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Abstract

Accurately predicting kinase-specific phosphorylation sites remains difficult due
to the diversity of kinases and the context-dependent nature of substrate recogni-
tion. Importantly, aberrant kinase overactivation is a hallmark of many cancers in-
cluding colorectal, gastric, liver, and breast tumors where dysregulated kinase sig-
naling promotes malignant transformation, tumor progression, and therapy resis-
tance. This underscores the clinical importance of understanding kinase-substrate
relationships and precisely mapping phosphorylation events. In this paper, we in-
troduce two complementary sequence-based architectures that operate directly on
full-length substrate and kinase sequences. Stage 1 extends a task-agnostic pre-
diction method, named Prot2Token, to jointly support three tasks: kinase-group
classification from substrate sequences alone, kinase-substrate interaction predic-
tion, and kinase-specific phosphorylation-site prediction while incorporating a
self-supervised decoder pretraining task that predicts amino-acid positions from
encoder embeddings. This pretraining substantially strengthens site prediction.
Stage 2 specializes the architecture for phosphorylation-site prediction by replac-
ing causal decoding of Prot2Token with a bidirectional one, yielding further gains.
On standard benchmarks, the specialized model consistently outperforms widely
used baselines. Beyond in-distribution evaluation, across both in-distribution and
zero-shot settings of understudied dark kinases, we show the sign of zero-shot
kinase-specific phosphorylation-site prediction capability. Together, these results
indicate that jointly modeling substrate and kinase sequences provides a straight-
forward, scalable approach to state-of-the-art, zero-shot-capable phosphorylation-
site prediction.

1 Introduction

Post-translational modifications (PTMs) are crucial processes that regulate cellular functions and bi-
ological processes [1]]. Among these modifications, protein phosphorylation is one of the most sig-
nificant. It involves the attachment of a phosphate group to specific amino acids serine (S), threonine
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(T), or tyrosine (Y) rendering the target protein phosphorylated [2]. This process is crucial for signal
transduction, cellular communication, and the regulation of various biological activities. Dysreg-
ulation of phosphorylation leads to severe diseases, including cancer, neurodegenerative disorders,
and Alzheimer’s disease [3}!4]. Kinases, a group of specialized enzymes, catalyze this process by
transferring phosphate groups to proteins [5} 4], and kinases in cancer are significantly more likely
to have phosphorylation site (p-site) mutations compared to controls. However, the prediction of
kinase-specific phosphorylatiorﬂ is challenging due to the vast diversity and structural complexity
of kinases, as well as the dynamic nature of protein interactions within cells. Each kinase recog-
nizes specific sequence motifs, but variations in these motifs, context-dependent factors, and lack of
abundant high-quality datasets make accurate predictions difficult [6].

In recent years, numerous approaches have been developed to predict kinase-specific p-sites, lever-
aging computational techniques such as machine learning and deep learning [7]. However, most
of the existing methods share significant limitations. Many rely on ensemble approaches that use
several, or in some cases hundreds, of models to achieve acceptable accuracy [8}9]. While this may
improve predictive performance, it introduces inefficiencies in computational resource usage and
scalability. Additionally, these methods typically focus on peptides with lengths ranging from 7 to
15 amino acids, which represent only a small fraction of possible protein sequences [10-12]]. This
narrow focus not only fails to cover the full range of protein sequences but also risks losing critical
structural information, which is essential for understanding kinase-substrate interactions at a more
comprehensive level. As a result, the predictive performance of these methods lacks generalization
across diverse protein contexts, limiting their applicability in real-world biological scenarios.

To address these limitations, we reformulate kinase-specific phosphorylation as three interconnected
tasks: kinase group classification, kinase-substrate interaction prediction, and kinase-substrate p-
site prediction.

In the first stage, inspired by Prot2Token [13], we cast all three tasks as next-token prediction prob-
lems and develop a unified framework that couples an autoregressive transformer decoder with the
ESM-2 [[14] pre-trained protein language model (PLM). This design enables direct end-to-end learn-
ing from substrate and kinase sequences (Figure [T). We further introduce a self-supervised pre-
training phase to initialize the decoder weights, which substantially boosts performance in p-site
prediction compared to the randomly initialized Prot2Token architecture.

In the second stage, we derive a streamlined variant of this architecture specialized for kinase-
specific p-site prediction only (Figure [3). This specialized model not only achieves a substantial
performance gain over state-of-the-art methods but also exhibits the first evidence of zero-shot gen-
eralization—predicting p-sites for entirely unseen kinase sequences.

The contributions of this paper can be summarized as follows:

1. We extend the Prot2Token framework to jointly address three kinase-substrate related tasks:
(1) kinase group classification from substrate sequences alone, formulated as a multi-label
learning problem; (ii) kinase-substrate interaction prediction using paired substrate and
kinase sequences, enhanced by hard negative sampling inspired by data pruning [15] and
contrastive learning [[L6]]; and (iii) kinase-substrate p-site prediction using a self-supervised
pre-training phase to initialize the autoregressive decoder, leading to notable gains in iden-
tifying kinase-specific p-sites.

2. We design a streamlined architecture specialized for kinase-substrate p-site prediction,
achieving state-of-the-art results. We further evaluate this model on both in-distribution
and out-of-distribution understudied kinases, providing evidence of zero-shot capability on
entirely unseen kinase sequences during training.

Throughout this paper, we use the terms substrate sequence and protein sequence interchangeably,
treating them as equivalent.

1.1 Related Work

The prediction of kinase-specific p-sites has been explored using various machine learning and deep
learning approaches to advance our understanding of PTMs and their regulatory roles in cellular
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processes [[L1 9 [17]. Computational models leverage sequence-based features, physicochemical
properties, structural characteristics, and evolutionary information [7]. In contrast, deep learning
methods aim for end-to-end learning by directly capturing complex patterns from raw data [18,
17]. Several computational models address p-site prediction, with some focusing broadly on PTM
detection [19H21]], and others dedicated solely to kinase-specific p-sites [L1} |9} 22| [7]. Broadly,
existing research in this domain falls into two main categories: kinase-specific p-site prediction
and protein-kinase interaction prediction. The former focuses on identifying p-sites for specific
kinases, while the latter aims to determine interactions between kinases and their substrate proteins.
A detailed discussion of these categories and related work is provided in Appendix

2 Method

2.1 Stagel

The architecture of this stage is based on Prot2Token where a causal (autoregressive) transformer
decoder 17, whose parameters are indicated by ), is connecting to a pre-trained bidirectional PLM,
referred to as the encoder Gg, whose parameters are denoted by 8. The substrate sequences s with
an optional kinase sequences k are concatenated together and encoded by the Gg, producing residue
embeddings Gg (s and k) € RM*9, The decoder T, integrates PLM representation through cross-
attention and a task token prompt E, after which, a linear binary classification head Cg, whose
parameters are shown by ¢, produces residue level logits to perform next token classification on
vocab sizes (Equation [I)).

CoTu(Po(Gols and 1), E) ) & RExvocad e "

To control the distinct prediction of each task, we use separate tokenizers and embedding tables for
the encoder and decoder (Figure [5). The autoregressive transformer factorizes the joint probability
of a sequence x = (21,2, ..., %) into a product of conditional probabilities. Training proceeds
by minimizing the negative log-likelihood of the observed tokens, where 6 denotes the model param-
eters. Employing a causal mask, each token x,,, can only attend to the tokens 1, . .., Z,,_1 , thereby
enforcing the autoregressive property and allowing the model to learn contextual representations of
the preceding sequence.
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Prot2Token extends this standard autoregressive objective by introducing token-level weights w,,
to regulate each token’s influence on the loss. Specifically, we set w; = 0 so that predicting the
first token (the prompt) does not affect the loss, while for m > 2, w,, can be adjusted, grant-
ing non-prompt tokens varying degrees of importance. Concretely, the revised training objective
demonstrated in Equation [2, where each weight w,,, € [0, 00) is a user-defined parameter for the
token z,,. This setup enables flexible fine-tuning by emphasizing specific tokens of interest while
removing the prompt token from the loss computation (by assigning it zero weight). Further details
on the architecture are provided in Appendix [A.2]

Tokenization of labels. We follow the tokenization framework introduced in Prot2Token to convert
target labels into discrete tokens. Specifically, we use a non-hierarchical multi-label classification
scheme for kinase group prediction, binary classification for protein-kinase interaction, and the same
approach from the original work for both protein-kinase p-site and self-supervised tasks.

2.1.1 Self-Supervised Pre-Training

Our initial experiments in p-site prediction revealed that directly fine-tuning the Prot2Token model
yielded suboptimal accuracy, even when testing various label formatting strategies. We hypothesized
that this limitation stemmed from the randomly initialized decoder, which lacks the inductive biases
required to interpret protein sequence information. As shown in Figure 2] the distribution of p-sites
is sparse and highly imbalanced, making it difficult for an untrained decoder to learn meaningful
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Figure 1: Overview of our framework for kinase-related predictions from substrate and/or kinase
sequences. The model supports three tasks: (i) kinase group classification from substrate sequences,
(ii) kinase-substrate interaction prediction, and (iii) kinase-substrate p-site prediction. A protein en-
coder produces sequence embeddings, which are fed into a causal decoder for task-specific outputs.
Due to data leakage concerns, each task is trained independently; the diagram illustrates a unified
view for conceptual clarity.

positional representations from such a weak signal. This underscored the need to instill these priors
through a dedicated self-supervised pre-training phase.

To address this, we introduced a self-supervised pre-training strategy for the decoder, aiming to
instill biologically meaningful priors before downstream fine-tuning. The core idea is to train the
decoder to predict the positions of specific amino acids within given the representation of the protein
encoder, thus enabling the model to learn position-aware residue representations without the need
for manual annotations. For example, given a protein sequence such as MSGLSNYT, the task would
be to identify the indices of each occurrence of a specified amino acid (e.g., S: positions 2, 5). We
designed twenty such tasks, each corresponding to one of the twenty standard amino acids.

Self-supervised samples were generated automatically, making the approach scalable and cost-
effective. In particular, incorporating auxiliary prediction tasks for a broader set of amino acids,
beyond the canonical phosphorylation targets (S, T), potentially provides a generality for different
downstream site prediction type tasks.

250 500 750 1000 1250 1500 1750 2000
Residue index along substrate sequence

Figure 2: Distribution of p-site indices in the training set (n = 11449 sites drawn from 5 694 sub-
strates). Bars correspond to single-residue positions and cover indices less than 2 049; a further 176
extremely rare sites at higher indices are omitted for clarity. The histogram is highly imbalanced: a
handful of low-index positions dominate, while most indices receive only a few or zero examples.
This long-tail sparsity means the decoder’s embedding table sees too little signal at many positions to
learn meaningful representations, particularly in the higher-index region where runs of zero counts
are common.

2.2 Stage?2

This stage introduces a specialized p-site prediction architecture, which utilizes the Stage I archi-
tecture and incorporates positional inductive biases for each amino acid by replacing the causal
attention of the decoder with a bi-directional one and employing a shared-weights PLM to encode
kinase and substrate sequences separately, and avoiding the decoder pre-training stage. Technically,
substrate sequences s and kinase sequences k are tokenized and passed through the same pre-trained



PLM Gp. Yielding an embedding Gg(s or k) € RM*? whose dimensionality d generally differs
from the decoder dimension d.
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Figure 3: Stage 2 architecture: shared-weight encoders process substrate and kinase sequences; a
bidirectional predictor uses cross-attention to output residue-level phosphorylation scores.

To align these feature spaces we introduce a learnable linear projector P, : RM*¢ — RMxd,

parameterized by p, producing P,,(Gg (sor k)) € RMxd for the cross-attention layers of the same
decoder To,. The fused representation is then passed to the binary classifier head C'y. Because
Gl is pre-trained on large protein sequence corpora, the architecture (Equation [3) can technically
predict binding sites for entirely new kinase-substrate combinations, including those that have not
been encountered during training (Figure 3).
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The calculated loss for a given sample first uses the standard binary cross-entropy (BCE) formula-
tion. To emphasise hard-to-classify residues while correcting for dataset- and class-specific imbal-
ance, we multiply each residue by a sample weight w;, yielding the weighted loss in (Equation [)).
Here w; > 0 is the product of a dataset-level weight and, when enabled, a positive-class token
weight.
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2.3 Datasets

We utilized the GPS 6.0 [8] dataset, originally comprising 24 160 p-sites. After preprocessing and
mapping IDs to the UniProt database, we retained 13 401 sequences annotated with kinase informa-
tion, covering 386 kinases across 12 distinct groups validated against Kinase.com/for Homo sapiens
species. The final dataset contains Uniprotids, substrate sequences, kinase sequences, group infor-
mation, and p-sites. To reduce sequence similarity, CD-HIT [23]] was applied with a 70% threshold.
More details of data preparation are described in Appendix [A.3]

We prepared an additional test set based on dark kinases provided by [24]]. Dark kinases, a sub-
set of human serine/threonine (S/T) kinases, remain poorly characterized, with limited knowledge
about their substrates, signaling functions, and regulatory mechanisms [25} 24]. To address this gap,
over 80 understudied dark kinases were experimentally profiled using positional scanning peptide
arrays, which uncovered previously unknown substrate motifs and provided a foundation for func-
tional annotation [24]. For each dark kinase, the highest-scoring position in its position-specific
scoring matrix was selected as the predicted p-site. Corresponding substrate sequences and kinase
sequences were retrieved from UniProt. The resulting test set contained 8 026 samples representing


http://kinase.com/web/current/kinbase/genes/SpeciesID/9606/

29 dark kinases from five distinct kinase groups, with each sample comprising the kinase sequence,
its substrate sequence, and the associated p-site.

To evaluate zero-shot performance, we constructed an independent test set comprising dark kinases
absent from the GPS dataset (Figure [dc). The set contained 5391 kinase—substrate pairs, each
annotated with the corresponding p-site, and represented 26 distinct kinase types. The frequency of
each kinase across the groups, with dark kinases in the training and validation sets highlighted, is
shown in Figures[6|and

3 Experiments

We structured our experiments to progressively validate the Stage I across the three target tasks.
First, we assessed kinase group classification using full substrate sequences alone. Next, we applied
hard negative sampling to strengthen the kinase—substrate interaction prediction task. To empower
the p-site prediction capability of Prot2Token, we performed self-supervised pre-training of the
autoregressive decoder and fine-tuned it for kinase-specific p-site prediction, benchmarking against
state-of-the-art methods. Finally, we evaluated the Stage 2 specialized architecture on the p-site
prediction task, including in-distribution and zero-shot dark kinase samples.

For all experiments, we initialized the protein encoder of Prot2Token with the pre-trained ESM-
2 650m model for all three kinase tasks, and the second stage architecture includes ESMC 600m
and different scales of ESM-2. We enabled fine-tuning for the weights of the last six blocks of
the encoders on all experiments, while keeping the embedding parameters of the encoder frozen
unless specified otherwise. All other layers in the model were trained during the experiments. We
employed the AdamW optimizer [26] with a weight decay of 0.1, 51 = 0.9, 2 = 0.98, and epsilon
to le-7 as default hyperparameters across all training runs. The learning rate followed a cosine
annealing schedule with an initial warm-up phase [27], starting from le-6 and increasing to Se-5
over the first 256 steps unless specified otherwise. For Stage 2 of training, a weight of 2 was applied
to the positive class loss value to handle the label imbalance issue. All training was conducted using
the PyTorch 2.6 framework [28]] on a single node equipped with 4xA100 80GB Nvidia GPUs.

3.1 Kinase Group Classification

In this section, we aimed to predict kinase groups based on substrate sequences. Specifically, we
investigated how much information about the related kinase groups the model can infer solely from
substrate sequences. To achieve this, we considered our processed training and validation datasets
(Appendix [A.3), assigning multi-label classification labels by removing Unknown group samples
from the training set and merging the remaining nine kinase groups associated with each substrate.
The model takes a substrate sequence as input and predicts the corresponding kinase groups in
alphabetical order. The result is presented in Table[T]

Table 1: F1 scores of our method on each kinase group, based on full substrate sequences.
Group AGC Atypical CMGC CAMK CKI  Other STE  TK TKL
F1 05551 04928 0634 04196 05385 06047 03571 06738 0.5

Next, we compared the embedding representations of all unique kinase sequences before and af-
ter fine-tuning the protein encoder part on the kinase group classification model. The fine-tuned
model demonstrated slightly better separation of kinase sequences into their respective groups, even
though kinase sequences were not explicitly included during training (Table 2). Additional details
are provided in Appendix [A.4]

Table 2: Unsupervised separability metrics ~ 1able 3: The details of protein-kinase inter-
of all unique kinase sequences with respect to ~ action performance versus other methods on
the original and fine-tuned version of ESM2 the positive and randomly selected negative

650m model. samples from the validation set.
Metric Original Fine-tuned Metric Ours GP[Sg f'o Phospl[g);merST

Silhouette Score (cosine)  -0.0393 0.0905

Calinski-Harabasz Index ~ 7.0020  24.0969 Accuracy (%) 72 >8 49

F1 0.71 0.61 0.603




Table 4: Comparative results of our method against lead- Table 5: Effect of
ing tools for p-sites prediction (KinasePhos3, NetPhose 3.1, encoder  scales of
MusiteDeep and GPS 6.0) across the validation and GPS test. Stage 2 architecture on
NetPhose 3.1 and Musite did not support all kinase groups in  kinase-substrate  phos-

the validation set. : the decoder initialized from scratch. phorylation task.

Method Validation Set GPS Test Set PLM Backbone F1
Precision  Recall F1 Precision  Recall F1 ESM-2 35m 0.3211

KinasePhos3 [0] ~ 0.0773 09557 0.138  0.0215  0.9856 0.0421 ESM-2 150m 0.3806

NetPhose 3.1 [22] - - 00325 00137 0.0193 ESM-2 650m 0.4260

GPS 6.0 [8] 02323 04549 03076  0.1564  0.5054 0.2398

Musite [11] - - - 0.1348  0.8057 0.2310 ESMC 600m 04444

Stage 1 (Ours)} 0.0403 00016 00206 0.0131  0.0033 0.007

Stage 1 (Ours) 0.5753 04411 04994 04575 03660 0.4069

Stage 2 (Ours) 04757 04637 04696 04597 04302 0.4d44

3.2 Kinase-Substrate Interaction Prediction

Although predicting protein—kinase interactions is a meaningful task, its practical utility is somewhat
diminished, as such interactions can often be inferred implicitly through p-site prediction. Neverthe-
less, we include this task for completeness and comparative evaluation. We formulated the problem
as determining whether a given protein substrate interacts with a specific kinase sequence. To con-
struct training data, we created both positive and hard negative samples from the dataset. However,
generating biologically plausible negative labels involves complex and labor-intensive procedures,
which are noisy and not easily scalable. As such, we have relegated the details of negative sample
construction to Appendix The resulting performance is reported in Table [3]

3.3 Kinase-Substrate Phosphorylation Site Prediction

In this section, to adapt Prot2Token imitate p-site prediction, a self-supervised pre-training stage
was incorporated. We randomly sampled 4 million protein sequences from the UniRef50 database
[30] for training and 4 000 sequences for validation. From these, we artificially generated 80 million
training samples and 20000 validation samples by treating each amino acid type within a protein
as an individual sample. Subsequently, we further randomly sampled 1 million training and 1 000
validation samples to construct the final datasets of this part. For training, we used an input sequence
length of 1280, a weight decay of 0.01, and a batch size of 192 samples, equivalent to 73 728 tokens.
The warm-up phase consisted of 512 steps. During training, we froze all the encoder weights while
allowing all other parameters to be updated. After 16 epochs, the model achieved a validation
perplexity of 2.31, indicating that it could almost perfectly reconstruct protein sequences from the
encoder’s embeddings.

(a) GPS Train/Valid kinase types. (b) GPS test set. (c) All dark kinases.

Figure 4: Kinase-type distributions across our datasets, with colors indicating phylogenetic relation-
ships. (a) Distribution of kinase types in the training and validation sets. (b) Kinases belonging to a
representative GPS test data. (c) Dark kinases, showing both in-distribution and out-of-distribution
cases relative to the training data.

Building on our ability to predict protein-kinase interactions, we extended our approach to precise
phosphorylation site prediction. To achieve this, we selected all protein-kinase sequence pairs along



with their corresponding phosphorylation sites and jointly trained them alongside 20 self-supervised
tasks. This fine-tuning phase utilized the latest checkpoint from the self-supervised pre-training
stage as its initial checkpoint. For this phase, we reduced the number of self-supervised tasks to a
total of 20000 samples. Additionally, substrate sequences exceeding 1280 amino acids in length
were excluded during training and evaluation. The results are shown in Table [ More details are
presented in[A.4] To further enhance phosphorylation site prediction, we trained the Stage 2 architec-
ture using the same kinase—substrate pairs and phosphorylation site annotations, and demonstrated
improved performance compared to Stage 1. The result of the Stage 2 model is presented in Table[d]
Additionally, we conducted ablation studies on the Stage 2 model to assess the impact of different
protein language model backbones. The results, summarized in Table [5]

3.4 Prediction of Dark Kinases

To evaluate the dark kinases included in our dataset and enable a direct comparison with GPS 6.0,
we performed inference using our best model on these kinases and compared the results with other
p-site prediction methods. All 29 selected dark kinases were also supported by GPS 6.0, ensuring a
fair comparison. Predictions from GPS were obtained using medium thresholds, and the results are
summarized in Table

(a) In-distribution dark Kinase pairs. (b) Zero-shot dark Kinase
pairs.
Level Group/Kinase Stage 2 (Ours) GPS 6.0
CMGC 0.1088 0.1204 Level  Group/Kinase Stage 2 (Ours)

Other 0.0312 0.0124
Group CAMK 0.1265 00504 CMGC 0.0879
Other 0.0421

STE 0.0484 0.0430
CK1 0.0335 0.0063 Group  CAMK 0.0813
e S STE 0.0462
BRSKI 0.2192 0.0187 TKL 0.0050
BRSK2 0.1542 0.0965 ALPHA 0.0181
CaMKK1 0.0323 0.0321 AGC 0.3143
CaMKK2 0.0279 0.0140 PDHK 0.0241
DYRKIB 0.690 0.0711 BCKDK 0.0241

DYRK2 0.1317 0.2098
CAMKID 0.0769

DYRK3 0.1233 0.1532
CAMKIG 0.1538
HIPK 1 0.0976 0.0429 CDK10 01347
HIPK3 0.1406 0.1153 CRK7 00606
MARK1 0.0994 0.0165 CDKI13 00579
MARK3 0.1098 0.0296 PCTAIRE2 0.0980
MARK4 0.0720 0.0491 PCTAIRE3 01131
NEKI 0.0129 0.0024 CDK19 0.0733
NEK11 0.0455 0.0015 CDKLI 0.0598
NEK6 0.0193 0.0101 CLK3 0.0906
NEK7 0.0189 0.0012 CLK4 0.1140
. NEK9 0.0428 0.0115 DSTYK 0.0050
Kinase PAK3 0.0833 0.0703 DYRK4 0.0976
PAKS 0.0105 0.0244 EEF2K 0.0181
PAK6 0.0439 0.0343 HIPK4 0.1011
PCTAIREL 0.0986 0.119 MAP3K15 0.0462
PFTAIRE1 0.1148 0.1315 Kinase NEK3 0.0423
PHKgl 0.2330 0.1463 NEK4 0.0611
TLK1 0.0234 0.0058 NEK5 0.0273
TLK2 0.0205 0.0236 NEKS$ 0.0328
TTBK1 0.0374 0.0012 NUAK2 0.1317
TTBK2 0.0571 0.0092 PKN3 0.3143
VRK2 0.0163 0.0086 SRPK3 0.0636
Wnk3 0.0870 0.0379 STK33 0.0081
TSSK2 0.0629

Table 6: Dark kinase in-distribution (a) and out-distribution (b) evaluation performance of kinase-
substrate p-site prediction, based on F1-score metric.

While tools like GPS offer limited coverage for dark kinases, our model demonstrates better capa-
bilities even for poorly characterized enzymes. To evaluate this, we performed zero-shot prediction
on 26 dark kinases not seen during training. Results are presented in table [6b]

4 Discussion

Our results show that substrate sequences alone encode discriminative signals for kinase-group as-
signment, even in the absence of kinase sequences. This finding implies that substrates carry motif-
and context-level cues sufficient to prioritize a small set of candidate kinase families for follow-up,
potentially reducing the number of targeted assays needed to confirm phosphorylation events.

Augmenting substrates with kinase sequences, we introduced two complementary architectures.
Stage I extends Prot2Token with a decoder pre-training task that learns position-aware residue repre-
sentations from encoder features, yielding substantial gains for kinase-specific site prediction. Stage



2 replaces causal decoding with bidirectional cross-attention over encoder features, further improv-
ing precision—recall trade-offs and delivering state-of-the-art performance on standard benchmarks.

A key outcome is the sign of generalization beyond well-studied kinases. The specialized
model (Stage 2) retains better performance on understudied dark kinases and, in zero-shot eval-
uations on unseen kinase—substrate pairs, exhibits the first evidence of zero-shot kinase-specific
phosphorylation-site prediction, to our knowledge. Given the central role of dysregulated kinase
signaling in oncogenesis and therapy resistance, these capabilities may accelerate hypothesis gener-
ation for pathway mapping, biomarker nomination, and kinase prioritization in cancer settings.
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A Appendix

A.1 Related work

We have categorized approaches in this domain into two main areas: those focused on kinase-
specific phosphorylation site prediction and those centered on kinase-protein interaction prediction.

A.1.1 Kinase-Specific Phosphorylation Sites

In the first category, studies focus on predicting phosphorylation sites specific to particular kinases,
kinase families or kinase groups. These methods often leverage sequence-based features, structural
properties, and evolutionary information to identify phosphorylation sites associated with a specific
kinase. In this category family of algorithms, GPS [31H35] 8] uses several models integrated to
predict different groups and number of p-sites for each peptide with size of 15 amino acids. Ki-
nasePhos3.0 [9] used 771 predictive models, developed at different levels, including kinase group,
family, and individual kinase levels (SVM and XGBoost) with SHAP-based features to predict
kinase-specific phosphorylation sites from 15-residue sequence windows surrounding phosphory-
lation sites, to predict number of positions and different kinase levels, MusiteDeep [1 1] used convo-
lutional neural network, DeepPhos [36] used densely connected convolutional neural network with
different window sizes of 25, 33, 51 peptides, PhosIDN [18] integrates sequence features extracted
through a self-attention-enhanced CNN and protein-protein interaction embeddings processed via a
deep neural network, combining them with a bilinear module to predict general and kinase-specific
phosphorylation sites.
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A.1.2 Kinase-Substrate Interaction

The second category addresses the broader challenge of protein-kinase interaction prediction, where
the goal is to identify interactions between kinases and their substrate proteins. This task often
involves integrating sequence embeddings, structural data, and sometimes even contextual biolog-
ical information to predict interaction patterns. Phosphormer-ST [29] and Phosphormer [37]] both
tried to predict substrate-kinase interaction. Phosphormer used transformer-based architecture and
Phosphormer-ST finetuned on ESM2-650M [38]] parameters. It uses a shared encoder to generate

embeddings for both kinase and peptide sequences.

A.2 Architecture

Table 7: Key hyperparameters for ProtToken architecture.

Protein encoder ESM-2 650m
Protein encoder dimension 1280
Fine-tuned blocks 6
Decoder dimension 640
Decoder block 16
Decoder heads 16
Decoder FF dimension 2560
Decoder activation GELU

Table 8: Key hyperparameters for Stage 2 architecture across different model scales.

Protein encoder ESM-235m  ESM-2150m  ESM-2650m  ESMC 600m
Protein encoder dimension 480 640 1280 1152
Fine-tuned blocks
Decoder dimension 480 640 1280 1152
Decoder block
Decoder heads
Decoder FF dimension
Decoder activation GELU
Context —_—
embedding
I Projector
Learnable
embedding
+ T | 7 | e omacoe| o |
Sequence ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Tof2|a]6]o wfajol | |
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Figure 5: Overview of the proposed model architecture during inference. The bidirectional protein
encoder processes substrate and kinase sequences to generate embeddings, which the autoregressive
decoder uses to predict output tokens. The figure highlights the integration of the pre-trained ESM-2
model with the autoregressive decoder for kinase group classifications, substrate-kinase interactions,

and phosphorylation site prediction.
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A.3 Datasets

The whole dataset was gathered from GPS, where its information on kinase families and groups is
based on the kinome of Homo sapiens. All kinase sequences were extracted from Uniprot DB [39]
and Kinase.com. To create a diverse and non-redundant dataset, we applied CD-HIT clustering with
a 70% sequence similarity threshold, grouping similar protein substrate sequences and retaining
representative sequences from each cluster by removing similar substrate sequences. Representative
positive pairs were chosen using the following criteria:

* Cross-cluster selection: Substrate-kinase pairs spanning different clusters were retained
to preserve diversity across the dataset.

* Within-cluster selection: For substrates within the same cluster, only one unique kinase
pair was kept, minimizing redundancy while ensuring distinct associations.

Each substrate is treated as an individual sample for model input, with one or more group labels
and corresponding phosphorylation sites assigned per sample. Since substrates can be associated
with multiple kinase groups and contain multiple phosphorylation sites, the problem is naturally
formulated as a multilabel classification task. After preprocessing, the final dataset consisted of
5385 unique substrates for training and 969 unique substrates for validation. To ensure rigorous
evaluation, we defined three distinct test sets, carefully designed to prevent any data contamination
between the test, training, and validation sets:

Rare-Group. This set includes 14 samples from two rare kinase groups, RGC and PKL, which have
a limited number of available samples. These groups were completely excluded from the training,
validation, and test sets.

GPS-Test Set. To have a direct comparison with existing methods such as GPS 6.0, we adopted the
test set used in the GPS study. This dataset contains 146 samples of substrate-kinase pairs, including
phosphorylation site (p-site) and kinase group annotations. All samples belong to the CMGC kinase

group.

Validation Set. This set was created using a random split strategy, ensuring a balanced distribution
of kinase groups across both the test and training sets. Additionally, substrates in this set were se-
lected to have minimal sequence similarity to each other, providing a robust measure of the model’s
generalization performance. Table [J] presents the number of samples in each set, while Table [I0]
details the distribution of samples across kinase groups in each dataset.

While serine (S) and threonine (T) are the primary residues studied in phosphorylation research
and commonly targeted by prediction tools, other amino acids—such as histidine (H) and aspartate
(D)—are also known to undergo phosphorylation, particularly in prokaryotic systems and specific
eukaryotic contexts. In our datasets, we identified phosphorylation sites on additional amino acids.
We excluded these sites from our positive sites and finalize each set. Table|1 1| presents the distribu-
tion of phosphorylation sites exclusively on S and T residues.

Table 9: Dataset statistics, including the number of samples, phosphorylation sites (p-sites), and
kinase groups for the training, validation, GPS test, and rare group test sets, along with overall
dataset totals.

Dataset Number of samples Number of p-sites Number of groups
All samples 6514 13401 12
Training set 5385 10621 10
Validation set 969 2455 9
GPS-test 146 300 1
Rare-Group 14 25 2

A4 Experiments

A.4.1 Kinase Groups Classification

We analyzed the sequence embeddings of unique kinase sequences extracted from all samples in
the GPS 6.0 dataset. For this analysis, kinase sequences from the RGC, PKL, and UNK groups
were excluded. These sequences were processed using the pre-trained ESM-2 650M model to
generate token-wise embeddings, with a maximum sequence length of 2 048. After extracting the
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Table 10: Distribution of samples across kinase groups for the training, validation, GPS test, and
rare group test sets.

Group Training set Validation set GPS-test Rare-Group

AGC 1446 231 - -
Atypical 270 58 - -
CAMK 653 96 - -
CKl 100 27 - -
CMGC 1466 264 146 -
Other 491 99 - -
STE 211 34 - -
TK 677 149 - -
TKL 68 111 - -
RGC - - ; 2
PKL - - - 12
UNK 4 - - -

Table 11: Distribution of positive sites across kinase groups for the training, validation, GPS test,
and rare group test sets.

Dataset Serine (S) Threonine (T)
Training set 5726 1874
Validation set 1472 465

GPS Test 201 76

model’s outputs, we removed the beginning-of-sequence (BOS) and end-of-sequence (EOS) tokens
and applied average pooling to obtain fixed-length representations of dimension 1280, matching the
model’s embedding size.

Next, we employed t-SNE and UMAP for dimensionality reduction, enabling visualization of the
embeddings in a two-dimensional space according to their group assignments. Given that the group
labels for the kinase sequences were known, these labels were used to show the clusters visually on
t-SNE and UMAP graphs with different colors. Also, we calculated unsupervised clustering metrics,
such as the silhouette score and the Calinski-Harabasz index. We repeated the entire process for the
fine-tuned ESM-650M checkpoint that is trained on the training set of kinase group classification
labels. Similar to the first part, we performed dimensionality reduction visualizations and computed
clustering metrics to evaluate the differences of both visual and unsupervised clustering metrics.
The results are illustrated in Figures[9and [§]and Table 2]

A.4.2 Protein-Kinase Interaction

The positive data pairs are unique protein-kinase pairs with information of full protein sequence and
full kinase sequence. The novelty of our method lies in the strategic selection of hard negative sam-
ples. Inspired from data pruning [[15] method, hard negative samples preparation relies on choosing
kinase sequences with embeddings that exhibit minimal Euclidean distances to other kinases.

To construct the negative pairs, we iterated through all unique substrates in the dataset, processing
each substrate individually. For each substrate, we first identified its associated positive kinases from
the positive pairs. Using pre-computed embeddings, we calculated the Euclidean distance between
each unique kinase embedding in the dataset to form the distance map. From these distances, we
selected the top k closest kinases, excluding the positive kinase itself, to form k hard negative pairs
for the substrate (Figure[I0). This process was repeated for every substrate, ensuring that each one
was paired with both its positive kinases and the most challenging negative kinases based on all
kinase embeddings. By focusing on embedding distances to identify closely related negatives, this
approach ensured a challenging dataset that effectively trained the model to distinguish between
positive and negative pairs. We evaluated the impact of training protein-kinase interaction with hard
negative samples versus random negative samples, focusing exclusively on the positive samples in
the validation set. The results are summarized in Table
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Figure 6: Frequency distribution of kinases across groups in the training dataset, where dark kinases
are indicated in red for visual emphasis.

Table 12: Comparison of different negative sampling strategies for protein-ligand interaction train-
ing, evaluated on the positive samples of the validation set.

Negative sample strategy Random  Hard

F1 score 0.771 0.8325

During the training, we set a maximum context length of 1280 tokens for the combined substrate-
kinase sequences, truncating them when necessary to fit within this limit.

We evaluated GPS 6.0 [8] and PhosphormerST [29] using our own validation set. For GPS 6.0,
substrate sequences were provided as input, and in contrast to PhosphormerST, GPS 6.0 does not
support kinase domain sequence as the input. To add the information of kinases during the prediction
of GPS 6.0, we have selected each group as the kinase information in their webserver. The method
generated a score and cutoff value for each phosphorylation site prediction. An interaction between
the substrate and kinase was valid if the model predicted at least one phosphorylation site in the
substrate sequence. On the other hand, PhosphormerST takes peptides and kinase domains as inputs
and generates a prediction score for each sample. We created peptides with a length of 15 and
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included kinase domain information as the other part of the input. Interactions were considered
valid if the score exceeded 0.5.

A.5 Kinase-Substrate Phosphorylation Site Prediction

During the Stage I experiment, we set the total sequence length (including both substrate and kinase
sequences) to 2 048 tokens, truncating kinase sequences as needed to fit within this limit. The batch
size was configured to accommodate 98 304 tokens per iteration. It is important to highlight that,
although the self-supervised tasks could have been entirely excluded from the fine-tuning stage,
retaining a subset of these samples led to a noticeable improvement in the model’s performance
on protein-kinase phosphorylation site prediction. We also found that without the self-supervised
checkpoint, the model’s performance in phosphorylation site prediction dropped sharply, reaching
an F1 score of less than 0.1 on the validation set, highlighting the necessity of pre-training for
maintaining predictive accuracy. The max input size of the Stage 2 architecture was set to 1280
tokens.

We compared our results with two phosphorylation prediction tools, GPS 6.0 and KinasePhos3 [9]].
We used Medium threshold for GPS and scores more than 0.5 for all other tool, and the predicted
phosphorylation sites were compared to experimentally validated sites. To generate the results, we
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Figure 8: UMAP visualization of unique kinase sequences on the original and fine-tuned checkpoints
of ESM-2 650m
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Figure 9: t-SNE visualization of unique kinase sequences on the original and fine-tuned checkpoints
of ESM-2 650m.

selected each kinase group individually on the tools. However, there is a strong possibility of data
contamination between our validation set and the GPS 6.0 training set. As a result, GPS 6.0 may
achieve artificially high performance on our validation set due to memorization, while its real-world
performance on unseen substrates could be even lower.

A.6 Availability of Resources

To support further research and development in the field, we make our codes, trained models,
datasets, and a Python package publicly available for use by researchers and the broader scientific
community. These resources can be accessed at the related GitHub repository.
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Figure 10: (A) Visualization of kinase embedding distances: The diagram depicts a substrate
(center, pK and its surrounding kinases (pKs,pKs3,pKy), and pKs, illustrating the Euclidean
distances (dj,ds, ds,ds) between their embeddings in the learned space. (B) Distance matrix
of kinase embeddings: A heatmap representing pairwise Euclidean distances between kinase
embeddings. Lighter shades correspond to shorter distances, indicating higher similarity, while
darker shades represent greater dissimilarity. (C) Positive sample pairs: Examples of positive
protein-kinase pairs (e.g., substrate QOWV60 with kinases pk; and pk,, representing known
functional phosphorylation interactions. (D) Negative sample pairs: Examples of hard negative
protein-kinase pairs (e.g., substrate Q9W V60 with kinase pks, selected based on minimal Euclidean
distances in the embedding space to encourage robust discriminative learning.
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