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ABSTRACT

Cross-modal distillation has emerged as a critical technique for leveraging strengths
across different modalities. However, existing methods have not enabled perfor-
mance benefits between models trained on different modal data. In this work, we
introduce a cross-modal alignment regularization (CMAR) term into language
model training, aligning its representations with those of a vision model at specific
layers. Our experiments demonstrate that our method enhances language model
performance across various downstream tasks, in both pre-training and fine-tuning
settings. Specifically, in the pre-training setting, we observe accuracy improve-
ments of 1.01% on the Language Modeling Broadened to Account for Discourse
Aspects (LAMBADA) dataset and 1.49% on the Causal Reasoning (COPA) dataset.
Our method also proves effective in the fine-tuning setting, boosting performance
by 1.20% on LAMBADA and 2.00% on COPA, indicating that a vision model can
substantially enhance language model performance. CMAR provides a simple yet
effective strategy to consistently enhance language model performance through rep-
resentation alignment with vision models, which opens new avenues for improving
model performance through direct cross-modal representation alignment.

1 INTRODUCTION

Human effortlessly combines multiple sen-
sory inputs to form a unified understanding
of the world, a capability that continues to be
a challenge in AI. Although numerous stud-
ies have demonstrated AI’s ability to handle
different modalities, such as image caption-
ing (Li et al., 2022), text-to-image genera-
tion (Ramesh et al., 2022), visual question
answering (Chen et al., 2023), and robotic
manipulation (Han et al., 2024; Duan et al.,
2024; Yang et al., 2024), their designs mainly
allow models to accept and process multiple
modalities without specifically focusing on
the mutual benefits between these modalities.
Therefore, a question arises: can AI enhance
its overall capabilities through an integration
of different modalities like humans?
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Figure 1: Idea overview. We incorporate repre-
sentation alignment with other modalities, such
as vision models, during the training stage of the
language model to improve its performance.

Previous work to enhance model performance across modalities has primarily focused on using
models from other modalities to generate data for the modality being optimized, which is then used
to train the model of that specific modality. For example, Sharma et al. (2024) uses a language model
to generate vision datasets for training vision models. Similarly, Baradad et al. (2022) utilizes image
programs to create datasets for the same purpose. Although these methods effectively enhance the
performance within individual modalities, they rely on an indirect path that merely facilitates unimodal
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improvements without fostering deep integration between modalities, which can be considered as
using outputs from models as data bridge across modalities. However, constructing a data bridge is
expensive and only conveys partial knowledge. Directly transferring knowledge between different
modalities can be a more natural approach. Along that direction, Zhang et al. (2024) breaks away
from building data bridges and learns vision-language alignment in representation space to enhance
vision-language models. However, it still lacks cross-modality capability.

The Platonic Representation Hypothesis (PRH) introduced by Huh et al. (2024) suggests that, beyond
information transfer through data bridge, representations across different modalities – such as images
(X) and text (Y) – converge toward a shared underlying reality (Z). They observe a rough linear
correlation between the alignment of language models with the vision model DinoV2 (Oquab et al.,
2023) and their performance on Hellaswag (Zellers et al., 2019). Recently, Luo et al. (2024); Yu et al.
(2024b); Subramaniam et al. (2024) have explored representation alignment along this line in various
contexts. However, their focus remains within a single modality, neglecting the potential benefits of
extending representation alignment to multi-modal scenarios.

To address this gap, we propose directly aligning representations between vision models and language
models to enhance the performance of language models on downstream tasks. As Shukor & Cord
(2024) points out, the manifolds of representations learned by different modalities are distinct. We
hypothesize that aligning the representations of a language model (student model) with those of a
vision model (teacher model) can enhance its ability to capture information shared across modalities.
To this end, we introduce a method that adds a regularization term during the pre-training and
fine-tuning stage of language models to encourage alignment with a fixed pre-trained vision model.
This approach transcends traditional data bridging methods by embedding cross-modal alignment
directly into the training process, fostering a shared conceptual framework that leverages the strengths
of both modalities. The contributions of our method are:

• Validating the Effectiveness of Direct Cross-Modal Feature Alignment: We are the first
to introduce a regularization term during language model training that aligns with specific
layers of a vision model to enhance the performance of language models.

• Removing Constraints on Architecture and Dimensions: Different from previous methods
for model distillation or model merging that require identical model architectures and feature
dimensions to work effectively, our approach eliminates these constraints by computing the
similarity of kernels in feature space. Refer to Section 2.1 for more details.

• Proven Effective Through Various Experimental Settings: We evaluate our method
across 3 categories of tasks – Causal Reasoning, Commonsense Reasoning, and Text
Generation – and demonstrate consistent improvements across 6 datasets. We also validate
the effectiveness of our method in both fine-tuning and pre-training settings.

2 RELATED WORK

2.1 MODEL MERGING AND MODEL DISTILLATION.

While model merging (Matena & Raffel, 2022; Real et al., 2019; Yadav et al., 2023; Yu et al., 2024a;
Akiba et al., 2024) offers a novel approach to leverage the strengths of multiple pre-trained models, it is
constrained by the requirement that each model must have exactly the same architecture and identical
feature dimensions in every matching layer. A similar story exists in model distillation techniques
like Knowledge Distillation (Hinton, 2015) and Contrastive Representation Distillation (Tian et al.,
2019), which also require the student and teacher models to have the same architecture and feature
dimensions. However, in practice, we usually deal with models that have varying architectures
and feature dimensions. Being able to distill or merge across such diverse models would represent
a significant breakthrough. Lei et al. (2024) proposes a clever way to distill knowledge among
different architectures by leveraging Mixture-of-Experts. While traditional model distillation has
focused on a single modality, Cross Modal Distillation (Gupta et al., 2016) pioneers distillation across
different vision-related modalities, specifically various image modalities. However, distillation across
fundamentally distinct modalities like vision and language has not yet been explored. Our work
addresses these limitations by eliminating the need for identical architectures and feature dimensions,
covering both visual and language modalities.
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Figure 2: The workflow of the training process. Text and image inputs are processed independently to
generate language and vision representations, which are used to calculate the alignment score using
similarity-measure metrics. The combined loss, which includes both the original cross-entropy loss
and our proposed alignment regularization term, updates the language model with back propagation
to enhance its performance. The red lines indicate paths with gradient propagation, while the blue
lines indicate paths with no gradient propagation.

2.2 DATA BRIDGES AND REPRESENTATION ALIGNMENT IN MULTI-MODAL MODELS.

Multi-modal alignment aims to integrate information from different data types, such as vision and
language, to build more robust and adaptable AI systems. Traditional methods typically rely on
model outputs to improve another, namely data bridge. For example, Sharma et al. (2024) and Peng
et al. (2024) employ language models to produce synthetic visual datasets for vision training, and
Baradad et al. (2022) generates controlled visual inputs using image programs. In robotics, Huang
et al. (2022) leverages language models as zero-shot learners, enabling robots to follow natural
language instructions without task-specific training. Raman et al. (2022), Liang et al. (2022) and Qiu
et al. (2023) make use of the commonsense knowledge embedded in large language models to guide
and refine robot action. Although they can improve performance, their indirect integration methods
hinder the development of deeper shared representations across different modalities. Instead, we
eliminate this data bridge and directly align the representations between vision and language models.

2.3 REPRESENTATION ALIGNMENT IN UNIMODAL MODELS.

Representation alignment within single modality has garnered significant attention in recent deep
learning research. For instance, Luo et al. (2024) explores the sharing of task vectors between various
tasks. Similarly, Yu et al. (2024b) aligns the diffusion model with advanced vision models, and Bai
et al. (2024) leverages vision models to infuse semantic richness for tokenization. Ren et al. (2024)
finetunes language models with language model-generated data. All of them find that such alignment
substantially enhances generative performance by fostering more coherent and high-quality outputs.
Subramaniam et al. (2024) reveals alignment can render previously untrainable networks trainable.
Qi et al. (2024) aligns the representation space of the vision encoder and action decoder. Distinct
from the previous work, we aim to address a more challenging yet essential problem: aligning models
across different modalities.

3 METHOD

We introduce Cross-Modal Alignment Regularization (CMAR) approach, which integrates a
similarity-based alignment term into the training objective. Figure 2 illustrates the workflow: we first
extract representations from selected layers of both the language and vision models; subsequently,
we compute an alignment score based on the similarity between these representations, which is then
incorporated into the loss function as a regularization term.
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3.1 PRELIMINARIES AND ASSUMPTIONS

We consider a training setup with two datasets:(1) A language-only dataset {dj}Nj=1, where each dj

is a sequence of tokens. This dataset is used to train a language model for next-token prediction. (2)
A multi-modal dataset

{(
xLi , x

V
i

)}M

i=1
containing M samples, where xLi is a text sequence and xVi

is a corresponding image. This dataset is used exclusively to measure and enforce alignment between
text and vision representations.

We employ two encoders: (1) A language encoder ψθ : XL → RdL , parameterized by θ, for text
input. (2) A vision encoder ϕφ : XV → RdV , parameterized by φ, for image input.

Each encoder has multiple layers. We allow the alignment to be computed using any one or more
layers in each encoder. Concretely, let

{
ψ
(p)
θ

}
p∈P

and
{
ϕ
(q)
φ

}
q∈Q

denote the chosen sets of

layers from the language encoder and vision encoder that we wish to align, respectively. Here, p and q
denote indices corresponding to the layers chosen from the language and vision encoders, respectively.
The sets P and Q define specific layers or combinations of layers that are used for alignment purposes.
The choice could be a single layer, multiple layers, or even certain linear combinations of layer
outputs, depending on the use case and architecture.

3.2 TRAINING OBJECTIVE

We train the language encoder ψθ by combining: (1) Negative Log-Likelihood Loss, LNLL(θ), on
the text-only dataset, to optimize the language modeling objective. (2) Alignment Regularization
Term, Lalign(θ, φ), on the text-image dataset, to encourage alignment between the selected text and
vision representations.

Negative Log-Likelihood Loss. We define LNLL(θ) on the language-only dataset {dj}Nj=1. For
causal language modeling, for instance:

LNLL(θ) = −
N∑
j=1

Tj∑
t=1

logψθ

(
d
(t)
j | d(<t)

j

)
(1)

where d
(t)
j is the t-th token and d

(<t)
j the preceding tokens in the j-th text sequence. Attributed

to NLL’s generality, if a different supervised language task is used, this term could be replaced or
supplemented by a cross-entropy or other relevant loss.

Alignment Regularization Term. For each text-image pair
(
xLi , x

V
i

)
in the multi-modal

datasets
{(
xLi , x

V
i

)}M

i=1
, we extract latent vectors from the chosen layers in the language

encoder:
{
ψ
(p)
θ

(
xLi

)}
p∈P

, and from the chosen layers in the vision encoder:
{
ϕ
(q)
φ

(
xVi

)}
q∈Q

.

We then define a similarity-based alignment metric A (e.g., Canonical Correlation Analysis, Centered
Kernel Alignment, or a dot-product similarity) across one or more pairs of these layer outputs. For
simplicity, let

H language
i (θ) = concatp∈P

(
ψ
(p)
θ

(
xLi

))
, (2)

Hvision
i (φ) = concatq∈Q

(
ϕ(q)φ

(
xVi

))
, (3)

We can define the alignment loss as:

Lalign(θ, φ) =

M∑
i=1

[
1−A

(
Hvision

i (φ), H language
i (θ)

)]
(4)
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Minimizing Lalign results in maximizing A, which enforces higher correlation between image and
text embeddings in the chosen layers. This alignment serves as a regularization, guiding language
encoder to produce representations similar to vision ones.

Overall Objective. Putting it all together, our overall objective combines the language modeling
loss and the alignment regularization:

θ∗, φ∗ = argmin
θ,φ

[LNLL(θ) + λLalign(θ, φ)] (5)

Here, LNLL (θ) is computed on the text-only dataset for next-token prediction, while Lalign (θ, φ) is
computed about the similarity alignment between feature spaces on image-text pairs. The hyperpa-
rameter λ controls the relative importance of representation alignment versus token prediction.

4 EXPERIMENTAL RESULTS

To investigate the effectiveness of CMAR, we evaluate our method across both pre-training and
fine-tuning settings. In the first setting, a language model is aligned with a vision model during the
training process, allowing us to assess whether the vision representations can effectively enhance the
learning of the language model. In the second setting, a pre-trained language model is aligned with
a vision model during the fine-tuning process, investigating whether the language model can also
benefit from the alignment with another modality after a thorough training on the language corpus.

We introduce the setup in Section 4.1 with design choices and configurations. Next, we analyze
performance and report experimental results of the two settings aforementioned in Section 4.2 and 4.3
respectively. Finally, we conduct ablation studies in Section. 4.4.

4.1 SET UP

Pre-Training. For aligning the student language model with the teacher vision model, our student
language model is GPT-2 (124M) (Radford et al., 2019), a language model that leverages the trans-
former architecture to predict the next token in the sequence. GPT-2 exhibits zero-shot capabilities
across diverse language tasks, making it a robust starting point for evaluating our approach. We use
OpenWebText (Gokaslan et al., 2019) for training GPT-2 from scratch. Specifically, we adapt from
NanoGPT (Karpathy, 2023) to build the pipeline.

Fine-tuning. For aligning student language model with weak vision model in the fine-tuning setting,
we use Llama-3.1-8B (Grattafiori et al., 2024) and Llama-3.2-1B (Grattafiori et al., 2024) as our
student language models. The Llama 3 series has gained widespread adoption for its performance
on par with leading proprietary models, making them reasonably strong models for testing CMAR
effectiveness. Besides, our teacher vision model is DinoV2-Small (Oquab et al., 2023) whose
representation is used to guide language model. We leverage the Alpaca (Taori et al., 2023) dataset
and pipeline for fine-tuning.

Implementation Details. For pre-training, we use 4 NVIDIA H100 GPUs and train for 8000
iterations with learning rate 6e − 3 and batch size 32. For finetuning, we use 1 NVIDIA H100
GPU for 500 iterations with learning rate 1e − 5 and batch size 8. After a thorough search on
hyperparameter space (see Figure 8 in Appendix), we choose the weight of alignment regularization
λ as 10 and the interval for applying alignment regularization is 20 iterations. We use Centered
Kernel Alignment (CKA) as the alignment metric for all experiments except for the Section 4.4.

Vision Models to be Aligned with. To demonstrate the robustness of our method, we align the
language model with seven different types and sizes of vision models, including MAE (He et al.,
2022), DinoV2 (small, base, large, giant) (Oquab et al., 2023), CLIP (Radford et al., 2021), and
AugReg models (Steiner et al., 2021). Refer to Table 2 in the Appendix for more details.

Evaluation Datasets. For both experiments, we evaluate our method using 6 datasets that encom-
pass next-token prediction, causal reasoning, and commonsense reasoning tasks: ARC (Challenge),
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Figure 3: Results averaged on 5 experiments (details in Table 3), examining the alignment of
representations in language models with those in various vision models. The points in green region
show a better performance compared to the baseline, and a worse one in red region. Our results
indicate that our method consistently improves performance on all datasets. Additionally, aligning
with various vision models generally enhances the performance of language models.

ARC (Easy), COPA, LAMBADA, SWAG, and WikiText. A summary of these datasets is provided in
Table 1; more details can be found in Appendix A.3.

4.2 ALIGN STUDENT LANGUAGE MODEL WITH TEACHER VISION MODEL IN PRE-TRAINING

We test our methods on several tasks and datasets to investigate their performance. As demonstrated
in Figure 3, language models that align with advanced vision models achieve superior performance
on downstream tasks, underscoring the effectiveness of our CMAR method:

For the Next-Token Prediction task, we analyze our method using WikiText and LAMBADA, observ-
ing a performance gain of 0.99 in perplexity and an 1.01% increase in accuracy respectively.

For the Causal Reasoning task, our evaluation on the ARC-Easy benchmark shows model variants
achieving accuracy rates exceeding 41.35%, which surpasses the baseline by approximately 1.29%.
On ARC-Challenge dataset, the trend continues with model performance improving from 18.09% to
18.99%. These results suggest that integrating representations from vision models can significantly
enhance the ability to tackle complex reasoning tasks as well as knowledge-based queries. Notable
performance gains are also evident on the COPA with an increase of 1.49% on accuracy.

For the Commonsense Reasoning task, when evaluated on the SWAG dataset, the performance shows
an improvement of 0.24% compared to the base model that does not incorporate representation
alignment from the vision model.

Overall, these results collectively indicate that leveraging vision model representations can yield
measurable improvements in language model performance across a variety of datasets and tasks, from
general knowledge and commonsense reasoning to text generation and language modeling fluency.
We also evaluate the effect of using different vision models in Section 4.4.4.

4.3 ALIGN STUDENT LANGUAGE MODEL WITH TEACHER VISION MODEL IN FINE-TUNING

As demonstrated in Figure 4, aligning language models with vision models during finetuning also
acquires performance gains.

On the COPA dataset, the aligned Llama3.2-1B model achieves 82.0%, compared to 80.0% without
alignment. Similarly, Llama3.1-8B achieves an accuracy of 90.0% with alignment, surpassing the
unaligned baseline by 1.0%.
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Figure 4: Alignment of student language models
(Llama3.1-8B / Llama3.2-1B) with a vision teacher
model (DinoV2-Small) boost the performance of
language models.

For the LAMBADA dataset, the alignment of
Llama3.1-8B with the DinoV2-Small model re-
sults in an accuracy of 75.3%, showing a slight
improvement over baseline (74.6%). Similarly,
Llama3.2-1B achieves 61.8% when aligned, a
marginal gain compared to 60.6% without align-
ment. These results suggest that incorporating
vision model alignment positively impacts token
prediction tasks as well in fine-tuning setting.

On the ARC-Easy dataset, the aligned Llama3.1-
8B model achieves an accuracy of 82.6%, im-
proving by 1.4% compared to the unaligned
baseline (81.2%). Llama3.2-1B model, while
achieving lower overall accuracy, also benefits
from alignment, with accuracy improving from
64.2% to 65.3%. These improvements empha-
size the value of visual alignment in enhancing
causal reasoning capabilities.

Therefore, aligning with DinoV2-Small model
provides consistent performance gains across
datasets. These results collectively reinforce the
effectiveness of using CMAR for aligning stu-
dent language models with teacher vision mod-
els during fine-tuning, demonstrating improve-
ments in token prediction, causal reasoning, and
commonsense reasoning tasks.

4.4 ABLATION STUDIES

To analyze the effects of alignment among different layers, alignment with various models and
alignment by different metrics, we conduct ablation studies, with results and analyses below.

4.4.1 THE EFFECT OF ALIGNING WITH DIFFERENT VISION MODELS

Results in Figure 3 need to be further investigated to clarify the underlying factors influencing the
performance. We initially hypothesized that aligning the language model with larger and more
capable vision models would introduce larger performance improvements. However, our results do
not present a clear positive correlation between vision model size and downstream gains in language
tasks. The ablation study includes training the student GPT-2 with alignment to a range of different
vision models across four sizes of DinoV2 (small, base, large, giant), along with MAE (He et al.,
2022), CLIP (Radford et al., 2021), and AugReg (Steiner et al., 2021) models.

As shown in Figure 3, on the COPA dataset, accuracy increases from 62.62% to 64.11%, with the
best performance achieved when aligning with the CLIP model. This might be attributed to CLIP
being pre-trained on the extensive Laion-2B dataset and subsequently fine-tuned on ImageNet-12K,
which endows it with a rich knowledge base in the visual domain. This indicates that possessing
substantial and relevant knowledge in the vision domain can amplify the improvements in language
model training.

On the WikiText dataset, perplexity decreases from 50.85 to 49.86. Interestingly, the DinoV2-Large
model outperforms the DinoV2-Giant model, indicating that model size is not the only determinant
of performance when aligning language models. We hypothesize that the more powerful and senior
teacher DinoV2-Giant model inherently has a larger representational gap with GPT-2, making it
harder for the student language model to effectively learn from it. In contrast, DinoV2-Large model
acts more like a junior teacher, allowing student model to adapt and align more effectively.

Our ablation study suggests that factors beyond raw model capacity – such as the nature of learned
features, alignment calculation, or relative discrepancy between capacities of two modalities –
may also contribute to the scale of improvement. Understanding the circumstances of when and
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Figure 5: Ablation studies on data used for alignment. The figure shows the results of aligning paired
image-text data (w/ Paired Data) outperform not only the baseline, but also the results of aligning
with randomly-selected image-text (w/ Unpaired Data), and the performance of aligning with the
mean of the image distribution (w/ Mean).

how different vision models translate into stronger cross-modal guidance is critical for deeper
understanding of representation spaces in multi-modalities as well as enhancing training effectiveness,
which we leave as an open question and a promising direction for future research.

4.4.2 THE EFFECT OF ALIGNING WITH DIFFERENT DATA SETUP

In Figure 5, we conduct ablation studies on the data used for alignment, including (1) paired
data, which consists of corresponding image-text pairs; (2) unpaired data, which consists of non-
corresponding image-text pairs; (3) mean, which involves calculating the mean of vision representa-
tions across all samples and then aligning the language model with this mean.

The results show that aligning with mean, paired, or unpaired data all lead to clear improvements
over the baseline model. This demonstrates that our method is not limited to paired data, and perhaps
much of the improvement is simply about rescaling the distribution or some methods similarly
straightforward. Also, we find that the performance of paired data is better than that of unpaired
data, while the unpaired data also help boost the performance compared to the baseline. This actually
opens up the future direction about what features are useful when deploying cross-modal alignment,
and the potential effectiveness of alignment with general feature space in other modalities.

4.4.3 THE EFFECT OF ALIGNING AT DIFFERENT LAYERS
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Figure 6: Ablation Studies on Aligned Layers.
Results illustrate that aligning with penulti-
mate layer works the best.

Figure 6 shows how model performance varies when
aligning different layers with vision model represen-
tations. Since each layer captures unique representa-
tions and features, aligning vision model representa-
tions at various depths leads to varied impacts on the
performance across different downstream tasks.

We also observe that while aligning multiple higher-
level layers generally improves performance, the ex-
tent of improvement varies by task. Some tasks ben-
efit more from broadly integrated features, whereas
others require more specialized alignment. A detailed
analysis of layer selection and alignment strategies of-
fers a promising avenue for future research, possibly
revealing richer cross-modal synergies.
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4.4.4 THE EFFECT OF ALIGNING
BY DIFFERENT REGULARIZATION TERMS

To further investigate the effectiveness of the
CMAR method under different regularization
terms, we conduct ablation studies with ad-
ditional regularization terms, such as linear
CKA, SVCCA and PWCCA. As shown in
Figure 7(a) and Figure 7(b), the results high-
light the impact of aligning the model using
CMAR over other well-known regularization
methods. Among the tested methods, CMAR
achieves the highest accuracy of 41.2%, sub-
stantially outperforming regularization terms
L1 and L2, which only achieve accuracies
of 30.5% and 28.4% respectively. Moreover,
when focusing on the performance of CMAR
across different alignment metrics, every met-
ric works decently. It is also worth noticing
that certain metrics are more effective in cap-
turing useful features from vision teachers
and guiding the learning. For instance, the
CKA (Kornblith et al., 2019b) metric yields
the highest accuracy of 41.2%, followed by
SVCCA (Raghu et al., 2017b) with an accu-
racy of 41.0%, outperforming other methods
like dot product due to its consistency in mea-
suring similarities of representations across
different architectures and datasets (Kornblith
et al., 2019b). Conclusively, this ablation
study demonstrates that CMAR is an effec-
tive regularization method and it works con-
sistently for improving the performance re-
gardless of the choice of alignment metrics.
Further study could explore the effectiveness
of different alignment metrics.

(a)

(b)

Figure 7: (a) All similarity metrics in CMAR work,
among which CKA metric works the best. See Ap-
pendix A.7 for metrics details. (b) CMAR signifi-
cantly outperforms other regularization terms like
L1, L2 and Koleo Loss (Sablayrolles et al., 2019).

5 CONCLUSION AND DISCUSSION

In conclusion, we demonstrate that our CMAR improves language models performance by aligning
their representations with those from vision models. Our results underscore the effectiveness of
the method, with empirical evidence showing improvements in accuracy or perplexity across six
datasets in three categories, exemplified by notable increases of 1.01% and 1.20% on the LAMBADA
dataset, and 1.49% and 2.00% on the COPA dataset, for pre-training and fine-tuning, respectively.
The success of CMAR demonstrates that cross-modality distillation through direct alignment of
their representations is doable for both pre-training and fine-tuning settings. Our findings advance
research beyond previous distillation work, which has been confined to models sharing the same
architecture and feature dimensions. Although demonstrating potential in cross-modal alignment,
we acknowledge that some limitations remain for future work. For example, we have evaluated our
method on a limited number of model configurations. Future research can investigate whether the
benefits of CMAR extend to more complex domains and explore how interactions among different
model configurations affect cross-modal integration. Future research can also explore CMAR across
diverse settings, model configurations, and task domains. This may include applying the method to
additional modalities and examining the scaling law of cross-modal alignment, namely performance
vs. alignment score, potentially transforming current practices in training multi-modal models.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

All experiments are conducted using PyTorch. Each model is trained with a batch size of 64 and
a learning rate of 0.006. We employed four 80GB Nvidia H100 GPUs, allocating approximately
10 hours to train each model. Computations are distributed across these GPUs to enhance training
efficiency and scalability. The interval for updating the alignment loss is set to every 20 iterations,
which facilitated the periodic integration of alignment loss into the training process.

A.2 ADDITIONAL ABLATION STUDIES

We conduct ablation studies on the λ and the interval. For λ, increasing it from 5 to 10 significantly
improves accuracy, but further increases show minimal gains. For interval, a smaller value maintains
higher accuracy, with a noticeable decline as the interval increases, indicating that the optimal interval
should be around 20.

Figure 8: Additional studies on hyper parameter search.

A.3 DATASETS DETAILS

Dataset Name Task Type Size Source

Wikitext Next-Token Prediction 100M Words Merity et al. (2016b)
LAMBADA Next-Token Prediction 465M Words Paperno et al. (2016)
COPA Causal Reasoning 1.6k Q&A Merity et al. (2016a)
ARC Causal Reasoning 7k Q&A Clark et al. (2018)
Commonsense QA Commonsense Reasoning 12k Q&A Talmor et al. (2019)
SWAG Commonsense Reasoning 113k Q&A Zellers et al. (2018)

Table 1: Dataset details. This table provides an overview of the datasets used in our experiments,
categorized by their task type, size, and source. These datasets span various tasks such as next-token
prediction, causal reasoning, and commonsense reasoning.

Below are introductions to six datasets we used for evaluation:

Wikitext (Merity et al., 2016b) dataset comprises over 100 million tokens from Wikipedia’s verified
Good and Featured articles. Tailored for language modeling, it maintains original article formatting,
links, and structure, presenting a realistic challenge for language models.

LAMBADA (Paperno et al., 2016) evaluates computational models’ language understanding by
requiring the prediction of the final word in narrative passages that seem straightforward to a human
reader. It emphasizes the use of broader textual contexts for deeper comprehension.

The Choice of Plausible Alternatives (COPA) (Merity et al., 2016a) dataset, part of the Super-
GLUE Wang et al. (2020) benchmark, tests causal reasoning by asking participants to choose
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between two plausible outcomes based on a given premise, enhancing understanding of cause-effect
relationships in text.

AI2 Reasoning Challenge (ARC) (Clark et al., 2018) offers multiple-choice questions that demand
advanced reasoning across various topics, challenging models to apply deep knowledge and reasoning
capabilities beyond mere pattern recognition.

Commonsense QA (Talmor et al., 2019), derived from ConceptNet Speer et al. (2018), challenges
models to apply everyday commonsense knowledge to answer intuitive questions, pushing the limits
of what AI can understand and respond to coherently.

Situations With Adversarial Generations (SWAG) (Zellers et al., 2018) assesses models’ ability to
predict logical sentence endings in diverse scenarios. It features nearly 113,000 multiple-choice
questions that test understanding and prediction of plausible outcomes.

A.4 DETAILS OF VISION MODELS USED FOR ALIGNMENT

Model Size Arch. Pre-trained Data Fine-tune Data Patch Size

MAE (He et al., 2022) 0.30B ImageNet-21K - 16
DinoV2-Giant (Oquab et al., 2023) 1.14B LVD-142M - 14

DinoV2-Large 0.30B LVD-142M - 14
DinoV2-Base 0.09B ViT LVD-142M - 14
DinoV2-Small 0.02B LVD-142M - 14

CLIP (Radford et al., 2021) 0.30B Laion2B ImageNet-12K 16
AugReg (Steiner et al., 2021) 0.33B ImageNet-21K - 16

Table 2: Details of vision models used for alignment. This table summarizes the key properties
of various vision models used for alignment, including their architecture, model size, pre-training
datasets, fine-tuning datasets, and patch sizes. The models, such as DinoV2, MAE, and CLIP,
represent a range of state-of-the-art ViT architectures trained on diverse datasets.

A.5 THE TEMPORAL DYNAMICS OF ALIGNMENT SCORES
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(a) Alignment Score across different vision models
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(b) Alignment Score across different size of DinoV2

Figure 9: (a) Evolution of the alignment score over training steps when incorporating different vision
models. (b) Evolution of the alignment score over training steps under different sizes of DinoV2. The
plots highlight how alignment quality changes throughout training and illustrate that vision model
choice and scale can influence the stability and strength of cross-modal integration.

In Figure 9a, we observe that aligning with different vision models exhibits different trajectories in
their alignment scores. While some configurations decrease, others display a more gradual increase
or fluctuations before reaching a relatively stable plateau. Besides, we can see how adjusting the size
of a single vision model family (DinoV2) affects the trajectories in Figure 9b. Larger models have a
higher alignment score, but they do not uniformly guarantee a more rapid increase.

Also, it is worth noticing that all configurations exhibit a drop around 50 steps, indicating a potential
early-stage adjustment period due to the competence of the maximum process of alignment score
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and the minimum process of cross-entropy loss, whose underlying mechanisms and factors remain
unclear. Future research that explores the cases and implications of this early fluctuation can provide
deeper insights into the dynamics of cross-modal alignment.

A.6 EXPERIMENT RESULTS WITH STANDARD ERROR

ARC-Challenge ↑ ARC-Easy ↑ COPA ↑ LAMBADA ↑ SWAG ↑ WikiText ↓
Baseline 18.09 ± 0.29 40.06 ± 0.53 62.62 ± 0.92 26.14 ± 0.39 37.65 ± 0.14 50.85 ± 0.36
DinoV2-Small 18.82 ± 0.23 40.31 ± 0.21 62.75 ± 1.32 26.42 ± 0.73 37.83 ± 0.08 50.65 ± 0.19
DinoV2-Base 18.12 ± 0.13 40.38 ± 0.29 63.43 ± 1.25 27.03 ± 0.59 37.82 ± 0.05 50.10 ± 0.19
DinoV2-Large 18.46 ± 0.16 41.35 ± 0.18 63.38 ± 0.42 26.58 ± 0.47 37.79 ± 0.07 49.86 ± 0.17
DinoV2-Giant 18.99 ± 0.31 41.13 ± 0.25 63.71 ± 0.78 26.79 ± 0.63 37.89 ± 0.07 50.05 ± 0.10
MAE 18.34 ± 0.20 40.63 ± 0.09 63.17 ± 0.48 26.85 ± 1.02 37.88 ± 0.09 50.21 ± 0.28
AugReg 18.47 ± 0.18 40.94 ± 0.22 62.71 ± 1.15 27.15 ± 0.39 37.84 ± 0.04 49.88 ± 0.18
CLIP 18.43 ± 0.21 40.87 ± 0.20 64.11 ± 0.45 27.14 ± 0.42 37.77 ± 0.06 49.98 ± 0.17

Table 3: Model Performance Results with Standard Error.

A.7 ABLATION STUDY: DIFFERENT KERNEL METRICS COMPARISON

Below is the information of each metric shown on x-axis on Figure 7(a):

• CKA (RBF) (Kornblith et al., 2019a): A non-linear variant using an RBF kernel, which
captures higher-order similarities between features.

• Linear CKA (Kornblith et al., 2019a): Measures similarity via the Hilbert-Schmidt Inde-
pendence Criterion (HSIC) with a linear kernel, capturing invariant relational structures.

• SVCCA (Raghu et al., 2017a): Combines SVD and Canonical Correlation Analysis to
identify shared subspaces in reduced representations.

• Dot Product: Computes the average elementwise dot product between aligned features.
• Linear Regression Fits a multi-output linear regression and evaluates using the average R2

score.
• PWCCA (Morcos et al., 2018): Enhances CCA by weighting each canonical correlation

according to its explained variance, reflecting component-wise importance.
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