there is
a need to design interpretability tasks with improved identifiability guarantees. Second, estimation
strategies must be developed that are computationally tractable while offering satisfactory statisti-
cal properties (e.g., bias, variance, and consistency). Third, the specification of null distributions
is particularly important to target different scientific questions and forces us to state the alterna-
tive hypotheses explicitly. Finally, the framework admits a natural Bayesian extension: priors over
explanations can be informed by previously extracted knowledge, enabling interpretability to ac-
cumulate results in a systematic and principled manner rather than through isolated case studies.
Interestingly, Bordt et al. (2025) argued in favor of viewing explanations as a descriptive statistical
task of function (e.g., neural networks).

More broadly, interpretability research can benefit from methodological lessons in adjacent sci-
ences. Neuroscience, for example, has confronted analogous challenges in the study of complex,
distributed systems, and its methodological hardships (Poldrack, 2006; Mehler & Kording, 2020;
Jonas & Kording, 2017), like the anecdote of the dead salmon, can continue to inform our research.
However, we must also acknowledge that identifiability might be fundamentally out of reach for
many interpretability queries. Complex systems often resist simplification, and some systems can
only be understood by step-by-step simulations (Arthur, 2009; Israeli & Goldenfeld, 2004; Strogatz,
2001). Even if we cannot reduce the causal complexity of AI systems, adopting a rigorous statistical
framing enables us to chart the boundary between what can and cannot be explained, and to study
interpretability queries systematically under these constraints.
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transparency by design for artificial intelligence. Science and engineering ethics, 26(6):3333–
3361, 2020.

Organisation for Economic Co-operation and Development. Artificial Intelligence in Science: Chal-
lenges, Opportunities and the Future of Research. OECD Publishing, 2023.

Benjamin Fresz, Elena Dubovitskaya, Danilo Brajovic, Marco F. Huber, and Christian Horz. How
should ai decisions be explained? requirements for explanations from the perspective of european
law. Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 7:438–450, October
2024. ISSN 3065-8365. doi: 10.1609/aies.v7i1.31648. URL http://dx.doi.org/10.
1609/aies.v7i1.31648.

Atticus Geiger, Zhengxuan Wu, Karel D’Oosterlinck, Elisa Kreiss, Noah D. Goodman, Thomas
Icard, and Christopher Potts. Faithful, interpretable model explanations via causal ab-
straction. Stanford AI Lab Blog, 2022a. URL https://ai.stanford.edu/blog/
causal-abstraction/.

10

https://proceedings.mlr.press/v51/chalupka16.html
https://proceedings.mlr.press/v51/chalupka16.html
https://aclanthology.org/P18-1198
https://aclanthology.org/P18-1198
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://proceedings.neurips.cc/paper_files/paper/2019/file/bb836c01cdc9120a9c984c525e4b1a4a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bb836c01cdc9120a9c984c525e4b1a4a-Paper.pdf
https://aclanthology.org/2021.tacl-1.10
https://aclanthology.org/2021.tacl-1.10
https://aclanthology.org/2021.cl-2.13
http://dx.doi.org/10.1609/aies.v7i1.31648
http://dx.doi.org/10.1609/aies.v7i1.31648
https://ai.stanford.edu/blog/causal-abstraction/
https://ai.stanford.edu/blog/causal-abstraction/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Atticus Geiger, Zhengxuan Wu, Hanson Lu, Josh Rozner, Elisa Kreiss, Thomas Icard, Noah Good-
man, and Christopher Potts. Inducing causal structure for interpretable neural networks. In Ka-
malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 7324–7338. PMLR, 17–23 Jul 2022b. URL
https://proceedings.mlr.press/v162/geiger22a.html.

Atticus Geiger, Duligur Ibeling, Amir Zur, Maheep Chaudhary, Sonakshi Chauhan, Jing Huang,
Aryaman Arora, Zhengxuan Wu, Noah Goodman, Christopher Potts, and Thomas Icard. Causal
abstraction: A theoretical foundation for mechanistic interpretability, 2025. URL https://
arxiv.org/abs/2301.04709.

Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is fragile.
Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):3681–3688, Jul. 2019.
doi: 10.1609/aaai.v33i01.33013681. URL https://ojs.aaai.org/index.php/AAAI/
article/view/4252.

Yash Goyal, Uri Shalit, and Been Kim. Explaining classifiers with causal concept effect (cace).
CoRR, abs/1907.07165, 2019. URL http://arxiv.org/abs/1907.07165.

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov. Have faith in faithfulness: Going beyond
circuit overlap when finding model mechanisms, 2024a. URL https://arxiv.org/abs/
2403.17806.

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov. Have faith in faithfulness: Going beyond
circuit overlap when finding model mechanisms. arXiv preprint arXiv:2403.17806, 2024b.

Thomas Heap, Tim Lawson, Lucy Farnik, and Laurence Aitchison. Sparse autoencoders can in-
terpret randomly initialized transformers, 2025. URL https://arxiv.org/abs/2501.
17727.

Lovis Heindrich, Philip Torr, Fazl Barez, and Veronika Thost. Do sparse autoencoders generalize?
a case study of answerability, 2025. URL https://arxiv.org/abs/2502.19964.

Jason Hoelscher-Obermaier, Julia Persson, Esben Kran, Ioannis Konstas, and Fazl Barez. Detecting
edit failures in large language models: An improved specificity benchmark, 2023. URL https:
//arxiv.org/abs/2305.17553.

Navot Israeli and Nigel Goldenfeld. Computational irreducibility and the predictability of complex
physical systems. Physical review letters, 92(7):074105, 2004.

Eric Jonas and Konrad Paul Kording. Could a neuroscientist understand a microprocessor? PLOS
Computational Biology, 13(1):1–24, 01 2017. doi: 10.1371/journal.pcbi.1005268. URL https:
//doi.org/10.1371/journal.pcbi.1005268.

Subhash Kantamneni, Joshua Engels, Senthooran Rajamanoharan, Max Tegmark, and Neel Nanda.
Are sparse autoencoders useful? a case study in sparse probing, 2025. URL https://arxiv.
org/abs/2502.16681.

Ilyes Khemakhem, Diederik P. Kingma, Ricardo P. Monti, and Aapo Hyvärinen. Variational autoen-
coders and nonlinear ica: A unifying framework. In Proceedings of the 23rd International Con-
ference on Artificial Intelligence and Statistics (AISTATS), volume 108, pp. 2207–2217. PMLR,
2020.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning, pp. 2668–2677. PMLR, 2018.

Jinkyu Kim and John Canny. Interpretable learning for self-driving cars by visualizing causal atten-
tion. In Proceedings of the IEEE international conference on computer vision, pp. 2942–2950,
2017.

11

https://proceedings.mlr.press/v162/geiger22a.html
https://arxiv.org/abs/2301.04709
https://arxiv.org/abs/2301.04709
https://ojs.aaai.org/index.php/AAAI/article/view/4252
https://ojs.aaai.org/index.php/AAAI/article/view/4252
http://arxiv.org/abs/1907.07165
https://arxiv.org/abs/2403.17806
https://arxiv.org/abs/2403.17806
https://arxiv.org/abs/2501.17727
https://arxiv.org/abs/2501.17727
https://arxiv.org/abs/2502.19964
https://arxiv.org/abs/2305.17553
https://arxiv.org/abs/2305.17553
https://doi.org/10.1371/journal.pcbi.1005268
https://doi.org/10.1371/journal.pcbi.1005268
https://arxiv.org/abs/2502.16681
https://arxiv.org/abs/2502.16681


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T. Schütt, Sven
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