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ABSTRACT

Early detection of high-fitness SARS-CoV-2 variants is crucial for pandemic re-
sponse, yet limited experimental resources hinder timely identification. We pro-
pose an active learning framework that integrates a protein language model, a
Gaussian process with uncertainty estimation, and a biophysical model to pre-
dict the fitness of novel receptor-binding domain (RBD) variants in a few-shot
learning setting. Our approach prioritizes the most informative variants for ex-
perimental characterization, accelerating high-fitness variant detection by up to
5× compared to random sampling while testing fewer than 1% of all possible vari-
ants. Benchmarking on deep mutational scans, we show that our method identifies
evolutionarily significant sites, particularly those facilitating antibody escape. We
systematically compare different acquisition strategies and demonstrate that in-
corporating uncertainty-driven exploration enhances coverage of the mutational
landscape, enabling the discovery of evolutionarily distant yet high-risk variants.
Our results suggest that this framework could serve as an efficient early warn-
ing system for identifying concerning SARS-CoV-2 variants before they achieve
widespread circulation.

1 INTRODUCTION

The relentless ascent in the number of SARS-CoV-2 infection cases has catalyzed an unprecedented
protein evolution, yielding a profusion of novel mutations. Mutations in the receptor-binding domain
(RBD) of the viral spike protein are particularly consequential, as they can increase binding affinity
to the ACE2 receptor Ozono et al. (2021); Barton et al. (2021), facilitating more efficient host cell
entry, or reduce susceptibility to neutralization by monoclonal antibodies (mAbs) and convalescent
sera Tuekprakhon et al. (2022); Nabel et al. (2022); Wang et al. (2023). These adaptations enable
the emergence of lineages with higher fitness Carabelli et al. (2023), which are better equipped
to spread within populations or evade immune responses, thereby posing significant challenges to
public health interventions and vaccine efficacy. As we navigate the aftermath of this crisis, it is
imperative that we strengthen our preparedness for future pandemic threats.

Supervised machine learning has emerged as a valuable tool for predicting viral fitness (infectiv-
ity) and identifying high-risk viral mutations. These models leverage fitness labels collected from
sequencing databases such as GISAID (Elbe & Buckland-Merrett, 2017a) or integrate laboratory
measurements with epidemiological data. For example, Obermeyer et al. Obermeyer et al. (2022)
introduced a non-epistatic approach that infers fitness from GISAID, allows estimation of fitness
for combination of observed mutations. Ito et al. Ito et al. (2024) and Maher et al. Maher et al.
(2022) integrate laboratory measurements of binding affinities with epidemiological data to train
machine learning models that forecast the fitness of the SARS-CoV-2 variants and identify variants
susceptible to widespread transmission. However, these models were rare in the early stages of the
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pandemic due to the limited availability of labeled fitness data. Fitness labels are difficult to obtain
unless the virus has been propagating in the population for a sufficient period.

Given these limitations, biophysical models offer a complementary approach by linking experi-
mentally determined binding constants (KD) to fitness as demonstrated by these worksWang et al.
(2024); Chéron et al. (2016); Rotem et al. (2018). A key advantage of biophysical modeling is
its ability to significantly reduce the functional space compared to machine learning, enabling ac-
curate predictions with minimal experimental data while maintaining as a powerful fitness predic-
tor. The underlying intuition is that high-fitness variants are usually variants that evade antibody
binding while maintaining strong cellular receptor affinity. These experimental values can be ob-
tained through low-throughput methods such as surface plasmon resonance Zhang et al. (2024) and
isothermal titration calorimetryUpadhyay et al. (2023) or high-throughput methods such as deep
mutational scanning (DMS) Starr et al. (2020) or combinatorial mutagenesis (CM) Moulana et al.
(2023). However, the time and cost associated with comprehensive experimental measurements can
limit its availability during the early stages of a pandemic.

Active learning addresses the challenge of limited labeled data by prioritizing the most promising
variants for experimental characterization and has been successfully used for discovery of high fit-
ness proteins Hie et al. (2020) as well as chemical space exploration Khalak et al. (2022); Graff
et al. (2021). Active learning framework can efficiently be combined with Gaussian Process (GP),
as they excel at handling scarce labeled data while providing uncertainty estimates Hie et al. (2020);
Romero et al. (2013); Gessner et al. (2024).

This paper explores the integration of active learning and biophysical modeling to enhance early
pandemic response capabilities, including potential variants of concern (pVOC) detection, and iden-
tifying sites under-pressure. We combine a biophysical model with a machine learning pipeline that
integrates active learning with GP decoder on embeddings acquired from ESM3, a state-of-the-art
protein language model. ESM3 generates structure-aware sequence embeddings, which the GP uses
to smoothly predict how mutations affect binding affinities to cell receptors and antibodies. Then
these binding affinities are piped into a pre-trained biophysical model Wang et al. (2024). This
approach efficiently identifies potentially dangerous mutations by prioritizing the most informative
variants based on acquisition functions.

We validated this pipeline using DMS, CM and GISAID sequencing data, demonstrating that our
few-shot learning approach can effectively substitute for high-throughput screening in early pan-
demic surveillance.

2 METHODS

Datasets We utilize two distinct datasets in our research. The first is the combinatorial mutage-
nesis (CM) KD measurements from the work of Moulana et al. (2022; 2023). In their study, they
systematically examined the interactions between all possible combinations of 15 mutations in the
RBD of BA.1 relative to the Wuhan Hu-1 strain(totaling 32,768 genotypes) and ACE2, as well as
four monoclonal antibodies (LY-CoV016, LY-CoV555, REGN10987, and S309).

The second dataset we analyzed is a Deep Mutational Scanning (DMS) study by Starr et al. Starr
et al. (2020; 2021a), which characterizes all possible single mutations in the RBD. This dataset
provides ACE2 binding affinity (Kd values) and antibody escape ratios (ϵ(mut)) for four therapeutic
antibodies: LY-CoV016, LY-CoV555, REGN10987, and S309. (See SI for the conversion between
ϵ(mut) and Kd). We focused our analysis on residues 334-526 of the RBD. Due to incomplete
biophysical measurements, 28 sites were excluded from the dataset. To ensure unbiased estimation
when computing AUC for comparison with GISAID data, we also removed these sites from the
corresponding labels.

ESM ESM models are Transformer-based protein language models designed to extract meaningful
representations from protein sequences, enabling tasks such as structure prediction and large-scale
protein characterization.

We use these models to obtain semantic representation of protein sequences. For a protein sequence
of length L, we first describe it as a sequence of tokens x

def
= (x1, . . . , xL). In the base of RBD,
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L = 201. We then run a forward pass of ESM and obtain the hidden representations of the final
layer, (h1, . . . ,hL), where each hi ∈ RK . Then, we use mean pooling of these vectors to obtain a
representation of the entire sequence, z = fesm(x) =

1
L

∑L
i=1 hi ∈ RK . Finally, we re normalized

the embeddings by mean and variance.

We benchmarked different models: ESM1v Meier et al. (2021) (K=1280), ESM2 Lin et al. (2023)
(K=1280) , ESM3 Hayes et al. (2024) sequence only, and ESM3 sequence with structure information
from PDB 6XF5 Zhou et al. (2020) (K=1536). Main results are obtained using ESM3 with structure
encoding.

Gaussian Process and Kernel Selection To model protein binding using Gaussian processes, we
defined a kernel function that captures the notion of similarity between different variants in the
sequence embedding space. We employed a Rational Quadratic kernel, which is well-suited for
modeling functions with varying degrees of smoothness.

From a Bayesian perspective, the kernel defines the prior covariance between data points, ensuring
that variants that are closer in embedding space (∥z − z′∥2 small) exhibit similar binding values,
while more distant variants remain weakly correlated. This reflects the fact that mutations with
similar physicochemical properties and structural contexts tend to have correlated effects on protein
binding.

When training the Gaussian process on a training set (Z1, Y1) of size N and making predictions for
a new point (z2, y2), we used the analytical solutions for the posterior distribution:

P (y2|Y1, Z1, z2) ∼ N(µpred, σ
2
pred)

with
µpred = K(z2, Z1) · [K(Z1, Z1)]

−1 · Y1

and
σ2

pred = k(z2, z2)−K(z2, Z1) · [K(Z1, Z1)]
−1 ·K(Z1, z2)

where K(z2, Z1) = K(Z1, z2)
T is a vector of dimension N , K(Z1, Z1) is the covariance matrix of

dimension N ×N , and k(z2, z2) is the kernel function evaluated at the test point.

In our specific application, z represents the embedding of a sequence, and y(z) = ∆ logKD

denotes the variation of log-transformed dissociation constant compared to wildtype. The ker-
nel hyperparameters were optimized by maximizing the marginalized likelihood function using
sklearn.gaussianprocess library.

Active Learning The Bayesian optimization approach used in this study incorporates active learn-
ing principles to efficiently explore a discrete set of candidate sequences, referred to as the “pool.”
This strategy selects and evaluates sequences in batches, progressively refining the optimization
process. The iterative procedure consists of several key steps:

1. A random batch, denoted as S0, is initially selected from the candidate set D. The labels
for these points is calculated (e.g., experimental dissociation constants), forming the initial
training dataset Dtrain. Unexplored dataset is then D′ ← D\S0

2. A surrogate model f̂(x) is then trained on the dataset Dtrain, in order to predict fitness of
unknown points in D′. Here, it first predicts dissociation constants, the latest being fed to
a biophysical model which convert them into a fitness proxy. Each fitness prediction has
value µ̂(x) and variance σ̂2(x).

3. An acquisition function α(x; f̂) is used to determine the utility of acquiring a given point
x. This function considers various metrics, such as the predicted values for fitness, as well
as the associated uncertainties.

4. The points with the highest utility, denoted as an ensemble X∗, are selected or ”acquired”.
We obtain the ground truth value for their dissociation constants and add them to the
training set (D′

train ← Dtrain ∪ {X∗}) while removing it from the unexplored dataset
(D′ ← D′\{X∗}).
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Steps 2-4 are repeated iteratively until a stopping criterion is met, such as a fixed number of iterations
or insufficient improvement.

In our study, we adopt following active learning parameters. For the DMS benchmark we chose
initial training size of 174 mutations (randomly sampled, one mutation per RBD site) corresponding
to∼ 5% of dataset and 10 more rounds acquiring 50 points each. For the Combinatorial benchmark,
we chose initial training size of 20 variants (randomly sampled among single and double mutants)
corresponding to ∼ 0.06% of dataset and 10 more rounds acquiring 10 points each. Active learning
acquisition was repeated 10 times for each benchmark, using different initial training sets sampled
as described.

Acquisition Functions Various acquisition functions for active learning are considered in this
study, each influencing the point selection process differently. These include:

• Random(x, f̂ ): Randomly selecting points from the candidate set.

• Greedy(x, f̂ ): Selecting points based on the surrogate model’s mean (µ̂(x)).
• UCB(x): Employing the Upper Confidence Bound strategy, combining the mean and a

scaled standard deviation (µ̂(x) + βσ̂(x)).

To normalize the contribution of the variance term relative to the fitness values in UCB, we chose
the coefficient β as: β = 0.2× std(fitnesses)

std
√

vars) . This ensures that the uncertainty term
√

vars is scaled to
have a comparable range to the fitness values, adjusted by a scaling.

3 RESULTS

3.1 OVERVIEW OF VIRAL

We introduce VIRAL (Viral Identification via Rapid Active Learning), a framework that combines
GP with active learning to predict the binding specificity of SARS-CoV-2 Receptor Binding Domain
(RBD) variants to ACE2 and various antibodies (Figure 1a). The model operates in a structured
pipeline: first, the RBD structure and mutant sequence are input into ESM3, a protein language
model, to generate sequence embeddings that incorporate both sequence and structural context.
These embeddings are then fed into a GP trained on a limited set of experimental dissociation
constants to predict binding affinities. The predicted dissociation constants, as well as predicted
uncertainties, are subsequently passed into into a biophysical model, following Wang et al. (2024),
to infer the infectivity of each variant.

A key strength of our approach is its ability to rank variants effectively even with very few labeled
data points, making it particularly powerful in early variant detection. Notably, including struc-
tural information from the wildtype RBD (PDB 6XF5 Zhou et al. (2020)) significantly enhances
predictive accuracy across both deep mutational scanning and combinatorial mutation benchmarks
(Figures 1b, 1c). In particular, our model achieves a surprising spearman coefficient of 0.53 on
combinatorial dataset while being trained on only 20 points (0.06% of dataset). This advantage of
structure-aware embeddings is consistent with Loux et al. (2024). The predictions from this pipeline
guide an active learning strategy: variants with high predicted infectivity are selected for valida-
tion, and new measurements are used to iteratively retrain the GP, refining its accuracy over time.
This iterative process enables the model to rapidly identify high-risk variants while minimizing the
number of required measurements, making it a scalable approach for early warning systems in viral
surveillance.

3.2 ACTIVE LEARNING IDENTIFIES TOP VARIANTS

Our objective is to maximize the identification of potential Variants of Concern (pVOC), defined
as those ranking in the top p=10% across the mutational landscape. To rigorously evaluate our ap-
proach, we start with a retrospective study using existing Combinatorial Mutagenesis (CM) datasets
containing experimentally measured binding constants (see Methods). This retrospective analysis
is crucial as it provides the only systematic way to benchmark our model’s performance: by sim-
ulating the sequential selection of variants from a completely characterized fitness landscape, we
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Figure 1: Overview of active learning framework for detecting high-fitness SARS-CoV-2 RBD vari-
ants. (a) The pipeline begins by using ESM3 and RBD structure to generate embeddings for RBD
sequences. These embeddings serve as inputs to a combined Gaussian Process and biophysical
model that predicts variant fitness. The framework operates in an iterative cycle where: (1) The
model predicts fitness and uncertainty for untested variants, (2) Based on these predictions, the most
promising variants are selected for experimental testing using various acquisition strategies (greedy,
UCB, or random sampling), (3) An oracle representing experiments provides binding constants (Kd
values), and (4) These new measurements are used to retrain the GP model, improving its predictive
power. (b) Spearman correlation of predicted fitness for different training sized on DMS dataset.
Error bars show std. Esm3 coord refers to ESM3 with wildtype structure. (c) Similar to (b) but on
CM dataset.

can precisely quantify how efficiently our framework identifies high-fitness variants compared to
alternative strategies. Such comprehensive validation would be impossible in a prospective setting,
where the fitness of untested variants remains unknown.

Our main analysis focuses on two acquisition strategies: a greedy strategy that selects variants based
solely on predicted fitness, and an Upper Confidence Bound (UCB) approach that combines pre-
dicted fitness with model uncertainty (see Method). While the greedy strategy excels at exploiting
regions of known high fitness, UCB balances exploitation with exploration of uncertain regions in
the sequence landscape, potentially uncovering novel fitness peaks. Random sampling constitutes
the baseline, mimicking what we could achieve using brute force searching—screening every RBD
in a library indiscriminately. We define the enrichment factor (EF) as the ratio of the percentage of
top variants found by the model-guided search to the percentage of top variants found by a random
search. An EF greater than 1 indicates superior performance compared to brute-force screening.

We use an initial training set of variants with a maximum number of 2 mutations, to model the
first observed variants in a pandemic. Given that the most concerning variants, such as BA.1, can
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accumulate up to 15 mutations in the Receptor Binding Domain (RBD), an effective early warning
system must efficiently evaluate variants with increasingly complex mutation combinations to assess
their potential for complete antibody escape. This translates into UCB acquisition metric achieving
a final EF of 5 after 10 rounds of acquisition corresponding to a total of 120 points and 0.4% of
the dataset (Figure 2b), while the greedy exploration struggles to beat random baseline: lack of
exploration translates into lower capacity to identify dangerous variants (Figure 2a), quantified by
Area Under the Receiver Operating Characteristic Curve (AUC).

a b

c d

Figure 2: Active learning performance on combinatorial dataset. (a) Area Under the Curve (AUC),
representing the model’s ability to identify top fitness variants, is shown for different strategies
(UCB and greedy). An AUC above 0.5 indicates effective identification of high-fitness variants.
Each round corresponds to acquiring a new batch of variants, improving the predictor. Shaded re-
gions represent standard deviations across runs. (b) Enrichment in top variants across acquisition
runs for each strategy. Values above 1 represent improvement over a random acquisition. (c) Enrich-
ment across acquisitions runs for different fitness thresholds p defining top variants. (d) Maximum
enrichment obtained during active learning for different fitness thresholds p defining top variants.

The performance of the model improves when we increase the stringency of our definition for dan-
gerous variants by decreasing the threshold p (Figures 2c and 2d). For instance, when defining dan-
gerous variants as those in the top 1% of fitness scores rather than the top 10%, the model achieves
a maximum enrichment factor of 11, demonstrating particularly strong performance in identifying
the most concerning variants.

3.3 VIRAL IDENTIFIES HIGHLY MUTABLE SITES

Our framework successfully identifies key sites in the viral genome that emerged as mutation
hotspots during natural evolution, with particular accuracy in detecting positions associated with
antibody escape. We define a site as ”highly mutable” when it has undergone substitutions to more
than 9 of the 20 possible amino acids over the course of the pandemic. Through systematic eval-
uation of our active learning algorithm on the DMS dataset using multiple initial training sets, we
achieved robust performance metrics (maximal enrichment of 3.1 and AUC of 0.81, see SI). Most
notably, we discovered a strong correlation between sites frequently selected by our algorithm and
those that exhibited high mutability during natural viral evolution.

Across 10 independent runs with different initial training sets, the AUC values ranged from 0.62
to 0.78. When acquisition scores were averaged across multiple runs to reduce sampling noise,
we obtained a robust AUC of 0.76 (Figure 3a). These results remain consistent across different
thresholds used to define “highly mutable” sites in natural evolution (see SI).

We bench-marked our methodology against alternative approaches to predict mutation-prone sites
in Figure 3 b. Our integrated approach significantly outperforms baseline predictions derived from
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variants observed before end of 2020, while performing slightly better than to predictions based on
variants until end of 2022. This competitive performance is particularly noteworthy because baseline
predictors have an inherent advantage—they are trained directly on pandemic-era mutations that
successfully emerged in the population, while our method identifies relevant sites without this prior
knowledge. Precisely, our pipeline enhances predictive capability by up to two years in identifying
sites under pressure, at the cost of a limited exploration of the mutational landscape.

Figures 3c and 3d provide sequence and structural representation on the sites prioritized by our
framework. The sampling frequency across the RBD sequence is visualized in Figure 3c, while
Figure 3d maps the top 20 most frequently sampled sites onto the structure of the RBD-ACE2-S309
complex (PDB: 8FXCAddetia et al. (2023)). The spatial distribution of these prioritized sites re-
veals a immunological pattern: they cluster in critical regions, the ACE2 binding interface (which
overlaps with class 1 and 2 antibody epitopes) and regions recognized by class 3 and 4 antibodies.
Figures 3e–j further analyze the functional impact of mutations at these oversampled sites by plot-
ting the change in log KD (∆ logKD) at each site relative to the wild type. The red dashed line
represents the global average ∆ logKD across the entire RBD. In Figures 3e–j, each of these sites
is selected either for its ability to escape one or more antibodies while maintaining ACE2 binding,
as highlighted in Figure 3e. In particular, despite being trained on only a few percent of single-
variant data, our model successfully identified critical antibody escape mutations that later emerged
in major SARS-CoV-2 variants. These key positions include residue 484 (enabling LY-CoV016
and LY-CoV555 escape) in Omicron BA.1; residue 493 (enabling CoV016 and CoV555 escape)
in Omicron BA.1, BA.2, and BA.5; positions 340 (enabling S309 escape) and 356 (enabling S309
escape) in Omicron BA.2; residue 445 (enabling REGN10987 escape) in variants B.1, BF.8, and
XD; and position 486 (enabling CoV016 and CoV555 escape) in numerous variants ranging from
N.6 to Omicron BA.5 to BL1. We also identified position 507 as an oversampled site. Although
mutations at this position allow escape from the LY-CoV016 and REGN10987 antibodies, they sig-
nificantly compromise the binding affinity of ACE2. This trade-off between immune escape and
receptor binding likely explains why mutations at position 507 have not been widely observed in
naturally circulating variants.

4 DISCUSSION

In this study, we developed an integrated framework VIRAL for identifying high-fitness SARS-
CoV-2 RBD variants and predicting mutation-prone sites using minimal experimental data. Our
approach combines three key components: pLM for sequence representation, Gaussian processes
for efficient learning and uncertainty quantification, and biophysical modeling for fitness prediction.
This integration demonstrates several significant advantages in the context of viral surveillance and
variant prediction.

First, leveraging pLM embeddings, Gaussian processes, and active learning framework, our model
achieves high efficiency in identifying dangerous variants, obtaining up to 5-fold enrichment over
random sampling while requiring experimental characterization of less than 1% of possible variants
in the combinatorial mutagenesis landscape. This significant reduction in the number of required
experiments could substantially accelerate the identification of concerning variants during early pan-
demic stages, when experimental resources are often limited. While initializing a model with some
training data (as in this study) is advantageous, it is also feasible to start with zero training data,
where zero-shot predictions initially carry equal uncertainty. Indeed, large language models have
been proved to be efficient at zero-shot protein functions, provided they are trained on large and di-
verse protein sequence databases Meier et al. (2021). As more data are gathered, a sample-efficient
model leveraging uncertainty can iteratively improve its predictions and confidence. This iterative
cycle of computation and experimentation has been central to experiment prioritization, especially
in drug discovery Eisenstein (2020).

Second, our framework shows high accuracy in identifying biologically relevant mutation sites and
is interpretable as fitness prediction are driven by predicted antibody escape or good ACE2 binding.
The systematic oversampling of positions that persisted in variants of concern, particularly at sites
356, 484, 486 and 493, demonstrates that our model could sample evolutionarily important sites
using extremely limited data.
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Figure 3: Active learning identifies residues under selection pressure. (a) ROC curves illustrating the
performance of VIRAL in identifying frequently mutated sites in the GISAID database. Individual
experimental runs are shown as grey lines. Blue curve is obtained when averaging the acquisition
scores across multiple runs to reduce sampling noise. (b) Comparative ROC analysis of VIRAL
benchmarked against one-batch acquisition using single-mutation variants observed by the end of
2020 (orange) or 2022 (green). (c) Number of sampled amino acid per site, plotted against the RBD
sequence. (d) Structural representation of the RBD (light blue) in complex with ACE2 (dark blue)
and the S309 antibody (green and yellow, representing the heavy and light chains, respectively; PDB:
8FXC). Red highlights indicate the top 20 sampled sites by VIRAL . (e-j) The KD distribution for
oversampled sites identified by VIRAL is shown for ACE2, LY-Cov016, LY-CoV555, REGN10987,
and S309. Higher values indicate binding loss. Red-highlighted sites exhibiting a greater average
mutational binding loss than the protein-wide average.

Finally, a fundamental assumption underpinning our work is that our biophysical model accurately
approximates real viral fitness. This assumption is critical because if incorrect, our active learning
strategy might enrich for variants that don’t represent biologically plausible evolutionary trajectories.
However, there is strong precedent for biophysical modeling in viral fitness prediction. For instance,
prior work by Chéron et al. (2016). and Rotem et al. (2018) demonstrated that fitness in RNA viruses
can be quantitatively predicted from molecular properties. These successes in linking biophysical
characteristics to viral fitness support our integrated approach for predicting SARS-CoV-2 variant
fitness, which combines molecular binding measurements with epidemiological data to create a
comprehensive fitness model.
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CODE AVAILABILITY

The code used in this study will be made publicly available at https://github.com/
m-huot/VIRAL upon manuscript acceptance. For access requests prior to publication, please
contact the corresponding authors.
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MEANINGFULNESS STATEMENT

A meaningful representation of life should capture how molecular-level changes in proteins prop-
agate to system-level biological impacts. Our work demonstrates how integrating structural infor-
mation with sequence embeddings enables accurate prediction of viral fitness from minimal ex-
perimental data. By combining machine learning with biophysical modeling in an active learning
framework, we bridge multiple biological scales - from protein structure to viral epidemiology.
This multiscale approach connects fundamental protein interactions to population-level outcomes,
advancing both our theoretical understanding of viral evolution and providing practical value for
pandemic preparedness through early identification of concerning variants.
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A APPENDIX

A.1 METHODS

DMS Dataset processing The second dataset that we examined is a DMS from Starr et al. Starr
et al. (2020; 2021a), providing for all possible RBD single mutants Kd values (ACE2) and escape
ratios ϵ(mut) (LY-CoV016, LY-CoV555, REGN10987 and S309), and filtered on residues between
334 and 526 included.

Noting that the dissociation constant of RBD writes:

KD =
[RBDfree][Ab]

[RBDbound]
∝ [RBDfree]

[RBDbound]
∼ ϵ

, we assumed log dissociation constants of single mutants could be obtained as the sum of wild
type log dissociation constant and the variation of escape ratio compared to its minimum value
(wildtype):

logKd(mut) = logKd(wt) + log
ϵ(mut)

minm ϵ(m)

Fitness and Biophysical Model We determine the fitness of the RBD based on its contribution to
viral infectivity, utilizing a biophysical model established by our previous work Wang et al. (2024).
This model leverages the Boltzmann distribution to map molecular phenotypes—characterized by
binding energies to cell receptors and antibodies—onto a fitness landscape. The RBD’s fitness is
primarily determined by two factors: its binding affinity for the ACE2 receptor and its ability to
evade antibody neutralization.

In our model, the RBD can exist in multiple states, each with its associated free energy: Unfolded
state (Gu), folded but unbound state (Gf ), folded and bound to ACE2 (GbA), folded and bound to
one of four distinct antibodies (Gai, where i indexes the antibodies).

The fitness function can be expressed as:

F = a
Ce−βGbA + e−βGf

Ce−βGbA +ΣiCie−βGai + e−βGf + e−βGu
(1)

In this equation, C = [ACE2]
C0

and Ci =
[Abi]
miC0

represent the normalized concentrations of ACE2 and
antibodies respectively, where [...] denotes molar concentration and mi is a neutralization coefficient
specific to each antibody. Noting that β∆G = β(Gi − Gf ) = ln(KD)/T for every state i, where
T is a hyperparameter proportional to system temperature, fitness can be expressed as a function of
measured dissociation constants.

The model parameters—including the scaling factor a and effective concentrations C and Ci—were
calibrated by combining experimental measurements of dissociation constants (KD) with variant
prevalence data from the GISAID database Elbe & Buckland-Merrett (2017a). This biophysical
framework can then predict the fitness (F ) of any RBD variant given its binding affinities, whether
measured experimentally or predicted computationally.

In this paper we did not refit the biophysical model iteratively, instead we used the following co-
efficients fitted from et al.Wang et al. (2024): T = 1.6, a = 1.57363338, C = 5.4764 × 10−7,
K1 = 5.6015 × 10−8, K2 = 4.5128 × 10−8, K3 = 7.1825 × 10−8, K4 = 4.7273 × 10−7. While
we did not refit these parameters iteratively, the model can be trained with very limited fitness data
due to its low number of parameters and still approximate well fitness derived from population data.

Uncertainty of predictions To propagate variance from the predicted dissociation constants to
the fitness function, we used standard error propagation formula, which states that the variance of a
function f can be approximated as:

σ2
f ≈

∑
i

(
∂f

∂ki

)2

σ2
ki
, (2)
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where σ2
f is the variance of the function, ∂f

∂ki
is the partial derivative of the function with respect to

the i-th variable, and σ2
ki

is the variance of the i-th variable. The variance of variables is obtained
from the posterior distribution of the GP.

The derivatives ∂f
∂ log10 Kd,i

were computed symbolically using SymPy and evaluated numerically
with the respective parameter values.

Model Benchmark We evaluate the ability of VIRAL to rank variants by computing the Spear-
man correlation between inferred fitness scores and ground-truth labels.

For the combinatorial dataset, the model is trained on varying numbers of data points, ranging from
20 to 160, and then used to predict the fitness of the remaining variants.

For the DMS dataset, training sets are constructed by sampling an average of n ∈
{0.2, 0.4, 0.6, 0.8, 1, 2, 3}mutations per site. When n < 1, a single mutant at each site is randomly
selected and included in the training set with probability n.

To ensure robustness, each experiment is repeated 10 times for both datasets and for each training
size, enabling a reliable assessment of the model’s predictive accuracy across different levels of data
availability.

Evaluation of Active Learning Performance The primary metric used to evaluate our pipeline is
the enrichment factor (EF), defined as

EF (strategy) =
# Top variants acquired (strategy)
# Top variants acquired (random)

,

where ”top variants” refers to those with fitness in the top 10% of the dataset.

Additionally, we compute the Area Under the Curve (AUC) using the active learning predicted
fitness as a score to identify whether a variant belongs to the top 10% of the dataset. Notably, this
metric is evaluated on the entire dataset (including both tested and untested variants) to ensure the
results are not negatively biased against models that have acquired all the top variants.

Lastly, we calculate the embedding variance of the tested variants as a proxy for diversity. Variance
is defined as the mean of the coordinate variance among the acquired variants.

Comparison with GISAID data We analyzed SARS-CoV-2 spike sequences from the GISAID
database Elbe & Buckland-Merrett (2017b), collecting 15,371,428 sequences up to April 14, 2023.
Following the methodology of Starr et al. Starr et al. (2021b), we implemented a sequence filtration
process. Sequences were excluded if they were: (1) from non-human hosts, (2) outside the length
range of 1,260-1,276 amino acids, (3) contained unicode errors, gaps, or ambiguous characters. The
remaining sequences were aligned using MAFFT Katoh & Standley (2013).

The final dataset comprised 11,976,984 submissions, containing 25,725 unique RBD sequences.
For each unique RBD sequence, we tracked its frequency of occurrence and estimated its emer-
gence time using the 5th percentile of its temporal distribution. To ensure robustness, we excluded
singleton sequences that appeared only once in the dataset.

We assessed site mutability by analyzing amino acid diversity at each position within the RBD.
Sites were labeled as ”highly mutable” if they exhibited at least 9 distinct amino acid variants out
of the possible 20, observed in mutants with a count of 10 or more. Using this cutoff of 10 on
variant prevalence helps ensure that the identified mutations provided a clear evolutionary advan-
tage rather than occurring randomly, allowing us to identify sites under selection pressure during
the pandemic. To evaluate the effectiveness of our active learning pipeline, we used site sampling
frequency as a performance metric and calculated the Area Under the Receiver Operating Charac-
teristic Curve (AUC). The AUC score quantifies our algorithm’s ability to identify positions that
emerged as mutation hotspots throughout the pandemic. AUC scores were also tested for mutation
thresholds different from 9, see SI.

Baseline for identification of highly mutable sites We define a baseline model to identify high-
fitness mutations, trained on pandemic data. The training data includes mutations observed in the
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GISAID database within a variant having a minimum count of 1000, under the assumption that
variants with counts below this threshold lack reliable fitness estimates. Specifically, mutations in
variants with occurrences prior December 2020 / December 2022 and counts exceeding 1000 were
selected. The baseline was trained on 14 mutations for 2021 deadline and 64 mutations for 2022
deadline. Single-batch acquisition size is 674−training size, ensuring the total number of variants
acquired by the active learning process and the baseline is the same. We then computed acquisition
score for every site, based on this single batch acquisition, and compared it to GISAID data.

A.2 ACTIVE LEARNING ON DMS

(a) (b)

(c)

Figure 4: Active learning on DMS. (a) Area Under the Curve (AUC), representing the model’s ability
to identify top fitness variants, is shown for different strategies (UCB and greedy). An AUC above
0.5 indicates effective identification of high-fitness variants. Each round corresponds to acquiring
a new batch of variants, improving the predictor. Shaded regions represent standard deviations
across runs. (b) Enrichment in top variants across acquisition runs for each strategy. Values above 1
represent improvement other a random acquisition. (c) Comparison of embedding variance of points
acquired across rounds between UCB (orange) and greedy (blue) strategies

We assess the capacity of our pipeline combined with active learning to identify high fitness single
variants in the DMS dataset. This task requires to model the impact of approximately 193 ∗ 19
mutations, with initial knowledge of only one mutation per site. Interestingly, the UCB acquisition
perform best in early rounds, while greedy acquisition gets better as the predictor gets more accurate
on the longer term. This is explained by the high accuracy of our model to identify top variants after
a few round of acquisitions, with AUC above 0.80.
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A.3 INFLUENCE OF UNCERTAINTY WEIGHT IN UCB ACQUISITION

(a) (b) (c)

(d) (e) (f)

Figure 5: Influence of uncertainty weight β in UCB acquisition. (a-c) AUC, enrichment, and em-
bedding variance on the CM dataset. (d-f) Similar analysis on the DMS dataset. Different values of
β control the balance between exploration and exploitation, affecting model performance in identi-
fying high-fitness variants.

Increasing the uncertainty weight β in UCB acquisition enhances embedding variance and higher di-
versity in the training set and potentially improving predictive performance (higher AUC). However,
in the long run, as the predictor becomes more accurate, it is preferable to reduce the emphasis on
uncertainty, allowing the model to rely more on its predictions for optimal decision-making. Conse-
quently, we selected β = 0.2 as a reasonable trade-off between exploitation and exploration of the
mutational landscape. However, it is important to note that the impact of β on overall performance
remains relatively limited, and one can choose any reasonable β a priori for the purpose of pandemic
prevention.

β is then scaled by std(fitnesses)
std(

√
vars) to ensure that the uncertainty term

√
vars has a comparable range to

the fitness values
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A.4 IDENTIFICATION OF MUTATION-PRONE SITES

(a)

(b)

Figure 6: Active learning performance for identifying mutation-prone sites across different thresh-
olds. (a) Histogram showing the distribution of SARS-CoV-2 RBD sites by the number of distinct
amino acid substitutions observed during the pandemic. The data reveals most sites experienced
between 4-8 different amino acid changes, with a peak at 6 amino acid variants. (b) ROC curves
demonstrating VIRAL’s ability to identify highly mutable sites in the GISAID database across vari-
ous thresholds (from > 4 to > 11 mutations). The averaged acquisition scores from 10 independent
runs show consistently strong predictive performance, with AUC values ranging from 0.593 to 0.890.
Higher thresholds (> 9, > 10, > 11) yield the best performance (AUC > 0.75), indicating VIRAL
is particularly effective at identifying the most highly mutable positions in the viral genome.

We assessed site mutability by analyzing amino acid diversity at each position within the RBD. In
the main text, sites were labeled as ”highly mutable” if they exhibited at least 9 distinct amino acid
variants out of the possible 20, observed in mutants with a count of 10 or more. The performance
of VIRAL in identifying highly mutated sites remains robust across different thresholds defining
mutation frequency (from > 4 to > 11 mutations), confirming the consistency of our approach
regardless of the specific cutoff chosen for analysis.
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