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Abstract

In this paper, we study the multi-armed bandits problem in the best-of-both-worlds
(BOBW) setting with heavy-tailed losses, where the losses can be negative and
unbounded but have (1 + v)-th raw moments bounded by u1+v for some known
u > 0 and v ∈ (0, 1]. Specifically, we consider the BOBW setting where the
underlying environment can be either (oblivious) adversarial (i.e., the loss distri-
bution can change arbitrarily over time) or stochastic (i.e., the loss distribution is
fixed over time), which is unknown to the decision-maker a prior. We propose
an algorithm and prove that it achieves a T

1
1+v -type worst-case (pseudo-)regret

in the adversarial regime and a log T -type gap-dependent regret in the stochastic
regime, where T is the time horizon. Compared to the state-of-the-art results, our
algorithm offers stronger high-probability regret guarantees (vs. expected regret
guarantees), and more importantly, relaxes a strong technical assumption on the
loss distribution, which is generally hard to verify in practice. As a byproduct,
relaxing this assumption leads to the first near-optimal regret result for heavy-tailed
bandits with Huber contamination in the adversarial regime (vs. the easier stochas-
tic regime studied in all previous works). Our result also implies a high-probability
BOBW regret guarantee when the bounded true losses are protected with pure
Local Differential Privacy (LDP), while the existing work ensures the (weaker)
approximate LDP with the regret bounds in expectation only.

1 Introduction

Consider the multi-armed bandits (MAB) problem (Auer et al., 2002a,b), which is a useful framework
for sequential decision-making under uncertainty and can be formulated as repeated interactions
between the environment and a (learning) algorithm. In each of the total T rounds indexed by t, the
algorithm plays an action at from a fixed set of K actions (assuming K ⩽ T ). Simultaneously, the
environment determines the losses of all actions ℓt ∈ RK . The algorithm observes and suffers the
loss associated with at (denoted by ℓt,at). The goal of the algorithm is to minimize the cumulative
loss over T rounds, or equivalently, to minimize the regret, defined as the difference between its
cumulative loss and that incurred by playing the best-fixed action (in hindsight) all the time. Without
observing the losses of the other actions, the algorithm must “infer” the optimal action through
interactions on the fly, facing the well-known trade-off between exploration and exploitation.

Depending on how the losses are determined, MAB problem is typically studied in two regimes: 1)
the stochastic regime, where the loss of each action is drawn from a fixed (but unknown) distribution
over time; 2) the adversarial regime, where the losses can be arbitrary (within some known class).
Typically, the losses are assumed to have a support on a bounded interval (e.g., [0, 1]), and the
fundamental limits have been well understood: 1) in the stochastic regime, a number of optimism-
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based algorithms achieve the Θ(
√
KT )1 worst-case (pseudo-)regret and Θ(

∑
i:∆i>0(1/∆i) log T )

gap-dependent regret, where ∆i (formally defined in Section 2) is the sub-optimality gap between
action i and the optimal action (Lai & Robbins, 1985; Auer et al., 2002a; Agrawal & Goyal, 2017); 2)
in the adversarial regime, the Θ(

√
KT ) worst-case regret can be achieved by classic Online Learning

algorithms, such as Follow-the-Regularized-Leader (FTRL), Online-Mirror-Descent (OMD), and
Follow-the-Perturbed-Leader (FTPL) (Audibert & Bubeck, 2009; Lee et al., 2024).

Despite these progresses, the optimal algorithms in the two regimes fall into different frameworks
(i.e., optimism-based algorithms for the stochastic regime vs. Online Learning algorithms for the
adversarial regime). Moreover, while the former ones enjoy a logarithmic regret (i.e.,O(log T )) in the
stochastic regime, even their Õ(

√
KT ) worst-case guarantees no longer hold when the environment

deviates from the stochastic regime with empirical evidence provided in Zimmert & Seldin (2021).
On the other hand, while Online Learning algorithms always preserve worst-case optimality, they
could be too “conservative” to enjoy logarithmic regrets in stochastic environments.

These performance discrepancies motivated the study of the Best-of-Both-Worlds (BOBW) setting.
That is, one single algorithm preserves the optimal worst-case regret in the adversarial regime and
adapts to the stochastic regime with a logarithmic regret, without knowing the type of the regime in
advance. Bubeck & Slivkins (2012) initiated the study by proposing a detect-switch framework, which
preserves the optimal Õ(

√
KT ) regret in the adversarial regime and enjoys O

(
(log T )2K/∆

)
regret

in the stochastic regime, where ∆ := mini:∆i>0 ∆i is the smallest sub-optimality gap. Under this
framework, Auer & Chiang (2016) improved the gap-dependent term from K/∆ to

∑
i:∆i>0(1/∆i).

Another line of work showed that without explicit detect-switch, OMD, originally designed for the
adversarial regime, can automatically adapt to stochastic environments with a logarithmic regret (Wei
& Luo, 2018; Zimmert & Seldin, 2021). In particular, Zimmert & Seldin (2021) achieved optimal
regrets in the BOBW setting. Following these works, the power of Online Learning algorithms
towards BOBW has been extended to various setups (Ito, 2021; Ito et al., 2022; Kong et al., 2023; Ito
& Takemura, 2023; Dann et al., 2023; Jin et al., 2024; Lee et al., 2024; Tsuchiya et al., 2024).

While the aforementioned works require bounded losses, real-world data from application domains
such as finance (Cont, 2001) and imaging (Hamza & Krim, 2001) often exhibits a heavy-tailed
distribution. Intuitively, heavy-tailed losses make learning problems harder (compared to bounded
losses) as they are “noisier” and “less informative” (Zhang et al., 2020). When losses are unbounded
but have (1 + v)-th raw moment bounded by u1+v for some known u > 0 and v ∈ (0, 1], Bubeck
et al. (2013) showed Θ̃(uK

v
1+v T

1
1+v ) worst-case regret and Θ

(∑
i:∆i>0(u

1+1/v/∆i)
1/v log T

)
gap-dependent regret2 in the stochastic regime by integrating robust mean estimators (e.g., trimmed
mean and median-of-means) into optimism-based algorithms.

To address heavy-tailed losses in the adversarial regime and BOBW setting, Huang et al. (2022)
showed that with calibrated adaptive loss trimming thresholds, FTRL with Tsallis entropy regularizer
(Audibert & Bubeck, 2009) enjoys the optimal BOBW expected regrets under the “truncated non-
negative losses” assumption (see Assumption 2). Without this strong assumption, it is unclear
whether the near-optimal worst-case regret can still be achieved in the adversarial regime, let alone
the BOBW setting. The key technical challenge here is that heavy-tailed losses can be both negative
and unbounded, which is known to break the regret guarantees of the Online Learning algorithms.
Extensive discussions and insights for our solution are provided in Section 3.

Given this challenge, the gap raises an interesting question: In heavy-tailed MAB, are there any fun-
damental barriers to the worst-case optimality in the adversarial regime and the BOBW guarantees?

We offer a positive answer to the above question, which implies that there is no such barrier. Our
main contributions are as follows:

• In the adversarial regime, we propose an OMD-based algorithm achieving the (near-)optimal
Õ(uK

v
1+v T

1
1+v ) pseudo-regret with high probability. Our approach relaxes the undesired

“truncated non-negative losses” assumption, which is needed in the state-of-the-art results

1We use the standard notations O(·), Ω(·), and Θ(·). Those with tilde hide poly-log terms in T and K. We
use log(·) to denote the natural logarithm (loge(·)), otherwise the base x is explicitly specified as logx(·).

2In the stochastic heavy-tailed MAB, the gap-dependent logarithmic bounds omit some O(exp(1/v)) factors;
this is also the case in all previous works (Bubeck et al., 2013; Tao et al., 2022; Huang et al., 2022).

2



Table 1: Comparison with related results in heavy-tailed MABs. In this table, column “(u, v)-free”
indicates whether the algorithm ensures the stated guarantee for unknown (u, v); “Assumption-2-
free” indicates whether the stated guarantee holds without Assumption 2; “Sto.” and “Adv.” are
abbreviations for “Stochastic” and “Adversarial”, respectively; “High-prob.” indicates whether the
stated expected bound is implied by some (stronger) high-probability bound.

Algorithm (u, v)-free Assumption-2-free Regime Expected Regret High-prob.
Lower bounds

(Bubeck et al., 2013) N/A N/A Sto./Adv. Ω(uK
v

1+v T
1

1+v ) N/A

Sto. Ω

( ∑
i:∆i>0

(u
1+ 1

v

∆i
)

1
v log T

)
RobustUCB

(Bubeck et al., 2013) ✗ ✓ Sto. O(uK
v

1+v T
1

1+v log T ) ✓

O

( ∑
i:∆i>0

(u
1+ 1

v

∆i
)

1
v log T

)
HTINF

(Huang et al., 2022) ✗ ✗
Adv. O(uK

v
1+v T

1
1+v )

✗

Sto. O

(∑
i̸=i∗

(u
1+ 1

v

∆i
)

1
v log T

)
AdaTINF

(Huang et al., 2022) ✓ ✗ Adv. O(uK
v

1+v T
1

1+v +
√
KT ) ✗

AdaR-UCB
(Genalti et al., 2024) ✓ ✗ Sto. O

(
uK

v
1+v T

1
1+v +

∑
i:∆i>0

∆i

Pℓ∼Pi
(ℓ ̸=0) log T

)
✗

O

( ∑
i:∆i>0

(
(u

1+ 1
v

∆i
)

1
v + ∆i

Pℓ∼Pi
(ℓ̸=0)

)
log T

)
uniINF

(Chen et al., 2024) ✓ ✗
Adv. O

(
uK

v
1+v T

1
1+v ((log T )1.5 + log u)

)
✗

Sto. O

(
K(u

1+ 1
v

∆ )
1
v log(T ) log u1+v

∆

)
OMD-LB-HT (Algorithm 1) ✗ ✓ Adv. O(uK

v
1+v T

1
1+v (log T )3) ✓

SAO-HT (Algorithm 2) ✗ ✓ Adv. O(uK
v

1+v T
1

1+v log(K)(log T )4) ✓
Sto. O

(
K log(K)(u

1+ 1
v

∆ )
1
v (log T )4

)

even for the weaker expected regret guarantee (Huang et al., 2022). Relaxing it also allows
us to obtain the near-optimal worst-case guarantee against the Huber contamination, which,
to our best knowledge, was only studied for the stochastic regime in the literature. This
suggests broader implications of our approach.

• On top of the above advance in the adversarial regime, by leveraging the detect-switch
framework, we further extend the (near-)optimal regret guarantees to the BOBW setting.
Specifically, our algorithm preserves the optimal Õ(uK

v
1+v T

1
1+v ) regret in the adversarial

regime and enjoys O(K(u1+1/v/∆)1/v log(K)(log T )4) gap-dependent logarithmic regret
in the stochastic regime, both with high probability, which implies that there is no fundamen-
tal barrier to achieving the BOBW guarantees when the loss distributions are heavy-tailed.
This result also immediately imply the first high-probability BOBW regret guarantees with
pure Local Differential Privacy (LDP) protection on the true losses, while the existing result
ensures the weaker approximate LDP protection with expected regret guarantees only.

• Technique-wise, we leverage the inherent stronger stability of log-barrier to relax a strong
technical assumption made in previous works and utilize the increasing-learning-rates
trick (Lee et al., 2020) to obtain the stronger high-probability guarantee in the adversarial
regime. Moreover, we adapt the detect-switch framework by Bubeck & Slivkins (2012),
originally designed for BOBW in the bounded-loss case, to the heavy-tailed setup. The
adaptation introduces non-trivial challenges in the analysis due to the history-dependent
trimmed estimator. In particular, to obtain the desired concentration rate in the adversarial
regime, the proof does not follow its existing counterpart in the stochastic regime. Beyond
addressing these challenges, we identify a novel use (i.e., handling history-dependent
trimming in martingale concentrations) of an adaptive variant of Freedman’s inequality
(originally proposed by Lee et al. (2020) and improved by Zimmert & Lattimore (2022) for
high-probability regret in adversarial bandits), which may be of independent interest.

We refer the readers to Table 1 for a summary of the most relevant results, in which we also include
adaptive results on the case when u, v are unknown. We also present a comprehensive discussion
about related work, which is deferred to Appendix A due to the page limit.
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2 Problem Setup

In this section, we formally introduce the problem setup and define needed notations. To formulate
heavy-tailed losses, we let ℓt,i denote the loss of action i in round t, which is drawn from distribution
Pt,i satisfying the following assumption:
Assumption 1. The (1 + v)-th (raw) moments of losses (which have potentially unbounded support
in R) are bounded by u1+v for some constants u > 0 and v ∈ (0, 1], i.e., Eℓt,i∼Pt,i

[
|ℓt,i|1+v

]
⩽

u1+v,∀t ∈ [T ], i ∈ [K], where [n] denotes set {1, . . . , n} for any integer n ⩾ 1.

In the heavy-tailed MAB problem, the (learning) algorithm and environment perform the following
interactions repeatedly in round t = 1, . . . , T :

1. The algorithm samples action at from [K] via at ∼ wt := (wt,1, . . . , wt,K) in the proba-
bility simplex Ω := {x ∈ [0, 1]K

∣∣ ∑K
i=1 x(i) = 1}, i.e., action i ∈ [K] is sampled with

probability wt,i. The environment draws loss ℓt,i ∼ Pt,i for every action i ∈ [K].
2. The algorithm observes ℓt,at only; the losses of all other actions are unrevealed.
3. The algorithm determines wt+1 based on the history (w1, a1, ℓ1,a1 , . . . , wt, at, ℓt,at ).

Remark 1. All of our algorithms and their regret bounds allow moment order (1 + v) ∈ (1, 2] only.
That is, one may not obtain any regret guarantee by running our algorithms with v > 1. If the losses
have higher-order moments (v > 1), one can simply run our algorithms with v = 1 and obtaining the
corresponding regret bounds (since bounded higher-order moments imply lower-order ones). Note
that Bubeck et al. (2013) showed that for all v ⩾ 1, the lower bounds in terms of both worst-case
regret and gap-dependent regret are the same as the case of v = 1.

We assume that heavy tail parameters u and v and time horizon T are known to the algorithm a
priori.3 The objective of the algorithm is to minimize the pseudo-regret RT , defined as

RT :=

T∑
t=1

(µt,at − µt,i∗) , (1)

where µt,i := Eℓt,i∼Pt,i
[ℓt,i] denotes the mean loss of action i ∈ [K] in round t ∈ [T ], and

i∗ ∈ argmini∈[K]

∑T
t=1 µt,i denotes any best-fixed action in hindsight.

Depending on how loss distributions are determined, we further define the following two regimes:

• Stochastic regime: For every action i ∈ [K], the loss distributions are identical in all
rounds. That is, we have P1,i = · · · = PT,i = P (i), implying µ1,i = · · · = µT,i = µ(i)
and i∗ ∈ argmini∈[K] µ(i). We also define ∆i := µ(i)− µ(i∗) and ∆ := mini:∆i>0 ∆i.

• (Oblivious) Adversarial regime: All loss distributions are chosen arbitrarily (by some
adversary, with the full knowledge of the algorithm) before the interaction begins. Our
regret definition and adversarial model are also considered in Huang et al. (2022).

Remark 2. It is not hard to see that the stochastic regime is a special (and “easy”) case of the
adversarial regime. There are two differences between our heavy-tailed setup and the bounded-loss
setup in the adversarial bandits literature: 1) Typically in the (bounded-loss) adversarial regime, the
losses are considered to be deterministic rather than randomized (and this difference also leads to
some new challenges in the analysis when we adopt the detect-switch framework from the bounded
case (Bubeck & Slivkins, 2012) as we will show later in Section 4.2), and 2) a stronger notion of regret,
defined as RT :=

∑T
t=1 ℓt,at −mini∈[K]

∑T
t=1 ℓt,i, is considered; this is stronger than pseudo-regret

since E[RT ] ⩾ E[RT ]. However, when adapted to the heavy-tailed case, it is natural to still consider
randomized losses and pseudo-regret as in the stochastic regime: The “easiness” of the regime boils
down to how heavy-tailed distributions are chosen. Moreover, a low stronger regret depends not only
on playing good actions (with low loss means), but also on the realization of potentially unbounded
losses, which loses the standard meaning in evaluating the algorithm. Therefore, when switching
from stochastic to adversarial regime in heavy-tailed bandits, we keep pseudo-regret as the metric.4

3We summarize (negative) results from the literature when u, v are unknown in Appendix A.
4Starting from this point, we always refer to “pseudo-regret” (RT in Eq. (1)) as “regret” in both regimes.
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Our goal is to design one single algorithm that can achieve the near-optimal Õ(uK
v

1+v T
1

1+v ) worst-
case regret in the adversarial regime and enjoys log T -type regret when the regime is stochastic,
without being informed of the regime type in advance.

A closely related work by Huang et al. (2022) studied the same BOBW setup (i.e., achieving BOBW
guarantee when u, v are known). They proposed an FTRL-based algorithm with Tsallis entropy
regularizer and carefully-chosen history-dependent trimming threshold for loss magnitude control
and showedO

(∑
i:∆i>0(u

1+1/v/∆i)
1/v log T

)
regret in the stochastic regime andO(uK

v
1+v T

1
1+v )

regret in the adversarial regime, both of which are in expectation and optimal. However, their regret
guarantees rely heavily on a strong technical assumption:
Assumption 2 (Truncated non-negative losses (Huang et al., 2022)). Given any fixed M > 0, the
loss distributions of the optimal action i∗ satisfy Eℓt,i∗∼Pt,i∗ [ℓt,i∗ · I{|ℓt,i∗ | > M}] ⩾ 0,∀t ∈ [T ].

In the following sections, we first show that by resorting to the log-barrier regularizer, we obtain the
near-optimal regret bound in the adversarial regime without Assumption 2 and naturally extend it to
the stronger high-probability guarantee (Section 3). On top of that, we further adapt the detect-switch
framework in Bubeck & Slivkins (2012) and obtain high-probability bounds in BOBW (Section 4).

Additional Notations. For any round t and action i, we let It,i := I{at = i} denote whether action
i is pulled in round t and Nt,i :=

∑t
s=1 Is,i denote the number of times when action i is pulled

before the end of round t. We use ℓ̂t,i := ℓt,iIt,iI{|ℓt,i| ⩽ Mt,i}/wt,i to denote the (trimmed)
IW estimate with respect to some threshold Mt,i and µ̂t,i :=

∑t
s=1 ℓs,iIs,iI{|ℓs,i| ⩽ Bs,i}/Nt,i

to denote the (trimmed) empirical average with respect to some threshold Bt,i.5 We also use
µ′
t,i := Eℓt,i∼Pt,i

[ℓt,iI{|ℓt,i| ⩽Mt,i}] to denote the mean of the trimmed loss and L̂t,i :=
∑t
s=1 ℓ̂s,i

to denote the cumulative IW estimate.

3 High-probability Near-optimal Regret in the Adversarial Regime

This section is dedicated to high-probability regret in the adversarial regime. We first present
detailed discussions on why Assumption 2 is needed in Huang et al. (2022) and how we get rid of it
(Section 3.1), followed by the description of our algorithm design and regret guarantee (Section 3.2).

3.1 Technical Challenges and Insights

The main technical challenge we encounter comes from the potentially-unbounded negative losses
(even for regret bounds in expectation only). We illustrate this challenge using the previous work
of Huang et al. (2022) as an example. Their algorithm is running standard FTRL with (1 + v)−1-
Tsallis entropy regularizer over the trimmed loss estimate sequence ℓ̂1, . . . , ℓ̂T with respect to some
trimming threshold (Mt,i)t∈[T ],i∈[K] to be introduced later in this subsection.

To bound the expected regret, Huang et al. (2022) first rewrite it as

E [RT ] = E

[
T∑
t=1

⟨wt − yi
∗
, µt − µ′

t⟩

]
+ E

[
T∑
t=1

⟨wt − yi
∗
, µ′
t⟩

]

= E

[
T∑
t=1

K∑
i=1

wt,i(µt,i − µ′
t,i)

]
︸ ︷︷ ︸

Part I

+E

[
T∑
t=1

(µ′
t,i∗ − µt,i∗)

]
︸ ︷︷ ︸

Part II

+E

[
T∑
t=1

⟨wt − yi
∗
, ℓ̂t⟩

]
︸ ︷︷ ︸

Part III

, (2)

where yi is the K-dim vector such that the i-th entry is one and all the others are zero.

The analyses begin with Part III. The desired upper bound on Part III holds only under the well-known
“stability condition” associated with Tsallis entropy (Jin et al., 2024, Lemma C.5.3):

ηt,i(wt,i)
1− 1

1+v ℓ̂t,i = ηt,i(wt,i)
1− 1

1+v (wt,i)
−1ℓt,iIt,iI{|ℓt,i| ⩽Mt,i} ⩾ −C(u, v), (3)

where constant C(u, v) > 0 depends on u and v only and the learning rate ηt,i is chosen as u−1t
−1
1+v .

While this condition is trivially satisfied when losses are non-negative, due to potentially-unbounded
5The values of thresholds may change from time to time in this work but will be made clear given the context.
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Algorithm 1 OMD with log-barrier and increasing learning rates for heavy-tailed MABs (OMD-LB-HT)

1: Input: failure probability ζ, initial learning rate η, trimming threshold {Mt,i}t∈[T ],i∈[K]

2: Define: learning rate increase factor κ = e1/ log T ; log-barrier regularizer
ϕt(x) = −

∑K
i=1 log(x(i))/ηt,i; Bregman divergence Dϕt

(x, x′) =
∑d
i=1(x(i)/x

′(i) −
log(x(i)/x′(i))− 1)/ηt,i; simplex truncation parameter λ = T

−v
1+vK

−1
1+v ; truncated probability

simplex Ω′ := {x ∈ Ω : x(i) ⩾ λ/K, ∀i ∈ [K]}
3: Initialization: For every action i ∈ [K], define w1,i = 1/K, ρ1,i = 2K, η1,i = η
4: for t = 1 : T do
5: Take action at sampled from wt and observe ℓt,at
6: Construct loss estimate ℓ̂t,i = I{at = i}I{|ℓt,i| ⩽Mt,i}ℓt,i/wt,i,∀i ∈ [K]

7: Calculate wt+1 = argminx∈Ω′

(
⟨x, ℓ̂t⟩+Dψt

(x,wt)
)

8: for i ∈ [K] do
9: if 1/wt+1,i > ρt,i, then ρt+1,i = 2/wt+1,i, ηt+1,i = ηt,iκ

10: else ρt+1,i = ρt,i, ηt+1,i = ηt,i
11: end for
12: end for

negative losses, threshold Mt,i here is chosen to be Θ((t · wt,i)
1

1+v ) (in particular, to fully “cancel”
the (wt,i)

−1 from ℓ̂t,i). Otherwise, negative losses break this condition whenever wt,at is very small.

While such a threshold suffices to bound Part I and Part III with worst-case optimality (and even
in the BOBW setting), applying the analysis for Part I to Part II leads to an upper bound of form∑T
t=1(wt,i∗)

−v
1+v on Part II, which is potentially unbounded since wt,i∗ can be very close to zero.

However, with the help of Assumption 2, Part II itself is non-positive and hence can be ignored.

Summary. The key issue above is that, due to unbounded and negative losses, Eq. (3) results in a
threshold Mt,i which scales with (wt,i)

1
1+v (in particular, for i = i∗), rendering Part II hard to bound.

Remark 3. This issue may not be fixed by simply shifting all loss estimates to become positive and
satisfy Eq. (3). Roughly speaking, the reason is that obtaining desired regret bounds relies heavily
on the well-bounded (1 + v)-th moment of the losses (before shifting). However, to ensure positive
losses, the needed shift is too “significant” and breaks the “nice” moment conditions.

To handle this issue and relax Assumption 2, we resort to the log-barrier regularizer, which offers the
standard regret guarantee with the following stability condition (Agarwal et al., 2017):

ηt,iwt,iℓ̂t,i ⩾ −0.5. (4)

Importantly, this condition itself already provides a wt,i (rather than the previous (wt,i)
1− 1

1+v in
Eq. (3)) to “cancel” the (wt,i)−1 from ℓ̂t,i, meaning that we do not need any additionalwt,i contributed
from threshold Mt,i. As a result, we can choose a different Mt,i that scales with K

−1
1+v rather than the

previous (wt,i)
1

1+v such that all three parts are bounded by Õ(uK
v

1+v T
1

1+v ) without Assumption 2.

We further adopt the increasing-learning-rates trick (Lee et al., 2020) together with an adaptive variant
of Freedman’s inequality (stated in Lemma 12) to obtain the stronger high-probability regret.

3.2 Algorithm Overview and Regret Guarantee

We now discuss the algorithm design and present the full pseudo-code in Algorithm 1. At a high
level, our algorithm is running standard OMD over loss sequence ℓ̂1, . . . , ℓ̂T with respect to some
fixed threshold Mt,i = u · (T/K)

1
1+v . The key ingredients (to obtain high-probability regret) are

the special learning rate schedule and probability simplex truncation (in OMD update) (Wei & Luo,
2018; Lee et al., 2020), which we briefly introduce below.

Increasing Learning Rates. We use vectors {ρt}t∈[T ] to keep track of smallest sampling probabilities
throughout the interaction. To be more specific, for every action i, ifwt+1,i is so small that 1/wt+1,i >
ρt,i holds, we increase the learning rate by a factor of κ > 1 and set ρt+1,i = 2/wt+1,i (Line 9).
Otherwise, we keep the learning rate unchanged and set ρt+1,i = ρt,i (Line 10). In the analysis, such
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a schedule introduces some negative term in the upper bound, which cancels out a positive term that
could potentially be very large due to the variance of loss estimates (Lee et al., 2020).

Probability Simplex Truncation. We perform the OMD update over the truncated probability
simplex Ω′ := {x ∈ Ω : x(i) ⩾ λ/K,∀i ∈ [K]} (where λ controls the degree of truncation), of
which the purpose is to ensure that wt,i is always at least λ/K and hence to control the variance of
the loss estimates. The value of λ here is T

−v
1+vK

−1
1+v adapted to the heavy-tailed case and differs

from the original value 1/T for the bounded-loss case in Lee et al. (2020).

The regret guarantee of Algorithm 1 is formally stated below with full proofs presented in Appendix B.
Theorem 1. In the adversarial regime, for any failure probability ζ, by choosing initial learning
rate η = (40M log(T ) log (8KT/ζ))

−1 and trimming threshold Mt,i = u · (T/K)
1

1+v , Algorithm 1
ensures that with probability at least 1 − ζ, RT = O(uK

v
1+v T

1
1+v (log T )2 log(T/ζ)). By further

choosing ζ = 1/T , Algorithm 1 ensures that E [RT ] = O(uK
v

1+v T
1

1+v (log T )3).
Remark 4. Removing Assumption 2 is crucial to obtain the first and near-optimal worst-case regret in
heavy-tailed MAB when the feedback could be contaminated by the Huber model in the adversarial
regime, in contrast to all previous works that study the (easier) stochastic regime (Guan et al., 2020;
Agrawal et al., 2024; Wu et al., 2024). We provide all details in Appendix D.

4 High-probability Regrets in the Best-of-Both-Worlds Setting

With Algorithm 1 achieving high-probability optimal regret in the adversarial regime, we further
leverage the detect-switch framework proposed by Bubeck & Slivkins (2012) named SAO to achieve
high-probability bounds in the BOBW setting. We first present the BOBW guarantee, followed by an
algorithm overview and analysis sketch. The complete proofs are provided in Appendix C.
Theorem 2. In the adversarial regime, for any failure probability ζ, by choosing constant c1 = 6,
Algorithm 2 ensures that with probability at least 1− ζ,

RT = O
(
uK

v
1+v T

1
1+v log(K)(log T )2(log(β/ζ))2

)
,

which (by further choosing ζ = 1/T ) implies that E [RT ] = O
(
uK

v
1+v T

1
1+v log(K)(log T )4

)
. In

the stochastic regime, Algorithm 2 ensures that with probability at least 1− ζ,

RT = O
(
K log(K)(u1+1/v/∆)1/v log(T ) (log(T/ζ))

3
)
,

which implies that E [RT ] = O
(
K log(K)(u1+1/v/∆)1/v(log T )4

)
.

Remark 5. High-probability bounds also are powerful tools to handle adaptive adversaries (who
determine the current distribution Pt,i based on past actions a1, . . . , at−1). Following the literature
(Audibert & Bubeck, 2010; Lee et al., 2020; Zimmert & Lattimore, 2022), based on our high-
probability bounds against oblivious adversaries, one may further derive both high-probability and
expected regret bounds against adaptive adversaries, which we leave as future investigation.
Remark 6. This theorem immediately implies a (high-probability) BOBW regret guarantee when the
losses are bounded (in [0, 1]) and protected with ε-Local Differential Privacy (LDP) via showing that
the privatized losses (with Laplacian noise) have second moments bounded by O(ε−1) (Agarwal &
Singh, 2017; Tossou & Dimitrakakis, 2017; Zheng et al., 2020; Ren et al., 2020). To the best of our
knowledge, this is the first result showing (high probability) BOBW regret guarantee with pure LDP
protection, while the state-of-the-art result (Zheng et al., 2020) ensures (the weaker) approximate
LDP protection, and only expected regret bounds are provided. Full details are given in Appendix E.

4.1 Algorithm Overview

Our algorithm design follows from the detect-switch framework by Bubeck & Slivkins (2012). The
high-level idea is to keep performing statistical tests (to “identify” the environment) and carefully
maintain the sampling distribution over all arms. Once some certain test fails (which implies that the
environment is unlikely stochastic), we switch to Algorithm 1 and run it over the remaining rounds.

In each round after playing action at sampled from distribution wt, if any active action i ∈ At
satisfies the test in Eq. (5), it is deactivated, and we use τi and qi to store the round and the sampling
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Algorithm 2 SAO for heavy-tailed MABs (SAO-HT)
1: Input: failure probability ζ; constant c1 ⩾ 6

2: Define: β = 12T 2K log(T ); Mt,i = u (t/K)
1

1+v

(log(log(T )/ζ))
1

3v+1
; Bt,i = u

(
Nt,i

log(2T/ζ)

) 1
1+v

;

Width(t) = 12uK
v

1+v t
1

1+v (log(β/ζ))
3v

3v+1

3: Initialization: Play each action once; for every i ∈ [K], letwK+1,i =
1
K , τi = T ; setAK = [K].

4: for t = K + 1, . . . , T do
5: Sample and play action at ∼ wt; observe ℓt,at
6: for i ∈ At−1 do
7: if

L̂t,i − min
j∈At−1

L̂t,j > c1Width(t) (5)

8: then At = At−1\{i}, τi = t, and qi = wt,i
9: end if

10: end for
11: if any of the three conditions holds then run Algorithm 1 for the remaining rounds, let tsw = t,

and let qi = wt,i, τi = t for every i ∈ At:
12:

∃i ∈ [K] such that
∣∣∣L̂t,i/t− µ̂t,i

∣∣∣ > 9u

(
log(β/ζ)

Nt,i

) v
1+v

+ I{i ∈ At}
Width(t)

t

+ I{i /∈ At}
Width(t)

τi
, (6)

∃i /∈ At such that (L̂t,i − min
j∈At

L̂t,j)/t > (c1 + 4)Width(t)/(τi − 1), (7)

∃i /∈ At such that (L̂t,i − min
j∈At

L̂t,j)/t ⩽ (c1 − 4)Width(t)/τi (8)

13: end if
14: wt+1,i = I{i /∈ At}qiτi/(t+ 1) + I{i ∈ At}

(
1−

∑
j /∈At

qiτi/(t+ 1)
)
/ |At| ,∀i ∈ [K]

15: end for
16: qi = wT,i, τi = T, ∀i ∈ AT

probability when it is deactivated, respectively (Line 8). After that, the algorithm performs tests in
Eqs. (6)-(8) for environment identification. If any of them is satisfied, the procedure is terminated,
and we instead run Algorithm 1 over the remaining rounds. We use tsw to denote the round when
the algorithm switch happens. Otherwise, we update the distribution wt+1 for the next round as in
Line 14. To make notations and analyses well-defined, we deactivate all remaining arms in Atsw when
the algorithm switch happens.

4.2 Analysis Sketch

In this subsection, we present the key steps of the regret analysis in the proof of Theorem 2.

Before diving into the specific regime, we first derive a set of concentration results (good events).
Informally, all of the following hold simultaneously with high probability in all rounds t ∈ [T ]:∣∣∣∣∣L̂t,i −

t∑
s=1

µs,i

∣∣∣∣∣ /t ⩽ I{i ∈ At}
Width(t)

t
+ I{i /∈ At}

Width(t)
τi

, (9)∣∣∣∣∣µ̂t,i −
∑t
s=1 µs,iIs,i
Nt,i

∣∣∣∣∣ = Õ

(
u

(Nt,i)
v

1+v

)
, (10)

Nt,i = Õ (qiτi · (1 + log t)) , (11)
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where Width(t) := 12uK
v

1+v t
1

1+v (log(β/ζ))
3v

3v+1 . All analyses below are conditioned on these
good events, and we omit “with high probability” in the arguments.
Remark 7. Our main non-trivial adaptation deviating from the case with bounded losses in Bubeck &
Slivkins (2012) is the good event in Eq. (10) due to jointly randomized and heavy-tailed losses. In
particular, we need the concentration result of trimmed mean µ̂t,i specified in Eq. (10) in both regimes.
In the stochastic regime, it been shown in Bubeck et al. (2013). We need Eq. (10) in adversarial
regime (while Bubeck & Slivkins (2012) does not) as losses are deterministic therein. However, with
heavy tails, the proof of Eq. (10) in the adversarial regime does not follow straightforwardly from the
stochastic regime. More technical details are presented later in Remark 8. Nonetheless, this matter is
specific to the nature of the trimmed estimator we use, which essentially could be replaced with any
other estimator, as long as the concentration rate is preserved. However, it is unclear whether other
estimators can handle non-identical distributions.

4.2.1 Analysis Overview in the Stochastic Regime

Step 1: Showing that tests in Eqs. (6)-(8) are never satisfied. We show by good events that tests in
Eqs. (6)-(8) are never satisfied, implying that we never switch to Algorithm 1.

Step 2: Building the connection between ∆i and τi. From tests in Eqs. (7) and (8), we can
show that for every suboptimal action i with ∆i > 0, its sub-optimality gap ∆i = Õ((K/τi)

v
1+v ).

Intuitively, an action with a smaller sub-optimality gap stays active for a longer time.

Step 3: Bounding the total regret. By the definition of pseudo-regret, we now have

RT =
∑

i:∆i>0

∆iNT,i = Õ(
∑

i:∆i>0

∆iqiτi) = Õ(
∑

i:∆i>0

∆iqiK(∆i)
−1− 1

v ). (12)

We complete the proof by showing
∑
i:∆i>0 qi ⩽

∑K
i=1(1/i) = O(logK).

4.2.2 Analysis Overview in the Adversarial Regime

In the adversarial regime, whenever we switch to Algorithm 1, it provides Õ(u(T − tsw)
1

1+vK
v

1+v )
(high-probability) regret guarantee for the remaining (T − tsw) rounds. Therefore, it suffices to show
that the cumulative regret before the switch is Õ(u(tsw)

1
1+vK

v
1+v ).

In our analysis, we trivially bound the regret in the single round tsw by 2u, and it remains to show that
the regret in the first (tsw − 1) rounds is Õ(u(tsw − 1)

1
1+vK

v
1+v ), which is explained in the following.

Step 1: Regret decomposition. We first get an regret upper bound in terms of i∗t :=

argmini∈[K]

∑t
s=1 µs,i for t = tsw − 1:

tsw−1∑
s=1

µs,at −
tsw−1∑
s=1

µs,i∗ ⩽
K∑
i=1

Ntsw−1,i

∑tsw−1
s=1 µs,iIs,i
Ntsw−1,i

− L̂tsw−1,i

tsw − 1︸ ︷︷ ︸
Part A

+
L̂tsw−1,i − L̂tsw−1,i∗tsw−1

tsw − 1︸ ︷︷ ︸
Part B


+ L̂tsw−1,i∗tsw−1

−
tsw−1∑
s=1

µs,i∗tsw−1︸ ︷︷ ︸
Part C

, (13)

and then we bound Parts A, B, and C, separately.

Step 2: Bounding Part A. We rewrite Part A as Part A =
(∑tsw−1

s=1 µs,iIs,i
Ntsw−1,i

− µ̂tsw−1,i

)
+(

µ̂tsw−1,i − L̂tsw−1,i

tsw−1

)
, where the first term on the right-hand side is O

(
u
(

log(β/ζ)
Ntsw−1,i

) v
1+v

)
due

to Eq. (10) and the second term is O
(
u
(

log(β/ζ)
Ntsw−1,i

) v
1+v

+ Width(tsw−1)
τi−1

)
due to test in Eq. (6).

Remark 8. Due to heavy tails, the losses are trimmed by some history-dependent threshold Bt,i
(which depends on the number of pulls Nt,i) for a rate-optimal concentration in good event (10). To
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show this in the stochastic regime, one can treat the observed losses from one action as i.i.d. samples
via the “reward tape/table” argument (Slivkins, 2019) and apply Bernstein’s inequality for every fixed
Nt,i (and set the uniform upper bound as Bt,i associated with it) as in Bubeck et al. (2013). However,
one cannot simply follow the same path in the adversarial regime, since the distributions are no longer
identical, and has to follow the martingale-based analysis (Agarwal et al., 2021, Lemma 6.2).

Now one may readily see the issue: The desired uniform upper bound Bt,i is determined on-the-fly,
while the standard Freedman’s inequality for martingales (e.g., Lemma 11) requires a fixed uniform
upper bound. To close this gap, we again exploit an adaptive variant of Freedman’s inequality by
Zimmert & Lattimore (2022) (Lemma 12; which was originally proposed for a totally different use,
namely, obtaining high-probability bounds in adversarial bandits), in which we can replace the fixed
uniform upper bound with the largest realization, satisfying our need perfectly.

Step 3: Bounding Part B. By considering two disjoint cases (i.e., action i ∈ Atsw−1 or not), we can
show Part B = O

(
Width(tsw−1)

τi−1

)
using the tests in Eqs. (5) and (7).

Step 4: Bounding Part C. The good event in Eq. (9) simply implies Part C = O (Width(tsw − 1)).

Step 5: Putting all pieces together. Combing Steps 1-4 and the good event in Eq. (11) yields

tsw−1∑
s=1

µs,at −
tsw−1∑
s=1

µs,i∗ = O

(
K∑
i=1

Ntsw−1,i

(
u (Ntsw−1,i)

−v
1+v +

Width(tsw − 1)

τi − 1

)
+ Width(tsw − 1)

)

= Õ

(
u

K∑
i=1

(Ntsw−1,i)
1

1+v + u

K∑
i=1

qiK
v

1+v (tsw − 1)
1

1+v

)

+ Õ

(
u

K∑
i=1

K
v

1+v (tsw − 1)
1

1+v

τi − 1
+ Width(tsw − 1)

)
= Õ(uK

v
1+v (tsw − 1)

1
1+v ). (14)

5 Conclusion

In this paper, we show that there is indeed no fundamental barrier to achieving the BOBW guarantee in
heavy-tailed MAB by relaxing a strong, hard-to-verify technical assumption on the loss distributions of
the optimal action needed for the state-of-the-art results. We further leverage the increasing-learning-
rates trick and the detect-switch framework to achieve the stronger high-probability guarantees. Our
results also imply the first and near-optimal regret in the adversarial regime where the feedback could
be contaminated in the Huber model, and the high-probability BOBW regret guarantee when losses
are bounded and protected with pure LDP, while the state-of-the-art result only ensures the weaker
approximate LDP protection with regret guarantees in expectation.

One follow-up question is whether the gap-dependent term K(∆)−1/v can be improved to the refined∑
i:∆i>0(∆i)

−1/v , which is achieved only in the stochastic regime (Bubeck et al., 2013). Under the
detect-switch framework, we tend to believe this is possible by adapting more sophisticated tests
designed in Auer & Chiang (2016) for the bounded-loss case, where the gap dependency is improved
from K/∆ to

∑
i:∆i>0(1/∆), although a higher computational complexity is expected.

It will also be interesting to understand whether canonical Online Learning algorithms (i.e., without
explicit detection and switch) provably enjoy BOBW guarantees in heavy-tailed MAB (and if so,
whether a refined gap dependency can be achieved). In other words, do heavy tails break the implicit
adaption of Online Learning algorithms to the stochastic regime (in the worst case)? One promising
direction is to still utilize log-barrier regularizer together with potentially more advance learning
rate and/or trimming threshold design. Notably, one unique advantage of it over the detect-switch
framework is that it typically directly extends the BOBW regret guarantee to the corrupted regime,
which is an intermediate regime that smoothly extrapolates between the purely adversarial and
stochastic regime (Zimmert & Seldin, 2021).
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A Related Work

In this section, we give a comprehensive discussion on the related work.

Regret Minimization in the BOBW Setting (with Bounded Losses). There are mainly two
different approaches towards enjoying BOBW regret guarantees. The first approach is the detect-
switch framework initially proposed by Bubeck & Slivkins (2012). The framework runs in a two-stage
manner: In the first stage, the algorithm performs some tests in every round and carefully maintain the
sampling distribution over all actions. Once any of the tests fails, it runs any off-the-shelf algorithm
purely for the adversarial regime in the remaining rounds and inherits the regret guarantee of that
algorithm. Bubeck & Slivkins (2012) proposed an algorithm achieving near-optimal regret in the
adversarial regime and O

(
(log T )2K/∆

)
regret in the stochastic regime, both with high-probability.

Auer & Chiang (2016) further refined the tests and improved the gap-dependent term to the optimal∑
i:∆i>0(1/∆i). This framework has been generalized to setups including linear bandits (Lee et al.,

2021) and bandits with feedback graph (Kong et al., 2023).

Somewhat surprisingly, since the work by Wei & Luo (2018), there have been a large group of papers
showing that Online Learning algorithms (e.g., OMD), originally for the adversarial regime, implicit
adapts to stochastic environments and enjoys logarithmic regrets. BOBW guarantees of Online
Learning algorithms have been established in quite broad setups including MAB (Wei & Luo, 2018;
Zimmert & Seldin, 2021; Jin et al., 2023), (contextual) linear bandits (Ito & Takemura, 2023; Kong
et al., 2023; Kuroki et al., 2023; Kato & Ito, 2023), and (tabular) Markov Decision Processes (MDPs)
(Jin & Luo, 2020; Jin et al., 2021). One desirable advantage of this approach is that, thanks to the
flexibility of Online Learning framework, it is possible to additionally enjoy some other adaptive
regret bounds on top of the standard BOBW guarantee (Ito, 2021; Tsuchiya et al., 2024).

Regret Minimization in Heavy-tailed Stochastic Environments. There are a large body of works
focusing on regret minimization in the stochastic environment where the losses are potentially heavy-
tailed (Bubeck et al., 2013; Shao et al., 2018; Lu et al., 2019; Ray Chowdhury & Gopalan, 2019;
Zhong et al., 2021; Agrawal et al., 2021; Xue et al., 2021; Lee & Lim, 2022; Zhuang & Sui, 2021;
Huang et al., 2024). The general recipe of the algorithm design is to derive concentration results
for the loss mean estimation with robust estimators (e.g., median-of-means (Hsu & Sabato, 2014),
truncated/trimmed estimator (Bubeck et al., 2013), and Huber estimator (Huber, 1996)), and then
integrate them with celebrated optimism-based algorithms.

High-probability Regrets in Adversarial MAB and the BOBW Setting. The central piece towards
high-probability bounds in adversarial MAB lies in balancing between the variance of the loss
estimator and the total regret. In general, there are three types of approaches in the literature: 1)
adding negative bonus to the Importance-Weighted (IW) estimates (Auer et al., 2002b; Zimmert &
Lattimore, 2022), 2) utilizing log-barrier regularizer together with increasing learning rates (Lee et al.,
2020), and 3) replacing the IW estimator with the Implicit-eXploration (IX) estimator (Neu, 2015).
While the IX estimator enables a simplified analysis and is thus widely-used (e.g., Jin et al. (2020);
Li et al. (2024)), it heavily exploits the non-negativity of the losses, and it is unclear to us how to
adapt it to the case of potentially-negative losses. For a comparison between the first two approaches,
readers are referred to Foster et al. (2021) and Zimmert & Lattimore (2022). The detect-switch
framework by Bubeck & Slivkins (2012) naturally provides high-probability bounds in BOBW,
whenever a subroutine algorithm achieving high-probability regret in the adversarial regime (e.g.,
EXP3.P (Auer et al., 2002b)) is integrated in a plug-and-play manner. While the Online Learning
framework naturally provides BOBW guarantee via elegant analysis in expectation (Zimmert &
Seldin, 2021), it is unclear how to adapt it for high-probability guarantees.

Adaptive/Parameter-free Heavy-tailed MAB. Throughout this work, we assume that the heavy tail
parameters u and v are known to the learning algorithm. In this case, Bubeck et al. (2013) showed min-
imax lower bound Ω(uT

1
1+vK

v
1+v ) and gap-dependent lower bound Ω

(∑
i:∆i>0(u/∆i)

1/v(log T )
)

using stochastic environments, so these lower bounds also apply to the adversarial regime. However,
in practice one may not know the values of u, v exactly in advance, therefore it is natural to ask
whether it is possible to enjoy the same regret rate as if u, v were known, which we refer to as
“adaptation (to heavy tails) for free”. On the negative side, Genalti et al. (2024) showed that there
is no such an algorithm that can enjoy Õ(uT

1
1+vK

v
1+v ) worst-case regret for all unknown u, v in

the stochastic regime. In terms of gap-dependent regret, similar “no adaptation for free” effect has
been shown in an earlier work by Ashutosh et al. (2021). On the positive side, in the same work by
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Genalti et al. (2024), it is shown that, somewhat surprisingly, with the same “truncated non-negative
losses” assumption (Assumption 2), a UCB-based algorithm proposed by them enjoys “adaptation
for free” in terms of both minimax and gap-dependent regrets in the stochastic regime. With the
same assumption in the adversarial regime, Huang et al. (2022) proposed a variant of FTRL, which
achieves the O(uK

v
1+v T

1
1+v +

√
KT ) worst-case regret guarantee. In a very recent work by Chen

et al. (2024), an FTRL-based algorithm named uniINF is shown to enjoy the BOBW guarantee even
when u and v are both unknown, although the gap dependency of their logarithmic regret is K/∆1/v ,
and still Assumption 2 is needed. Exploring broader scenarios in which we can enjoy “adaptation for
free” (and to what extent) is an interesting future direction.

B Omitted Details in Section 3

In this section, we provide complete proof for Theorem 1.

To begin with, we first define ℓ′t,i as the trimmed value of ℓt,i with respect to M , i.e., ℓ′t,i =
ℓt,iI{|ℓt,i| ⩽M}. Then, we decompose the pseudo-regret by

RT =

T∑
t=1

(
µt,at − ℓ′t,at

)
+

T∑
t=1

(
ℓ′t,i∗ − µt,i∗

)
︸ ︷︷ ︸

TRIMERR

+

T∑
t=1

(
ℓ′t,at − ℓ′t,i∗

)
︸ ︷︷ ︸

TRIMREG

.

B.1 Bounding TRIMERR

Lemma 1. For any fixed trimming threshold Mt,i =M > 0 and ζ < 1/(e log T ), with probability
at least 1− ζ, it holds that

TRIMERR ⩽ 2Tu1+vM−v + 8
√
Tu1+vM1−v log(2 log(T )/ζ) + 8M log(2 log(T )/ζ).

Proof of Lemma 1. First note that
(
µ′
t,at − ℓ′t,at

)
t=1,...,T

form a martingale difference sequence
adapted to the filtration F1, . . . ,FT where Ft := σ(a1, ℓ1,a1 , . . . , at−1, ℓt−1,at−1

). Moreover, we
have

∣∣µ′
t,at − ℓ′t,at

∣∣ ⩽ 2M and

E
[
(µ′
t,at − ℓ′t,at)

2
∣∣Ft] = K∑

i=1

wt,iE
[
(µ′
t,i − ℓ′t,i)

2
∣∣Ft, at = i

]
=

K∑
i=1

wt,i
(
E
[
(ℓ′t,i)

2
∣∣Ft, at = i

]
+ (µ′

t,i)
2 − 2µ′

t,iE
[
ℓ′t,i
∣∣Ft, at = i

])
⩽

K∑
i=1

wt,iE
[
(ℓ′t,i)

2
∣∣Ft, at = i

]
⩽

K∑
i=1

wt,iE
[
(ℓ′t,i)

1+vM1−v∣∣Ft, at = i
]

⩽ u1+vM1−v, (15)

where in the last inequality we utilize the fact that
∑K
i=1 wt,i = 1 and Assumption 1. By Lemma 11,

we have with probability at least 1− ζ,
T∑
t=1

(
µ′
t,at − ℓ′t,at

)
⩽ 4
√
Tu1+vM1−v log(log(T )/ζ) + 4M log(log(T )/ζ). (16)

Together with Lemma 8 which bounds µt,at − µ′
t,at , we arrive at

T∑
t=1

(
µt,at − ℓ′t,at

)
⩽ Tu1+vM−v + 4

√
Tu1+vM1−v log(log(T )/ζ) + 4M log(log(T )/ζ). (17)

16



With exactly the same reasoning, we have with probability at least 1− ζ that

T∑
t=1

(
ℓ′t,i∗ − µt,i∗

)
⩽ Tu1+vM−v + 4

√
Tu1+vM1−v log(log(T )/ζ) + 4M log(log(T )/ζ). (18)

Taking a union bound over the two terms completes the proof.

B.2 Bounding TRIMREG

For any i ∈ [K], let yi be the K-dimensional one-hot vector such that the i-th element is 1, and
all the others are zero. Define vector y′ := (1− λ)yi

∗
+ λw0, where w0 = (1/K, . . . , 1/K) is the

uniform exploration. We can rewrite TRIMREG as

T∑
t=1

(
ℓ′t,at − ℓ′t,i∗

)
=

T∑
t=1

(
⟨wt, ℓ̂t⟩ − ⟨yi

∗
, ℓ′t⟩

)
=

T∑
t=1

⟨wt − y′, ℓ̂t⟩︸ ︷︷ ︸
TRIMREG I

+

T∑
t=1

⟨y′ − yi
∗
, ℓ′t⟩︸ ︷︷ ︸

TRIMREG II

+

T∑
t=1

⟨y′, ℓ̂t − ℓ′t⟩︸ ︷︷ ︸
TRIMREG III

. (19)

In the following subsections, we bound each of the three terms in the right-hand-sight. To give a
preview:

• TRIMREG I is the standard online learning regret over loss sequence ℓ̂1, · · · , ℓ̂T , and is
handled using regret analysis of OMD.

• TRIMREG II is a bias term due to that we cannot directly compete with yi
∗

and have to
choose a close neighbor y′. It is under control since y′ and yi

∗
are close to each other.

• TRIMREG III is the main challenge in getting high-probability bounds in adversarial bandits.
While it contains some terms that could be potentially large due to the high variance of ℓ̂t,
they would be cancelled by some negative terms in TRIMREG I introduced by the increasing
learning rates so that eventually the sum of the three terms can be bounded.

B.2.1 Bounding TRIMREG I

Lemma 2. Suppose η ⩽ 1
10M and λ = T

−v
1+vK

−1
1+v , for any Mt,i = M , Algorithm 1 ensures that

with probability at least 1− ζ,

TRIMREG I ⩽
2K log T

η
− ⟨y′, ρT ⟩

10η log T
+ 5ηM1−vTu1+v

+ 20η
√
Tu1+vM3−v log(log(T )/ζ) + 10ηM2 log(log(T )/ζ).

Proof of Lemma 2. The proof is a combination of Agarwal et al. (2017, Lemma 12) and Lee et al.
(2020, Lemma 2.1). For the (active) OMD update rule wt+1 = argminx∈Ω′

(
⟨x, ℓ̂t⟩+Dψt(x,wt)

)
in Algorithm 1, it is equivalent to first obtaining some intermediate vector w̃t+1 such that
∇ψt (w̃t+1) = ∇ψt (wt)− ℓ̂t, and then obtaining wt+1 = argminx∈Ω′ Dψt

(x, w̃t+1).

For any competitor y ∈ Ω′, in each round t ∈ [T ], we have

⟨wt − y, ℓ̂t⟩ = ⟨wt − y,∇ψt (wt)−∇ψt (w̃t+1)⟩
(a)
= Dψt

(y, wt)−Dψt
(y, w̃t+1) +Dψt

(wt, w̃t+1)

(b)
⩽ Dψt

(y, wt)−Dψt
(y, wt+1) +Dψt

(wt, w̃t+1), (20)

where in step (a) we utilize the definition of Bregman divergence (or the so-called “three-point
property”) and step (b) is due to the generalized Pythagorean theorem.
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Throughout this proof, we choose λ = T
−v
1+vK

−1
1+v as in Algorithm 1. Recall that we define

y′ := (1− λ)yi
∗
+ λw0. Therefore, for any i ∈ [K], we have y′i ⩾ λ/K and hence y′ ∈ Ω′.

For any scalar c > 0, we define function h(c) := c− 1− log c, which is always non-negative. Taking
the summation over all T rounds and letting y = y′, we get
T∑
t=1

⟨wt − y′, ℓ̂t⟩ =
T∑
t=1

(Dψt(y
′, wt)−Dψt(y

′, wt+1) +Dψt(wt, w̃t+1))

⩽ Dψ1
(y′, w1) +

T−1∑
t=1

(
Dψt+1

(y′, wt+1)−Dψt
(y′, wt+1)

)
+

T∑
t=1

Dψt
(wt, w̃t+1),

(21)
where in the inequality we get rid of −DψT

(y′, wT+1) since Bregman divergence is always non-
negative. In the following, we bound each of these three terms in the right-hand-side.

Step 1: bounding the first term. Plugging in the exact expression of Bregman divergence concerning
the log-barrier regularizer ψt we define in Algorithm 1, we have

Dψ1
(y′, w1) =

1

η

K∑
i=1

h

(
y′i
w1,i

)
=

1

η

K∑
i=1

(
y′i
w1,i

− 1− log

(
y′i
w1,i

))

=
1

η

K∑
i=1

log

(
1

Ky′i

)
. (22)

By choosing λ = T
−v
1+vK

−1
1+v , we have y′i ⩾ λ/K = T

−v
1+vK−1− 1

1+v and

1

η

K∑
i=1

log

(
1

Ky′i

)
⩽
K log

(
T

v
1+vK

1
1+v

)
η

⩽
K log T

η
.

Recall that here we utilize the assumption that K ⩽ T .

Step 2: bounding the second term. Plugging in the expression of Bregman divergence associated
with log-barrier, we get

T−1∑
t=1

(
Dψt+1

(y′, wt+1)−Dψt
(y′, wt+1)

)
=

K∑
i=1

T−1∑
t=1

(
1

ηt+1,i
− 1

ηt,i

)
h

(
y′i

wt+1,i

)
. (23)

Now we look at each action i. Recall that, if the learning rate does not increase at round t,
then

(
1

ηt+1,i
− 1

ηt,i

)
h
(

y′i
wt+1,i

)
is simply 0. Otherwise, we have ηt+1,i > ηt,i, and as a result,(

1
ηt+1,i

− 1
ηt,i

)
h
(

y′i
wt+1,i

)
< 0.

Therefore, if we let ni denote the total number of learning rate changes in action i, and let tni
denote

the round when the last change happens (such that ηT,i = ηtni
+1,i = κηtni

,i = κniη), we have
T−1∑
t=1

(
1

ηt+1,i
− 1

ηt,i

)
h

(
y′i

wt+1,i

)
⩽

(
1

ηtni
+1,i

− 1

ηtni
,i

)
h

(
y′i

wtni
+1,i

)

=

(
1

κniη
− κ

κniη

)
h

(
y′i

wtni
+1,i

)

=
1− κ

κniη
h

(
y′i

wtni
+1,i

)
. (24)

By Lemma 9, when λ = T
−v
1+vK

−1
1+v , we have ni ⩽ log2(T

v
1+vK

1
1+v ) ⩽ log2 T and ηt,i ⩽

e
log2 T
log T η ⩽ 5η. Together with 1− κ = 1− e1/ log T ⩽ − 1

log T , we get

1− κ

κniη
h

(
y′i

wtni
+1,i

)
⩽

−h
(

y′i
wtni

+1,i

)
5η log T

. (25)
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It is left to upper-bound term −h
(

y′i
wtni

+1,i

)
. Noticing that

y′i
wtni

+1,i
=
y′iρT,i
2

⩽
ρT,i
2

=
1

wtni
+1,i

⩽ T, (26)

we get

−h

(
y′i

wtni
+1,i

)
= −h

(
y′iρT,i
2

)
= log

(
y′iρT,i
2

)
+ 1− y′iρT,i

2
⩽ log T + 1− y′iρT,i

2
. (27)

Taking the summation over all actions, we finish bounding the second term as

K∑
i=1

T−1∑
t=1

(
1

ηt+1,i
− 1

ηt,i

)
h

(
y′i

wt+1,i

)
⩽

K∑
i=1

log T + 1− y′iρT,i

2

5η log T
⩽
K log T

η
− ⟨y′, ρT ⟩

10η log T
. (28)

Step 3: bounding the third term. Given the fact that ∇ψt (w̃t+1) = ∇ψt (wt)− ℓ̂t, we have

−1

w̃t+1,iηt,i
=

−1

wt,iηt,i
− ℓ̂t,i, (29)

which implies that
wt,i
w̃t+1,i

= 1 + ηt,iwt,iℓ̂t,i. (30)

Now we have
T∑
t=1

Dψt
(wt, w̃t+1) =

T∑
t=1

K∑
i=1

1

ηt,i
· h
(

wt,i
w̃t+1,i

)

=

T∑
t=1

K∑
i=1

1

ηt,i
· h
(
1 + ηt,iwt,iℓ̂t,i

)
=

T∑
t=1

K∑
i=1

1

ηt,i
·
(
ηt,iwt,iℓ̂t,i − log

(
1 + ηt,iwt,iℓ̂t,i

))
. (31)

To proceed, we first show that if η ⩽ 1
10M , it holds that

ηt,iwt,iℓ̂t,i ⩾ −0.5. (32)

First, it is trivially true whenever ℓ′t,i ⩾ 0 as the left-hand-sight is non-negative. Since ℓ′t,i is at most
as negative as −M and ηt,i ⩽ 5η, it is left to show that

ηwt,i
M

wt,i
⩽ 0.1, (33)

which is clearly satisfied when η ⩽ 1
10M .

By applying the fact that c− log(1 + c) ⩽ c2,∀c ⩾ −0.5 to Eq. (31), we get

T∑
t=1

Dψt
(wt, w̃t+1) ⩽

T∑
t=1

K∑
i=1

1

ηt,i

(
ηt,iwt,iℓ̂t,i

)2
=

T∑
t=1

ηt,at(wt,at)
2(ℓ′t,at/wt,at)

2

⩽ 5η

T∑
t=1

(ℓ′t,at)
2 ⩽ 5ηM1−v

T∑
t=1

∣∣ℓ′t,at∣∣1+v . (34)
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We now finish bounding the third term by deriving a high-probability bound on
∑T
t=1

∣∣ℓ′t,at∣∣1+v (and
multiplying it by 5ηM1−v).

Consider the martingale difference sequence
(∣∣ℓ′t,at∣∣1+v − E

[∣∣ℓ′t,at∣∣1+v])
t∈[T ]

, we have∣∣∣∣∣ℓ′t,at∣∣1+v − E
[∣∣ℓ′t,at∣∣1+v]∣∣∣ ⩽M1+v

almost surely, and

E
[(∣∣ℓ′t,at∣∣1+v − E

[∣∣ℓ′t,at∣∣1+v])2∣∣∣∣Ft] = K∑
i=1

wt,iE
[(∣∣ℓ′t,i∣∣1+v − E

[∣∣ℓ′t,i∣∣1+v])2∣∣∣∣Ft, at = i

]

⩽
K∑
i=1

wt,iE
[∣∣ℓ′t,i∣∣2+2v

∣∣∣Ft, at = i
]

⩽
K∑
i=1

wt,iM
1+vE

[∣∣ℓ′t,i∣∣1+v∣∣∣Ft, at = i
]

⩽ u1+vM1+v. (35)

By Lemma 11, we have with probability at least 1− ζ that
T∑
t=1

∣∣ℓ′t,at∣∣1+v ⩽ T∑
t=1

E
[∣∣ℓ′t,at∣∣1+v]+ 4

√
Tu1+vM1+v log(log(T )/ζ) + 2M1+v log(log(T )/ζ)

⩽ Tu1+v + 4
√
Tu1+vM1+v log(log(T )/ζ) + 2M1+v log(log(T )/ζ). (36)

At this point, we have bounded all three terms, and putting them together completes the proof

B.2.2 Bounding TRIMREG II

Lemma 3 (Upper bound on TRIMREG II). For any fixed M > 0 and λ ∈ (0, 1), with probability at
least 1− ζ, it holds that

TRIMREG II ⩽ λuKT + λ
√
2KTu1+vM1−v log(1/ζ) +

4

3
λM log(1/ζ).

Proof of Lemma 3. By Hölder’s inequality, we have
T∑
t=1

⟨y′ − yi
∗
, ℓ′t⟩ ⩽

T∑
t=1

∥∥∥y′ − yi
∗
∥∥∥
∞

∥ℓ′t∥1 =

T∑
t=1

max{λ/K, λ(1− 1/K)} · ∥ℓ′t∥1 ⩽ λ

T∑
t=1

K∑
i=1

∣∣ℓ′t,i∣∣ .
(37)

Define µt,i = Eℓ∼Pt,i [|ℓ| · I{|ℓ| ⩽M}] ,∀t ∈ [T ], i ∈ [K], we have

µt,i ⩽ Eℓ∼Pt,i
[|ℓ|] ⩽ Eℓ∼Pt,i

[
|ℓ|1+v

] 1
1+v ⩽ u. (38)

Applying Lemma 10 to
(∣∣ℓ′t,i∣∣− µt,i

)
t∈[T ],i∈[K]

, since
∣∣∣∣ℓ′t,i∣∣− µt,i

∣∣ ⩽ 2M and

E
[
(
∣∣ℓ′t,i∣∣− µt,i)

2
]
⩽ E

[∣∣ℓ′t,i∣∣2] ⩽ u1+vM1−v, (39)

we get that with probability at least 1− ζ,
T∑
t=1

K∑
i=1

∣∣ℓ′t,i∣∣ ⩽ T∑
t=1

K∑
i=1

µt,i +
√
2KTu1+vM1−v log(1/ζ) +

4

3
M log(1/ζ),

which implies that

TRIMREG II ⩽ λuKT + λ
√

2KTu1+vM1−v log(1/ζ) +
4

3
λM log(1/ζ).
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B.2.3 Bounding TRIMREG III

Lemma 4 (Upper bound on TRIMREG III). For any fixed M > 0 and λ ∈ (0, 1), with probability at
least 1− ζ, it holds that

TRIMREG III ⩽ 3Tu1+vM−v + 3M⟨y′, ρT ⟩ log
(
max{

√
2Tu1+vM−1−vK/λ, 4K/λ}/ζ

)
.

Proof of Lemma 4. We note that
(
⟨y′, ℓ̂t − ℓ′t⟩/M

)
t∈[T ]

6 form a martingale sequence, and

E
[
⟨y′, ℓ̂t − ℓ′t⟩/M

∣∣∣Ft] is clearly finite since wt,i ⩾ λ/K. Moreover, we have

E
[
(⟨y′, ℓ̂t − ℓ′t⟩/M)2

∣∣∣Ft] ⩽ E
[
(⟨y′, ℓ̂t⟩/M)2

∣∣∣Ft]
= E

[
(y′at)

2(ℓ′t,at/M)2

(wt,at)
2

∣∣∣∣∣Ft
]

=

K∑
i=1

wi
(y′i)

2

(wt,i)2
E
[
(ℓ′t,i/M)2

∣∣Ft, at = i
]

⩽
K∑
i=1

(y′i)
2

wt,i
u1+vM−1−v

⩽ u1+vM−1−v⟨y′, ρT ⟩, (40)

where in the last step we utilize the facts that y′i ⩽ 1 and 1/wt,i ⩽ ρT,i.

Noting ∣∣∣⟨y′, (ℓ̂t − ℓ′t)⟩
∣∣∣ /M ⩽

K∑
i=1

y′i(
1

wt,i
+ 1) ⩽

K∑
i=1

y′i ·
2

wt,i
⩽ 2⟨y′, ρT ⟩, (41)

by Lemma 12, we have with probability at least 1− ζ that,
T∑
t=1

⟨y′, ℓ̂t − ℓ′t⟩ ⩽ 3M
√
Tu1+vM−1−v⟨y′, ρT ⟩ι+ 2M max{1, 2⟨y′, ρT ⟩}ι

(a)
⩽

4.5Tu1+vM−v

2
+

2M⟨y′, ρT ⟩ι
2

+ 2M max{1, 2⟨y′, ρT ⟩}ι

⩽ 3
(
Tu1+vM−v +M max{1, 2⟨y′, ρT ⟩}ι

)
, (42)

where ι := log(2max{
√
Tu1+vM−1−v⟨y′, ρT ⟩, 1, 2⟨y′, ρT ⟩}/ζ) and step (a) is due to the elemen-

tary inequality
√
x1x2 ⩽ x1+x2

2 ,∀x1, x2 ⩾ 0.

We complete the proof by noticing that 1 ⩽ 2K ⩽ ⟨y′, ρT ⟩ ⩽ 2
λ/K and apply it to ι.

B.2.4 Putting things together

By Lemmas 1, 2, 3, and 4, with probability at least 1− ζ, we have

RT ⩽ 2Tu1+vM−v + 8
√
Tu1+vM1−v log(8 log(T )/ζ) + 8M log(8 log(T )/ζ)

+
2K log T

η
− ⟨y′, ρT ⟩

10η log T
+ 5ηM1−vTu1+v

+ 20η
√
Tu1+vM3−v log(4 log(T )/ζ) + 10ηM2 log(4 log(T )/ζ)

+ λuKT + λ
√
2KTu1+vM1−v log(4/ζ) +

4

3
λM log(4/ζ)

+ 3Tu1+vM−v + 3M⟨y′, ρT ⟩ log
(
4max{

√
2Tu1+vM−1−vK/λ, 4K/λ}/ζ

)
. (43)

6(Re-)Scaling by M is of course not necessary, which however simplifies the algebra calculations after
applying Lemma 12.
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Choosing M = u · (T/K)
1

1+v and λ = T
−v
1+vK

−1
1+v , we have

RT ⩽ 2uK
v

1+v T
1

1+v + 8

√
u2T

2
1+vK

v−1
1+v log(8 log(T )/ζ) + 8uT

1
1+vK

−1
1+v log(8 log(T )/ζ)

+
2K log T

η
− ⟨y′, ρT ⟩

10η log T
+ 5ηM1−vTu1+v

+ 20

√
Tu1+vu1−v(T/K)

1−v
1+v η2M2 log(4 log(T )/ζ) + 10ηM2 log(4 log(T )/ζ)

+ uT
1

1+vK
v

1+v + uT
1

1+vK
v

1+v

√
2 log(4/ζ) +

4

3
uT

1−v
1+vK

−2
1+v log(4/ζ)

+ 3uK
v

1+v T
1

1+v + 3M⟨y′, ρT ⟩ log
(
4max{

√
2K

2+v
1+v T

v
1+v , 4K

2+v
1+v T

v
1+v }/ζ

)
⩽ 7uK

v
1+v T

1
1+v

√
2 log(4/ζ) +

2K log T

η
− ⟨y′, ρT ⟩

10η log T
+ 5ηM1−vTu1+v

+ 20

√
u2T

2
1+vK

v−1
1+v η2M2 log(4 log(T )/ζ) + 10ηM2 log(4 log(T )/ζ)

+ 3M⟨y′, ρT ⟩ log (8KT/ζ) + o
(
uK

v
1+v T

1
1+v log(T/ζ)

)
. (44)

Finally, choosing η = min{ 1
10M , 1

40M log(T ) log(8KT/ζ)} = 1
40M log(T ) log(8KT/ζ) to cancel the terms

containing ⟨y′, ρT ⟩ ensures that

RT = O(uK
v

1+v T
1

1+v (log T )2 log(T/ζ)).

C Omitted Details in Section 4

C.1 Concentration Results

In this subsection, we derive concentration results needed for the analysis, adapted from Bubeck &
Slivkins (2012) to suit our heavy-tailed case.
Lemma 5 (Concentration on the trimmed importance-weighted estimator). Suppose Mt,i = u ·
(t/K)

1
1+v · (log(log(T )/ζ))

−1
3v+1 . In both regimes, we have with probability at least 1− ζ that, for

any i ∈ [K] and t ∈ [T ], if (K + 1) ⩽ t ⩽ tsw, then∣∣∣∣∣L̂t,i −
t∑

s=1

µs,i

∣∣∣∣∣ ⩽ 6u


√√√√√(t/K)

1−v
1+v

min{τi,t}∑
s=1

1

ws,i
+
tmax{t− τi, 0}

qiτi

+K
v

1+v t
1

1+v max{t/τi, 1}


· (log(2K log(T )/ζ))

3v
3v+1 .

Proof. We fix some action i ∈ [K]. We first rewrite L̂t,i as L̂t,i =
∑t
s=1

ℓ′s,iIs,i
ws,i

. Note that for any
s > τi, we have ws,i = qiτi

s , and qi ⩾ ws,i ⩾ 1/K for any s ⩽ τi.

We defineXs,i :=
ℓ′s,iIs,i
ws,i

−µ′
s,i for any 1 ⩽ s ⩽ t. If t ⩽ tsw, thenX1,i, . . . , Xt,i forms a martingale

difference sequence. To have an upper bound on |Xs,i|: 1) when s ⩽ τi, we have

|Xs,i| ⩽Ms,iK +Ms,i ⩽ 2KMs,i,

and 2) when s > τi, we have

|Xs,i| ⩽
Ms,i

qi · τis
+Ms,i ⩽

Ms,i
1
K · τis

+Ms,i ⩽ 2KMs,i
s

τi
.

Combining two cases, we get

|Xs,i| ⩽ 2KMs,imax{ s
τi
, 1} ⩽ 2KMt,imax{ t

τi
, 1} =

2ut
1

1+vK
v

1+v max{ t
τi
, 1}

(log(log(T )/ζ))
1

3v+1

. (45)
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Moreover, we have

t∑
s=1

E
[
(Xs,i)

2
∣∣Fs] = t∑

s=1

(
E

[
(ℓ′s,i)

2Is,i

(ws,i)2

∣∣∣∣∣Ft
]
+ (µ′

s,i)
2 − 2µ′

s,iE
[
ℓ′s,iIs,i

ws,i

∣∣∣∣Ft]
)

=

t∑
s=1

E

[
(ℓ′s,i)

2Is,i

(ws,i)2

∣∣∣∣∣Ft
]
−

t∑
s=1

(µ′
s,i)

2

⩽
t∑

s=1

1

ws,i
E
[∣∣ℓ′s,i∣∣1+v (Ms,i)

1−v
∣∣∣Ft]

⩽ u1+v(Mt,i)
1−v

min{τi,t}∑
s=1

1

ws,i
+
tmax{t− τi, 0}

qiτi


= u2(t/K)

1−v
1+v

min{τi,t}∑
s=1

1

ws,i
+
tmax{t− τi, 0}

qiτi

 (log(log(T )/ζ))
v−1
3v+1 ,

(46)

where the last inequality is because Ms,i is non-decreasing in s.

By Lemma 11 we have that with probability at least 1− ζ, for any t ⩽ tsw

t∑
s=1

(
ℓ′s,iIs,i

ws,i
− µ′

s,i

)
⩽ 4

√√√√√u2(t/K)
1−v
1+v

min{τi,t}∑
s=1

1

ws,i
+
tmax{t− τi, 0}

qiτi

 (log(log(T )/ζ))
4v

3v+1

+ 4ut
1

1+vK
v

1+v max{t/τi, 1} (log(log(T )/ζ))
3v

3v+1 . (47)

By taking an union bound over all all actions i ∈ [K], we have with probability at least 1− ζ that∣∣∣∣∣L̂t,i −
t∑

s=1

µ′
s,i

∣∣∣∣∣ ⩽ 4

√√√√√u2(t/K)
1−v
1+v

min{τi,t}∑
s=1

1

ws,i
+
tmax{t− τi, 0}

qiτi

 (log(2K log(T )/ζ))
4v

3v+1

+ 4ut
1

1+vK
v

1+v max{t/τi, 1} (log(2K log(T )/ζ))
3v

3v+1 ,∀t ∈ [T ], i ∈ [K].
(48)

By Lemma 8, we have almost surely that

t∑
s=1

∣∣µs,i − µ′
s,i

∣∣ ⩽ t∑
s=1

u1+v(Ms,i)
−v ⩽ uK

v
1+v (log(log(T )/ζ))

v
3v+1

t∑
s=1

s
−v
1+v

⩽ 2uK
v

1+v t
1

1+v (log(log(T )/ζ))
v

3v+1 . (49)

Combining two parts above, we get with probability at least 1− ζ that, for any action i and round t,∣∣∣∣∣L̂t,i −
t∑

s=1

µs,i

∣∣∣∣∣ ⩽ 6u


√√√√√(t/K)

1−v
1+v

min{τi,t}∑
s=1

1

ws,i
+
tmax{t− τi, 0}

qiτi

+K
v

1+v t
1

1+v max{t/τi, 1}


· (log(2K log(T )/ζ))

3v
3v+1 . (50)

Lemma 6 (Concentration on the number of pulls). It holds with probability at least 1− ζ that, for
any i ∈ [K] and t ∈ [T ], if t ⩽ tsw,

Nt,i ⩽ qiτi(1 + log t) + 4
√
qiτi(1 + log t) log(K log(T )/ζ) + 2 log(K log(T )/ζ).
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Proof of Lemma 6. We first fix some action i and round t. Recall that Nt,i =
∑t
s=1 Is,i. Define

Xs,i := Is,i − ws,i. If t ⩽ tsw then X1,i, . . . , Xt,i forms a martingale difference sequence such that
|Xs,i| ⩽ 1. Moreover, since ws,i is non-decreasing in s when s ⩽ τi (and wτi,i = qi), we have

t∑
s=1

E
[
(Xs,i)

2
∣∣Fs] ⩽ t∑

s=1

ws,i ⩽ qiτi +

t∑
s=τi+1

qiτi
s

⩽ qiτi(1 + log t).

Therefore, by Lemma 11, it holds with probability at least 1− ζ that,

Nt,i −
t∑

s=1

ws,i ⩽ 4
√
qiτi(1 + log t) log(log(T )/ζ) + 2 log(log(T )/ζ).

Taking union bounds over all actions i ∈ [K] completes the proof.

Lemma 7 (Concentration on the trimmed empirical-mean estimator). It holds with probability at
least 1− ζ that, for any i ∈ [K] and t ∈ [K, tsw],∣∣∣∣∣µ̂t,i −

∑t
s=1 µs,iIs,i
Nt,i

∣∣∣∣∣ ⩽ 9u

(
log(4KT 2/ζ)

Nt,i

) v
1+v

.

Remark 9. Note that in the special case of stochastic regime, the term
∑t

s=1 µs,iIs,i
Nt,i

is simply µ(i)
(which is simply a scalar denoting the loss mean of action i in the stochastic regime as defined in
Section 2), and this lemma has been proven in Bubeck et al. (2013). However, we are not aware of
how to extend the analysis of stochastic case to adversarial case.

Proof. Recall that Bs,i is defined in Algorithm 2 as Bs,i := u
(

Ns,i

log(2T/ζ)

) 1
1+v

,∀s ∈ [T ]. Then we
rewrite µ̂t,i as

µ̂t,i =

∑t
s=1 ℓs,iIs,iI{|ℓs,i| ⩽ Bs,i}

Nt,i
and define

Xs,i :=
(
ℓs,iI{|ℓs,i| ⩽ Bs,i} − Eℓs,i∼Ps,i

[ℓs,iI{|ℓs,i| ⩽ Bs,i}]
)
Is,i/u.

Moreover, in this lemma we need a slightly different filtration. We define

F ′
t := σ(a1, ℓ1,a1 , . . . , at−1, ℓt−1,at−1 , at).

Clearly, given any fixed round t and action i, X1,i, . . . , Xt,i form a martingale difference sequence
adapted to F ′

1, . . . ,F ′
t (since both Bs,i and Is,i are deterministic conditioned on F ′

s), with

max
s⩽t

Xs,i ⩽ 2Bt,i/u = 2

(
Nt,i

log(2T/ζ)

) 1
1+v

and
t∑

s=1

E
[
(Xs,i)

2
∣∣F ′
s

]
=

∑
s:Is,i=1

E
[
(Xs,i)

2
∣∣F ′
s

]
⩽

∑
s:Is,i=1

E
[
|ℓs,i|1+v (Bs,i)1−v/u2

∣∣∣F ′
s

]

⩽ Nt,i(Bt,i)
1−vu1+v/u2 =

(
Nt,i

log(2T/ζ)

) 1−v
1+v

Nt,i, (51)

where in the last inequality we utilize the fact that Bs,i is non-decreasing in s.

Noting that

2

(
Nt,i

log(2T/ζ)

) 1
1+v

⩽ 2

√(
Nt,i

log(2T/ζ)

) 1−v
1+v

Nt,i ⩽ 2 (Nt,i)
1

1+v ⩽ 2T, (52)
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we apply Lemma 12 and get with probability at least 1− ζ that, for any fixed t,

t∑
s=1

Xs,i ⩽ 3

√
(Nt,i)

2
1+v (log(2T/ζ))

v−1
v+1 log(2T/ζ) + 2

(
Nt,i

log(2T/ζ)

) 1
1+v

log(2T/ζ)

= 5(Nt,i)
1

1+v (log(2T/ζ))
v

1+v . (53)

Taking a (two-sided) union bound over all rounds and actions, we get with probability at least 1− ζ
that ∣∣∣∣∣

t∑
s=1

Xs,i

∣∣∣∣∣ ⩽ 5(Nt,i)
1

1+v
(
log(4KT 2/ζ)

) v
1+v ,∀t ⩽ tsw, i ∈ [K]. (54)

Finally, we have ∣∣∣∣∣
t∑

s=1

(
Eℓs,i∼Ps,i

[ℓs,iI{|ℓs,i| ⩽ Bs,i}]− µs,i
)
Is,i

∣∣∣∣∣
⩽

∑
s⩽t:Is,i=1

∣∣Eℓs,i∼Ps,i [ℓs,iI{|ℓs,i| ⩽ Bs,i}]− µs,i
∣∣

(a)
⩽ u1+v

Nt,i∑
N=1

u−v
(

N

log(2T/ζ)

) −v
1+v

= u(log(2T/ζ))
v

1+v

Nt,i∑
N=1

N
−v
1+v

⩽ u(log(4KT 2/ζ))
v

1+v (1 + v)(Nt,i + 1)
1

1+v

⩽ 4u(log(4KT 2/ζ))
v

1+v (Nt,i)
1

1+v , (55)

where step (a) follows from Lemma 8 and the last step relies on the fact that v ∈ (0, 1].

Applying triangle inequality to Eqs. (54) and (55) and then dividing both sides by Nt,i completes the
proof.

C.2 Logarithmic Regret in the Stochastic Regime

In this subsection, we provide the complete proof for logarithmic regret of Algorithm 2 in the
stochastic regime.

Taking a union bound over Lemmas 5, 6, and 7, with probability at least 1 − ζ, for any i ∈ [K]
and t ⩽ tsw, all of the following holds in either stochastic or adversarial regime (recall that β =
12T 2K log(T )):

∣∣∣∣∣L̂t,i −
t∑

s=1

µs,i

∣∣∣∣∣ ⩽ 6u


√√√√√(t/K)

1−v
1+v

min{τi,t}∑
s=1

1

ws,i
+
tmax{t− τi, 0}

qiτi

+K
v

1+v t
1

1+v max{t/τi, 1}


· (log(β/ζ))

3v
3v+1 , (56)

Nt,i ⩽ qiτi(1 + log t) + 4
√
qiτi(1 + log t) log(β/ζ) + 2 log(β/ζ). (57)∣∣∣∣∣µ̂t,i −

∑t
s=1 µs,iIs,i
Nt,i

∣∣∣∣∣ ⩽ 9u

(
log(β/ζ)

Nt,i

) v
1+v

. (58)

Before we start to derive the regret bound, we simplify Eq. (56) a bit for convenience.
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For any t such that τi > t (i.e., action i is still active by round t), we have ws,i ⩾ 1/K,∀s ⩽ t, and
Eq. (56) implies that∣∣∣∣∣L̂t,i −

t∑
s=1

µs,i

∣∣∣∣∣ ⩽ 6u


√√√√(t/K)

1−v
1+v

t∑
s=1

1

ws,i
+K

v
1+v t

1
1+v

 (log(β/ζ))
3v

3v+1

⩽ 6u

(√
(t/K)

1−v
1+v tK +K

v
1+v t

1
1+v

)
(log(β/ζ))

3v
3v+1

= 12uK
v

1+v t
1

1+v (log(β/ζ))
3v

3v+1 = Width(t), (59)

otherwise (when τi ⩽ t), we have∣∣∣∣∣L̂t,i −
t∑

s=1

µs,i

∣∣∣∣∣ ⩽ 6u

√(t/K)
1−v
1+v K

t2

τi
+K

v
1+v t1+

1
1+v /τi

 (log(β/ζ))
3v

3v+1

= 6u

tK v
1+v

√
t
1−v
1+v

τi
+K

v
1+v t1+

1
1+v /τi

 (log(β/ζ))
3v

3v+1

⩽ 12uK
v

1+v t1+
1

1+v (log(β/ζ))
3v

3v+1 /τi = Width(t) · t/τi, (60)

where in the first inequality we utilize the facts that qi ⩾ 1/K and

τi +
t(t− τi)

τi
⩽
t2

τi
, (61)

and the second inequality is because√
t
1−v
1+v

τi
⩽

√
t
1−v
1+v

τi
· t
τi

=
t

1
1+v

τi
. (62)

Combining two cases (whether τi > t or not), Eq. (56) implies that∣∣∣∣∣L̂t,i −
t∑

s=1

µs,i

∣∣∣∣∣ ⩽ I{i ∈ At}Width(t) + I{i /∈ At}Width(t)
t

τi
. (63)

To show the regret bound, we first show that, in the stochastic regime, when all the three above events
hold, we will never start to run Algorithm 1, i.e., tests (6)-(8) always fail (for all t < T ).

Test (6) always fails. This is simply implied by Eqs. (63) and (58) together with a triangle inequality.

Test (7) always fails. We first show that test (5) is never satisfied for action i∗, so we have i∗ ∈
At,∀t ⩽ tsw. To see this, for actions i, i∗ ∈ At−1, by Eq. (63) we must have

L̂t,i∗ − L̂t,i = (L̂t,i∗ − t · µ(i∗))− (L̂t,i − t · µ(i)) + t · (µ(i∗)− µ(i))

⩽ 2Width(t)− t∆i < c1Width(t), (64)

which means that i∗ is never eliminated from At and hence stays active (due to test (5)).

Moreover, for any action i /∈ At, it must be deactivated at some round no later than t, so we
have τi ⩽ t and that test (5) is satisfied at round τi (and is not satisfied at round τi − 1). Let
j∗t ∈ argminj∈At−1

L̂t,j .

Therefore, looking at round τi (and any action i ̸= i∗), we have

c1Width(τi)
(a)
< L̂τi,i − L̂τi,j∗τi

= (L̂τi,i − τi · µ(i))− (L̂τi,j∗τi
− τi · µ(j∗τi)) + τi · (µ(i)− µ(j∗τi))

(b)
⩽ 2Width(τi) + τi · (µ(i)− µ(i∗)) = 2Width(τi) + τi∆i, (65)
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where step (a) is from test (5) (which should hold now) and step (b) is due to Eq. (63) and the
optimality of i∗ (i.e., µ(i)− µ(j∗τi) ⩽ µ(i)− µ(i∗) = ∆i).

Moreover, looking at round τi − 1 (and any action i ̸= i∗), we have

(τi − 1)∆i − 2Width(τi − 1)
(a)
⩽ (L̂τi−1,i − (τi − 1) · µ(i))− (L̂τi−1,i∗ − (τi − 1) · µ(i∗))
+ (τi − 1) · (µ(i)− µ(i∗))

= L̂τi−1,i − L̂τi−1,i∗

(b)
⩽ L̂τi−1,i − L̂τi−1,j∗τi−1

(c)
⩽ c1Width(τi − 1), (66)

where step (a) follows from the good event in Eq. (63), step (b) is because i∗ ∈ Aτi−2, and step (c) is
due to test (5) (which now should not hold for action i since it is still active).

Now we can show that test (7) is never satisfied since in any round t for any i /∈ At:

(L̂t,i − min
j∈At

L̂t,j)/t ⩽ (L̂t,i − min
j∈At−1

L̂t,j)/t

= (L̂t,i/t− µ(i))− (L̂t,j∗t /t− µ(j∗t )) + (µ(i)− µ(j∗t ))

⩽ Width(t)/τi + Width(t)/t+∆i

⩽ 2Width(t)/(τi − 1) + ∆i

⩽ (2 + c1 + 2)Width(t)/(τi − 1), (67)

where the last step is from Eq. (66).

Test (8) always fails. Since i∗ ∈ At, for any action i /∈ At, we have

(L̂t,i − min
j∈At

L̂t,j)/t ⩾ (L̂t,i − L̂t,i∗)/t

= (L̂t,i/t− µ(i))− (L̂t,i∗/t− µ(i∗)) + (µ(i)− µ(i∗))

⩾ −2Width(t)/τi +∆i

⩾ (c1 − 2− 2)Width(t)/τi, (68)

where the first step is due to i∗ ∈ At and the last step is from Eq. (65).

Putting things together. Now we show two intermediate results, followed by bounding the regret.

First, Eq. (66) implies that

∆i ⩽ (2 + c1)Width(τi − 1)/(τi − 1)

= (2 + c1)12uK
v

1+v (τi − 1)
−v
1+v (log(β/ζ))

3v
3v+1

⩽ (2 + c1)12uK
v

1+v (τi/2)
−v
1+v (log(β/ζ))

3v
3v+1

⩽ (2 + c1)24uK
v

1+v (τi)
−v
1+v (log(β/ζ))

3v
3v+1 , (69)

which after rearranging implies that

τi = O
(
u1+

1
vK (log(β/ζ))

1+ 2
3v+1 /(∆i)

1+ 1
v

)
. (70)

Due to the definition of qi, we have

K∑
i=1

qi ⩽
K∑
i=1

1

K − i+ 1
⩽ 1 + logK. (71)

To see this, let i′ denote the i-th earliest action that is deactivated, we have qi′ ⩽ 1
K−i′+1 due to the

algorithm design.
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Now we have everything needed to arrive at the final result. By the definition of pseudo-regret in
stochastic bandits, we have

RT =
∑

i:∆i>0

∆iNT,i

(a)
⩽

∑
i:∆i>0

∆i

(
qiτi(1 + log T ) + 4

√
qiτi(1 + log T ) log(β/ζ) + 2 log(β/ζ)

)
⩽

∑
i:∆i>0

∆i (2qiτi(1 + log T ) + 6 log(β/ζ))

(b)
⩽ O

( ∑
i:∆i>0

∆iqi log(T ) · u1+
1
vK (log(β/ζ))

1+ 2
3v+1 /(∆i)

1+ 1
v + log(β/ζ)

∑
i:∆i>0

∆i

)
(c)
⩽ O

(
u1+

1
vK log(T ) (log(β/ζ))

3
/∆

1
v ·

∑
i:∆i>0

qi + log(β/ζ)
∑

i:∆i>0

∆i

)
⩽ O

(
K log(T ) log(K) (log(β/ζ))

3
(u1+

1
v /∆)

1
v

)
, (72)

where step (a) follows from Eq. (57), step (b) is due to Eq. (70), and step (c) is from Eq. (71).

Choosing ζ = 1/T < 1/e, we have

E [RT ] ⩽ O
(
K log(T ) log(K)(log T )3(u1+

1
v /∆)

1
v

)
+

1

T
uT

= O
(
K log(K)(log T )4(u1+

1
v /∆)

1
v

)
. (73)

C.3 Optimal Worst-case Regret in the Adversarial Regime

In this subsection, we provide the complete proof for (near-)optimal worst-case regret of Algorithm 2
in the adversarial regime.

Let i∗t := argmini∈[K]

∑t
s=1 µs,i and I∗t := argmini∈At

∑t
s=1 µs,i. We first show that i∗tsw−1 ∈

Atsw−1.

For any action i /∈ Atsw−1, we have τi ⩽ tsw − 1 and test (8) is not satisfied for i at round tsw − 1
(since the algorithm switch has not happened). We get

tsw−1∑
s=1

µs,i −
tsw−1∑
s=1

µs,I∗tsw−1

=

(
tsw−1∑
s=1

µs,i − L̂tsw−1,i

)
+

(
L̂tsw−1,I∗tsw−1

−
tsw−1∑
s=1

µs,I∗tsw−1

)
+
(
L̂tsw−1,i − L̂tsw−1,I∗tsw−1

)
(a)
>

−(tsw − 1)

τi
Width(tsw − 1)− Width(tsw − 1) + (c1 − 4)

tsw − 1

τi
Width(tsw − 1)

⩾ (c1 − 6)
tsw − 1

τi
Width(tsw − 1) ⩾ 0, (74)

where step (a) is due to Eq. (63) (applied twice) and test (8). Therefore, we must have i∗tsw−1 ∈ Atsw−1

(which further implies i∗tsw−1 ∈ As,∀s ⩽ tsw − 1) since
∑tsw−1
s=1 µs,i∗tsw−1

−
∑tsw−1
s=1 µs,I∗tsw−1

⩽ 0 by
the definition, otherwise a contradiction is incurred.
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Now we can bound the cumulative regret up to the algorithm switch. Specifically, we rewrite the
regret as
tsw−1∑
s=1

µs,at −
tsw−1∑
s=1

µs,i∗tsw−1
=

tsw−1∑
s=1

K∑
i=1

µs,iIs,i −
tsw−1∑
s=1

µs,i∗tsw−1

=

K∑
i=1

Ntsw−1,i

(∑tsw−1
s=1 µs,iIs,i
Ntsw−1,i

−
∑tsw−1
s=1 µs,i∗tsw−1

tsw − 1

)

=

K∑
i=1

Ntsw−1,i

∑tsw−1
s=1 µs,iIs,i
Ntsw−1,i

− L̂tsw−1,i

tsw − 1︸ ︷︷ ︸
Part A

+
L̂tsw−1,i − L̂tsw−1,i∗tsw−1

tsw − 1︸ ︷︷ ︸
Part B


+ L̂tsw−1,i∗tsw−1

−
tsw−1∑
s=1

µs,i∗tsw−1︸ ︷︷ ︸
Part C

. (75)

In the rewriting above, we use nothing but the simple fact that
∑K
i=1Ntsw−1,i = tsw − 1. We now

bound each of the three terms (Part A, Part B, and Part C) separately.

Bounding Part A. We first rewrite Part A as

Part A =

(∑tsw−1
s=1 µs,iIs,i
Ntsw−1,i

− µ̂tsw−1,i

)
+

(
µ̂tsw−1,i −

L̂tsw−1,i

tsw − 1

)
. (76)

By Eq. (58), we have ∑tsw−1
s=1 µs,iIs,i
Ntsw−1,i

− µ̂tsw−1,i ⩽ 9u

(
log(β/ζ)

Ntsw−1,i

) v
1+v

. (77)

By test (6) (which does not hold now), we have

µ̂tsw−1,i −
L̂tsw−1,i

tsw − 1
⩽ 9u

(
log(β/ζ)

Ntsw−1,i

) v
1+v

+
Width(tsw − 1)

τi − 1
. (78)

Therefore, we can conclude that

Part A ⩽ 18u

(
log(β/ζ)

Ntsw−1,i

) v
1+v

+
Width(tsw − 1)

τi − 1
. (79)

Bounding Part B. Since i∗tsw−1 ∈ Atsw−1 as we have shown, for any action i /∈ Atsw−1, due to test (7)
(which is not satisfied at round tsw − 1), we have

L̂tsw−1,i − L̂tsw−1,i∗tsw−1

tsw − 1
⩽
L̂tsw−1,i −minj∈Atsw−1

L̂tsw−1,j

tsw − 1
⩽ (c1 + 4)

Width(tsw − 1)

τi − 1
. (80)

For any other action i ∈ Atsw−1, due to test (5), we have

L̂tsw−1,i − L̂tsw−1,i∗tsw−1

tsw − 1
⩽
L̂tsw−1,i −minj∈Atsw−2 L̂tsw−1,j

tsw − 1
⩽ c1

Width(tsw − 1)

tsw − 1
= c1

Width(tsw − 1)

τi − 1
.

(81)

Combining these two cases, we can claim that for any action i ∈ [K],

Part B =
L̂tsw−1,i − L̂tsw−1,i∗tsw−1

tsw − 1
⩽ (c1 + 4)

Width(tsw − 1)

τi − 1
. (82)

Bounding Part C. Simply due to Eq. (63), since i∗tsw−1 ∈ Atsw−1, we have

Part C = L̂tsw−1,i∗tsw−1
−
tsw−1∑
s=1

µs,i∗tsw−1
⩽ c1Width(tsw − 1). (83)
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Putting three parts together. Putting the three parts together, we get

tsw−1∑
s=1

µs,at −
tsw−1∑
s=1

µs,i∗ ⩽
tsw−1∑
s=1

µs,at −
tsw−1∑
s=1

µs,i∗tsw−1

= O

(
K∑
i=1

Ntsw−1,i · u
(
log(β/ζ)

Ntsw−1,i

) v
1+v

)
+O

(
K∑
i=1

Ntsw−1,i
Width(tsw − 1)

τi − 1

)
+O (Width(tsw − 1))

= O

(
u

K∑
i=1

Ntsw−1,i

(
log(β/ζ)

Ntsw−1,i

) v
1+v

)
+O (Width(tsw − 1))

+O

(
K∑
i=1

(qiτi(1 + log T ))
uK

v
1+v (tsw − 1)

1
1+v (log(β/ζ))

3v
3v+1

τi − 1

)

+O

(
K∑
i=1

log(β/ζ)
uK

v
1+v (tsw − 1)

1
1+v (log(β/ζ))

3v
3v+1

τi − 1

)
, (84)

where in the last step we apply Lemma 6 to bound Ntsw−1,i in the term
∑K
i=1Ntsw−1,i

Width(tsw−1)
τi−1 .

Now we bound each of the four terms one by one.

Bounding the first term. Applying Jensen’s inequality, we get

K∑
i=1

(Ntsw−1,i)
1

1+v ⩽ K ·

(
K∑
i=1

Ntsw−1,i

K

) 1
1+v

= K
v

1+v (tsw − 1)
1

1+v , (85)

and the first term is bounded as

u

K∑
i=1

Ntsw−1,i

(
log(β/ζ)

Ntsw−1,i

) v
1+v

= O
(
uK

v
1+v (tsw − 1)

1
1+v (log(β/ζ))

v
1+v

)
. (86)

Bounding the second term. Simply plugging in the definition of Width(·), we have

Width(tsw − 1) = O
(
uK

v
1+v (tsw − 1)

1
1+v (log(β/ζ))

3v
1+3v

)
.

Bounding the third term. By the fact that
∑K
i=1 qi = O(logK), we have

K∑
i=1

(qiτi(1 + log T ))
uK

v
1+v (tsw − 1)

1
1+v (log(β/ζ))

3v
3v+1

τi − 1

= O
(
log(K) log(T )uK

v
1+v (tsw − 1)

1
1+v (log(β/ζ))

3v
3v+1

)
. (87)

Bounding the forth term. Notice that in the algorithm design, each action will be pulled once in the
initialization, and we clearly have τi ⩾ K + 1. Therefore, we have

K∑
i=1

log(β/ζ)
uK

v
1+v (tsw − 1)

1
1+v (log(β/ζ))

3v
3v+1

τi − 1

⩽
K∑
i=1

log(β/ζ)
uK

v
1+v (tsw − 1)

1
1+v (log(β/ζ))

3v
3v+1

K

= O
(
uK

v
1+v (tsw − 1)

1
1+v (log(β/ζ))

1+ 3v
3v+1

)
. (88)

Combining the bounds on these four terms, we have
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tsw−1∑
s=1

µs,at −
tsw−1∑
s=1

µs,i∗ = O
(
log(K) log(T )uK

v
1+v (tsw − 1)

1
1+v (log(β/ζ))

1+ 3v
3v+1

)
. (89)

The regret incurred starting from round tsw + 1 is taken care of by Algorithm 1 (and the regret
guarantee is given by Theorem 1). By taking a union bound, we have with probability at least 1− ζ
that

RT = O
(
uK

v
1+v T

1
1+v log(K) log(T )(log(β/ζ))1+

3v
3v+1

)
+O

(
uK

v
1+v T

1
1+v (log T )2 log(β/ζ)

)
= O

(
uK

v
1+v T

1
1+v log(K)(log T )2(log(β/ζ))2

)
. (90)

Choosing ζ = 1/T , we have

E [RT ] = O
(
uK

v
1+v T

1
1+v log(K)(log T )4

)
+ 2

1

T
uT = O

(
uK

v
1+v T

1
1+v log(K)(log T )4

)
.

(91)

D Heavy-tailed Adversarial Bandits with Huber Contamination

This section is dedicated to the adversarial regime, with the additional setup that the bandit feedback
could be contaminated in the Huber model (Huber, 1996). In the stochastic MAB, Huber contamina-
tion has been studied in Guan et al. (2020); Agrawal et al. (2024); Wu et al. (2024). We first formally
define the problem setup, and then present the algorithm design and the regret analysis. From the
regret analysis one could readily see why removing Assumption 2 is necessary for a near-optimal
regret upper bound. Lastly, we provide a matching lower bound which suggests that we obtain the
near-optimal worst-case regret guarantee.

D.1 Problem Setup

The learning algorithm and environment perform the following interactions repeatedly in round
t = 1, . . . , T :

1. The algorithm samples action at from [K] via at ∼ wt := (wt,1, . . . , wt,K) ∈ Ω, i.e., the
probability of sampling action i ∈ [K] is wt,i. The environment draws loss ℓt,i from “clean”
distribution Pt,i satisfying Assumption 1 for every action i ∈ [K].

2. Let ℓt,at denote the feedback revealed to the algorithm associated with at. With probability
α ∈ (0, 1], the algorithm observes the contaminated feedback. That is, it observes ℓt,at =
ℓ̃t,i, which is generated from an arbitrary “bad” distribution Qt,i. With probability (1− α),
it observes the “clean” loss ℓt,at = ℓt,i.

3. The algorithm determines wt+1 based on all the revealed history so far.

The goal of the learning algorithm is to minimize the regret in the presence of contaminated feedback.
For the ease of presentation, we consider the weaker expected pseudo-regret (rather than the high-
probability version), which is defined as:

E[RT ] := E

[
T∑
t=1

⟨wt − yi
∗
, µt⟩

]
, (92)

where the optimal action i∗ and loss mean µt are both still with respect to the “clean” distributions,
i.e., µt,i := Eℓt,i∼Pt,i [ℓt,i] and i∗ ∈ argmini∈[K]

∑T
t=1 µt,i, while the expected pseudo-regret

additionally includes the randomness from the contamination. Similar to all previous works, we
assume that the “contamination level” α is known to the algorithm.

Assumption 2 adapted to the contaminated case (to bound CONTRIMERR) becomes the following.
Assumption 3 (Truncated non-negative losses in the contaminated case). Given any fixedM > 0, the
loss distributions of the optimal action i∗ satisfy that Eℓt,i∗∼Pα

t,i∗
[ℓt,i∗ ·I{|ℓt,i∗ | > M}] ⩾ 0,∀t ∈ [T ].
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Importantly, even if there is some prior knowledge regarding the “clean” distribution Pt,i, due to the
arbitrary “bad” distribution component contained in Pαt,i∗ , the adapted “truncated non-negativity”
may not hold any more and one may not obtain any meaningful regret guarantee. However, by taking
advantage of the log-barrier regularizer, we naturally handle all possible “bad” distribution Qt,i. In
the following two subsections, we the details of regret upper bound and lower bound, respectively.

D.2 Regret Guarantee and Analysis

To obtain near-optimal high-probability regret guarantee again Huber contamination, we simply need
to run our Algorithm 1 with different initial learning rate and trimming threshold, both of which now
further depend on the contamination level. We formally state the theoretical guarantee below.
Theorem 3. For any failure probability ζ and contamination level α > 0, by choosing initial learning
rate

η =
1

u

(
K log(T )

T

) 2+v
2+2v

(
1

α

) v
2+2v

and trimming threshold

Mt,i = min{ u

α
1

1+v

,

(
u1+v

ηα

) 1
2+v

,
1

110η log(T ) log(40T 2/ζ)
},

Algorithm 1 ensures that with probability at least 1− ζ,

RT = O
(
uα

v
1+v T + uK

v
1+v T

1
1+v (log(T ))1.5 log(T/ζ)

)
.

By further choosing ζ = 1/T , Algorithm 1 ensures that

E[RT ] = O
(
uα

v
1+v T + uK

v
1+v T

1
1+v (log(T ))2.5

)
.

We first rewrite regret as

RT =
∑
t∈NQ

(µt,at − ℓ
′
t,at)−

∑
t∈NQ

(µt,i∗ − ℓ
′
t,i∗)︸ ︷︷ ︸

CONTRIMERR I

+
∑
t∈NP

(µt,at − ℓ
′
t,at)−

∑
t∈NP

(µt,i∗ − ℓ
′
t,i∗)︸ ︷︷ ︸

CONTRIMERR II

+

T∑
t=1

(ℓ
′
t,at − ℓ

′
t,i∗)︸ ︷︷ ︸

CONTRIMREG

, (93)

where NQ is the set containing all round indices in which the observation is contaminated (i.e.,
ℓt,at = ℓ̃t,at ∼ Qt,at ), and NP = [T ]\NQ (i.e., those rounds in which ℓt,at = ℓt,at ∼ Pt,at ).

Similar to the uncontaminated case, it is sufficient to choose some fixed trimming threshold Mt,i =
M .

D.2.1 Bounding CONTRIMERR I

Recall that |NQ| denotes the total number of rounds when the feedback is contaminated, which is
exactly the sum of T independent random variables from Ber(α). By standard concentration results
(e.g., Lemma 10), we have with probability at least 1− ζ that

|NQ| ⩽ αT +
√
2Tα(1− α) log(1/ζ) +

2 log(1/ζ)

3
⩽ 2αT +

4 log(1/ζ)

3
, (94)

where the last step is again due to the fact that
√
x1x2 ⩽ x1+x2

2 ,∀x1, x2 ⩾ 0.

For any fixed trimming threshold M , it holds almost surely that

µt,i − ℓ
′
t,i = µt,i − µ′

t,i + µ′
t,i − ℓt,i ⩽ u1+vM−v + 2M, (95)

which implies that, with probability at least 1− ζ, we have

CONTRIMERR I ⩽ 2

(
2αT +

4 log(1/ζ)

3

)
·
(
u1+vM−v + 2M

)
. (96)
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D.2.2 Bounding CONTRIMERR II

In round t ∈ NP , the losses are not contaminated. By Lemma 1, we have probability with at least
1− ζ that,

CONTRIMERR II ⩽ 2 |NP |u1+vM−v + 8
√
|NP |u1+vM1−v log(2 log(T )/ζ)

+ 8M log(2 log(T )/ζ)

⩽ 6Tu1+vM−v + 12M log(2 log(T )/ζ). (97)

D.2.3 Bounding CONTRIMREG

We first rewrite this part as

CONTRIMREG =

T∑
t=1

(
⟨wt, ℓ̂t⟩ − ⟨yi

∗
, ℓ′t⟩

)
=

T∑
t=1

⟨wt − y′, ℓ̂t⟩︸ ︷︷ ︸
CONTRIMREGI

+

T∑
t=1

⟨y′ − yi
∗
, ℓ

′
t⟩︸ ︷︷ ︸

CONTRIMREGII

+

T∑
t=1

⟨y′, ℓ̂t − ℓ
′
t⟩︸ ︷︷ ︸

CONTRIMREGIII

. (98)

D.2.4 Bounding CONTRIMREGI

As long as it holds that η ⩽ 1
10M , we have

T∑
t=1

⟨wt − y′, ℓ̂t⟩ ⩽
2K log T

η
− ⟨y′, ρT ⟩

10η log T
+ 5ηM1−v

T∑
t=1

∣∣∣ℓ′t,at∣∣∣1+v , (99)

and it is left to bound
∑T
t=1

∣∣∣ℓ′t,at∣∣∣1+v .

We first rewrite it as

T∑
t=1

∣∣∣ℓ′t,at∣∣∣1+v = ∑
t∈NQ

∣∣∣ℓ̃′t,at∣∣∣1+v + ∑
t∈NP

∣∣ℓ′t,at∣∣1+v . (100)

Similarly, with probability at least 1− ζ, it holds that∑
t∈NQ

∣∣∣ℓ̃′t,at∣∣∣1+v ⩽ (2αT +
4 log(1/ζ)

3

)
M1+v. (101)

As in the uncontaminated case, by Lemma 11, we have with probability at least 1− ζ that∑
t∈NP

∣∣ℓ′t,at∣∣1+v ⩽ ∑
t∈NP

E
[∣∣ℓ′t,at∣∣1+v]+ 4

√
|NP |u1+vM1+v log(log(T )/ζ) + 2M1+v log(log(T )/ζ)

⩽ Tu1+v + 4
√
Tu1+vM1+v log(log(T )/ζ) + 2M1+v log(log(T )/ζ). (102)

Taking a union bound, we get with probability at least 1− ζ that

CONTRIMREGI ⩽
2K log T

η
− ⟨y′, ρT ⟩

10η log T
+ 5η

(
2αT +

4 log(2/ζ)

3

)
M2 + 5ηM1−vTu1+v

+ 20η
√
Tu1+vM3−v log(2 log(T )/ζ) + 10ηM2 log(2 log(T )/ζ)

⩽
2K log T

η
− ⟨y′, ρT ⟩

10η log T
+ 5η

(
2αT +

4 log(2/ζ)

3

)
M2 + 15ηM1−vTu1+v

+ 20ηM2 log(2 log(T )/ζ). (103)
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D.2.5 Bounding CONTRIMREGII

By Hölder’s inequality, we have

T∑
t=1

⟨y′ − yi
∗
, ℓ

′
t⟩ ⩽

T∑
t=1

∥∥∥y′ − yi
∗
∥∥∥
∞

∥∥∥ℓ′t∥∥∥
1

=

T∑
t=1

max{λ/K, λ(1− 1/K)} ·
∥∥∥ℓ′t∥∥∥

1

⩽ λ

T∑
t=1

K∑
i=1

∣∣∣ℓ′t,i∣∣∣
= λ

∑
t∈NQ

K∑
i=1

∣∣∣ℓ̃′t,i∣∣∣+ ∑
t∈NP

K∑
i=1

∣∣ℓ′t,i∣∣
 . (104)

We clearly have with probability at least 1− ζ that

∑
t∈NQ

K∑
i=1

∣∣∣ℓ̃′t,i∣∣∣ ⩽ KM

(
2αT +

4 log(1/ζ)

3

)
, (105)

and with probability with at least 1− ζ that

∑
t∈NQ

K∑
i=1

∣∣ℓ′t,i∣∣ ⩽ uKT +
√
2KTu1+vM1−v log(1/ζ) +

4

3
M log(1/ζ). (106)

By taking a union bound, we get with probability at least 1− ζ that

CONTRIMREGII ⩽ λ
(
(2αM + u)KT +

√
2KTu1+vM1−v log(2/ζ) + 2KM log(2/ζ)

)
.

(107)

D.2.6 Bounding CONTRIMREGIII

We first rewrite CONTRIMREGIII as

CONTRIMREGIII =
∑
t∈NQ

⟨y′, ℓ̂t − ℓ̃′t⟩+
∑
t∈NP

⟨y′, ℓ̂t − ℓ′t⟩. (108)

To bound the first part, recall that for any t ∈ NQ, it holds that∣∣∣⟨y′, ℓ̂t − ℓ̃′t⟩
∣∣∣ /M ⩽ 2⟨y′, ρT ⟩ (109)

and

E
[
(⟨y′, ℓ̂t − ℓ′t⟩/M)2

∣∣∣Ft] ⩽ 1

M2
E
[
(⟨y′, ℓ̂t⟩)2

∣∣∣Ft]
=

1

M2
E

[
(y′at)

2(ℓ̃′t,at)
2

(wt,at)
2

∣∣∣∣∣Ft
]

=
1

M2

K∑
i=1

wi
(y′i)

2

(wt,i)2
E
[
(ℓ̃′t,i)

2
∣∣∣Ft, at = i

]
⩽

1

M2

K∑
i=1

(y′i)
2

wt,i
M2

⩽ ⟨y′, ρT ⟩. (110)
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Therefore, with probability at least 1− ζ, it holds that

∑
t∈NQ

⟨y′, ℓ̂t − ℓ̃′t⟩ ⩽ 3M

√(
2αT +

4 log(2/ζ)

3

)
⟨y′, ρT ⟩ι′ + 2M max{1, 2⟨y′, ρT ⟩}ι′

⩽
4.5M

(
2αT + 4 log(2/ζ)

3

)
2

+
2M⟨y′, ρT ⟩ι′

2
+ 2M max{1, 2⟨y′, ρT ⟩}ι′

⩽ 3M

(
2αT +

4 log(2/ζ)

3

)
+ 3M max{1, 2⟨y′, ρT ⟩}ι′, (111)

where ι′ := log(4max{
√(

2αT + 4 log(2/ζ)
3

)
⟨y′, ρT ⟩, 1, 2⟨y′, ρT ⟩}/ζ).

For the uncontaminated part, with probability, by Lemma 12, we have with probability at least 1− ζ
that,

∑
t∈NP

⟨y′, ℓ̂t − ℓ′t⟩ ⩽ 3u
√
Tu−1+vM1−v⟨y′, ρT ⟩ι′′ + 2umax{1, 2M⟨y′, ρT ⟩/u}ι′′

⩽
4.5uTuvM−v

2
+

2uu−1M⟨y′, ρT ⟩ι′

2
+ 2umax{1, 2M⟨y′, ρT ⟩/u}ι′′

⩽ 3Tu1+vM−v + 5max{u,M⟨y′, ρT ⟩}ι′′, (112)

where ι′′ := log(2max{
√
Tu−1+vM1−v⟨y′, ρT ⟩, 1, 2M⟨y′, ρT ⟩/u}/ζ). Taking a union bound, we

get with probability at least 1− ζ that

CONTRIMREGIII ⩽ 3M

(
2αT +

4 log(3/ζ)

3

)
+ 3Tu1+vM−v

+ 3M max{1, 2⟨y′, ρT ⟩} log(6max{

√(
2αT +

4 log(3/ζ)

3

)
K/λ, 2K/λ}/ζ)

+ 3max{1, 2M⟨y′, ρT ⟩} log(6max{
√

2Tu1+vM1−vK/λ, 4MK/λ}/ζ).
(113)

D.2.7 Putting All Pieces Together

Combining all the parts, we have with probability at least 1− ζ that

RT ⩽ 4

(
αT +

2 log(5/ζ)

3

)
·
(
u1+vM−v + 2M

)
+ 6Tu1+vM−v + 12M log(10 log(T )/ζ)

+
2K log T

η
− ⟨y′, ρT ⟩

10η log T
+ 10η

(
αT +

2 log(10/ζ)

3

)
M2 + 15ηM1−vTu1+v

+ 20ηM2 log(10 log(T )/ζ) + (2αM + u)λKT + λ
√
2KTu1+vM1−v log(10/ζ)

+ 2λKM log(10/ζ) + 3M

(
2αT +

4 log(15/ζ)

3

)
+ 3M max{1, 2⟨y′, ρT ⟩} log(15max{

√(
2αT +

4 log(15/ζ)

3

)
K/λ, 2K/λ}/ζ)

+ 3Tu1+vM−v

+ 5max{u,M⟨y′, ρT ⟩} log(10max{
√

2Tu−1+vM1−vK/λ, 4MK/(uλ)}/ζ). (114)
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We first plug in λ and simplify the upper bound as

RT ⩽ 4

(
αT +

2 log(5/ζ)

3

)
·
(
u1+vM−v + 2M

)
+ 9Tu1+vM−v + 12M log(10 log(T )/ζ)

+
2K log T

η
− ⟨y′, ρT ⟩

10η log T
+ 10η

(
αT +

2 log(10/ζ)

3

)
M2 + 15ηM1−vTu1+v

+ 20ηM2 log(10 log(T )/ζ) + 2αMT
1

1+vK
v

1+v + uT
1

1+vK
v

1+v + uT
1

1+vK
v

1+v

√
2 log(10/ζ)

+ 2T
−v
1+vK

v
1+vM log(10/ζ) + 3M

(
2αT +

4 log(15/ζ)

3

)
+ 6M⟨y′, ρT ⟩ log(15max{

√(
2αT +

4 log(15/ζ)

3

)
KT, 2KT}/ζ)

+ 5max{u,M⟨y′, ρT ⟩} log(10T max{
√
2u−1+vM1−vK, 4MK/u}/ζ). (115)

Assuming αT ⩾ 4
3 log(15 log(T )/ζ) and T ⩾

√
T log(15 log(T )/ζ), we further simplify the upper

bound as

RT ⩽ 8αT ·
(
u1+vM−v + 2M

)
+ 9Tu1+vM−v + 21MαT

+
2K log T

η
− ⟨y′, ρT ⟩

10η log T
+ 20ηαTM2 + 35ηM1−vTu1+v

+ 20ηM2αT + 2αMT
1

1+vK
v

1+v + uT
1

1+vK
v

1+v + uT
1

1+vK
v

1+v

√
2 log(10/ζ)

+ 2αMT
1

1+vK
v

1+v + 6M⟨y′, ρT ⟩ log(15max{
√
3αKT 2, 2KT}/ζ)

+ 5max{u,M⟨y′, ρT ⟩} log(10T max{
√
2u−1+vM1−vK, 4MK/u}/ζ)

⩽ 32αMT + 17Tu1+vM−v + 40ηαTM2 + 35ηM1−vTu1+v +
2K log T

η

− ⟨y′, ρT ⟩
10η log T

+ uT
1

1+vK
v

1+v + uT
1

1+vK
v

1+v

√
2 log(10/ζ)

+ 6M⟨y′, ρT ⟩ log(30KT/ζ)

+ 5max{u,M⟨y′, ρT ⟩} log(10T max{
√
2u−1+vM1−vK, 4MK/u}/ζ), (116)

where in the last inequality we apply K ⩽ T to upper bound terms of form Θ(αMT
1

1+vK
v

1+v ).

For any η > 0, choosing M = min{ u

α
1

1+v
,
(
u1+v

ηα

) 1
2+v

, 1
10η}, we have

RT = O

(
(ηα)

v
2+v u1+

v
2+v T + (η)vu1+vT +

K log T

η

)
− ⟨y′, ρT ⟩

10η log T
+ 6M⟨y′, ρT ⟩ log(30KT/ζ)

+ 5max{u,M⟨y′, ρT ⟩} log(10T max{
√
2u−1+vM1−vK, 4MK/u}/ζ)

+O
(
uα

v
1+v T + uT

1
1+vK

v
1+v

√
log(1/ζ)

)
. (117)

Now we are going to choose η = 1
u ·min{

(
K log(T )

T

) 1
1+v

,
(
K log(T )

T

) 2+v
2+2v ( 1

α

) v
2+2v }. We further

assume that α
v

(1+v)(2+v)T ⩾ K log(T ), which implies that(
K log(T )

T

) 1
1+v

⩾

(
K log(T )

T

) 2+v
2+2v

(
1

α

) v
2+2v

(118)

and thus η = 1
u

(
K log(T )

T

) 2+v
2+2v ( 1

α

) v
2+2v .
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Finally, we need to cancel the terms containing ⟨y′, ρT ⟩ to obtain the high-probability guarantee.

Case 1: u ⩾M⟨y′, ρT ⟩. If max{u,M⟨y′, ρT ⟩} = u, it would just introduce a Õ(u) term which can
be ignored. In this case, η must satisfy that

− 1

10η log(T )
+ 6M log(30KT/ζ) ⩽ 0, (119)

which implies that

η ⩽
1

60M log(T ) log(30KT/ζ)
. (120)

Case 2: u < M⟨y′, ρT ⟩. With the current choice of M and η, we have

M ⩽
1

10η
⩽ 0.1uα

v
2+2v

(
T

K log(T )

) 2+v
2+2v

⩽ uT/K, (121)

which implies that

log(10T max{
√
2u−1+vM1−vK, 4MK/u}/ζ) ⩽ log(10T max{

√
2T , 4T}/ζ)

⩽ log(40T 2/ζ). (122)

Now it is sufficient to have η satisfying that

− 1

10η log(T )
+ 11M log(40T 2/ζ) ⩽ 0, (123)

meaning that

η ⩽
1

110M log(T ) log(40T 2/ζ)
. (124)

In summary, in either case, it is sufficient to have ηM ⩽ 1
110 log(T ) log(40T 2/ζ) . Note that this is

stronger than (and implies) the stability condition ηM ⩽ 0.1.

Starting again from Eq. (117), with any η > 0, choosing

M = min{ u

α
1

1+v

,

(
u1+v

ηα

) 1
2+v

,
1

110η log(T ) log(40T 2/ζ)
},

we have

RT = O

(
(ηα)

v
2+v u1+

v
2+v T + (η)vu1+vT

(
log(T ) log(40T 2/ζ)

)v
+
K log T

η

)
− ⟨y′, ρT ⟩

10η log T
+ 6M⟨y′, ρT ⟩ log(30KT/ζ)

+ 5max{u,M⟨y′, ρT ⟩} log(10T max{
√
2u−1+vM1−vK, 4MK/u}/ζ)

+O
(
uα

v
1+v T + uT

1
1+vK

v
1+v

√
log(1/ζ)

)
. (125)

Lastly, still choosing

η =
1

u
·min{

(
K log(T )

T

) 1
1+v

,

(
K log(T )

T

) 2+v
2+2v

(
1

α

) v
2+2v

} =
1

u

(
K log(T )

T

) 2+v
2+2v

(
1

α

) v
2+2v

yields that

RT = O
(
uK

v
2+2v T

2+v
2+2v (log T )

v
2+2vα

v
2+2v + uK

v
1+v T

1
1+v (log(T ))1+

v
1+v
(
log(40T 2/ζ)

)v)
+O

(
uα

v
1+v T + uT

1
1+vK

v
1+v

√
log(1/ζ)

)
⩽ O

(
uα

v
1+v T + uK

v
1+v T

1
1+v

(
(log(T ))1+

v
1+v
(
log(40T 2/ζ)

)v
+
√

log(1/ζ)
))

⩽ O
(
uα

v
1+v T + uK

v
1+v T

1
1+v (log T )1.5 log(40T 2/ζ)

)
. (126)
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D.3 Regret Lower Bound with Contamination

Theorem 4 (Lower Bound for Heavy-tailed Adversarial Bandits with Huber Contamination). For
any bandit algorithm, there must exist one problem instance in which the algorithm suffers regret

E[RT ] = Ω
(
uT

1
1+vK

v
1+v + uTα

v
1+v

)
.

Proof of Theorem 4. In the presence of heavy tails, every algorithm suffers Ω
(
uT

1
1+vK

v
1+v

)
regret

in the worst case, regardless of contamination level α (Bubeck et al., 2013).

Therefore, to show the lower bound with contamination, it suffices to show a lower bound of

Ω
(
uTα

v
1+v
)

given any α ∈ (0, 1].

This proof is a direct modification based on Wu et al. (2024, Appendix B). We use π to denote a
bandit algorithm. We construct two environments, denoted by ν1 and ν2, respectively. And then we
show that any algorithm suffers the claimed regret in one of these two environments.

Environment ν1. In ν1, the loss of action 1 in every round t ∈ [T ] is given by

ℓt,1 =


u/γ, with probability

1

2
γ1+v ,

0, with probability 1− 1

2
γ1+v ,

where γ ⩽ 1 is some free parameter to choose at the last step of the proof. One can verify that
E[|ℓ1|1+v] ⩽ u1+v via direct calculations.

For any suboptimal action i ̸= 1, the loss in every round t ∈ [T ] is given by

ℓt,i =


u/γ, with probability

3

10
γ1+v ,

0, with probability 1− 3

10
γ1+v .

One can verify that E[|ℓt,i|1+v] ⩽ u1+v,∀i ̸= 1. Moreover, action 1 is the optimal one and we have
the “sub-optimality gap” ∆ := E[ℓt,1 − ℓt,i] =

u
5 γ

v,∀i ̸= 1.

Given algorithm π and environment ν1, we define i′ = argmin
i∈{2,...,K}

E
π,ν1

[NT,i], and hence we have

E
π,ν1

[NT,i′ ] ⩽ T
K−1 . Now we are able to construct the second environment.

Environment ν2. In this environment, everything is the same as in ν1, except that for action i′, now
the loss follows

ℓt,i′ =


u/γ, with probability

7

10
γ1+v ,

0, with probability 1− 7

10
u1+v .

One can verify that E[ℓi′ ] = 7
10γ

1+v,E[|ℓi′ |1+v] ⩽ u1+v and now the optimal action is i′. We use ν̃2
to denote the contaminated version of ν′2 (where the bad distributions are determined later).

And then, we use ν̃1 (ν̃2) to denote the contaminated version of ν1 (ν2). The bad distributions will be
determined later.

Environments ν̃1 and ν̃2. We choose γ = α
1

1+v ∈ (0, 1]. Then for any i ∈ [K], we have
TV(Pt,i∥P ′

t,i) ⩽
2
5γ

1+v = 2
5α ⩽ α

1−α . According to Lemma 13, for any action i ∈ [K], there exist
bad distributions Gi and G′

i such that

(1− α)Pt,i + αGi = (1− α)P ′
t,i + αG′

i,
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where Pt,i (P ′
t,i) denotes the loss distribution of action i in round t under environment 1 (2). We

construct ν̃1 and ν̃2 by

ν̃1 = {xi = (1− α)Pt,i + αGi : i ∈ [K]},
ν̃2 = {x′i = (1− β)P ′

t,i + βG′
i : i ∈ [K]},

where xi and x′i denote the loss distributions for action i in these two environments, respectively.

Following from the regret definition, we first have

RT (π, ν̃1) = ∆

(
T − E

π,ν̃1
[NT,1]

)
⩾

∆T

2
Pπ,ν̃1

(
NT,1 ⩽

T

2

)
,

RT (π, ν̃2) = ∆ E
π,ν̃2

[NT,1] +
∑

i/∈{1,i′}

2∆ E
π,ν̃2

[NT,i] ⩾
∆T

2
Pπ,ν̃2

(
NT,1 ⩾

T

2

)
.

By adding them together, we have

RT (π, ν̃1) +RT (π, ν̃2) ⩾
∆T

2

(
Pπ,ν̃1

(
NT,1 ⩽

T

2

)
+ Pπ,ν̃2

(
NT,1 ⩾

T

2

))
(a)
⩾

∆T

4
exp (−KL(Pπ,ν̃1∥Pπ,ν̃2))

(b)
=

∆T

4
exp (0) ,

where step (a) follows from the Bretagnolle–Huber inequality (Lattimore & Szepesvári, 2020,
Theorem 14.2), and step (b) is due to the fact that ν̃1 and ν̃2 are identical under our construction.

Recall that ∆ = u
5 γ

v and γ = α
1

1+v , we arrive at

max{RT (π, ν1), RT (π, ν2)} ⩾ Ω(uTα
v

1+v ),

which completes the proof.

E BOBW Guarantees with Bounded Losses and Local Differential Privacy

We first give the definition of Differential Privacy followed by the learning setup.
Definition 1 (Differential Privacy (DP)). For any given privacy budget ε > 0, δ ⩾ 0, a mechanism
M : D → Rm is said to be (ε, δ)-differentially private (DP) if for all datasets X,X ′ in D that
differ on only one element and measurable subset E ⊂ Rm, it holds that P(M(X) ∈ E) ⩽
exp(ε) ·P(M(X ′) ∈ E)+δ. When δ = 0, we refer to (ε, δ)-DP as ε-DP (pure DP), which is stronger
than (ε, δ)-DP for some δ > 0 (approximate DP).
Definition 2 (Bandits with Bounded Losses and Local DP (LDP)). All loss distributions
(Pt,i)t∈[T ],i∈[K] have support bounded in [0, 1]. Given any privacy budget ε ∈ (0, 1], δ > 0, the ban-
dit model is said to be (ε, δ)-LDP if at+1 lies in the sigma-algebra generated by {at′ ,M(ℓt,at′ )}t′∈[t]

in any round t ∈ [T ] where M is an (ε, δ)-DP mechanism.

Roughly speaking, the algorithm should not touch true losses, and it observes privatized losses only.
Here, we adopt the widely-used Laplace mechanism (Dwork et al., 2014). Specifically, when data
are bounded in [0, 1], adding noise drawn from Lap(ε)7 to them ensures ε-DP. By adopting it, the
observed loss is the true loss plus an i.i.d. sample from Lap(ε). That is, this setup could be viewed as
a specific way of generating heavy-tailed losses (i.e., bounded true loss + Laplace noise for privacy).

In the literature, Agarwal & Singh (2017) and Tossou & Dimitrakakis (2017) investigated the
adversarial regime and proposed algorithms that achieve Õ(

√
KT
ε ) worst-case regret (in expectation)

with ε-LDP protection, which matches the lower bound (Garcelon et al., 2021) up to some log T factor
and implies that their algorithms are (nearly) minimax-optimal. In the stochastic regime, Ren et al.

7Laplace distribution with parameter η is denoted by Lap(η) and has Probability Density Function fη(z) =
η · exp(−η|z|)/2, ∀z ∈ R.
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(2020) proposed privatized Upper Confidence Bound-based algorithms with O(
∑
i:∆i>0

log T
ε2∆i

) gap-

dependent regret and O(
√
KT log T

ε ) worst-case regret. They also provided a matching gap-dependent
lower bound, which scales as Ω(

∑
i:∆i>0

log T
ε2∆i

) when ε ⩽ 1.

In the BOBW setting, Zheng et al. (2020) showed that by privatizing the Tsallis-INF (an optimal
algorithm in the (non-private) BOBW setting when losses are bounded) with Gaussian noise, they
achieved O(

√
KT
ε ) regret in the adversarial regime and O

(∑
i:∆i>0

log(T ) log(1/δ)
ε2∆i

)
regret in the

stochastic regime with approximate (ε, δ)-LDP protection, which is weaker than pure ε-LDP. And
these regret bounds hold in expectation only.

In what follows, we present the BOBW guarantee provided by our Algorithm 2 when the losses are
privatized by noise from Lap(ε).

Recall that the privatized loss ℓt,i = ℓt,i = ℓt,i + z, where ℓt,i is bounded in [0, 1] and z ∼ Lap(ε),
we have

E[
∣∣ℓt,i∣∣2] = E[|ℓt,i + z|2] ⩽ 2E[(ℓt,i)2] + 2E[z2] ⩽ 2 + 2(1/ε)2 = O(1/ε2), (127)

where in the last inequality we utilize the fact that distribution Lap(ε) has second moment bounded
by 1/ε2.

Therefore, plugging u = O(1/ε) and v = 2 into Theorem 2 yields the following high-probability
BOBW regret guarantee with (pure) ε-LDP protection: O(

√
KT log(K)(log T )3

ε ) worst-case regret in

the adversarial regime and O(K log(K)(log T )4

ε2∆ ) regret in the stochastic regime with high probability.
To the best of our knowledge, this is the first BOBW regret guarantee in MAB with pure LDP
protection. We believe that our BOBW results can also be generalized to the case when true losses
(to be protected) are heavy-tailed rather than bounded (by properly trimming the true losses before
privatization). Related work by Tao et al. (2022) investigated solely the stochastic regime.

F Auxiliary Lemmas

Lemma 8. For any fixed Mt,i > 0, it holds almost surely that
∣∣µt,i − µ′

t,i

∣∣ ⩽ u1+v(Mt,i)
−v .

Proof of Lemma 8. Expanding the definitions of µt,i and µ′
t,i, we have∣∣µt,i − µ′

t,i

∣∣ = ∣∣∣∣ E
ℓt,i∼Pt,i

[ℓt,i]− E
ℓt,i∼Pt,i

[ℓt,i · I{|ℓt,i| ⩽Mt,i}]
∣∣∣∣

=

∣∣∣∣ E
ℓt,i∼Pt,i

[ℓt,i · I{|ℓt,i| > Mt,i}]
∣∣∣∣

⩽ E
ℓt,i∼Pt,i

[|ℓt,i| · I{|ℓt,i| > Mt,i}]

⩽ E
ℓt,i∼Pt,i

[|ℓt,i|1+v (Mt,i)
−v · I{|ℓt,i| > Mt,i}]

⩽ E
ℓt,i∼Pt,i

[|ℓt,i|1+v (Mt,i)
−v]

⩽ u1+v(Mt,i)
−v.

Lemma 9 (Adapted from Lemma 19 in Wei & Luo (2018)). In Algorithm 1, for any fixed λ ∈ (0, 1),
let ni be the number of times the learning rate of arm i changes (and in fact increases) in total, i.e.,

ηT+1,i = κniη1,i = κniη. We have ni ⩽ log2(1/λ) and ηt,i ⩽ e
log2(1/λ)

log T η,∀t ∈ [T ], i ∈ [K].

Proof of Lemma 9. Let t1, . . . , tni be the (ordered) rounds when the learning rate of action i changes,
we have

K

λ
⩾

1

wtni
,i
> ρtni

,i > 2ρtni
−1,i > · · · > 2ni−1ρt1,i = 2niK.

Clearly, we have ni ⩽ log2(1/λ) and therefore ηt,i ⩽ κniη1,i ⩽ e
log2(1/λ)

log T η.
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Lemma 10 (Bernstein’s inequality for independent random variables (Vershynin, 2018)). Let
X1, . . . , XT be zero-mean independent random variables such that |Xt| ⩽ b,∀t ∈ [T ] for some fixed
constant b and VT =

∑T
i=1 E

[
(Xt)

2
]
. Then, for any ζ > 0, we have with probability at least 1− ζ

that,
T∑
i=1

Xi ⩽
√
2VT log(1/ζ) +

2b log(1/ζ)

3
.

Lemma 11 (Freedman’s inequality for martingales, Lemma 3 in Rakhlin et al. (2011)). Let
X1, . . . , XT be a martingale difference sequence adapted to filtration F1 ⊂ · · · ⊂ FT such that
|Xt| ⩽ b almost surely for some fixed constant b and Vt =

∑t
s=1 E

[
(Xs)

2
∣∣Fs]. Then, for any

ζ < 1/(e log T ) and T ⩾ 4, we have with probability at least 1− ζ that for any t ∈ [T ],

t∑
i=1

Xi ⩽ 2max{2
√
Vt, b

√
log(log(T )/ζ)}

√
log(log(T )/ζ) ⩽ 4

√
Vt log(log(T )/ζ)+2b log(log(T )/ζ).

Lemma 12 (Adaptive Freedman’s inequality, Theorem 9 in Zimmert & Lattimore (2022)). Let
X1, . . . , XT be a martingale difference sequence adapted to filtration F1 ⊂ · · · ⊂ FT such that
E [Xt|Ft] is finite almost surely. Then, for any ζ > 0, it holds with probability at least 1− ζ that

T∑
i=1

Xi ⩽ 3

√
VT log

(
2max{UT ,

√
VT }

ζ

)
+ 2UT log

(
2max{UT ,

√
VT }

ζ

)
,

where VT =
∑T
i=1 E

[
(Xt)

2
∣∣Ft] and UT = max{1,maxt∈[T ]Xt}.

Lemma 13 (Theroem 5.1 of Chen et al. (2018)). Let R1 and R2 be two distributions on X . If for
some α ∈ [0, 1] it holds that TV(R1∥R2) ⩽ α

1−α , then there exist two distributions on the same
probability space G1 and G2 such that

(1− α)R1 +G1 = (1− α)R2 +G2.

41



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work focuses on theoretical Machine Learning.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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