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ABSTRACT

It has recently been argued that AI models’ representations are becoming aligned
as their scale and performance increase. Empirical analyses have been designed to
support this idea and conjecture the possible alignment of different representations
toward a shared statistical model of reality. In this paper, we propose a learning-
theoretic perspective to representation alignment. First, we review and connect
different notions of alignment based on metric, probabilistic, and spectral ideas.
Then, we focus on stitching, a particular approach to understanding the interplay
between different representations in the context of a task. Our main contribution
here is relating properties of stitching to the kernel alignment of the underlying
representation. Our results can be seen as a first step toward casting representation
alignment as a learning-theoretic problem.

1 INTRODUCTION

In recent years, as AI systems have grown in scale and performance, attention has moved towards
universal models that share architecture across modalities. Examples of such systems include CLIP
(Radford et al., 2021), VinVL (Zhang et al., 2021), FLAVA (Singh et al., 2022), OpenAI’s GPT-4
(OpenAI, 2023), and Google’s Gemini (Google, 2023). These models are trained on diverse datasets
containing both images and text and yield embeddings that can be used for downstream tasks in
either modality or for tasks that require both modalities. The emergence of this new class of multi-
modal models poses interesting questions regarding alignment and the trade-offs between unimodal
and multimodal modeling. While multimodal models may provide access to greater scale through
dataset size and computational efficiency, to what extent could the alignment of representations
across modalities become a bottleneck? How well do features learned from different modalities
correspond to each other? How do we mathematically measure and evaluate this alignment and
feature learning across modalities?

Regarding trends in alignment, Huh et al. (2024) observed that as the scale and performance of deep
networks increases the models’ representations align and conjectured that the limiting representation
accurately describe reality - known as Platonic representation hypothesis. The analysis also suggests
that alignment is correlated with performance, thus ensuring features from different modalities are
aligned in a meaningful way might improve models’ generalization ability. However, alignment
across modalities has not yet been evaluated in interpretable units and we are missing information-
theoretic population guarantees of alignment under realistic assumptions.

One way to measure alignment is by kernel alignment, introduced by Cristianini et al. (2001), which
evaluates the correlation of two kernel matrices K1,n,K2,n through frobenius norms

Â(K1,n,K2,n) =
⟨K1,n,K2,n⟩F√

⟨K1,n,K1,n⟩F ⟨K2,n,K2,n⟩F
.

Following this direction, methods like Centered Kernel Alignment (CKA) (Kornblith et al., 2019)
and Singular Vector Canonical Correlation Analysis (SVCCA) (Raghu et al., 2017) were developed
to compare learned representations. Another class of metrics come from independence testing,
including the Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005a) and mutual
information (MI) (Hjelm et al., 2019). However, the relationships among these and other methods
for measuring alignment remain unclear.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Reality
(Ξ, ξ)

Objects/data
(X1, µ1)

Objects/data
(X2, µ2)

Representation
(Z1, λ1)

Representation
(Z2, λ2)

Output
(Y1, ν1)

Output
(Y2, ν2)

m1 m2

f1 f2

g1 g2

s1,2

s2,1

h1 h2

Figure 1: Diagram illustrating the process of multi-modal learning. It contains spaces and measures
of reality, objects/data, representation, and outputs as well as the functions connecting them. The
detailed explanation of these symbols is in Section 2.

To quantify alignment of representation conditioned on a task, we can use the stitching method (Lenc
& Vedaldi, 2015). Bansal et al. (2021) revisited the technique and used it to highlight that good
models trained on different objectives (supervised vs self-supervised) have similar representations.
By asking how well a representation plugs into another model, stitching gives us a more interpretable
measure of alignment. To describe the setup, we use h1,2 := g2 ◦ s1,2 ◦ f1 to represent the function
after stitching from model 1 to model 2 (Figure 1 gives a detailed illustration of the whole process).
Here gq and fq are parts of model Hq : Xq → Yq with q = 1, 2, and s1,2 is the stitcher. We consider
the generalization error after stitching between two models:

R(g2 ◦ s1,2 ◦ f1) = E [ℓ(h1,2(x), y)] .

We can use the risk of the stitched model in excess of the risk of model 2

min
s1,2

R(h1,2)− min
h2∈H2

R(h2)

to quantify the impact of using different representations, fixing g2.

In this paper, we aim to formalize and refine some of these questions, and our contributions are
summarized as follows:

(a) We compile different definitions of alignment from various communities, demonstrate their
connections, and give spectral interpretations.

• Starting from the empirical Kernel Alignment (KA), we reformulate empirical KA and pop-
ulation version of KA using feature/representation maps, operators in Reproducing Kernel
Hilbert Space (RKHS), and spectral interpretation. In addition, we discuss the statistical
properties of KA.

• We integrate various notions of alignment, ranging from kernel alignment in independence
testing and learning theory to measure and metric alignment, and demonstrate their relation-
ships and correlations. This comprehensive exploration provides a deeper understanding for
practical applications.

(b) We provide the generalization error bound of linear stitching with the kernel alignment of the
underlying representation.

• A linear gq results in the stitching error being equivalent to the risk from the model Hq .
This occurs, for example, when Hq represents RKHSs or neural networks, then gq is a linear
combination of features in RKHSs or the output linear layers of neural networks.
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• The excess stitching risk can be bounded by kernel alignment when gq are nonlinear functions
with the Lipschitz property. A typical scenario is stitching across the intermediate layers of
neural networks.

• For models involving several compositions such as deep networks, if we stitch from a layer
further from the output to a layer closer to the output (stitching forward) and gq is Lipschitz,
the difference in risk can be bounded by stitching.

Structure of the paper In the following of this paper, we introduce the problem settings and some
notations in Section 2. Different definitions for representation alignment from different communities
and the relationship among them will be derived in Section 3. Section 4 demonstrates that the
stitching error could be bounded by the kernel alignment metric. And the conclusion is given in
Section 5.

2 PRELIMINARIES

Empirical results demonstrate that well-aligned features significantly enhance task performance.
However, there is a pressing need for more rigorous mathematical tools to formalize and measure
these concepts in uni/multi-modal settings. In this section, we provide a mathematical formalization
of uni/ multi-modal learning, introducing key notations to facilitate a deeper understanding of the
underlying processes.

Setup Without loss of generality, we focus on the case of two modalities, as illustrated in Figure 1,
which outlines the corresponding process. For q = 1, 2, let (Xq, µq), (Zq, λq) be probability spaces,
and Fq be the spaces of function fq : Xq → Zq = Rdq . We think of Xq as spaces of objects or data,
Fq as spaces of representation or embedding maps, and Zq as the spaces of representations. We
relate µq, λq by assuming λq = (fq)#µq

1. We also relate µ1, µ2 by assuming these are marginals
of a probability space (X , µ) with X = X1 ×X2, µq = (πq)#(µ) and πq(X ) = Xq is the projection
map. Moreover, let (Yq, νq) be the task-based output spaces and Gq = {gq : Zq → Yq} with
νq = (gq)#λq . Each overall model is generated by Hq := {hq : Xq → Yq, hq = gq ◦ fq}.

Reality We may want to assume there exists a space of abstract objects, called reality space, and
denoted by Ξ, which generates data we observe as different modalities through maps mq : Ξ → Xq

which may be bijective, lossy, or stochastic. We may model “reality” as a probability space (Ξ, ξ).
Reality can also be chosen to be the joint distribution on modalities with mq = πq .

Uni/Multi-modal We may want to consider the case of a single modality where there is only one
space of data or multiple modalities where there exist many. We say two modes are equal if π1 = π2.

Representation alignment A representation mapping is a function f : X → Rd that assigns a la-
tent feature vector in Rd to each input in the data domain X . Alignment provides a metric to evaluate
how well the latent feature spaces obtained from different representation mappings, whether from
uni-modal or multi-modal data, are aligned or similar. Commonly used metrics for measuring align-
ment include those derived from kernel alignment, contrastive learning, mutual information, canon-
ical correlation analysis, and cross-modal mechanisms, among others. However, they are introduced
in a very fragmented manner, without an integrated or unified concept. A detailed introduction and
analysis of these methods will be provided in Section 3.

3 MEASURES OF REPRESENTATION ALIGNMENT

In this section, we describe various definitions of representation alignment from different commu-
nities and demonstrate the relationship among them. We begin with a detailed presentation of em-
pirical and population Kernel Alignment and its statistical properties. We then cover other notions
of alignment coming from metrics, independence testing, and probability measures, as well as their
spectral interpretations. We draw connections to kernel alignment which emerges as a central object.

1(fq)#µq is the pushfoward measure of µq defined as (fq)#µq(A) = µq(f
−1
q (A)). In terms of random

variables Xq, Zq with measures µq, λq this is equivalent to fq(Xq) and Zq being equal in law.
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3.1 KERNEL ALIGNMENT (KA)

Based on the work of Cristianini et al. (2001), who introduced the definition of kernel alignment
using empirical kernel matrices, we propose different perspectives to understand kernel alignment
in both empirical and population settings, and derive its statistical properties accordingly.

A kernel K : X × X → R characterizes how a representation measures distance or similarity be-
tween objects. Specifically, K(x, x′) = ⟨f(x), f(x′)⟩, where ⟨·, ·⟩ denotes the inner product, and
x, x′ ∈ X . For multi-modal case, Kq(x, x

′) = K̃q(πq(x), πq(x
′)) = K̃q(xq, x

′
q). In other words,

Kq acts on x = (x1, x2) first by a projection πq(x) = xq , and we drop the tilde for notational sim-
plicity. In the following, we denote the subscript xq implying the q-th modality and the superscript
xi meaning i-th sample.

3.1.1 EMPIRICAL KA

From Cristianini et al. (2001), we adopt the following measure for kernel alignment for kernel matrix
Kq,n ∈ Rn×n with samples {xi}ni=1 drawing according to the probability measure µ

Â(K1,n,K2,n) =
⟨K1,n,K2,n⟩F√

⟨K1,n,K1,n⟩F ⟨K2,n,K2,n⟩F
,

where ⟨K1,n,K2,n⟩F =
∑n

i,j=1 K1,n(x
i, xj)K2,n(x

i, xj). One modification is to first demean the
kernel by applying a matrix H = In − 1

n1n1
T
n on the left and right of each Kq,n with I ∈ Rn×n

being the identity matrix and 1n being the ones vectors. This results in Centered Kernel Alignment
(CKA).

Representation interpretation of KA Denote the empirical cross-covariance matrix between the
representation maps f1 and f2 as Σ̂1,2 = En

[
f1(x)f2(x)

T
]
= 1

n

∑n
i=1 f1(x

i)f2(x
i)T ∈ Rd1×d2 .

Then the empirical KA will become

Â(K1,n,K2,n) =
∥Σ̂1,2∥2F

∥Σ̂1,1∥F ∥Σ̂2,2∥F
. (1)

RKHS operator interpretation of KA Inspired by the equation 1, we construct a consistent def-
inition of Kernel Alignment using the tools of RKHS, where it suffices to consider output in one
dimension2. Consider RKHS Hq containing functions hq : Xq → R with kernel Kq . Given eval-
uation (sampling) operators Ŝq : Hq → Rn defined by (Ŝqhq)

i = hq(x
i
q) = ⟨hq,Kq,xi

q
⟩. It is

not hard to check that the adjoint operator Ŝ∗
q : Rn → Hq can be written as Ŝ∗

q (w
1, . . . , wn) =∑n

i=1 w
iKq(x

i
q, ·) and the empirical kernels can be written as Kq,n/n = ŜqŜ

∗
q . Then the empirical

KA may be written as

Â(K1,n,K2,n) =
⟨Ŝ1Ŝ

∗
1 , Ŝ2Ŝ

∗
2 ⟩F

∥Ŝ1Ŝ∗
1∥F ∥Ŝ2Ŝ∗

2∥F
=

∥Ŝ∗
1 Ŝ2∥2F

∥Ŝ∗
1 Ŝ1∥F ∥Ŝ∗

2 Ŝ2∥F
,

where Ŝ∗
1 Ŝ2 = 1

n

∑
i K1,xi

1
⊗K2,xi

2
and it coincides with the literature about learning theory with

RKHS.

3.1.2 POPULATION VERSION OF KA

For the population setting (infinite data limit of the evaluation operator) in L2, the restriction operator
Sq : Hq → L2(Xq, µ) is defined by Sqhq(x) = ⟨hq,Kq(x, ·)⟩Kq

and its adjoint S∗
q : L2(Xq, µ) →

Hq is given by S∗
q g =

∫
X g(x)Kq(x, ·)dx. Then the integral operator LKq

= SqS
∗
q : L2(Xq, µ) →

L2(Xq, µ) is given by LKq
g(x) =

∫
X Kq(x, x

′)g(x′)dµ(x′) and the operator Σq = S∗
qSq : Hq →

2We can generalize the definition to vector-valued functions by recasting hq : Xq → Rtq as hq : Xq ×
[tq] → R i.e. with kernels of the form Kq(xq, i, x

′
q, i

′) for integers 1 ≤ i, i′ ≤ tq .
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Hq can be written as Σq =
∫
X Kq(x, ·) ⊗ Kq(x, ·)dµ(x). Similarly, the population KA between

two kernels K1,K2 can be defined by

A(K1,K2) =
Tr (LK1

LK2
)√

Tr
(
L2
K1

)
Tr

(
L2
K2

) ,
where the summation in ⟨K1,n,K2,n⟩F becomes the integration as

Tr (LK1
LK2

) =

∫
dµ(x1, x2)dµ(x

′
1, x

′
2)K1(x1, x

′
1)K2(x2, x

′
2).

If Kq(x, x
′) = ⟨fq(x), fq(x′)⟩, then S∗

qSq is a projection onto the span of coordinates of fq . The
population version of CKA is KA with Sq replaced with HSq .

Spectral interpretation of KA If K is a Mercer kernel, we can decompose K =
∑

i ηiϕi ⊗ ϕi,
where ηi are eigenvalues and ϕi are the eigenfunctions of the integral operator LK . Let fi =

√
ηiϕi

be the features, and let target h =
∑

i wifi, then

A(K,h⊗ h) =

∑
i η

2
iw

2
i√∑

i η
2
i

∑
i ηiw

2
i

.

Similarly, given two kernels Kq =
∑

i ηq,iϕq,i ⊗ ϕq,i with fq,i =
√
ηq,iϕq,i, we have

A(K1,K2) =

∑
i,j⟨f1,i, f2,j⟩√∑
i η

2
1,i

∑
i η

2
2,i

=

∑
i,j η1,iη2,j⟨ϕ1,i, ϕ2,j⟩2√∑

i η
2
1,i

∑
i η

2
2,i

.

Letting [C1,2]i,j = ⟨ϕ1,i, ϕ2,j⟩ and η̂i = ηi/∥ηi∥, we note this may also be written as

A(K1,K2) = Tr[C1,2diag(η̂2)CT
1,2diag(η̂1)] = ⟨η̂1, (C1,2 ⊙ C1,2)η̂2⟩ = ⟨η̂1η̂T2 , C1,2 ⊙ C1,2⟩.

It offers a perspective on understanding kernel alignment through the similarity between the eigen-
functions of two integral operators. In particular, if η1, η2 are constant, then A(K1,K2) ∝ ∥C1,2∥2,
and if C1,2 = I then A(K1,K2) = ⟨η̂1, η̂2⟩.

3.1.3 STATISTICAL PROPERTIES OF KA.

Having introduced both the empirical and population versions of KA, we now explore its statistical
properties.

Cristianini et al. (2006) shows that empirical KA concentrates to its expectation by McDiarmid’s
inequality and gives an O(1/

√
n) bound on the difference to population KA after adjusting for

diagonal terms which contribute O(1/n).

We state a version of the result below and provide a basic proof in the Appendix 6.3.

Lemma 1. Let K1,K2 be two kernels for different representations and K̂1,n, K̂2,n ∈ Rn×n be
kernel matrices generated by n samples, then with probability at least 1− δ, we have

Â(K1,n,K2,n)−A(K1,K2) ≤
√
(32/n) log(2/δ)

3.2 ALIGNMENT FROM DISTANCE ALIGNMENT

Distance alignment (DA) Given distances dq : Xq×Xq → R, then we can compare the difference
of two spaces by

D(d1, d2) =

∫
(d21(x, x

′)− d22(x, x
′))2dµ(x)dµ(x′)

Equivalence between KA and DA Suppose d2q = 2(1−Kq) and Kq(xq, xq) = 1 which emerge
natural from assuming Kq(x, x

′) = ⟨fq(x), fq(x′)⟩, ∥fq(x)∥ = 1, and d2q(xq, x
′
q) = ∥fq(xq) −

fq(x
′
q)∥2 (Kq is representation onto ball). Also assume ∥Kq∥ = C. Then D(d1, d2) = 8C(1 −

A(K1,K2)) hence the two measures are equivalent.
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3.3 ALIGNMENT FROM INDEPENDENCE TESTING

Independence testing is a statistical method used to assess the degree of dependence between vari-
ables. It often involves examining the covariance and correlations between random variables and
can also be applied to measure kernel-based independence. In this part, we will introduce some
concepts of independence testing in the context of alignment and explore its connections with the
previously discussed kernel alignment.

Hilbert-Schmidt Independence Criterion (HSIC) The cross-covariance operator for two func-
tions (Baker, 1973) is given by C1,2[h1, h2] = Ex1,x2

[(h1(x1) − Ex1
(h1(x1))(h2(x2) −

Ex2
(h2(x2))] for h1 ∈ H1, h2 ∈ H2. From Gretton et al. (2005a)

HSIC(µ,H1,H2) = ∥C1,2∥2HS ,

where µ is the joint distribution of X1 and X2. We can also note that

HSIC(µ,H1,H2) = ∥E [Kx1
⊗Kx2

] ∥2 = ∥Σ1,2∥2HS .

Hence HSIC is effectively and unnormalized version of CKA, or, more explicitly,

CKA(K1,K2) =
HSIC(H1,H2)√

HSIC(H1,H1)HSIC(H2,H2)
.

Statistical property of HSIC Gretton et al. (2005b) shows that, excluding the O(n−1) diago-
nal bias, centered empirical HSIC concentrates to population and Song et al. (2012) provides an
unbiased estimator of HSIC and shows its concentration, both by U-statistic arguments.
Remark 1 (Other notions from independence testing). There are other concepts of independence test-
ing for alignment such us Constrained Covariance (COCO) (Gretton et al., 2005a), Kernel Canonical
Correlation (KCC), Kernel Mutual Information (KMI) (Bach & Jordan, 2002). They are also related
to kernel alignment and more detailed explanations can be found in Appendix 6.2.

3.4 ALIGNMENT FROM MEASURE ALIGNMENT

There are several methods for comparing measures on the same space. One can then quantify inde-
pendence by comparing a joint measure with the product of its marginals. This principle allows us
to interpret HSIC as test for independence given a two function classes.

MMD to HSIC Following Gretton et al. (2012), we start by introducing Maximum Mean Dis-
crepancy (MMD). Let H be a class of functions h : X → R and let µq be different measures on X .
Then, letting xq ∼ µq

MMD(µ1, µ2;H) = sup
h∈H

E [h(x1)− h(x2)] .

Let H be an RKHS and restrict to ball of radius 1, then

MMD(µ1, µ2;H)2 = ∥E [Kx1 −Kx2 ] ∥2H = E [K(x1, x
′
1) +K(x2, x

′
2)− 2K(x1, x2)] .

Now we construct a measure of independence by applying MMD on µ versus µ1 ⊗ µ2 where H is
replaced with H1 ×H2 and get HSIC

MMD(µ, µ1 ⊗ µ2;H1 ⊗H2)
2 = HSIC(µ,H1,H2) = ∥Σ1,2∥2 =

∑
i

ρ2i

where
{
ρ2i
}

is the spectrum of Σ1,2Σ2,1.

We can also use tests of independence that don’t explicitly depend on a function class, such as
mutual information, by letting µ be a Gaussian Process measure on two functions in their respective
RKHS with covariance defined by their kernels.

6
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KL Divergence to Mutual Information Given KL divergence

DKL(µ||ν) =
∫

dµ(x) log

(
dµ

dν
(x)

)
,

we can define mutual information as

I(µ) = DKL(µ||µ1⊗µ2) =

∫
dµ(x1, x2) log

(
µ(x1, x2)

µ1(x1)µ2(x2)

)
=

∫
dµ(x1, x2) log

(
µ(x2|x1)

µ2(x2)

)
.

For multivariate Gaussian µ, with marginals µq = N (0,Σq),

MI(ν) =
1

2
log

(
|Σ1||Σ2|

|Σ|

)
=

1

2
log

(
|Σ2|

|Σ2 − Σ2,1Σ
−1
1 Σ1,2|

)
.

For the simplest case of Σq = I , then this simplifies to

MI(ν) = − 1
2 log(|I − Σ1,2Σ2,1|) = − 1

2

∑
i

log(1− ρ2i ).

Wasserstein distance For the Wasserstein distance

W2(µ, ν) = inf{E(x,y)∼γ

[
∥x− y∥2

]
: γ1 = µ, γ2 = ν},

applying µ and µ1 ⊗ µ2 to measure independence, we have

W2(µ, µ1 ⊗ µ2) = inf{E((x1,x2),(x′
1,x

′
2))∼γ

[
∥x1 − x′

1∥2 + ∥x2 − x′
2∥2

]
: γ1 = µ, γ2 = µ1 ⊗ µ2}.

For mean zero Gaussians

W2(µ1, µ2) = Tr[Σ1 +Σ2 − 2(Σ
1/2
1 Σ2Σ

1/2
1 )1/2]

and as a measure of independence with Σq = I

W2(µ, µ1 ⊗ µ2) = 2Tr[I − (I − Σ1,2Σ2,1)
1/2] = 2

∑
i

(
1−

√
1− ρ2i

)
.

In summary, we’ve introduced several popular measures for alignment between two representations
and related them via spectral decompositions to a central notion of kernel alignment generalized for
RKHS. Similar notions can be used to measure alignment between a model and a task to estimate
generalization error. Cristianini et al. (2001; 2006); Cortes et al. (2012) introduced Kernel Task
Alignment (KTA), A(K, yyT ) , to bound generalization error and generate predictors. Similarly,
several works (Atanasov et al., 2022; Paccolat et al., 2021; Kopitkov & Indelman, 2020; Fort et al.,
2020; Shan & Bordelon, 2021) used KTA to study feature learning and Neural Tangent Kernel
(NTK) evolution. Related ideas appear in Kernel Alignment Risk Estimator (KARE) (Jacot et al.,
2020) and Spectral Task-Model Alignment (Canatar et al., 2021). Additionally, the source condition
assumption in kernel ridge regression generalization error (Rosasco et al., 2005) can be linked to
spectral task alignment. More details are provided in the Appendix 6.1.

4 STITCHING: TASK AWARE REPRESENTATION ALIGNMENT

Building on our understanding of kernel alignment—a fundamental metric for evaluating the align-
ment of representations detailed in the previous section—we now explore stitching, a task-aware
concept of alignment. Stitching involves combining layers or components from various models to
create a new model which can be used to understand of how different parts contribute to overall per-
formance or to compare the learned features for a task. In this section, we mathematically formulate
this process and provide some intuition by demonstrating that the generalization error after stitching
can be bounded by kernel alignment using spectral arguments.
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4.1 STITCHING ERROR BETWEEN MODELS

In the following we focus on stitching between two modalities. Figure 1 provides a detailed illus-
tration of the functions, spaces, and compositions in question. Denote the function space for task
learning as Hq := {hq : Xq → Yq|hq = gq ◦ fq, gq ∈ Gq, fq ∈ Fq} with q = 1, 2. Here
Fq : Xq → Zq and Gq : Zq → Yq . Denote S1,2 := {s1,2 : Z1 → Z2} as the stitching map from Z1

to Z2 and S2,1 := {s2,1 : Z2 → Z1} reversely. Define the risk concerning the least squares loss as

Rq(hq) = E
[
∥hq(x)− y∥2

]
=

∫
Xq×Yq

∥hq(x)− y∥2dρq(x, y), hq ∈ Hq.

Here, ρq(x, y) is the joint distribution of Xq and Yq and we use the notation ∥ · ∥ to represent ∥ · ∥Yq

associated with space Yq for simplicity, i.e. absolute value for Yq = R, l2 norm for Yq = Rtq and
L2 norm for Yq being the function space. For hq ∈ Hq , denote any minimizer of R(hq) among Hq

as h∗
q , that is,

Rq(Hq) := Rq(h
∗
q) = min

h∈Hq

Rq(h), q = 1, 2.

Moreover, denote the function spaces generated after stitching from Z1 to Z2 as

H1,2 = {h1,2 = g2 ◦ s1,2 ◦ f1 : s1,2 ∈ S1,2}

and conversely as H2,1.

Lenc & Vedaldi (2015) proposed to describe the similarity between two representations by measur-
ing how usable a representation f1 is when stitching with g2 through a function s1,2 : Z1 → Z2 or
oppositely through s2,1 ∈ S2,1. To quantify the similarity, we provide a detailed definition of the
stitching error.

Stitching error Define the stitching error as

Rstitch
1,2 (s1,2) := R2(g2 ◦ s1,2 ◦ f1) = R2(h1,2)

and the minimum as
Rstitch

1,2 (S1,2) := min
s1,2∈S1,2

R2(h1,2) = R2(H1,2).

To quantify the difference in the use of stitching, we define the excess stitching risk as

Rstitch
1,2 (S1,2)−R2(H2).

Note that Rstitch
1,2 (S1,2) − R2(H2) quantifies a difference in use of representation (fix g2, compare

s1,2◦f1 vs f2), while if Y1 = Y2 then Rstitch
1,2 (S1,2)−R1(H1) quantifies difference between g2◦s1,2

and g1 (fix f1).

The functions in S1,2 are typically simple maps such as linear layers or convolutions of size one, to
avoid introducing any learning, as emphasized in Bansal et al. (2021). The aim is to measure the
compatibility of two given representations without fitting a representation to another. One perspec-
tive inspired by Lenc & Vedaldi (2015) is that we should not penalize certain symmetries, such as
rotations, scaling, or translations, which do not alter the information content of the representations.
Furthermore, the amount of unwanted learning may be quantified by stitching from a randomly
initialized network.

4.2 STITCHING ERROR BOUNDS WITH KERNEL ALIGNMENT

In this section, we focus on a simplified setting where s1,2 : Z1 → Z2 is a linear stitching, that is,
s1,2(z1) = S1,2z1 with S1,2 ∈ Rd2×d1 , zq ∈ Rdq . Additionally, we assume Y1 = Rt1 ,Y2 = Rt2 .
In this section, we quantify the stitching error and excess stitching risk using kernel alignment and
provide a lower bound for the stitching error when stitching forward.

The following lemma shows that when Gq are linear, stitching error only measures the difference in
risk of H1 versus H2.
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Lemma 2. Suppose dim(Y1) = dim(Y2) = d and R1 = R2. Let gq ∈ Gq be linear with gq(zq) =
Wqzq and Wq ∈ Rd×dq . Let s1,2 : Z1 → Z2 be linear with s1,2(z1) = S1,2z1 and S1,2 ∈ Rd2×d1 .
Then Rstitch

1,2 (S1,2) = R1(H1).

Proof. For the linear case, there exists a vector Wq ∈ Rd×dq , such that gq(zq) = Wqzq, zq ∈ Rdq .
We can write the error of stitching as

Rstitch
1,2 (s1,2) = E

[
∥W2S1,2f1 − y∥2

]
= E

[
∥(W2S1,2 −W1)f1∥2

]
+ E

[
∥W1f1(x)− y∥2

]
= ∥W2S1,2 −W1∥2η1

+R1(h1),

where we used that for W1 to be optimal, we require ∂W1R1(h1) = E
[
(W1f1 − y)fT

1

]
= 0.

Minimizing with respect to S1,2 yields

Rstitch
1,2 (S1,2) = ∥Π⊥

2 W1∥2η1
+R1(H1),

where we use Π2 = I − (WT
2 diag(η1)W2)

†WT
2 diag(η1) to denote the residual of the generalized

η1-projection onto (column) span of W2. We note that in general, as long as d ≤ d2, we have
Rstitch

1,2 (S1,2) = R1(H1).

Remark 2. The lemma applies when Hq represents a neural network with Gq as the output linear
layer, as well as when Hq is an RKHS with a Mercer kernel and Gq is the linear map of representa-
tions 3.

The next theorem shows the case when Gq are nonlinear with the κ-Lipschitz property, ∥g(z) −
g(z′)∥ ≤ κ∥z − z′∥. One intermediate example is the stitching between the middle layers of neural
networks.
Theorem 1. Suppose g2 is κ2-Lipschitz. Again let s1,2 be linear, identified with matrix S1,2. With
the spectral interpretations of Σ1,2 = E

[
f1f

T
2

]
= diag(η1)1/2C1,2diag(η2)1/2 and Ã2 = ∥I∥η2 −

∥C1,2∥2η2
as Paragraph 3.1.2, we have

Rstitch
1,2 (S1,2) ≤ R2(H2) + κ2

2Ã2 + 2κ2(Ã2R2(H2))
1/2. (2)

Proof. Breaking Rstitch
1,2 (s1,2) into two parts and using Cauchy-Schwarz we get

E
[
∥g2(S1,2f1)(x)− y∥2

]
=E

[
∥(g2(S1,2f1)(x)− g2(f2)(x))− (y − g2(f2)(x))∥2

]
≤R2(h2) + E

[
∥g2(S1,2f1)(x)− g2(f2)(x)∥2

]
+ 2(E

[
∥g2(S1,2f1)(x)− g2(f2)(x)∥2

]
R2(h2))

1/2.

As g2 is κ2-Lipschitz, we can bound with the error from linearly regressing f2 on f1

E
[
∥g2(S1,2f1)(x)− g2(f2)(x)∥2

]
≤ κ2

2E
[
∥S1,2f1(x)− f2(x)∥2

]
= κ2

2(∥S1,2∥2η1
+ ∥I∥2η2

− 2⟨S1,2,Σ
T
1,2⟩)

with ∥M∥2η = ⟨M,Mdiag(η)⟩. Taking derivatives, we note that the minimizer of the RHS is S1,2 =

ΣT
1,2diag(η1)−1. Plugging in, the RHS reduces to κ2

2Ã2. Thus

Rstitch
1,2 (S1,2) ≤ Rstitch

1,2 (Σ1,2)

≤ R2(H2) + κ2
2Ã2 + 2κ2(Ã2R2(H2))

1/2.

3 More explicitly, if the RKHS kernel Kq is a sum of separable kernels, then by Mercer’s theorem we can
decompose it as Kq =

∑dq
ρ=1 ηq,ρϕq,ρ ⊗ ϕq,ρ where ηq,ρ ≥ 0 are the eigenvalues, and ϕq,ρ : RDq → Rdq are

the orthonormal eigenfunctions of the integral operator associated with the kernel Kq . Then any hq ∈ Hq can
be decomposed as hq = gq ◦ fq , where fq ∈ Fq is the feature map fq(Xq)ρ =

√
ηρϕq,ρ(Xq) and gq ∈ Gq is

linear gq(zq) = wq · zq .
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Remark 3. Note that the notion of alignment that appeared, namely ∥I∥2η2
− Ã2 =

∥C1,2∥2η2
= ∥C1,2diag(η2)∥2, is similar yet different from kernel alignment ∥Σ1,2∥2 =

∥diag(η1)1/2C1,2diag(η2)1/2∥2. In particular, the spectrum η1 is irrelevant for the bound, however
this does not hold if we add regularization to S1,2 by analogy to linear regression.
Remark 4 (alignment bounds excess stitching error). If two representations are similar in the align-
ment sense, they are also similar in the stitching sense, but the converse is not true. By loose analogy
to topology, this suggest kernel alignment is a stronger notion of similarity.

Excess stitching risk can also be used as an intermediate result to bound the difference in risk. Let
Y1 = Y2 and R1 = R2. To get lower bound for Rstitch

1,2 (S1,2) in a practical setting, we can assume
that S1,2 ◦ G2 ⊆ G1. For models involving several compositions such as deep networks, this can
occur given similar networks if we stitch from a layer further from the output to a layer closer to the
output (stitching forward, assuming layer indices are aligned at the end).
Lemma 3. Let Y1 = Y2 = Y and R1 = R2 = R. If S1,2 ◦ G2 ⊆ G1 then Rstitch

1,2 (S1,2) ≥ R1(H1).

The following theorem derives directly from equation 2 and Lemma 3.
Theorem 2. Let Y1 = Y2 and R1 = R2 = R. Let S1,2 ◦ G2 ⊆ G1 and let gq be κq-Lipschitz for
q = 1, 2. Then

R(H1)−R(H2) ≤ Rstitch
1,2 (S1,2)−R(H2) ≤ κ2

2Ã2 + 2κ2(Ã2R(H2))
1/2.

Remark 5. If we consider deep models and keep the H1,H2 the same but iterate over layers j
stitching forward, then

R(H1)−R(H2) ≤ min
j

{
(κ

(j)
2 )2Ã

(j)
2 + 2κ

(j)
2 (Ã

(j)
2 R(H2))

1/2
}
.

Alternatively, by making similar assumptions and swapping the index 1 ↔ 2, which requires G1 =
G2 up to a linear layer (due to the S1,2 ◦ G2 ⊆ G1 condition), we get

|R(H1)−R(H2)| ≤ max
i∈{1,2}

{
κ2
i Ãi + 2κi(ÃiR(Hq))

1/2
}
.

The above result can be stated informally as “alignment at similar depth (measured backward from
the output) bounds differences in risk”.

In arguing that kernel alignment bounds stitching error for Theorem 1, we made several simplifying
assumptions, which we now assess. Firstly, we restricted the stitching S1,2 to linear maps, based
on the transformations used in practice (Bansal et al., 2021; Csiszárik et al., 2021), and to preserve
the significance of the original representations. If we relax the assumption, we note that we would
get a similar result, with Ã2 = infs1,2∈S1,2 E[∥s1,2(f1(x))− f2(x)∥2]. Interestingly, for s1,2 to use
only information about the covariance of f1, f2, similarly to kernel alignment, s1,2 must be linear.
Furthermore, we note that for stitching classes that include all linear maps, the linear result holds.

5 CONCLUSION

In this paper, we review and compile several representation alignment metrics using definitions from
kernel alignment, distance alignment, and independence testing, demonstrating their equivalence
and correlations. Additionally, we introduce the concept of stitching mathematically, a technique
used in uni/multi-modal settings to measure alignment given a task. We further bound the stitching
error between different modalities and present a theoretical stitching error bound based on misalign-
ment error.

The results presented have several practical implications. First, we can build on the experiments
from Huh et al. (2024) which show evidence for the alignment of deep networks at large scale
using measures similar to kernel alignment. By connecting kernel alignment to stitching, our work
supports building universal models sharing architecture across modalities as scale increases. Second,
we can elucidate experiments from Bansal et al. (2021) which suggest stitching connectivity is a
property of SGD through works that argue feature learning under SGD can be modeled with adaptive
kernels Radhakrishnan et al. (2022) Atanasov et al. (2021).
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6 APPENDIX

6.1 ALIGNMENT TO TASK

Here we mention ideas of alignment between a representation and task used to estimate generaliza-
tion error and characterize spectral contributions to sample complexity.

Kernel alignment risk estimator (KARE) In Jacot et al. (2020) we have the following definition
for KARE which is an estimator for risk.

ρ(λ, yn,Kn) =
1
n ⟨(Kn/n+ λI)−2, yny

T
n ⟩

( 1nTr[(Kn/n+ λI)−1])2

This was also obtained in Golub et al. (1979), Wei et al. (2022), Craven & Wahba (1978).

Spectral task-model alignment From Canatar et al. (2021), we have a definition for the cumula-
tive power distribution which quantifies task-model alignment.

C(n) =

∑
i≤n ηiw

2
i∑

i ηiw
2
i

Here K =
∑

i ηiϕi ⊗ ϕi, ⟨ϕi, ϕj⟩ = δi,j , and target hµ =
∑

i wi
√
ηiϕi. C(n) can be interpreted

as fraction of variance of hµ explained by first n features. The faster C(n) goes to 1, the higher the
alignment.

Source Condition From Rosasco et al. (2005) we have bounds on generalization of kernel ridge
assuming some regularity of hµ, called source condition

hµ ∈ Ωr,R =
{
h ∈ L2(X, ρ) : h = Lr

Kv, ∥v∥K ≤ R
}

Assuming hµ =
∑

i wi
√
ηiϕi, then the statement can be rewritten as

∞∑
i=1

ηiw
2
i

η2ri
< ∞

Remark 6. KTA appears in several theoretical applications. Cristianini et al. (2001) bounds gener-
alization error of Parzen window classifier 1. Cristianini et al. (2006); Cortes et al. (2012) show that
there exist predictors for which kernel target alignment (KTA) A(K, yyT ) bounds risk.

h(x) =
Ex′,y′ [K(x, x′)y′]

Ex′,x [K(x, x′)2]
⇒ R(h) ≤ 2(1−A(K, yyT ))

Furthermore, several authors including Atanasov et al. (2022); Paccolat et al. (2021); Kopitkov &
Indelman (2020); Fort et al. (2020); Shan & Bordelon (2021) use KTA to study feature learning and
Neural Tangent Kernel evolution.

6.2 OTHER NOTIONS FOR ALIGNMENT FROM INDEPENDENCE TESTING

Constrained Covariance (COCO) Then Gretton et al. (2005a) proposed the concept of con-
strained covariance as the largest singular value of the cross-covariance operator,

COCO(µ,H1,H2) = sup{cov[h1(x1), h2(x2)] : h1 ∈ H1, h2 ∈ H2}

Kernel Canonical Correlation (KCC) From Bach & Jordan (2002)

KCC(µ,H1,H2, κ) = sup

{
cov[h1(x1), h2(x2)]

(var(h1(x1)) + κ∥h1∥2H1
)1/2(var(h2(x2)) + κ∥h2∥2H2

)1/2
: h1 ∈ H1, h2 ∈ H2

}

The next two are bounds on mutual information from correlation and covariance respectively
1Cortes et al. (2012) notes error in proof since implicitly assumes

maxx Ex′
[
K2(x, x′)

]
/Ex,x′

[
K2(x, x′)

]
= 1 making kernel constant. However proof can be saved

with an additional assumption.
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Kernel Mutual Information (KMI) From Bach & Jordan (2002)

KMI(H1,H2) = −1

2
log(|I − (κ1,nκ2,n)K1,nK2,n|)

where kernels are centered and κq,n = mini
∑

j Kq(xq,i, xq,j) but empirically κ = 1/n suffices.

6.3 ADDITIONAL PROOFS

Next, we provide the proof of Lemma 1.

Lemma 4. Assume |Kq(xq, x
′
q)| ≤ Cq . Let Â1,2(X) = Â1,2((x

1
1, x

1
2), . . . , (x

n
1 , x

n
2 )) =

1
n2 ⟨K1,K2⟩F . Let A1,2 = EÂ1,2, Â =

Â1,2√
Â1,1Â2,2

, and A =
A1,2√

A1,1A2,2

. Then with probability

at least 1− δ, and ϵ =
√
(32/n) log(2/δ), we have |Â− A| ≤ C(X)ϵ, where C(X) is non-trivial

function.

Proof. Let (xi
1
′, xi

2
′) = (xi

1, x
i
2) for all i = 1, . . . n except k. Then

Dij = K1(x
i
1, x

j
1)K2(x

i
2, x

j
2)−K1(x

i
1
′, xj

1
′)K2(x

i
2
′, xj

2
′) and note |Dij | ≤ 4C1C2. Then

|Â1,2(X)− Â1,2(X
′)| = n−2

2
∑
j ̸=i

|Dij |+ |Dii|

 ≤ 4C1C2
2n− 1

n2
≤ 8C

n

Applying McDiarmid, we get

P{|Â1,2 −A1,2| ≥ ϵ} ≤ 2 exp

(
−ϵ2n

32C2

)
which can also be read as, with probability at least 1− δ, |Â1,2 −A1,2| ≤ ϵ =

√
(32/n) log(2/δ)

Finally, we show that |Âi,j −Ai,j | ≤ ϵ for i, j ∈ {1, 2} gives |Â−A| ≤ C(X)ϵ.

|Â−A| =
∣∣∣Â1,2(Â1,1Â2,2)

−1/2 −A1,2(A1,1A2,2)
−1/2

∣∣∣
=|Â1,2 −A1,2|(Â1,1Â2,2)

−1/2 +A1,2

∣∣∣(Â1,1Â2,2)
−1/2 − (A1,1A2,2)

−1/2
∣∣∣

=|Â1,2 −A1,2|(Â1,1Â2,2)
−1/2

+A1,2

(∣∣∣(Â1,1Â2,2)
−1/2 − (A1,1Â2,2)

−1/2
∣∣∣+ ∣∣∣(A1,1Â2,2)

−1/2 − (A1,1A2,2)
−1/2

∣∣∣)
Lastly, we can use

(x−1/2 − y−1/2) =
y1/2 − x1/2

(xy)1/2
=

y − x

(xy)1/2(y−1/2 + x−1/2)
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