
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TS2CODE: ENHANCING TIME SERIES
UNDERSTANDING VIA LEARNING TO CODE

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite improvements in multimodal reasoning and code generation, language
models still fail to perform well on time series forecasting and reasoning. To
address this, we propose TS2Code, a novel multi-modal training objective for
learning multi-modal representation spaces for time series data. TS2Code works by
training vision-language models to convert time series to code, which reconstructs
the input time series when run. This reconstruction serves as a verifiable reward,
which lets us use reinforcement learning (RL) to train models to write better code.
In extensive experiments, we find that training models to convert time series into
code improves their zero-shot performance on time series forecasting, anomaly
detection, and reasoning, with the gains increasing with model size. In addition, by
controlling code structure through RL, we further find that rewarding code styles,
such as minimal digit usage, also helps improve performance.1

1 INTRODUCTION

Time series data are prevalent in various fields including finance (Carvalho et al., 1979; Peia and
Roszbach, 2015), healthcare (Morid et al., 2023), human activity (Bulbul et al., 2018; Vaizman et al.,
2018) and energy (Wang et al., 2024b). With the advancement of language models (LMs), leveraging
LMs in conjunction with relevant context has achieved promising results on time series analyses,
such as pattern understanding (Xie et al., 2024; Cai et al., 2024), anomaly detection (Liu et al., 2024d;
Zhou and Yu, 2024), and time series classification (Zhang et al., 2025). LMs have been showing to
possess certain zero-shot time series forecasting capabilities (Gruver et al., 2023b), and context can
effectively aid time series forecasting in LMs (Wang et al., 2024c; Xu et al., 2024b; Zhang et al.,
2024). However, LLMs still struggle with text-form time series reasoning (Merrill et al., 2024).

To further enhance LMs’ predictive ability, several studies have constructed a representation space
for time series forecasting by fine-tuning LMs on embedded time series (Liu et al., 2025b; Cao et al.,
2024; Niu et al., 2025). For example, Zhou et al. (2023) fine-tune GPT-2 on encoded time series
and Jin et al. (2024) employ multi-head attention to align time series embeddings with LLaMA’s
word embeddings. However, this approach of converting LMs into an encoder–decoder structure has
limited effectiveness (Tan et al., 2024). Although Luo et al. (2025) find that fine-tuning LMs with
time series in textual form within a specific domain enables forecasting, LMs face inherent difficulty
in generalizing over numerical text sequences (Yang et al., 2024b). Some studies have shown LMs
performing better in interpreting time series images (Liu et al., 2024a; 2025a; Kong et al., 2025a) and
in downstream tasks like anomaly detection (Zhou and Yu, 2024) or reasoning (Kong et al., 2025b).

To improve LMs’ ability to represent time series and better leverage their advantages in interpreting
time series images, we propose TS2Code, which constructs a unified representation space by
understanding time series through generating natural language descriptions and executable code to
reconstruct the series from images, as shown in Figure 1. In contrast to building the representation
space using plain text (Wang et al., 2024b; Luo et al., 2025) or time series embeddings (Kong et al.,
2025a; Zhang et al., 2025; Xie et al., 2024; Wang et al., 2024a), using executable code enables a
reward signal for further optimization through reinforcement learning. The code representation is also
human understandable and enables interpretable time series forecasting. We find that reinforcement
learning based on time series reconstruction enhances performance on downstream tasks, including

1Our implementation will be posted publicly, and is available to reviewers anonymously at https://
anonymous.4open.science/r/TS2Code-830E.
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<description> … four large‐scale, low‐frequency cycles over … 
marked by peaks roughly at … and troughs around … Cycle 
durations appear non-uniform but range …on these oscillations 
is a clear upward drift … </description>

<code> import numpy as np

def generate_series():

    # 1) Linear upward drift from about  …

    # 2) increasing oscillation amplitude …

    # 3) One large‐frequency cycle period

    # 4) “tremor” noise component </code>

     +     Instruction  xi
img Prec

<prediction> We project … continue the gentle rising trend seen 
in observations, lifting the series from … to roughly … while 
super‐imposing the roughly 30‐step sinusoidal cycle (amplitude 
≈250) and small Gaussian noise .…</prediction>

<code> import numpy as np

def generate_series():

   # build the linear trend: from … over …

    # seasonal component: base amplitude    

    250, period ~30, phase shifted

    # small gaussian “noise” σ≈50 </code>

h
Instruction     +     Ptsf xi

img,1:h

Time Series Reconstruction Time Series Forecasting

TS2Code: Reconstructing and Forecasting Time Series via Code Generation

g(yi
code)g(yi

code)

Figure 1: Illustration of time series reconstruction and forecasting via code generation. For recon-
struction, which we use in reinforcement learning training, the input is a time series image, and
the outputs are a description and reconstruction code that returns the time series. For time series
forecasting, the input is the first h steps of the series, and the output includes code that generates the
predicted values. (Details can be found in Figures 13 and 14 in Appendix B.)

time series forecasting, anomaly detection, and time series reasoning. In addition, our experiments
on models of different sizes (3B and 7B parameters) and modalities (vision and text) demonstrate the
scalability of TS2Code approach, and that using images as inputs offers clear advantages over text.

Contributions. Our main contributions are:

• We develop a novel approach to constructing a representation space in vision-language models
through natural language description and code-based time series reconstruction. (Section 4)

• We identify a reward signal with structured code generation that enables reinforcement learning to
improve the representation space’s understanding of time series through code-based reconstruction,
rather than focusing solely on reconstruction accuracy. (Section 5.3)

• We find that code can serve as an interpretable medium for time series forecasting, and through a
series of experiments, we find that the representation space optimized via code-based reconstruction
improves performance on anomaly detection, time series forecasting, and reasoning. (Section 5.4)

• By exploring RL rewards, we find that digit usage in code is the factor influencing time series
understanding, and that filtering poor group generations stabilizes training. (Section 5.5)

2 RELATED WORK

To construct effective time series representation spaces within language models (LMs), a variety of
methods have been proposed, including aligning LLMs with time series embeddings or fine-tuning
LLMs with contextual time series data. In addition, to enhance time series interpretation ability, many
studies reveal that VLMs have a clear advantage in understanding time series through images.

Aligning LMs with Time Series. Gruver et al. (2023b) find that language models (LMs) possess
certain zero-shot time series forecasting abilities. To optimize the time series representation space
in LMs, various alignment approaches have been proposed to better align LLMs with time series
data (Liu et al., 2025b; Cao et al., 2024; Pan et al., 2024; Xie et al., 2024; Wang et al., 2024a).
In these methods, time series are typically projected into a one-dimensional embedding and then
aligned with the language space of pre-trained LMs. For example, to enable LMs to perform better
time series forecasting, Zhou et al. (2023) fine-tune language models such as GPT-2 by updating a
subset of the transformer parameters using encoded time series. Similarly, Jin et al. (2024) employ a
multi-head attention mechanism to align time series embeddings with LLaMA’s word embeddings,
after which the aligned time series are combined with the context and fed into the LMs. However, the
effectiveness of approaches that use time series embeddings and convert LMs into an encoder–decoder
paradigm remains limited (Tan et al., 2024).

Fine-tuning LMs with Contextual Time Series. Time series data are often accompanied by related
textual information, where the described events can influence the future trajectory of the series. For
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<code> …. </code>

(a) 2-step knowledge distillation

<image> Please describe the time 
series in the image.

<description> … </description>

write Python code that returns the time 
series in <image> and <description>

<code> …. </code>

(b) Warmup

🔥Vision LMs

Please describe the time series based on the image 
and information in the <info>. Then write Python 
code that returns the time series. <info> … </info>

🔥 : Full-Parameters Tuning

: Distillation Source

(b) Reinforcement Learning 

<description> … </description>

Reward Signal

🔧

🔧 :  Execute Code and compare with original time series

🔥Warmed-up Vision LMs

: Distilled Contents

Generate

<info> Domain & 
Statistics </info>

<code> …. </code>
<description> … </description>

: Generated Contents

Figure 2: It is the method for constructing the representation space TS2Code: (a) a two-step process
distills from OpenAI o4-mini both time series descriptions and executable code for reconstruction;
(b) the extracted “<description>” and “<code>” are used to supervise the training of vision-language
models; and (c) reinforcement learning is applied, using reconstruction accuracy as the reward to
further optimize the representation space and enhance TS2Code ’s understanding of time series.

example, news about a cryptocurrency could affect its subsequent price (Li et al., 2024). Therefore,
many studies combine event-related or domain-specific textual information with time series text to
fine-tune LMs, thereby constructing a representation space that integrates time series and textual
knowledge (Liu et al., 2024b;c; Kong et al., 2025a). For example, Wang et al. (2024c) combine
weather forecast text with time series text to train LM, enabling it to predict solar power generation.
Liu et al. (2024b) leverage “factual” information from news reports combined with time series from
various domains to train LMs for assisting time series forecasting. Luo et al. (2025) leverage time
series text and distilled contextual knowledge to train LMs as forecasters with reasoning processes.
Similarly, Tan et al. (2025) combine text real-valued measurements (e.g., win possibility series) with
events happening in matches to train LM to infer events from time series.

Multimodal Time Series in LMs. To improve LMs’ understanding of time series, many studies
leverage the multimodal capabilities of vision-language models (VLMs) to interpret time series
images (Kong et al., 2025b; Liu et al., 2024a; Zhong et al., 2025; Sen et al., 2025). This is motivated
by the observation that VLMs demonstrate superior performance in understanding time series patterns
through images (Zhang et al., 2025; Liu et al., 2025a; Cai et al., 2024), and images continue to show
advantages in downstream tasks. For example, Zhou and Yu (2024) find that LMs achieve better
performance in detecting anomalies when time series are presented as images. Zhang et al. (2025)
report that time series images enable more effective training of LMs for classification tasks. Similarly,
Merrill et al. (2024) observe that models such as GPT4-Vision perform better on time series image
reasoning than GPT-4. Therefore, in this work, we also adopt images as the input format for time
series, as they are easier to interpret and more likely to generalize during training.

3 PROBLEM DEFINITION

Let D = {xi
series}ni=1 be a dataset, where each xi

series can be plotted as an image xi
img, depicting a uni-

variate time series with variable length ti, and xi
series = (x1, x2, . . . , xti) ∈ Rti is the corresponding

values. The the reconstruction task aims to learn a mapping from image to original series,
πθ : Ximg → Xseries

where the intermediate process of this mapping should demonstrate an understanding of time series
in the image, such as periodicity and trends, rather than directly reading key values from the image
and returning them through code for reconstruction. The code-based time series forecasting task
differs from reconstruction in that the input time series is xi

img,1:h, which contains the first h steps
corresponding to values in xi

series,1:h = (x1, x2, . . . , xh), while the goal is to learn a mapping from
image to future series: πθ : xi

img,1:h → xi
series,h+1:ti

.

4 METHODOLOGY

4.1 TWO-STAGE METHOD

To construct a time series representation space by generating executable code and natural language
descriptions with vision-language models (VLMs), we adopt a two-stage approach. In the first stage,

3
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given the limited capabilities of base models (e.g., Qwen2.5-VL-3B-Instruct), we distill knowledge
from OpenAI o4-mini OpenAI (April, 2025), to warm up the base model. In the second stage, we
use the comparison between the time series reconstructed from code and the original values as a
verifiable reward signal for reinforcement learning to further refine the representation space.

Warm-up Stage. To effectively distill time series descriptions and reconstruction code, as shown
in Figure 2 (a), we follow the approach of Xu et al. (2024a) and adopt a two-step method. In the
first step, we prompt the model to obtain a natural language description of the time series using the
image and basic information such as the domain. In the second step, we append this description to
the prompt and have the LLM to generate Python code for reconstructing the time series. We use
these description–code pairs together with instructions containing domain information and time series
images, as shown in Figure 2 (b), to perform supervised fine-tuning (SFT) on the base model. This
equips the base model with the preliminary ability to interpret and reconstruct time series, while also
establishing connections between domain knowledge and time series in the representation space.

Therefore, the code-based time series representation process can be illustrated in Figure 1, a prompt
Prec is used to generate the textual output: T i = πθ(Prec, x

i
img), where T i = {yidesc, y

i
code} consists

of (1) a natural language description yidesc and (2) python executable code yicode for reconstruction.
The numeric sequence is then obtained by executing the code: xi

series ≈ g(yicode). For details of the
knowledge distillation and reconstruction instructions, refer to Figures 12 and 13 in Appendix B.

<prediction>….</prediction>

<code> …. </code>”

<image1> <image2>

“Assume you cannot see the 
future time series image; 
Predict the future time series 
based on historical time series 
in image.”

Figure 3: TSF warm-up data distillation

Similarly, as shown in Figure 1, the goal of time series fore-
casting (TSF) is to generate the future values xi

series,h+1:ti
.

In our representation space, this process is carried out
through code. Given a forecasting instruction Ptsf and
the input xi

img,1:h, the language model πθ generates:
T i = πθ(Ptsf, x

i
img,1:h), where T i = {yipred, y

i
code}. yipred

provides a natural language prediction, while executing
yicode yields the predicted future sequence x̂i

series,h+1:ti
=

g(yicode). To equip our representation space with prelim-
inary time series forecasting ability, we additionally dis-
tilled forecasting-related knowledge, including natural language descriptions of predictions and code
for generating future time series. To ensure accuracy, as illustrated in Figure 3, we provided both
“historical time series” images and “future time series” images, prompting the LLM to return forecasts
and code in a predictive manner, while using the future time series (ground truth) to refine prediction
accuracy. For detailed instructions, see Figures 14 and 16 in Appendix B.

Reinforcement Learning Stage. Building on the warm-up phase, we introduce a second stage
(Figure 2 (c)) based on reinforcement learning (RL) to further optimize the representation space.
Here, the reconstruction accuracy is used as the reward signal to further optimize the representation
space. We adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024), which samples
a group of description–code pairs for a single time series and uses relative scores within the group
to distinguish high- from low-quality generations, thereby guiding πθ to learn from higher-quality
outputs. Since after the warm-up stage our representation space has acquired a certain ability to
represent time series, making it possible for πθ to evolve through its own generations.

In expectation, more precise reconstruction requires LMs to develop a deeper understanding of time
series features such as trends, periodicity, amplitude, and noise level, and to accurately express this
understanding through code. Consequently, this also leads to better performance on evaluation tasks.

4.2 REWARD DESIGN FOR IMPROVING TIME SERIES UNDERSTANDING

The design of reinforcement learning rewards includes time series reconstruction Accuracy Rewards
and Code Quality Rewards for controlling the style of generated code. In addition, we adopt a
format reward to ensure valid outputs and apply “Poor Group filtering” to maintain training stability.

Accuracy Reward. In GRPO, for each input time series image ximg and instruction Prec, the

model samples a group of G candidate outputs yGj=1 (specifically, (y(j)desc, y
(j)
code)

G

j=1), where each

candidate code y
(j)
code is executed to reconstruct the time series, and accuracy reward rj1 is computed

by comparing the generated sequence with the ground-truth label xseries = (x1, x2, . . . , xti) ∈ Rti ,

4
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R
(
y
(j)
code, xseries

)
, j = 1, . . . , G, where R is defined as:

R(ycode, xseries) =


γ, if g(ycode) /∈ Rti

min

(
α,

β

mse

)
mse = MSE

(
g(ycode), xseries

)
.

where g(ycode) executes the generated code to obtain an array, or returns ∅ if the code fails to execute
or produces an output that is not a list of numbers. When πθ fails to produce a time series, a low score
γ will be assigned. The hyperparameters α and β are used to control the impact of reconstruction
accuracy on the reward. Mean Squared Error (MSE) denotes the metric computed on the z-score
normalized time series:

mse =
1

ti

ti∑
i=1

(xi − xrec
i )

2
, g(ycode) = (xrec

1 , xrec
2 , . . . , xrec

ti ) ∈ Rti

Code Quality Reward. defined as rj2 = Q(yjcode), are used to explore how the style of code generation
affects πθ’s understanding of time series. (1) We assume that reconstruction based on higher-level
time series characteristics, such as periodicity, amplitude, or trend shifts, reflects understanding-based
time series generation. Therefore, Q1 is used to guide πθ to reconstruct using structured code rather
than, as shown in Figure 15, “reading and inserting key points into the code.” (2) We assume that
using fewer digits in a single line of code reflects reconstruction through understanding time series
features, therefore, Q2 is used to control digit usage in a single statement. (3) More generally, Q3 is
used to control digit usage across the entire code.

Format Reward. rj3 is used to ensure extractable outputs, including time series descriptions wrapped
in “<description>...</description>” tags and code enclosed in python code tags. We assign a score of
λ to each set of tags based on correct recognition.

Then, after collecting the rewards for each sample within the group, the group-relative advantage Aj

for each sample ximg is calculated by normalizing the rewards within the group:

µ =
1

G

G∑
j=1

rj , σ =

√√√√ 1

G

G∑
j=1

(rj − µ)2, Aj =
rj − µ

σ

Poor Group Filtering. In addition, we observe that for some training samples the entire group of
generated codes receives very low scores. However, since GRPO adopts a group-relative advantage,
normalization may convert low negative scores into positive values. However, such low-quality code
is often non-executable or structurally invalid, such as an example in Figure 17, leading to training
collapse (see Section 5.5 for details). To address this issue, we set group scores below a threshold to
0, ensuring that even after normalization, Aj remains 0 and gradients are not updated.

5 EXPERIMENTS

In this section, we introduce the datasets used to build our representation space, experimental
settings, and evaluation results to address the following research questions: RQ1: Can our TS2Code
approach improve time series reconstruction accuracy, and does structured code generation (Q1)
in reinforcement learning (RL) influence code style? (Section 5.3) RQ2: How does RL based on
time series reconstruction and Q1 constraint impact performance on time series forecasting, anomaly
detection, and time series reasoning? (Section 5.4) RQ3: How does code style, such as the use of
digits in a single line (Q2) or in the entire code (Q3), influence the representation space? And can
poor group filtering stabilize training? (Section 5.5).

5.1 DATASETS

To improve the representation space for time series understanding and to establish connections
between time series values and domain knowledge, our training data covers a diverse range of sources,
including both synthetic data and real-world data with domain-specific information, as detailed below.

5
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Real-world time series. We incorporate 67 real time series datasets spanning various domains, such
as weather, transportation, finance, electricity, healthcare, tourism, retail, and astronomy. These
datasets are provided by the Chronos (Ansari et al., 2024) Hugging Face repository2 and widely used
for training time series foundation models Rasul et al. (2023); Das et al. (2024). The length of these
time series ranges from tens to millions. For training, we extract sub-sequences with lengths from 12
to 2000, covering the requirements of most time series tasks. We manually add domain information
for 67 datasets and provide it during reconstruction training with instructions.

Time series with natural language descriptions. Merrill et al. (2024) provide a synthetic time series
dataset spanning multiple domains, where each series is accompanied by a domain description and
events that affect its pattern and fluctuations. This dataset effectively enables the representation space
to capture how events influence time series and to establish connections with domain knowledge.
Specifically, the dataset contains 6,787 samples across approximately 1,000 domains, with sequence
lengths ranging from 12 to 1,500.

(a) (b)

(c)

Figure 4: Synthetic time series with dif-
ferent levels of interpretive difficulty.

Generated synthetic time series. Synthetic time series
have benefited many studies (Xie et al., 2024; Zhou and
Yu, 2024; Cai et al., 2024; Rasul et al., 2023; Das et al.,
2024; Qiu et al., 2025). Similarly, to enable the repre-
sentation space to capture time series patterns, we also
employ synthetic time series generated through the decom-
position method. For details of the synthetic approach,
refer to Appendix C. Synthetic data also makes it possible
to control learning difficulty. We categorize time series
into three levels of difficulty, as illustrated in Figure 4.
Simple time series (top left (a)) exhibit clear periodicity
or trends. In the medium category (top right (b)), the data
may include trend reversals, a mixture of periodic and
trend components, or increased noise that does not obscure periodicity. In the hard category (bottom
(c)), periodicity becomes irregular and noise is further amplified, potentially obscuring the underlying
periodic patterns.

5.2 EXPERIMENT SETTING

Training Data and Vision-language models. We use 6 000, 2 500, and 4 000 samples from three
data sources for knowledge distillation with OpenAI o4-mini (OpenAI, April, 2025). After filtering
out non-executable and low-quality reconstruction (mse higher than 1.8), a total of 11 500 samples
are retained for warm-up, along with 2 000 synthetic samples used for reinforcement learning
training. Our vision-based TS2Code models3 are built upon Qwen2.5-VL-3B-Instruct and Qwen2.5-
VL-7B-Instruct, referred to as TSC3B and TSC7B . While the text-based models4 are built upon
Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct. The input image size is “500x300” with axis ticks
provided. For textual time series input, following Wang et al. (2024c); Gruver et al. (2023a), we
separate numeric values with commas and combine them with the instruction. For detailed training
hyperparameters and further settings refer to Appendix C.

Evaluation and Metrics. To evaluate the improvement of TS2Code in time series understanding,
we adopt tasks including time series forecasting (TSF), anomaly detection, and reasoning. For TSF,
predicting future series from historical values requires LMs to capture features such as periodicity,
trends, and scales, and to infer likely future trajectories. We sample 500 cases from synthetic data, as
illustrated in Figure 4. These samples consist of predictable patterns without unexpected distribution
shifts, but they include cases such as non-uniform periodic frequencies or noisy variations, as shown
in Figure 18. For time series reasoning, etiological reasoning (Merrill et al., 2024) requires the LLM
to connect time series with real-world domains, anomaly detection (Zhou and Yu, 2024) requires
identifying abnormal patterns within time series, and MCQ2 (Merrill et al., 2024) requires comparing
the features of two time series. Understanding time series features is a prerequisite for these tasks,
so better performance implies better time series representation. For reconstruction and forecasting

2https://huggingface.co/datasets/autogluon/chronos_datasets
3https://huggingface.co/collections/Qwen/qwen25-vl-6795ffac22b334a837c0f9a5
4https://huggingface.co/collections/Qwen/qwen25-66e81a666513e518adb90d9e
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(a)  Scaling (3B vs 7B)RLQ1 (b) Impact of W (3B) (b) Impact of W (7B)

Figure 5: Figure (a) compares the reconstruction performance of models of different sizes under
RLQ1 . Figures (b) and (c) illustrate the impact of warm-up (W) stage on RLQ1 with training steps.

accuracy, we use z-score normalized Mean Squared Error (MSE) and Mean Absolute Error (MAE)
as metrics. In time series reasoning tasks, for anomaly detection, we follow Zhou and Yu (2024),
converting time series into binary sequences by labeling anomalous positions as 1, and use the
F1-score as the evaluation metric. For time series reasoning, we follow Merrill et al. (2024), adopting
a multiple-choice setting and reporting reasoning accuracy over 500 samples.

5.3 IMPORVING REPRESENTATIONS THROUGH RECONSTRUCTION

Method MAE MSE #inRow #inCode Unstrc

GPT4o (2025-01) 0.79 1.37 21.0 26.3 -
OpenAI o4-mini 0.64 1.04 8.8 17.3 0.3%

TSC3B (text) 0.25 0.48 95.5 96.2 -
TSC3B+W (text) 0.84 1.43 4.5 17.5 7.0%
TSC3B 1.02 1.83 13.4 17.5 -
TSC3B+W 0.71 1.17 5.0 16.5 4.7%
TSC3B+W+RL 0.61 0.95 8.0 21.1 40.8%
TSC3B+W+RLQ1 0.67 1.09 3.9 14.8 2.0%

TSC7B (text) 0.17 0.38 116.2 117.4 -
TSC7B+W (text) 0.75 1.24 5.3 18.2 7.8%
TSC7B 0.98 1.79 3.9 8.9 -
TSC7B+W 0.69 1.13 4.9 16.8 4.8%
TSC7B+W+RL 0.59 0.94 7.6 19.7 46.8%
TSC7B+W+RLQ1 0.63 1.00 4.0 14.8 1.4%

Table 1: Performance of Warm-up (W) and Reinforcement Learning
(RL) in building the image-based time series representation space
TS2Code (e.g., TSC3B ) and text-based space (e.g., TSC3B (text)).

To evaluate the effects of warm-up
and reinforcement learning on recon-
struction, we sampled 600 instances
from three data sources (200 for each)
introduced in Section 5.1, including
10 real-world datasets. We adopt the
same training settings as described
in Section 5.2 and perform reinforce-
ment learning at least 3 times on dif-
ferent sets of 2000 samples.

As shown in Table 1, warm-up leads
to significant improvements across
the four base models, regardless of
whether the time series were pro-
vided as text or images. The confi-
dence intervals of accuracy can be
seen in Figure 7. However, image-
based models, e.g., TSC3B (Qwen2.5-
VL-3B-Instruct), demonstrate a clear
advantage over text-based model,
e.g., Qwen2.5-3B-Instruct, under
TS2Code training; therefore, we pri-
marily build representation space on VLMs. Note that text-based models (e.g., TSC3B (text))
achieves lower MSE because the time series text was directly copied into the code, leading to similar
values for “maximum digits in a single line” (#inRow) and “total digits in code” (#inCode).

Meanwhile, considering the case of “reading and inserting values into the code” in Figure 15, we
penalize code with interpolation behavior when the statements show no explicit clues of understanding
time series, such as “trend,” “season,” “amplitude,” or functions like “sin” and “cos.” Compared
code generation with (RLQ1) and without (RL) structured code control, we find that Q1 lead to
lower digits usage and proportion of unstructured code (Unstrc). Figure 8 (a) and (b) show word
clouds of function names used in time series reconstruction on the evaluation set, providing a clearer
view of the impact of structured code generation. (b) RLQ1 enables the representation space to
employ scientific functions to understand and simulate time series rather than (a) mainly relying on
interpolation-based methods. In addition, Figure 5 (a) demonstrates the scalability of RLQ1 , where
reconstruction accuracy (1/mse) of time series on the evaluation set improves as model parameters
and data increase. Figure 5 (b) and (c) illustrate the importance of warm-up for RLQ1.

To conclude, the TS2Code is scalable and effective in time series reconstruction, and structured
code generation (RLQ1) provides clear evidence of its impact on controlling code style.
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Method Clean Pattern Noised Pattern Overall
MAE MSE Err MAE MSE Err MAE MSE Err

GPT4o (text2text) 0.97 1.61 6.0% 1.03 1.67 3.6% 1.00 1.64 4.8%
GPT4o (image2text) 1.10 1.89 10.4% 1.01 1.63 8.0% 1.05 1.76 9.2%
GPT4o (image2code) 1.05 1.77 42% 1.12 1.95 32% 1.09 1.86 37%
o4-mini (text2text) 0.81 1.31 1.2% 1.04 1.71 8.8% 0.93 1.51 5.0%
o4-mini (image2text) 0.96 1.54 9.6% 1.01 1.65 23.2% 0.98 1.59 16.4%
o4-mini (image2code) 0.93 1.39 3.2% 0.87 1.26 0.4% 0.90 1.33 1.8%

TSC3B 1.05 1.78 30.0% 1.11 1.98 29.2% 1.08 1.87 29.6%
TSC3B+W 0.97 1.52 4.8% 1.02 1.63 10.4% 0.99 1.54 7.6%
TSC3B+W+RL 0.93 1.42 3.2% 1.01 1.60 4.8% 0.96 1.49 4.0%
TSC3B+W+RLQ1 0.93 1.40 2.7% 0.94 1.41 1.7% 0.93 1.39 2.2%

TSC7B 1.08 1.86 42.4% 1.08 1.86 41.2% 1.08 1.86 41.8%
TSC7B+W 0.92 1.38 2.4% 1.00 1.59 3.6% 0.95 1.47 3.0%
TSC7B+W+RL 0.91 1.41 2.4% 1.00 1.58 2.0% 0.96 1.48 2.2%
TSC7B+W+RLQ1 0.87 1.27 2.5% 0.94 1.42 2.0% 0.90 1.34 2.2%

Table 2: The impact of Warm-up (W) and Reinforcement Learning (based on time series recon-
struction) on pattern-driven time series forecasting. The results indicate that RLQ1 provides clear
advantages in improving forecasting and reducing code execution errors. The confidence intervals
of W and RLQ1 accuracy refer to Figure 9. text2text denotes the setting where both the input and
predicted time series are in text form. image2text refers to using images as input and text as prediction.
image2code uses images as input with code as the prediction medium, and TS2Code is evaluated on
image2code. The above reinforcement learning results are the average inference over at least three
repeated training. Red indicates the best performance within each slot.

5.4 TIME SERIES FORECASTING AND REASONING

Predicting “pattern-driven” time series requires LMs to generate future values entirely based on
understanding the underlying patterns. We use the 500 cases described in Section 5.2 to evaluate the
impact of reinforcement learning based on time series reconstruction on the representation space.
The patterns are divided into "noisy" and "clean", and the results in Table 2 show that structured
reinforcement learning (RLQ1) performs significantly better than training without code structure
constraints, with clear improvements over warm-up. The confidence intervals of accuracy can be
seen in Figure 7. The gains become more pronounced as model size increases. In addition, we find
that for OpenAI o4-mini, overall, using images as input and code as the prediction tool (image2code)
achieves the best performance. However, in the setting where textual time series are used as input
and future time series are predicted in text form (text2text), performance is better on clean patterns,
while image2code shows clear advantages when handling noisy time series. One potential reason is
VLMs generalize noise better in the image modality.

In evaluation of time series reasoning, we use three downstream tasks: (1) Anomaly Detection, as
mentioned in Section 5.2, uses the benchmark from Zhou and Yu (2024) which includes various
types of anomaly patterns such as “noisy-trend”, “range”, and “noisy-point”. Each type contains both
anomalous and normal cases, and we selected 50 test samples for each type. We follow the same
instructions and metrics as provided in the benchmark. (2) For etiological reasoning (ETI Reasoning)
and (3) MCQ2 (reasoning over two time series), we used the datasets and settings from Merrill et al.
(2024). As shown in Table 3, under the zero-shot inference setting, warm-up provides clear benefits
for downstream tasks. RLQ1 shows overall advantages compared to RL without structural control
and further improves reasoning beyond the warm-up stage.

In short, RLQ1
based on time series reconstruction with structured code generation (Q1)

provides clear improvements and advantages for tasks that rely on time series understanding.

5.5 EXPLORATION OF REINFORCEMENT LEARNING

To explore the impact of code style on the representation space, as described in Section 4.2, we
introduce code generation constraints Q2 (maximum digit usage in a single line, #inRow) and
Q3 (digit usage across code, #inCode). Q2 is defined as -α ·max(#inRow − 3, 0), where with α
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Method Anomaly Detection ETI Reasoning MCQ2
Precision Recall F1_score Accuracy Accuracy

GPT4o 0.390 0.531 42.0 58.0% 58.0%
Random 0.033 0.333 5.7 25.0% 25.0%

TSC3B 0.148 0.200 14.7 25.0% 37.2%
TSC3B+W 0.149 0.279 15.8 37.2% 49.4%
TSC3B+W+RL 0.120 0.301 14.4 37.0% 50.0%
TSC3B+W+RLQ1 0.260 0.400 26.9 39.9% 50.3%

TSC7B 0.184 0.237 19.4 35.6% 41.6%
TSC7B+W 0.145 0.423 17.2 40.8% 54.8%
TSC7B+W+RL 0.141 0.522 17.3 42.0% 54.0%
TSC7B+W+RLQ1

0.140 0.470 17.0 45.1% 55.0%

Table 3: The impact of Warm-up (W) and Reinforcement Learning (RL) based on time series
reconstruction on time series reasoning tasks. RLQ1 enhances reasoning ability, or at least does
not introduce negative effects (e.g., in MCQ2). However, TSC7B produces 171 invalid answers on
“Anomaly Detection,” while +W reduces this to 0, even though accuracy does not improve. The above
reinforcement learning results are the average inference over at least three repeated training. The
input image size for anomaly detection is 1000× 300, while the MCQ2 task uses two input images.

(a)  Impacts TSFQ2 (b)  and UnstrcQ2 (c) Reward w/ Filtering (d) Reward w/o Filtering
Figure 6: (a) illustrates the relationship between #inRow (the average over the reconstruction
evaluation set for each style-specific model trained with RLQ2) and performance on the time series
forecasting (TSF) task. Similarly, (b) is about the connection between #inRow and unstructured code
(Unstrc). Figures (c) and (d) compare the changes in reward over steps after filtering poor groups.

increasing in training, the model uses fewer #inRow (on average) in the time series reconstruction
test set. As shown in Figure 6 (a), fewer digits used in a single line of code lead to better time series
forecasting accuracy (1/mse). One potential reason is that structured code generation essentially
restricts the number of digits used in a single line, thereby preventing the direct “reading and insertion
of values into code” as shown in Figure 15. Moreover, in (b), we observe a reduction in the proportion
of unstructured code. However, as shown in Figure 11, the changes in #inCode caused by Q3 do
not show a clear relationship with time series understanding. In addition, Figure 6 (d) is about the
ablation of Poor Group Filtering in (c), where entire groups of low-quality generations are filtered out
(excluding them from gradient updates). As a result, the trajectory of the accuracy reward becomes
more stable with steps. An example of a low-quality generation that nevertheless receives a relatively
high reward within its group can be found in Figure 17 in Appendix B.

In short, optimizing the representation space through code-based time series reconstruction is
impacted by code style, such as digit usage. Filtering out poor groups makes training stable.

6 CONCLUSIONS AND FUTURE WORK

TS2Code is shown to be an effective method for constructing a time series representation space
within vision-language models, where code-based reconstruction provides verifiable reward signals
for reinforcement learning to further optimize this space. Code also can serve as a more interpretable
medium for time series forecasting. In further evaluations, we find that the representation space
optimized by TS2Code benefits time series reasoning, forecasting, and anomaly detection. In addition,
we explore the impact of code style on the representation space by controlling code generation through
reinforcement learning and find that digit usage affects the understanding of time series. In future
work, we will further explore the potential of this representation space in time series task-specific
training, such as context-aided time series forecasting.
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TS2Code: Enhancing Time Series Understanding via Learning to Code
(Appendix)

A STATEMENT ON THE USE OF LLMS TOOLS

We used AI tools (LLMs) to a limited extent for polishing a part of the writing, and for generating
parts of the Python plotting functions in the figure code.

B INSTRUCTION AND CASE STUDIES

Time Series Reconstruction. The reconstruction instructions and case study are shown in Figure 13.
Statistical information in the prompt, such as Length, is replaced according to different time series,
while domain information in “<info>” is substituted based on the domain of the time series data. In
addition, in the training data, we use GPT-4o (2025-01-01) to rewrite instructions to increase their
diversity without altering their meaning. In the case study, the output of TSC7B+W+RLQ1 shows
that the representation space captures the features of the time series and reconstructs them through
understanding these features. Note that the input images are of size 500×300 pixels, and axis and
scale information are provided. In addition, the distillation prompt for warm-up data can be seen in
Figure 12. This is a two-stage approach: in the first stage we obtain the description, and in the second
stage, with the help of the description, we obtain the reconstruction code.

Code-Based Time Series Forecasting. The code-based time series forecasting instructions are
shown in Figure 14, where the statistical information in the instructions is replaced according to
different time series. Since synthetic data are used for the forecasting task, the domain descriptions
in <info> are also synthetic. We provide only the historical part of the time series image (the black
segment) as input. The image size is 500×300, with axes and scale information included. In the case
study, we observe that the representation space outputs both natural language descriptions of the time
series forecast and code-based simulations. However, inconsistencies may occur between the natural
language and code descriptions (highlighted in red), which we aim to address in future work. More
examples of time series forecasting performance are shown in Figure 18.

Reading and Inserting Key Points into the Code. The example in Figure 15 shows that the
representation space reconstructs time series by reading key points. This approach has been shown
not to enhance the representation space’s ability to understand time series, even if it yields higher
reconstruction accuracy (Section 5.3 and 5.4), and we avoid it through structured generation RLQ1

.
In exploring the impact of code style on the representation space, we find that digit usage in code is
related to this type of generation (Section 5.5).

Instruction of Time Series Forecasting Distillation. Due to the fact that the original models, such
as Qwen2.5-VL-7B-Instruct, do not have the ability to use code for time series forecasting. We distill
another 3,000 code-based time series forecasting samples to the warm-up training set. Figure 16
illustrates knowledge distillation for time series forecasting. We provide historical time series images
for OpenAI o4-mini (OpenAI, April, 2025) to generate natural language predictions within the
<prediction> tag, as well as code to produce the future time series. In addition, we also provide the
future time series images to allow the distillation source to reference them when generating code,
thereby improving code quality (forecasting accuracy). However, the entire process is framed in a
predictive manner, with the assumption that the future time series is not given.

Case study of poor generation. Poor group generation refers to cases where all outputs within
a group are of low quality, however, an ineffective time series output receives a relatively high
reward. Figure 17 shows such a (relatively) high-scoring output within a poor group. After GRPO
normalization, the originally low reward becomes positive, causing the representation space to learn
from low-quality code and leading to training collapse. By filtering out these groups (setting the
entire group’s reward to 0), training becomes more stable (Section 5.5).

C EXPERIMENTAL DETAILS

A LANGUAGE MODELS AND TRAINING SETTINGS

OpenAI o4-mini (OpenAI, April, 2025). In our knowledge distillation, we select o4-mini as the
distillation source. As shown in Table 1 for time series reconstruction and Table 2 for time series
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forecasting, it performs significantly better than GPT-4o. One possible reason is that reasoning-
oriented models are more proficient at code generation.

GPT4o (Achiam et al., 2023). We use the GPT-4o (2025-01-01) API as a benchmark and reference
for time series reconstruction and other tasks.

Qwen2.5 (Vision) (Bai et al., 2025) . For vision language models, we use the Qwen2.5-VL-3B-
Instruct5 and Qwen2.5-VL-7B-Instruct6 to evaluate the effectiveness and scalability of TS2Code.

Qwen2.5 (Text) (Yang et al., 2024a). To evaluate the effectiveness of textual time series input, we
use Qwen2.5-3B-Instruct7 and Qwen2.5-7B-Instruct8, two language models designed for text input.

Hyperparameters. In the warm-up stage, we use LLaMA-Factory Zheng et al. (2024) for supervised
fine-tuning (SFT). We perform full-parameter tuning using two Nvidia H200s with a learning rate of
2e-6, a batch size of 1 with gradient accumulation of 2 and 4 epochs. For reinforcement learning,
we adopt the Open-R1-based Face (2025) vision framework,VLM-R1 Shen et al. (2025), utilizing 6
Nvidia H200 and generating 8 samples per input with gradient accumulation of 2. The KL divergence
coefficient β was set to 0.04 and learning rate of 5e-6. Further details can be found in our repository9.

Synthetic Time Series. We generate synthetic time series using a decompositional additive approach,
with the synthesis code outlined in Algorithm 1. The series length is set between 48 and 1024 to
cover most time series tasks, followed by the introduction of trend shifts, varying periodicities, and
noise. Finally, the value range of the time series is set between -2000 and 5000 to cover a wide range
of real-world time series scales. For time series forecasting, we adopt a similar synthesis strategy but
focus primarily on “predictable” patterns. For example, distribution shifts are excluded from the test
set, while non-uniform periodicities are included, with examples shown in Figure 14 and 18. The full
implementation of our synthetic time series generation is shared in our repository.

B ADDITIONAL EXPERIMENTAL RESULTS

Time Series Reconstruction. The 95% confidence interval results for time series reconstruction
are shown in Figure 7. Both RLQ1

and reinforcement learning without structured code generation
constraints provide clear improvements in reconstruction accuracy. With the “reading and inserting
key points into the code” generation mode, RL even outperforms RLQ1

on time series reconstruction.

Function Name Word Clouds. Figure 8 compares the word clouds of function names (with font size
indicating frequency of functions) used in time series reconstruction on the test set (600 test cases)
between reinforcement learning (RL) without structured code constraints and RLQ1

. We observe that
structured code generation Q1 imposes clear restrictions on function usage, shifting from Figure 8
(a), which mainly relies on the "np.interp" function for reading and interpolation (as shown in the
example in Figure 15), to (b) using functions such as sin to simulate time series. The function name
word cloud for OpenAI o4-mini and GPT4o (2025-01-01) can be seen in Figure 10.

Time Series Forecasting. The performance of TSC3B and TSC7B under warm-up and reinforcement
learning based on time series reconstruction is shown in Figure 9. The 95% confidence intervals
demonstrate that RLQ1 provides clear advantages, and these gains become more pronounced
as model size increases from 3B to 7B. In contrast, reinforcement learning without structured code
generation constraints, although achieving better time series reconstruction in Figure 7, does not lead
to significant improvements in time series understanding.

In addition, we include statistical methods such as mean prediction (using the average of historical
values as the forecast for all future values) and ARIMA, as well as foundation models such as
Chronos and TimesFM, to evaluate forecasting performance on our dataset. As shown in Table 4,
ARIMA (using the “auto_arima” function from “pmdarima”) performs well on noise-free time

5https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct
6https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
7https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
8https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
9Our code about detailed training settings and time series synthetic are accessible in https://

anonymous.4open.science/r/TS2Code-830E
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Algorithm 1 Synthetic Time Series Generator

1: Initialize the random seed and sample the time-series length L ∈ [48, 1024];
2: Enable complex trend: setting the binary flag multi_trend ∈ {1,0}.
3: if multi_trend then
4: Shifting trend: Introduce a trend shift near the midpoint of the series, i.e., at t ≈ 0.5L.
5: else
6: Monotonic trend: specify a single-regime trend that remains monotone over the entire series.
7: Enable complex seasonal period: setting the binary flag variable_period ∈ {1,0}.
8: if variable_period then
9: Varying seasonality: construct a seasonal component with non-uniform periodicity, allowing

the effective frequency to change smoothly over time.
10: else
11: Uniform seasonality: construct a seasonal component with a fixed period, maintaining

constant frequency across the entire series.
12: Synthesize the raw series by decompositional addition of its constituent components (trend,

seasonality, and noise). raw_series = trend + seasonal + noise.
13: Rescaling: Linearly map raw_series to the target range [−2000, 5000].
14: Output: Return the rescaled series.
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(a) TSC3B on reconstruction
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(b) TSC3B on reconstruction
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(c) TSC7B on reconstruction
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+W+RLQ1

(d) TSC7B on reconstruction

Figure 7: The overall MAE and MSE of TSC3B and TSC7B on time series reconstruction evaluation
set under different training conditions (with 95% confidence intervals). The performance of TSC3B

with warm-up (W) and RLQ1 is shown in (a) and (b). TSC7B is in (c) and (d). As the model size
increases (from 3B to 7B), the benefits of reinforcement learning become more pronounced.

series, while TimesFM shows significantly better performance on noisy time series. Prediction cases
of TSC7B+W+RLQ1

and other foundation models on noised and clean patterns can be seen in
Figure 18.

Code generation constraint. Q3 is defined as -α ·max(#inCode−8, 0) and is used in reinforcement
learning to penalize digit usage in time series reconstruction code. We find that code generation style
(the maximum number of digits used in a single line of code, #inRow) is related to the representation
space in time series forecasting (Section 5.5). However, Figure 11(a) shows the representation space
trained under different levels of Q3 constraints. Using fewer digits in code (#inCode) on the time
series reconstruction (REC) test set does not affect time series forecasting performance, even though
(b) shows that #inCode remains correlated with structured code on reconstruction task.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) Representation Space trained without Q1 (b) Representation Space trained by RLQ1

Figure 8: The function name word cloud on the time series reconstruction evaluation set (with font
size indicating frequency of functions). (a) is the representation space trained without structured code
generation, Q1. While, (b) is representation space trained by RLQ1

.
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(a) TSC3B on Time Series Forecasting
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(b) TSC3B on Time Series Forecasting
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(c) TSC7B on Time Series Forecasting

1.30 1.35 1.40 1.45 1.50 1.55
MSE
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(d) TSC7B on Time Series Forecasting

Figure 9: The overall MAE and MSE of TSC3B and TSC7B on time series forecasting (TSF)
evaluation set under different training conditions (with 95% confidence intervals). RLQ1

shows clear
advantages, and as the model size increases, the benefits of RLQ1

become more pronounced.

Method Clean Pattern Noised Pattern Overall
MAE MSE MAE MSE MAE MSE

Mean Prediction 1.04 1.66 1.06 1.68 1.05 1.67
Chronos (Base) (Ansari et al., 2024) 0.77 1.25 1.01 1.67 0.89 1.46
Chronos (Large) (Ansari et al., 2024) 0.76 1.19 0.99 1.64 0.87 1.42
ARIMIA 0.70 1.12 0.91 1.45 0.81 1.28
TimesFM (Das et al., 2024) 0.86 1.36 0.48 0.74 0.67 1.05

Table 4: Performance of foundation models and simple baselines on our time series forecasting
dataset. Here, mean prediction uses the average of historical values as the forecast for all future
values, while ARIMA is implemented using the “auto_arima” function from “pmdarima”. Red font
indicates the best performance in the column.
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(a) OpenAI o4-mini (b) GPT4o (2025-01-01)

Figure 10: The function name word cloud on the time series reconstruction evaluation set (with font
size indicating frequency of functions). (a) is from OpenAI o4-mini (OpenAI, April, 2025). While,
(b) is from GPT4o (2025-01-01).

14 16 18 20
#inCode (REC)

0.64

0.66

0.68

0.70

TS
F 

Ac
cu

ra
cy Q1

Q3

(a) The impact of #inCode on TSF
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(b) The relationship of #inCode and Unstrc

Figure 11: Under Q3 control, the code style in the representation space (TSC3B ) on the time series
reconstruction test set (measured by the total number of digits in code, #inCode) is constrained. (a)
shows the relationship between #inCode and time series forecasting accuracy (1/mse), while (b)
shows the relationship between #inCode and the proportion of unstructured code during reconstruc-
tion (Unstrc).

Two-stage knowledge distillation prompt for reconstruction

Stage-1
Please incorporate information in “<info>” to briefly describe the time series shown in the
image.
<info>{intro}</info>

Stage-2
Based on the provided time series image, along with the information in the “<info>” and
“<description>” tags, please write a Python function “generate_series()” that returns the time
series as a NumPy array.
<info>{intro}</info>
<description>{description}</description>
Put your code in this format:
‘‘‘python
def generate_series():
# your generation code here
‘‘‘

Figure 12: Two-stage knowledge distillation prompt for time series reconstruction from OpenAI
o4-mini. In Stage 1, we provide the time series image and metadata (domain and summary statistics).
In Stage 2, we augment the prompt with the description obtained in the previous round and additional
information, prompting the LLM to return reconstruction code in a Python function.
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Instruction of Time Series Reconstruction

For the provided time series image and the information in "<info>", please first describe it. Then,
based on your understanding, write a Python function "generate_series()" that returns the time
series as a NumPy array.
<info> This is a synthetic time series. Please reconstruct it based on the features you observe,
such as periodicity, peaks and valleys, trends, and noise. Length: 825, max: 1390.2, min: -313.0,
mean: 516.2 </info>
Put your description in this format:
<description> ... </description>
Put your code in this format:
‘‘‘python
def generate_series():
# your code here
‘‘‘

Case Study: Output of Time Series Reconstruction

<description> The series exhibits about four large-scale, low-frequency cycles over its 825-step
span, marked by peaks roughly at steps 150, 310, 490, and 685 and troughs around steps 70,
240, 415, and 605. Cycle durations appear non-uniform but range on the order of 110–160
steps between peaks, yielding ⇠ 2 cycles - 1/2 cycles per 200-step interval. Superimposed on
these oscillations is a clear upward drift: early troughs sit below –280 and peaks near 165,
whereas in the final cycles troughs fall around 620–690 and peaks creep above 1,260. Both
peaks and valleys trend steadily upward across the series, lifting both the baseline and the
amplitude of each cycle over time. </description>

‘‘‘python
import numpy as np
def generate_series():
""" Generate a synthetic time series of length 825 with 1) ⇠ 4 low-frequency oscillations 2) an
upward drift 3) growing amplitude Approximate min ⇡ �300, max ⇡ +1, 350, mean around
500 """
N = 825
t = np.arange(N)
# 1) Linear upward drift from about -200 up to ⇠ 1100
drift = np.linspace(-200, 1100, N)
# 2)Slowly increasing oscillation amplitude (small peaks at start, larger at end)
amp_start, amp_end = 120.0, 200.0
amplitude = np.linspace(amp_start, amp_end, N)
# 3) One large-frequency cycle period
period = 200.0
# Phase shift so that our biggest peaks sit at t ' 150, 310, 490, 685
phase_shift = np.pi/2 - 2*np.pi * 150/period
oscillation = amplitude * np.sin(2*np.pi*t/period + phase_shift)
# 4) Small “tremor” noise component
rng = np.random.RandomState(42)
noise = rng.normal(scale=20.0, size=N)
series = drift + oscillation + noise
# 5) Recenter to desired mean ' 516.2
series = series - series.mean() + 516.2
return series
‘‘‘

Figure 5: The above case study illustrates how the representation space trained with TS2Code
performs time series reconstruction along with task instructions. The outputs include a natural
language description and code that generate the reconstructed time series values from the image.
Green Text highlights clues on how the representation space understands time series patterns.
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Case Study: Output of Time Series Reconstruction

<description> The series exhibits about four large-scale, low-frequency cycles over its
825-step span, marked by peaks roughly at steps 150, 310, 490, and 685 and troughs around
steps 70, 240, 415, and 605. Cycle durations appear non-uniform but range on the order
of 110–160 steps between peaks, yielding ∼ 2 cycles - 1/2 cycles per 200-step interval.
Superimposed on these oscillations is a clear upward drift: early troughs sit below –280
and peaks near 165, whereas in the final cycles troughs fall around 620–690 and peaks creep
above 1,260. Both peaks and valleys trend steadily upward across the series, lifting both the
baseline and the amplitude of each cycle over time. </description>

‘‘‘python
import numpy as np
def generate_series():
""" Generate a synthetic time series of length 825 with 1) ∼ 4 low-frequency oscillations 2)
an upward drift 3) growing amplitude Approximate min ≈ −300, max ≈ +1, 350, mean
around 500 """
N = 825
t = np.arange(N)
# 1) Linear upward drift from about -200 up to ∼ 1100
drift = np.linspace(-200, 1100, N)
# 2)Slowly increasing oscillation amplitude (small peaks at start, larger at end)
amp_start, amp_end = 120.0, 200.0
amplitude = np.linspace(amp_start, amp_end, N)
# 3) One large-frequency cycle period
period = 200.0
# Phase shift so that our biggest peaks sit at t ≃ 150, 310, 490, 685
phase_shift = np.pi/2 - 2*np.pi * 150/period
oscillation = amplitude * np.sin(2*np.pi*t/period + phase_shift)
# 4) Small “tremor” noise component
rng = np.random.RandomState(42)
noise = rng.normal(scale=20.0, size=N)
series = drift + oscillation + noise
# 5) Recenter to desired mean ≃ 516.2
series = series - series.mean() + 516.2
return series
‘‘‘

Figure 13: The above case study illustrates how the representation space trained with TS2Code
performs time series reconstruction along with task instructions. The outputs include a natural
language description and code that generate the reconstructed time series values from the image.
Green Text highlights clues on how the representation space understands time series patterns.
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Instruction Time Series Forecasting

Please forecast the next 142 data points based on the 161-step historical time series in the image
and the information provided in <info>. If <info> does not contain signals about future changes,
please base your prediction on the historical pattern. Put your prediction in <prediction>, and
write a Python function generate_series() that returns your predicted future series as a NumPy
array.
<info> This is just a synthetic time series. Historical Length: 161. The last value in history:
2340.2. Future Length: 142. </info>
Put your prediction in:
<prediction>...</prediction>
Put your code in:
‘‘‘python
def generate_series():
# your code here
‘‘‘

Case Study: Code-Based Time Series Forecasting

<prediction>
We project that the next ⇡ 142 points will continue the gentle rising trend seen in the first 161
observations, lifting the series from about 2340 at the first forecast step up to roughly 2800 by
the last forecast step, while super-imposing the roughly 30-step sinusoidal cycle (amplitude
⇡ 250) and small Gaussian noise (� ⇡ 50). Concretely, if t is the total time index (t = 0 . . . 161
historical, t = 161 . . . 299 future), our forecast is
yt ⇡ 2340.2 + (2800 � 2340.2)/161 · t + 250 · sin[2⇡ · (t � 30)/30] + ✏t
with ✏t ⇠ N(0, 502).
</prediction>
‘‘‘python
import numpy as np
def generate_series():
"""Generate the next 142 points of the synthetic time series by continuing the trend and repeating
the same 30-step seasonal cycle from the history. """
N = 142
# time index for the future points
t = np.arange(N)
# end-values at the first and last forecast steps
y0 = 2340.2
y_end = 2800.0
# build the linear trend: from 2340.2 to 2800 over N-1 steps
trend_slope = (y_end - y0) / (N - 1)
trend = y0 + trend_slope * t
# seasonal component: base amplitude 250, period 30, phase shifted
seasonal = 250.0 * np.sin(2.0 * np.pi * (t + 30.0) / 30.0)
# small gaussian “noise” � ⇡ 50
# the following produces increments of approximately 0 mean,� ⇡ 50
noise = np.random.default_rng(1234).normal(loc=0.0, scale=50.0, size=N)
series = trend + seasonal + noise
return series
‘‘‘

Figure 6: The above case study illustrates how the representation space trained with TS2Code
performs time series forecasting. The outputs include a natural language description of the forecasting
process enclosed in "<prediction>" and code that generates the predicted time series values. Green
Text highlights some of the reasoning steps taken by the language model, indicating how it uses
code to perform time series forecasting. While Red Text marks inconsistencies between the natural
language description and the code, which represent limitations of TS2Code that we aim to address in
future work.
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Case Study: Code-Based Time Series Forecasting

<prediction>
We project that the next ≈ 142 points will continue the gentle rising trend seen in the first
161 observations, lifting the series from about 2340 at the first forecast step up to roughly
2800 by the last forecast step, while super-imposing the roughly 30-step sinusoidal cycle
(amplitude ≈ 250) and small Gaussian noise (σ ≈ 50). Concretely, if t is the total time index
(t = 0 . . . 161 historical, t = 161 . . . 299 future), our forecast is
yt ≈ 2340.2 + (2800− 2340.2)/161 · t+ 250 · sin[2π · (t− 30)/30] + ϵt
with ϵt ∼ N(0, 502).
</prediction>
‘‘‘python
import numpy as np
def generate_series():
"""Generate the next 142 points of the synthetic time series by continuing the trend and
repeating the same 30-step seasonal cycle from the history. """
N = 142
# time index for the future points
t = np.arange(N)
# end-values at the first and last forecast steps
y0 = 2340.2
y_end = 2800.0
# build the linear trend: from 2340.2 to 2800 over N-1 steps
trend_slope = (y_end - y0) / (N - 1)
trend = y0 + trend_slope * t
# seasonal component: base amplitude 250, period 30, phase shifted
seasonal = 250.0 * np.sin(2.0 * np.pi * (t + 30.0) / 30.0)
# small gaussian “noise” σ ≈ 50
# the following produces increments of approximately 0 mean,σ ≈ 50
noise = np.random.default_rng(1234).normal(loc=0.0, scale=50.0, size=N)
series = trend + seasonal + noise
return series
‘‘‘

Figure 14: The above case study illustrates how the representation space trained with TS2Code
performs time series forecasting along with task instructions (black indicates the input historical
time series, and blue denotes the portion to be predicted). The outputs include a natural language
description of the forecasting process enclosed in "<prediction>" and code that generates the predicted
time series values. Green Text highlights some of the reasoning steps taken by the language model,
indicating how it uses code to perform time series forecasting. While Red Text marks inconsistencies
between the natural language description and the code, which represent limitations of TS2Code that
we aim to address in future work.
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Case Study: Reconstructing Time Series by Reading and Inserting Key Points

<description>
The 976–step series is dominated by about four large-scale oscillations whose lengths slowly
drift upward. Key peaks occur near steps 97, 331, 592 and 815, with corresponding lows
around 217, 458, 715 and 928, . . . . so beyond the oscillation there is an overall rising trend.
</description>
‘‘‘python
import numpy as np
def generate_series():
"""
Generate a 976-step time series exhibiting 4 broad oscillations with slowly widening period,
an upward drift, a rising baseline, and small-scale irregularity plus noise. Returns ——- series
: np.ndarray, shape (976,) The synthetic time series.
"""
N = 976
t = np.arange(N)
# Key (index, value) pairs: the major peaks and valleys
key_idx = np.array([0, 97, 217, 331, 458, 592, 715, 815, 928, 975])
key_val = np.array([-850, -265, -536, 307, -525, 516, -28, 795, -177, 450])
# 1) Baseline by linear interpolation through these knots
baseline = np.interp(t, key_idx, key_val)
# 2) Slowly increasing period: from 228 steps up to 297
period = 228 + (t / (N - 1)) * 70 # 70 steps worth of period drift
freq = 2 * np.pi / period
# 3) Build the core sine-wave oscillation
# we choose a cosine so we get peaks at the prescribed t_peak
phase = 2 * np.pi * (t - 97) / 228.0
oscillation = np.cos(phase)
# 4) Add some extra small-scale “jitter” / noise
noise = np.random.normal(loc=0.0, scale=10.0, size=N)
# Combine
series = baseline + oscillation * 30 + noise
return series
‘‘‘
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Figure 15: Case A illustrates an example of “Reconstructing Time Series by Reading Key Points.”
Instead of understanding patterns in the time series—such as periodicity or fluctuations—to generate
the series, the language model reads key points from the time series image and embeds them directly
into the code for reconstruction. Although this approach yields relatively high reconstruction accuracy,
the evaluation in Section 5 shows that it does not improve time series understanding. The Green
Text indicates the reasoning process of a language model reconstructing by reading key points into
the code, while the Green Line in the figure shows the reconstructed time series.
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Instruction of Time Series Forecasting Distillation

You are required to complete the following task from the perspective of forecasting a future
time series.
Please forecast the future {fut_len} data points (In the future time series image) based on
the {his_len}-step historical time series image (In the history time series image) and the
information provided in <info>. Finally, write a Python function generate_series() that returns
the predicted future series as a NumPy array.

Note that when describing your prediction, assume you have not seen the future time
series image. However, when making the actual prediction and writing the code, you may
refer to the true future values to improve your accuracy.
{info}
Put your prediction in:
<prediction> ... </prediction>
Put your code in this format:
‘‘‘python
def generate_series():
# your code here
‘‘‘

Figure 16: It illustrates the instruction for distilling time series forecasting warm-up data. Two images
are provided: the first shows the historical time series, and the second corresponds to the portion to be
forecast. The LLM is prompted to return prediction text descriptions and code in a predictive manner,
while the ground-truth time series image is used to improve the accuracy of the returned predictions.

A case study of Poor Group generation

<description>...</description>
‘‘‘python
import numpy as np
def generate_series():
""" Generate a synthetic 813-step time series that mimics the prescribed periodic oscillations,
rising trend, and noise. Returns ... """
np.random.seed(0) # Optional: for reproducibility
N = 813
x = np.arange(N)
# 1) Linear rising trend from -20 up to 680
trend = -20 + (460.0 / (N - 1)) * x
much cycles tech hints here fluently.
cyclist fluxy noncycle fixes fluv.
nonfix explicit reps not exact:
cycle word explicit:
just think align exact better fix fixcycles noncert exact digicalNon cycle?
system
template cycle noncastNonRollulativeNonFeb:
global better flu:
N fact fix cycles:
but nearer bettercycle hyporexlikely:
huge non
...
‘‘‘

Figure 17: This excerpt is a relatively high-scoring output case from poor group generation. Starting
from the Red Text, the LLM begins to produce random content without returning a valid time series.
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(a) Case study of Noised-Pattern time series forecasting. Red Line represents the predictions
performance of TSC7B+W+RLQ1 .

(b) Case study of Clean-Pattern time series forecasting. Red Line represents the predictions
performance of TSC7B+W+RLQ1 .

Figure 18: (a) is the Noised- and (b) is the Clean-Pattern cases of time series forecasting on
TSC7B+W+RLQ1

, TimesFM, Chronos (Large), and ARIMA.
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