
Predicting Kinase-Specific Phosphorylation Sites with
Pretrained Protein Language Models

Mahdi Pourmirzaei1,2∗ Farzaneh Esmaili 1 ∗ Kai Chen 1

Mohammadreza Pourmirzaei3 Mohsen Rezaei 1 Duolin Wang 1 Dong Xu 1†

1 Electrical Engineering and Computer Science, Data Science and Informatics, University of
Missouri, Columbia, USA

{mpngf,fe5vb,dc57y,mrfrg,wangdu,xudong}@missouri.edu
2 ProGene

3 Politecnico di Milano, Milan, Italy
mohammadreza.pourmirzaeioliaei@mail.polimi.it

Abstract

Accurately predicting kinase-specific phosphorylation sites remains difficult due
to the diversity of kinases and the context-dependent nature of substrate recogni-
tion. Importantly, aberrant kinase overactivation is a hallmark of many cancers in-
cluding colorectal, gastric, liver, and breast tumors where dysregulated kinase sig-
naling promotes malignant transformation, tumor progression, and therapy resis-
tance. This underscores the clinical importance of understanding kinase-substrate
relationships and precisely mapping phosphorylation events. In this paper, we in-
troduce two complementary sequence-based architectures that operate directly on
full-length substrate and kinase sequences. Stage 1 extends a task-agnostic pre-
diction method, named Prot2Token, to jointly support three tasks: kinase-group
classification from substrate sequences alone, kinase-substrate interaction predic-
tion, and kinase-specific phosphorylation-site prediction while incorporating a
self-supervised decoder pretraining task that predicts amino-acid positions from
encoder embeddings. This pretraining substantially strengthens site prediction.
Stage 2 specializes the architecture for phosphorylation-site prediction by replac-
ing causal decoding of Prot2Token with a bidirectional one, yielding further gains.
On standard benchmarks, the specialized model consistently outperforms widely
used baselines. Beyond in-distribution evaluation, across both in-distribution and
zero-shot settings of understudied dark kinases, we show the sign of zero-shot
kinase-specific phosphorylation-site prediction capability. Together, these results
indicate that jointly modeling substrate and kinase sequences provides a straight-
forward, scalable approach to state-of-the-art, zero-shot-capable phosphorylation-
site prediction.

1 Introduction

Post-translational modifications (PTMs) are crucial processes that regulate cellular functions and bi-
ological processes [1]. Among these modifications, protein phosphorylation is one of the most sig-
nificant. It involves the attachment of a phosphate group to specific amino acids serine (S), threonine
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(T), or tyrosine (Y) rendering the target protein phosphorylated [2]. This process is crucial for signal
transduction, cellular communication, and the regulation of various biological activities. Dysreg-
ulation of phosphorylation leads to severe diseases, including cancer, neurodegenerative disorders,
and Alzheimer’s disease [3, 4]. Kinases, a group of specialized enzymes, catalyze this process by
transferring phosphate groups to proteins [5, 4], and kinases in cancer are significantly more likely
to have phosphorylation site (p-site) mutations compared to controls. However, the prediction of
kinase-specific phosphorylation‡ is challenging due to the vast diversity and structural complexity
of kinases, as well as the dynamic nature of protein interactions within cells. Each kinase recog-
nizes specific sequence motifs, but variations in these motifs, context-dependent factors, and lack of
abundant high-quality datasets make accurate predictions difficult [6].

In recent years, numerous approaches have been developed to predict kinase-specific p-sites, lever-
aging computational techniques such as machine learning and deep learning [7]. However, most
of the existing methods share significant limitations. Many rely on ensemble approaches that use
several, or in some cases hundreds, of models to achieve acceptable accuracy [8, 9]. While this may
improve predictive performance, it introduces inefficiencies in computational resource usage and
scalability. Additionally, these methods typically focus on peptides with lengths ranging from 7 to
15 amino acids, which represent only a small fraction of possible protein sequences [10–12]. This
narrow focus not only fails to cover the full range of protein sequences but also risks losing critical
structural information, which is essential for understanding kinase-substrate interactions at a more
comprehensive level. As a result, the predictive performance of these methods lacks generalization
across diverse protein contexts, limiting their applicability in real-world biological scenarios.

To address these limitations, we reformulate kinase-specific phosphorylation as three interconnected
tasks: kinase group classification, kinase-substrate interaction prediction, and kinase-substrate p-
site prediction.

In the first stage, inspired by Prot2Token [13], we cast all three tasks as next-token prediction prob-
lems and develop a unified framework that couples an autoregressive transformer decoder with the
ESM-2 [14] pre-trained protein language model (PLM). This design enables direct end-to-end learn-
ing from substrate and kinase sequences (Figure 1). We further introduce a self-supervised pre-
training phase to initialize the decoder weights, which substantially boosts performance in p-site
prediction compared to the randomly initialized Prot2Token architecture.

In the second stage, we derive a streamlined variant of this architecture specialized for kinase-
specific p-site prediction only (Figure 3). This specialized model not only achieves a substantial
performance gain over state-of-the-art methods but also exhibits the first evidence of zero-shot gen-
eralization—predicting p-sites for entirely unseen kinase sequences.

The contributions of this paper can be summarized as follows:

1. We extend the Prot2Token framework to jointly address three kinase-substrate related tasks:
(i) kinase group classification from substrate sequences alone, formulated as a multi-label
learning problem; (ii) kinase-substrate interaction prediction using paired substrate and
kinase sequences, enhanced by hard negative sampling inspired by data pruning [15] and
contrastive learning [16]; and (iii) kinase-substrate p-site prediction using a self-supervised
pre-training phase to initialize the autoregressive decoder, leading to notable gains in iden-
tifying kinase-specific p-sites.

2. We design a streamlined architecture specialized for kinase-substrate p-site prediction,
achieving state-of-the-art results. We further evaluate this model on both in-distribution
and out-of-distribution understudied kinases, providing evidence of zero-shot capability on
entirely unseen kinase sequences during training.

Throughout this paper, we use the terms substrate sequence and protein sequence interchangeably,
treating them as equivalent.

1.1 Related Work

The prediction of kinase-specific p-sites has been explored using various machine learning and deep
learning approaches to advance our understanding of PTMs and their regulatory roles in cellular

‡In this paper, we refer to it as kinase-substrate phosphorylation.
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processes [11, 9, 17]. Computational models leverage sequence-based features, physicochemical
properties, structural characteristics, and evolutionary information [7]. In contrast, deep learning
methods aim for end-to-end learning by directly capturing complex patterns from raw data [18,
17]. Several computational models address p-site prediction, with some focusing broadly on PTM
detection [19–21], and others dedicated solely to kinase-specific p-sites [11, 9, 22, 7]. Broadly,
existing research in this domain falls into two main categories: kinase-specific p-site prediction
and protein-kinase interaction prediction. The former focuses on identifying p-sites for specific
kinases, while the latter aims to determine interactions between kinases and their substrate proteins.
A detailed discussion of these categories and related work is provided in Appendix A.1.

2 Method

2.1 Stage 1

The architecture of this stage is based on Prot2Token where a causal (autoregressive) transformer
decoder Tψ , whose parameters are indicated byψ, is connecting to a pre-trained bidirectional PLM,
referred to as the encoder Gθ, whose parameters are denoted by θ. The substrate sequences s with
an optional kinase sequences k are concatenated together and encoded by the Gθ, producing residue
embeddings Gθ(s and k)∈RM×d. The decoder Tψ integrates PLM representation through cross-
attention and a task token prompt E, after which, a linear binary classification head Cϕ, whose
parameters are shown by ϕ, produces residue level logits to perform next token classification on
vocab sizes (Equation 1).

Cϕ

(
Tψ

(
Pρ

(
Gθ(s and k)), E

))
∈ RL×vocab size (1)

To control the distinct prediction of each task, we use separate tokenizers and embedding tables for
the encoder and decoder (Figure 5). The autoregressive transformer factorizes the joint probability
of a sequence x = (x1, x2, . . . , xm) into a product of conditional probabilities. Training proceeds
by minimizing the negative log-likelihood of the observed tokens, where θ denotes the model param-
eters. Employing a causal mask, each token xm can only attend to the tokens x1, . . . , xm−1 , thereby
enforcing the autoregressive property and allowing the model to learn contextual representations of
the preceding sequence.

L(θ) = −
M∑

m=1

wm log Tψ(xm | x1, . . . , xm−1), where T (x) =

M∏
m=1

Tψ(xm | x1, . . . , xm−1)

(2)

Prot2Token extends this standard autoregressive objective by introducing token-level weights wm

to regulate each token’s influence on the loss. Specifically, we set w1 = 0 so that predicting the
first token (the prompt) does not affect the loss, while for m ≥ 2, wm can be adjusted, grant-
ing non-prompt tokens varying degrees of importance. Concretely, the revised training objective
demonstrated in Equation 2, where each weight wm ∈ [0,∞) is a user-defined parameter for the
token xm. This setup enables flexible fine-tuning by emphasizing specific tokens of interest while
removing the prompt token from the loss computation (by assigning it zero weight). Further details
on the architecture are provided in Appendix A.2.

Tokenization of labels. We follow the tokenization framework introduced in Prot2Token to convert
target labels into discrete tokens. Specifically, we use a non-hierarchical multi-label classification
scheme for kinase group prediction, binary classification for protein-kinase interaction, and the same
approach from the original work for both protein-kinase p-site and self-supervised tasks.

2.1.1 Self-Supervised Pre-Training

Our initial experiments in p-site prediction revealed that directly fine-tuning the Prot2Token model
yielded suboptimal accuracy, even when testing various label formatting strategies. We hypothesized
that this limitation stemmed from the randomly initialized decoder, which lacks the inductive biases
required to interpret protein sequence information. As shown in Figure 2, the distribution of p-sites
is sparse and highly imbalanced, making it difficult for an untrained decoder to learn meaningful
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Figure 1: Overview of our framework for kinase-related predictions from substrate and/or kinase
sequences. The model supports three tasks: (i) kinase group classification from substrate sequences,
(ii) kinase-substrate interaction prediction, and (iii) kinase-substrate p-site prediction. A protein en-
coder produces sequence embeddings, which are fed into a causal decoder for task-specific outputs.
Due to data leakage concerns, each task is trained independently; the diagram illustrates a unified
view for conceptual clarity.

positional representations from such a weak signal. This underscored the need to instill these priors
through a dedicated self-supervised pre-training phase.

To address this, we introduced a self-supervised pre-training strategy for the decoder, aiming to
instill biologically meaningful priors before downstream fine-tuning. The core idea is to train the
decoder to predict the positions of specific amino acids within given the representation of the protein
encoder, thus enabling the model to learn position-aware residue representations without the need
for manual annotations. For example, given a protein sequence such as MSGLSNYT, the task would
be to identify the indices of each occurrence of a specified amino acid (e.g., S: positions 2, 5). We
designed twenty such tasks, each corresponding to one of the twenty standard amino acids.

Self-supervised samples were generated automatically, making the approach scalable and cost-
effective. In particular, incorporating auxiliary prediction tasks for a broader set of amino acids,
beyond the canonical phosphorylation targets (S, T), potentially provides a generality for different
downstream site prediction type tasks.
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Figure 2: Distribution of p-site indices in the training set (n = 11 449 sites drawn from 5 694 sub-
strates). Bars correspond to single-residue positions and cover indices less than 2 049; a further 176
extremely rare sites at higher indices are omitted for clarity. The histogram is highly imbalanced: a
handful of low-index positions dominate, while most indices receive only a few or zero examples.
This long-tail sparsity means the decoder’s embedding table sees too little signal at many positions to
learn meaningful representations, particularly in the higher-index region where runs of zero counts
are common.

2.2 Stage 2

This stage introduces a specialized p-site prediction architecture, which utilizes the Stage 1 archi-
tecture and incorporates positional inductive biases for each amino acid by replacing the causal
attention of the decoder with a bi-directional one and employing a shared-weights PLM to encode
kinase and substrate sequences separately, and avoiding the decoder pre-training stage. Technically,
substrate sequences s and kinase sequences k are tokenized and passed through the same pre-trained

4



PLM Gθ. Yielding an embedding Gθ(s or k) ∈ RM×d whose dimensionality d generally differs
from the decoder dimension d.
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Figure 3: Stage 2 architecture: shared-weight encoders process substrate and kinase sequences; a
bidirectional predictor uses cross-attention to output residue-level phosphorylation scores.

To align these feature spaces we introduce a learnable linear projector Pρ : RM×c → RM×d,
parameterized by ρ, producing Pρ

(
Gθ(s or k)

)
∈ RM×d for the cross-attention layers of the same

decoder Tψ . The fused representation is then passed to the binary classifier head Cϕ. Because
Gθ is pre-trained on large protein sequence corpora, the architecture (Equation 3) can technically
predict binding sites for entirely new kinase-substrate combinations, including those that have not
been encountered during training (Figure 3).

Cϕ

(
Tψ

(
Pρ

(
Gθ(s)), Pρ

(
Gθ(k)

)))
∈ RM×2 (3)

The calculated loss for a given sample first uses the standard binary cross-entropy (BCE) formula-
tion. To emphasise hard-to-classify residues while correcting for dataset- and class-specific imbal-
ance, we multiply each residue by a sample weight wi, yielding the weighted loss in (Equation 4).
Here wi ≥ 0 is the product of a dataset-level weight and, when enabled, a positive-class token
weight.

L = − 1

M

M∑
i=1

wi

[
yi log ŷi + (1− yi) log

(
1− ŷi

)]
(4)

2.3 Datasets

We utilized the GPS 6.0 [8] dataset, originally comprising 24 160 p-sites. After preprocessing and
mapping IDs to the UniProt database, we retained 13 401 sequences annotated with kinase informa-
tion, covering 386 kinases across 12 distinct groups validated against Kinase.com for Homo sapiens
species. The final dataset contains Uniprotids, substrate sequences, kinase sequences, group infor-
mation, and p-sites. To reduce sequence similarity, CD-HIT [23] was applied with a 70% threshold.
More details of data preparation are described in Appendix A.3.

We prepared an additional test set based on dark kinases provided by [24]. Dark kinases, a sub-
set of human serine/threonine (S/T) kinases, remain poorly characterized, with limited knowledge
about their substrates, signaling functions, and regulatory mechanisms [25, 24]. To address this gap,
over 80 understudied dark kinases were experimentally profiled using positional scanning peptide
arrays, which uncovered previously unknown substrate motifs and provided a foundation for func-
tional annotation [24]. For each dark kinase, the highest-scoring position in its position-specific
scoring matrix was selected as the predicted p-site. Corresponding substrate sequences and kinase
sequences were retrieved from UniProt. The resulting test set contained 8 026 samples representing
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29 dark kinases from five distinct kinase groups, with each sample comprising the kinase sequence,
its substrate sequence, and the associated p-site.

To evaluate zero-shot performance, we constructed an independent test set comprising dark kinases
absent from the GPS dataset (Figure 4c). The set contained 5 391 kinase–substrate pairs, each
annotated with the corresponding p-site, and represented 26 distinct kinase types. The frequency of
each kinase across the groups, with dark kinases in the training and validation sets highlighted, is
shown in Figures 6 and 7.

3 Experiments

We structured our experiments to progressively validate the Stage 1 across the three target tasks.
First, we assessed kinase group classification using full substrate sequences alone. Next, we applied
hard negative sampling to strengthen the kinase–substrate interaction prediction task. To empower
the p-site prediction capability of Prot2Token, we performed self-supervised pre-training of the
autoregressive decoder and fine-tuned it for kinase-specific p-site prediction, benchmarking against
state-of-the-art methods. Finally, we evaluated the Stage 2 specialized architecture on the p-site
prediction task, including in-distribution and zero-shot dark kinase samples.

For all experiments, we initialized the protein encoder of Prot2Token with the pre-trained ESM-
2 650m model for all three kinase tasks, and the second stage architecture includes ESMC 600m
and different scales of ESM-2. We enabled fine-tuning for the weights of the last six blocks of
the encoders on all experiments, while keeping the embedding parameters of the encoder frozen
unless specified otherwise. All other layers in the model were trained during the experiments. We
employed the AdamW optimizer [26] with a weight decay of 0.1, β1 = 0.9, β2 = 0.98, and epsilon
to 1e-7 as default hyperparameters across all training runs. The learning rate followed a cosine
annealing schedule with an initial warm-up phase [27], starting from 1e-6 and increasing to 5e-5
over the first 256 steps unless specified otherwise. For Stage 2 of training, a weight of 2 was applied
to the positive class loss value to handle the label imbalance issue. All training was conducted using
the PyTorch 2.6 framework [28] on a single node equipped with 4×A100 80GB Nvidia GPUs.

3.1 Kinase Group Classification

In this section, we aimed to predict kinase groups based on substrate sequences. Specifically, we
investigated how much information about the related kinase groups the model can infer solely from
substrate sequences. To achieve this, we considered our processed training and validation datasets
(Appendix A.3), assigning multi-label classification labels by removing Unknown group samples
from the training set and merging the remaining nine kinase groups associated with each substrate.
The model takes a substrate sequence as input and predicts the corresponding kinase groups in
alphabetical order. The result is presented in Table 1.

Table 1: F1 scores of our method on each kinase group, based on full substrate sequences.
Group AGC Atypical CMGC CAMK CK1 Other STE TK TKL

F1 0.5551 0.4928 0.634 0.4196 0.5385 0.6047 0.3571 0.6738 0.5

Next, we compared the embedding representations of all unique kinase sequences before and af-
ter fine-tuning the protein encoder part on the kinase group classification model. The fine-tuned
model demonstrated slightly better separation of kinase sequences into their respective groups, even
though kinase sequences were not explicitly included during training (Table 2). Additional details
are provided in Appendix A.4.

Table 2: Unsupervised separability metrics
of all unique kinase sequences with respect to
the original and fine-tuned version of ESM2
650m model.

Metric Original Fine-tuned
Silhouette Score (cosine) -0.0393 0.0905
Calinski-Harabasz Index 7.0029 24.0969

Table 3: The details of protein-kinase inter-
action performance versus other methods on
the positive and randomly selected negative
samples from the validation set.

Metric Ours GPS 6.0
[8]

PhosphormerST
[29]

Accuracy (%) 72 58 49
F1 0.71 0.61 0.603
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Table 4: Comparative results of our method against lead-
ing tools for p-sites prediction (KinasePhos3, NetPhose 3.1,
MusiteDeep and GPS 6.0) across the validation and GPS test.
NetPhose 3.1 and Musite did not support all kinase groups in
the validation set. †: the decoder initialized from scratch.

Method Validation Set GPS Test Set

Precision Recall F1 Precision Recall F1

KinasePhos3 [9] 0.0773 0.9557 0.138 0.0215 0.9856 0.0421
NetPhose 3.1 [22] - - - 0.0325 0.0137 0.0193
GPS 6.0 [8] 0.2323 0.4549 0.3076 0.1564 0.5054 0.2398
Musite [11] - - - 0.1348 0.8057 0.2310

Stage 1 (Ours)† 0.0403 0.0016 0.0206 0.0131 0.0033 0.007
Stage 1 (Ours) 0.5753 0.4411 0.4994 0.4575 0.3660 0.4069
Stage 2 (Ours) 0.4757 0.4637 0.4696 0.4597 0.4302 0.4444

Table 5: Effect of
encoder scales of
Stage 2 architecture on
kinase-substrate phos-
phorylation task.

PLM Backbone F1

ESM-2 35m 0.3211
ESM-2 150m 0.3806
ESM-2 650m 0.4260
ESMC 600m 0.4444

3.2 Kinase-Substrate Interaction Prediction

Although predicting protein–kinase interactions is a meaningful task, its practical utility is somewhat
diminished, as such interactions can often be inferred implicitly through p-site prediction. Neverthe-
less, we include this task for completeness and comparative evaluation. We formulated the problem
as determining whether a given protein substrate interacts with a specific kinase sequence. To con-
struct training data, we created both positive and hard negative samples from the dataset. However,
generating biologically plausible negative labels involves complex and labor-intensive procedures,
which are noisy and not easily scalable. As such, we have relegated the details of negative sample
construction to Appendix A.4. The resulting performance is reported in Table 3.

3.3 Kinase-Substrate Phosphorylation Site Prediction

In this section, to adapt Prot2Token imitate p-site prediction, a self-supervised pre-training stage
was incorporated. We randomly sampled 4 million protein sequences from the UniRef50 database
[30] for training and 4 000 sequences for validation. From these, we artificially generated 80 million
training samples and 20 000 validation samples by treating each amino acid type within a protein
as an individual sample. Subsequently, we further randomly sampled 1 million training and 1 000
validation samples to construct the final datasets of this part. For training, we used an input sequence
length of 1 280, a weight decay of 0.01, and a batch size of 192 samples, equivalent to 73 728 tokens.
The warm-up phase consisted of 512 steps. During training, we froze all the encoder weights while
allowing all other parameters to be updated. After 16 epochs, the model achieved a validation
perplexity of 2.31, indicating that it could almost perfectly reconstruct protein sequences from the
encoder’s embeddings.
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(b) GPS test set.
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(c) All dark kinases.

Figure 4: Kinase-type distributions across our datasets, with colors indicating phylogenetic relation-
ships. (a) Distribution of kinase types in the training and validation sets. (b) Kinases belonging to a
representative GPS test data. (c) Dark kinases, showing both in-distribution and out-of-distribution
cases relative to the training data.
Building on our ability to predict protein-kinase interactions, we extended our approach to precise
phosphorylation site prediction. To achieve this, we selected all protein-kinase sequence pairs along
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with their corresponding phosphorylation sites and jointly trained them alongside 20 self-supervised
tasks. This fine-tuning phase utilized the latest checkpoint from the self-supervised pre-training
stage as its initial checkpoint. For this phase, we reduced the number of self-supervised tasks to a
total of 20 000 samples. Additionally, substrate sequences exceeding 1 280 amino acids in length
were excluded during training and evaluation. The results are shown in Table 4. More details are
presented in A.4. To further enhance phosphorylation site prediction, we trained the Stage 2 architec-
ture using the same kinase–substrate pairs and phosphorylation site annotations, and demonstrated
improved performance compared to Stage 1. The result of the Stage 2 model is presented in Table 4.
Additionally, we conducted ablation studies on the Stage 2 model to assess the impact of different
protein language model backbones. The results, summarized in Table 5.

3.4 Prediction of Dark Kinases

To evaluate the dark kinases included in our dataset and enable a direct comparison with GPS 6.0,
we performed inference using our best model on these kinases and compared the results with other
p-site prediction methods. All 29 selected dark kinases were also supported by GPS 6.0, ensuring a
fair comparison. Predictions from GPS were obtained using medium thresholds, and the results are
summarized in Table 6a.

(a) In-distribution dark Kinase pairs.

Level Group/Kinase Stage 2 (Ours) GPS 6.0

Group

CMGC 0.1088 0.1204
Other 0.0312 0.0124
CAMK 0.1265 0.0594
STE 0.0484 0.0430
CK1 0.0335 0.0063

Kinase

BRSK1 0.2192 0.0187
BRSK2 0.1542 0.0965
CaMKK1 0.0323 0.0321
CaMKK2 0.0279 0.0140
DYRK1B 0.690 0.0711
DYRK2 0.1317 0.2098
DYRK3 0.1233 0.1532
HIPK1 0.0976 0.0429
HIPK3 0.1406 0.1153
MARK1 0.0994 0.0165
MARK3 0.1098 0.0296
MARK4 0.0720 0.0491
NEK1 0.0129 0.0024
NEK11 0.0455 0.0015
NEK6 0.0193 0.0101
NEK7 0.0189 0.0012
NEK9 0.0428 0.0115
PAK3 0.0833 0.0703
PAK5 0.0105 0.0244
PAK6 0.0439 0.0343
PCTAIRE1 0.0986 0.119
PFTAIRE1 0.1148 0.1315
PHKg1 0.2330 0.1463
TLK1 0.0234 0.0058
TLK2 0.0205 0.0236
TTBK1 0.0374 0.0012
TTBK2 0.0571 0.0092
VRK2 0.0163 0.0086
Wnk3 0.0870 0.0379

(b) Zero-shot dark Kinase
pairs.

Level Group/Kinase Stage 2 (Ours)

Group

CMGC 0.0879
Other 0.0421
CAMK 0.0813
STE 0.0462
TKL 0.0050
ALPHA 0.0181
AGC 0.3143
PDHK 0.0241

Kinase

BCKDK 0.0241
CAMK1D 0.0769
CAMK1G 0.1538
CDK10 0.1347
CRK7 0.0606
CDK13 0.0579
PCTAIRE2 0.0980
PCTAIRE3 0.1131
CDK19 0.0733
CDKL1 0.0598
CLK3 0.0906
CLK4 0.1140
DSTYK 0.0050
DYRK4 0.0976
EEF2K 0.0181
HIPK4 0.1011
MAP3K15 0.0462
NEK3 0.0423
NEK4 0.0611
NEK5 0.0273
NEK8 0.0328
NUAK2 0.1317
PKN3 0.3143
SRPK3 0.0636
STK33 0.0081
TSSK2 0.0629

Table 6: Dark kinase in-distribution (a) and out-distribution (b) evaluation performance of kinase-
substrate p-site prediction, based on F1-score metric.

While tools like GPS offer limited coverage for dark kinases, our model demonstrates better capa-
bilities even for poorly characterized enzymes. To evaluate this, we performed zero-shot prediction
on 26 dark kinases not seen during training. Results are presented in table 6b.

4 Discussion

Our results show that substrate sequences alone encode discriminative signals for kinase-group as-
signment, even in the absence of kinase sequences. This finding implies that substrates carry motif-
and context-level cues sufficient to prioritize a small set of candidate kinase families for follow-up,
potentially reducing the number of targeted assays needed to confirm phosphorylation events.

Augmenting substrates with kinase sequences, we introduced two complementary architectures.
Stage 1 extends Prot2Token with a decoder pre-training task that learns position-aware residue repre-
sentations from encoder features, yielding substantial gains for kinase-specific site prediction. Stage
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2 replaces causal decoding with bidirectional cross-attention over encoder features, further improv-
ing precision–recall trade-offs and delivering state-of-the-art performance on standard benchmarks.

A key outcome is the sign of generalization beyond well-studied kinases. The specialized
model (Stage 2) retains better performance on understudied dark kinases and, in zero-shot eval-
uations on unseen kinase–substrate pairs, exhibits the first evidence of zero-shot kinase-specific
phosphorylation-site prediction, to our knowledge. Given the central role of dysregulated kinase
signaling in oncogenesis and therapy resistance, these capabilities may accelerate hypothesis gener-
ation for pathway mapping, biomarker nomination, and kinase prioritization in cancer settings.

References
[1] Matthias Mann and Ole N Jensen. Proteomic analysis of post-translational modifications.

Nature biotechnology, 21(3):255–261, 2003.

[2] Philip Cohen. The origins of protein phosphorylation. Nature cell biology, 4(5):E127–E130,
2002.

[3] Anna Roshani Dashtmian, Fereshteh B Darvishi, and William David Arnold. Chronological
and biological aging in amyotrophic lateral sclerosis and the potential of senolytic therapies.
Cells, 13(11):928, 2024.

[4] Nathan R Kerr, Anna R Dashtmian, Fereshteh B Darvishi, Charles D Brennan, Sindhuja N
Ayyagari, Peter J Moore, Jose A Viteri, Meifang Wang, Mark M Rich, Brian C Clark, et al. 5-
ht2c agonism as a neurotherapeutic for sarcopenia: preclinical proof of concept. GeroScience,
pages 1–18, 2025.

[5] Michael D Browning, Richard Huganir, and Paul Greengard. Protein phosphorylation and
neuronal function. Journal of neurochemistry, 45(1):11–23, 1985.

[6] Philip Cohen. The role of protein phosphorylation in neural and hormonal control of cellular
activity. Nature, 296(5858):613–620, 1982.

[7] Farzaneh Esmaili, Mahdi Pourmirzaei, Shahin Ramazi, Seyedehsamaneh Shojaeilangari, and
Elham Yavari. A review of machine learning and algorithmic methods for protein phosphory-
lation site prediction. Genomics, Proteomics & Bioinformatics, 21(6):1266–1285, 2023.

[8] Miaomiao Chen, Weizhi Zhang, Yujie Gou, Danyang Xu, Yuxiang Wei, Dan Liu, Cheng Han,
Xinhe Huang, Chengzhi Li, Wanshan Ning, et al. Gps 6.0: an updated server for prediction
of kinase-specific phosphorylation sites in proteins. Nucleic acids research, 51(W1):W243–
W250, 2023.

[9] Renfei Ma, Shangfu Li, Wenshuo Li, Lantian Yao, Hsien-Da Huang, and Tzong-Yi Lee. Ki-
nasephos 3.0: redesign and expansion of the prediction on kinase-specific phosphorylation
sites. Genomics, proteomics & bioinformatics, 21(1):228–241, 2023.

[10] Kai-Yao Huang, Hsin-Yi Wu, Yi-Ju Chen, Cheng-Tsung Lu, Min-Gang Su, Yun-Chung Hsieh,
Chih-Ming Tsai, Kuo-I Lin, Hsien-Da Huang, Tzong-Yi Lee, et al. Regphos 2.0: an updated
resource to explore protein kinase–substrate phosphorylation networks in mammals. Database,
2014:bau034, 2014.

[11] Duolin Wang, Shuai Zeng, Chunhui Xu, Wangren Qiu, Yanchun Liang, Trupti Joshi, and Dong
Xu. Musitedeep: a deep-learning framework for general and kinase-specific phosphorylation
site prediction. Bioinformatics, 33(24):3909–3916, 2017.

[12] Kathryn E Kirchoff and Shawn M Gomez. Ember: multi-label prediction of kinase-substrate
phosphorylation events through deep learning. Bioinformatics, 38(8):2119–2126, 2022.

[13] Mahdi Pourmirzaei, Farzaneh Esmaili, Mohammadreza Pourmirzaei, Duolin Wang, and Dong
Xu. Prot2token: A multi-task framework for protein language processing using autoregressive
language modeling. bioRxiv, pages 2024–05, 2024.

9



[14] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos San-
tos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of protein
sequences at the scale of evolution enable accurate structure prediction. BioRxiv, 2022:500902,
2022.

[15] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond
neural scaling laws: beating power law scaling via data pruning. Advances in Neural Informa-
tion Processing Systems, 35:19523–19536, 2022.

[16] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597–1607. PMLR, 2020.

[17] Farzaneh Esmaili, Yongfang Qin, Duolin Wang, and Dong Xu. Kinase-substrate prediction us-
ing an autoregressive model. Computational and Structural Biotechnology Journal, 27:1103–
1111, 2025.

[18] Hangyuan Yang, Minghui Wang, Xia Liu, Xing-Ming Zhao, and Ao Li. Phosidn: an integrated
deep neural network for improving protein phosphorylation site prediction by combining se-
quence and protein–protein interaction information. Bioinformatics, 37(24):4668–4676, 2021.

[19] Zhangzhi Peng. Ptm-mamba: a ptm-aware protein language model with bidirectional gated
mamba blocks. In Proceedings of the 33rd ACM International Conference on Information and
Knowledge Management, pages 5475–5478, 2024.

[20] Shahin Ramazi and Javad Zahiri. Post-translational modifications in proteins: resources, tools
and prediction methods. Database, 2021:baab012, 2021.

[21] Mahdi Pourmirzaei, Shahin Ramazi, Farzaneh Esmaili, Seyedehsamaneh Shojaeilangari, and
Abdollah Allahvardi. Machine learning-based approaches for ubiquitination site prediction in
human proteins. BMC bioinformatics, 24(1):449, 2023.

[22] Nikolaj Blom, Steen Gammeltoft, and Søren Brunak. Sequence and structure-based prediction
of eukaryotic protein phosphorylation sites. Journal of molecular biology, 294(5):1351–1362,
1999.

[23] Weizhong Li and Adam Godzik. Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics, 22(13):1658–1659, 2006.

[24] Jared L Johnson, Tomer M Yaron, Emily M Huntsman, Alexander Kerelsky, Junho Song, Amit
Regev, Ting-Yu Lin, Katarina Liberatore, Daniel M Cizin, Benjamin M Cohen, et al. An atlas
of substrate specificities for the human serine/threonine kinome. Nature, 613(7945):759–766,
2023.

[25] Matthew E Berginski, Nienke Moret, Changchang Liu, Dennis Goldfarb, Peter K Sorger, and
Shawn M Gomez. The dark kinase knowledgebase: an online compendium of knowledge and
experimental results of understudied kinases. Nucleic acids research, 49(D1):D529–D535,
2021.

[26] I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

[27] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

[28] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Vozne-
sensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, et al. Pytorch 2: Faster machine
learning through dynamic python bytecode transformation and graph compilation. In Proceed-
ings of the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, pages 929–947, 2024.

[29] Zhongliang Zhou, Wayland Yeung, Saber Soleymani, Nathan Gravel, Mariah Salcedo, Sheng
Li, and Natarajan Kannan. Using explainable machine learning to uncover the kinase–substrate
interaction landscape. Bioinformatics, 40(2):btae033, 2024.

10



[30] Baris E Suzek, Yuqi Wang, Hongzhan Huang, Peter B McGarvey, Cathy H Wu, and UniProt
Consortium. Uniref clusters: a comprehensive and scalable alternative for improving sequence
similarity searches. Bioinformatics, 31(6):926–932, 2015.

[31] Feng-Feng Zhou, Yu Xue, Guo-Liang Chen, and Xuebiao Yao. Gps: a novel group-based
phosphorylation predicting and scoring method. Biochemical and biophysical research com-
munications, 325(4):1443–1448, 2004.

[32] Yu Xue, Zexian Liu, Jun Cao, Qian Ma, Xinjiao Gao, Qingqi Wang, Changjiang Jin, Yanhong
Zhou, Longping Wen, and Jian Ren. Gps 2.1: enhanced prediction of kinase-specific phos-
phorylation sites with an algorithm of motif length selection. Protein Engineering, Design &
Selection, 24(3):255–260, 2011.

[33] Zexian Liu, Fang Yuan, Jian Ren, Jun Cao, Yanhong Zhou, Qing Yang, and Yu Xue. Gps-arm:
computational analysis of the apc/c recognition motif by predicting d-boxes and ken-boxes.
PloS one, 7(3):e34370, 2012.

[34] Yaping Guo, Wanshan Ning, Peiran Jiang, Shaofeng Lin, Chenwei Wang, Xiaodan Tan, Lan
Yao, Di Peng, and Yu Xue. Gps-pbs: a deep learning framework to predict phosphorylation
sites that specifically interact with phosphoprotein-binding domains. Cells, 9(5):1266, 2020.

[35] Chenwei Wang, Haodong Xu, Shaofeng Lin, Wankun Deng, Jiaqi Zhou, Ying Zhang, Ying Shi,
Di Peng, and Yu Xue. Gps 5.0: an update on the prediction of kinase-specific phosphorylation
sites in proteins. Genomics, Proteomics and Bioinformatics, 18(1):72–80, 2020.

[36] Fenglin Luo, Minghui Wang, Yu Liu, Xing-Ming Zhao, and Ao Li. Deepphos: prediction of
protein phosphorylation sites with deep learning. Bioinformatics, 35(16):2766–2773, 2019.

[37] Zhongliang Zhou, Wayland Yeung, Nathan Gravel, Mariah Salcedo, Saber Soleymani, Sheng
Li, and Natarajan Kannan. Phosformer: an explainable transformer model for protein kinase-
specific phosphorylation predictions. Bioinformatics, 39(2):btad046, 2023.

[38] Dinesh Acharya, Zhiwu Huang, Danda Pani Paudel, and Luc Van Gool. Covariance pooling
for facial expression recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition workshops, pages 367–374, 2018.

[39] UniProt Consortium. Uniprot: a worldwide hub of protein knowledge. Nucleic acids research,
47(D1):D506–D515, 2019.

A Appendix

A.1 Related work

We have categorized approaches in this domain into two main areas: those focused on kinase-
specific phosphorylation site prediction and those centered on kinase-protein interaction prediction.

A.1.1 Kinase-Specific Phosphorylation Sites

In the first category, studies focus on predicting phosphorylation sites specific to particular kinases,
kinase families or kinase groups. These methods often leverage sequence-based features, structural
properties, and evolutionary information to identify phosphorylation sites associated with a specific
kinase. In this category family of algorithms, GPS [31–35, 8] uses several models integrated to
predict different groups and number of p-sites for each peptide with size of 15 amino acids. Ki-
nasePhos3.0 [9] used 771 predictive models, developed at different levels, including kinase group,
family, and individual kinase levels (SVM and XGBoost) with SHAP-based features to predict
kinase-specific phosphorylation sites from 15-residue sequence windows surrounding phosphory-
lation sites, to predict number of positions and different kinase levels, MusiteDeep [11] used convo-
lutional neural network, DeepPhos [36] used densely connected convolutional neural network with
different window sizes of 25, 33, 51 peptides, PhosIDN [18] integrates sequence features extracted
through a self-attention-enhanced CNN and protein-protein interaction embeddings processed via a
deep neural network, combining them with a bilinear module to predict general and kinase-specific
phosphorylation sites.
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A.1.2 Kinase-Substrate Interaction

The second category addresses the broader challenge of protein-kinase interaction prediction, where
the goal is to identify interactions between kinases and their substrate proteins. This task often
involves integrating sequence embeddings, structural data, and sometimes even contextual biolog-
ical information to predict interaction patterns. Phosphormer-ST [29] and Phosphormer [37] both
tried to predict substrate-kinase interaction. Phosphormer used transformer-based architecture and
Phosphormer-ST finetuned on ESM2-650M [38] parameters. It uses a shared encoder to generate
embeddings for both kinase and peptide sequences.

A.2 Architecture

Table 7: Key hyperparameters for ProtToken architecture.
Protein encoder ESM-2 650m
Protein encoder dimension 1 280
Fine-tuned blocks 6

Decoder dimension 640
Decoder block 16
Decoder heads 16
Decoder FF dimension 2560
Decoder activation GELU

Table 8: Key hyperparameters for Stage 2 architecture across different model scales.
Protein encoder ESM-2 35m ESM-2 150m ESM-2 650m ESMC 600m
Protein encoder dimension 480 640 1 280 1 152
Fine-tuned blocks 6

Decoder dimension 480 640 1 280 1 152
Decoder block 6
Decoder heads 8
Decoder FF dimension 640
Decoder activation GELU
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Figure 5: Overview of the proposed model architecture during inference. The bidirectional protein
encoder processes substrate and kinase sequences to generate embeddings, which the autoregressive
decoder uses to predict output tokens. The figure highlights the integration of the pre-trained ESM-2
model with the autoregressive decoder for kinase group classifications, substrate-kinase interactions,
and phosphorylation site prediction.
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A.3 Datasets

The whole dataset was gathered from GPS, where its information on kinase families and groups is
based on the kinome of Homo sapiens. All kinase sequences were extracted from Uniprot DB [39]
and Kinase.com. To create a diverse and non-redundant dataset, we applied CD-HIT clustering with
a 70% sequence similarity threshold, grouping similar protein substrate sequences and retaining
representative sequences from each cluster by removing similar substrate sequences. Representative
positive pairs were chosen using the following criteria:

• Cross-cluster selection: Substrate-kinase pairs spanning different clusters were retained
to preserve diversity across the dataset.

• Within-cluster selection: For substrates within the same cluster, only one unique kinase
pair was kept, minimizing redundancy while ensuring distinct associations.

Each substrate is treated as an individual sample for model input, with one or more group labels
and corresponding phosphorylation sites assigned per sample. Since substrates can be associated
with multiple kinase groups and contain multiple phosphorylation sites, the problem is naturally
formulated as a multilabel classification task. After preprocessing, the final dataset consisted of
5 385 unique substrates for training and 969 unique substrates for validation. To ensure rigorous
evaluation, we defined three distinct test sets, carefully designed to prevent any data contamination
between the test, training, and validation sets:

Rare-Group. This set includes 14 samples from two rare kinase groups, RGC and PKL, which have
a limited number of available samples. These groups were completely excluded from the training,
validation, and test sets.

GPS-Test Set. To have a direct comparison with existing methods such as GPS 6.0, we adopted the
test set used in the GPS study. This dataset contains 146 samples of substrate-kinase pairs, including
phosphorylation site (p-site) and kinase group annotations. All samples belong to the CMGC kinase
group.

Validation Set. This set was created using a random split strategy, ensuring a balanced distribution
of kinase groups across both the test and training sets. Additionally, substrates in this set were se-
lected to have minimal sequence similarity to each other, providing a robust measure of the model’s
generalization performance. Table 9 presents the number of samples in each set, while Table 10
details the distribution of samples across kinase groups in each dataset.

While serine (S) and threonine (T) are the primary residues studied in phosphorylation research
and commonly targeted by prediction tools, other amino acids—such as histidine (H) and aspartate
(D)—are also known to undergo phosphorylation, particularly in prokaryotic systems and specific
eukaryotic contexts. In our datasets, we identified phosphorylation sites on additional amino acids.
We excluded these sites from our positive sites and finalize each set. Table 11 presents the distribu-
tion of phosphorylation sites exclusively on S and T residues.

Table 9: Dataset statistics, including the number of samples, phosphorylation sites (p-sites), and
kinase groups for the training, validation, GPS test, and rare group test sets, along with overall
dataset totals.

Dataset Number of samples Number of p-sites Number of groups
All samples 6 514 13 401 12
Training set 5 385 10 621 10
Validation set 969 2 455 9
GPS-test 146 300 1
Rare-Group 14 25 2

A.4 Experiments

A.4.1 Kinase Groups Classification

We analyzed the sequence embeddings of unique kinase sequences extracted from all samples in
the GPS 6.0 dataset. For this analysis, kinase sequences from the RGC, PKL, and UNK groups
were excluded. These sequences were processed using the pre-trained ESM-2 650M model to
generate token-wise embeddings, with a maximum sequence length of 2 048. After extracting the
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Table 10: Distribution of samples across kinase groups for the training, validation, GPS test, and
rare group test sets.

Group Training set Validation set GPS-test Rare-Group
AGC 1 446 231 - -
Atypical 270 58 - -
CAMK 653 96 - -
CK1 100 27 - -
CMGC 1 466 264 146 -
Other 491 99 - -
STE 211 34 - -
TK 677 149 - -
TKL 68 111 - -
RGC - - - 2
PKL - - - 12
UNK 4 - - -

Table 11: Distribution of positive sites across kinase groups for the training, validation, GPS test,
and rare group test sets.

Dataset Serine (S) Threonine (T)
Training set 5 726 1 874
Validation set 1 472 465
GPS Test 201 76

model’s outputs, we removed the beginning-of-sequence (BOS) and end-of-sequence (EOS) tokens
and applied average pooling to obtain fixed-length representations of dimension 1 280, matching the
model’s embedding size.

Next, we employed t-SNE and UMAP for dimensionality reduction, enabling visualization of the
embeddings in a two-dimensional space according to their group assignments. Given that the group
labels for the kinase sequences were known, these labels were used to show the clusters visually on
t-SNE and UMAP graphs with different colors. Also, we calculated unsupervised clustering metrics,
such as the silhouette score and the Calinski-Harabasz index. We repeated the entire process for the
fine-tuned ESM-650M checkpoint that is trained on the training set of kinase group classification
labels. Similar to the first part, we performed dimensionality reduction visualizations and computed
clustering metrics to evaluate the differences of both visual and unsupervised clustering metrics.
The results are illustrated in Figures 9 and 8 and Table 2.

A.4.2 Protein-Kinase Interaction

The positive data pairs are unique protein-kinase pairs with information of full protein sequence and
full kinase sequence. The novelty of our method lies in the strategic selection of hard negative sam-
ples. Inspired from data pruning [15] method, hard negative samples preparation relies on choosing
kinase sequences with embeddings that exhibit minimal Euclidean distances to other kinases.

To construct the negative pairs, we iterated through all unique substrates in the dataset, processing
each substrate individually. For each substrate, we first identified its associated positive kinases from
the positive pairs. Using pre-computed embeddings, we calculated the Euclidean distance between
each unique kinase embedding in the dataset to form the distance map. From these distances, we
selected the top k closest kinases, excluding the positive kinase itself, to form k hard negative pairs
for the substrate (Figure 10). This process was repeated for every substrate, ensuring that each one
was paired with both its positive kinases and the most challenging negative kinases based on all
kinase embeddings. By focusing on embedding distances to identify closely related negatives, this
approach ensured a challenging dataset that effectively trained the model to distinguish between
positive and negative pairs. We evaluated the impact of training protein-kinase interaction with hard
negative samples versus random negative samples, focusing exclusively on the positive samples in
the validation set. The results are summarized in Table 12.
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Figure 6: Frequency distribution of kinases across groups in the training dataset, where dark kinases
are indicated in red for visual emphasis.

Table 12: Comparison of different negative sampling strategies for protein-ligand interaction train-
ing, evaluated on the positive samples of the validation set.

Negative sample strategy Random Hard

F1 score 0.771 0.8325

During the training, we set a maximum context length of 1 280 tokens for the combined substrate-
kinase sequences, truncating them when necessary to fit within this limit.

We evaluated GPS 6.0 [8] and PhosphormerST [29] using our own validation set. For GPS 6.0,
substrate sequences were provided as input, and in contrast to PhosphormerST, GPS 6.0 does not
support kinase domain sequence as the input. To add the information of kinases during the prediction
of GPS 6.0, we have selected each group as the kinase information in their webserver. The method
generated a score and cutoff value for each phosphorylation site prediction. An interaction between
the substrate and kinase was valid if the model predicted at least one phosphorylation site in the
substrate sequence. On the other hand, PhosphormerST takes peptides and kinase domains as inputs
and generates a prediction score for each sample. We created peptides with a length of 15 and
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Figure 7: Frequency distribution of kinases across groups in the validation dataset, where dark
kinases are indicated in red for visual emphasis.

included kinase domain information as the other part of the input. Interactions were considered
valid if the score exceeded 0.5.

A.5 Kinase-Substrate Phosphorylation Site Prediction

During the Stage 1 experiment, we set the total sequence length (including both substrate and kinase
sequences) to 2 048 tokens, truncating kinase sequences as needed to fit within this limit. The batch
size was configured to accommodate 98 304 tokens per iteration. It is important to highlight that,
although the self-supervised tasks could have been entirely excluded from the fine-tuning stage,
retaining a subset of these samples led to a noticeable improvement in the model’s performance
on protein-kinase phosphorylation site prediction. We also found that without the self-supervised
checkpoint, the model’s performance in phosphorylation site prediction dropped sharply, reaching
an F1 score of less than 0.1 on the validation set, highlighting the necessity of pre-training for
maintaining predictive accuracy. The max input size of the Stage 2 architecture was set to 1 280
tokens.

We compared our results with two phosphorylation prediction tools, GPS 6.0 and KinasePhos3 [9].
We used Medium threshold for GPS and scores more than 0.5 for all other tool, and the predicted
phosphorylation sites were compared to experimentally validated sites. To generate the results, we
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Figure 8: UMAP visualization of unique kinase sequences on the original and fine-tuned checkpoints
of ESM-2 650m

Figure 9: t-SNE visualization of unique kinase sequences on the original and fine-tuned checkpoints
of ESM-2 650m.

selected each kinase group individually on the tools. However, there is a strong possibility of data
contamination between our validation set and the GPS 6.0 training set. As a result, GPS 6.0 may
achieve artificially high performance on our validation set due to memorization, while its real-world
performance on unseen substrates could be even lower.

A.6 Availability of Resources

To support further research and development in the field, we make our codes, trained models,
datasets, and a Python package publicly available for use by researchers and the broader scientific
community. These resources can be accessed at the related GitHub repository.
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Figure 10: (A) Visualization of kinase embedding distances: The diagram depicts a substrate
(center, pK1 and its surrounding kinases (pK2, pK3, pK4), and pK5, illustrating the Euclidean
distances (d1, d2, d3, d4) between their embeddings in the learned space. (B) Distance matrix
of kinase embeddings: A heatmap representing pairwise Euclidean distances between kinase
embeddings. Lighter shades correspond to shorter distances, indicating higher similarity, while
darker shades represent greater dissimilarity. (C) Positive sample pairs: Examples of positive
protein-kinase pairs (e.g., substrate Q9WV60 with kinases pk1 and pk2, representing known
functional phosphorylation interactions. (D) Negative sample pairs: Examples of hard negative
protein-kinase pairs (e.g., substrate Q9WV60 with kinase pk3, selected based on minimal Euclidean
distances in the embedding space to encourage robust discriminative learning.
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