
LatentDE: Latent-based Directed Evolution
accelerated by Gradient Ascent

for Protein Sequence Design

Thanh V. T. Tran∗,1 Nhat Khang Ngo∗,†,1 Viet Thanh Duy Nguyen1 Truong Son Hy‡,2
1 FPT Software AI Center, Vietnam 2 University of Alabama at Birmingham, United States

Abstract

Directed evolution is a powerful but resource-intensive method for optimizing pro-
tein functionalities by screening a vast range of mutations. Recent advances in ma-
chine learning aim to streamline this process by using surrogate sequence-function
models. We propose Latent-based Directed Evolution (LDE), an evolutionary
algorithm that efficiently explores high-fitness mutants in the latent space. Built on
a regularized variational autoencoder (VAE) and the state-of-the-art Protein Lan-
guage Model ESM-2, LDE creates a meaningful latent representation of sequences
and combines gradient-based methods with directed evolution for effective fitness
landscape traversal. Our experimental results on eight protein design tasks show
that LDE outperforms existing baseline algorithms. Our source code is publicly
available at https://github.com/HySonLab/LatentDE.

1 Introduction

Protein engineering aims to design proteins with specific functions, determined by their amino acid
sequences that fold into three-dimensional structures [15, 11], creating a fitness landscape that maps
sequences to functions [54]. Inspired by natural evolution, directed evolution [2] iteratively mutates
and selects protein variants to optimize desired functions.

Recent machine learning (ML) methods have enhanced the efficiency of evolutionary searches for
protein design [33, 52, 34, 13]. However, these methods often rely on costly, repetitive rounds of
mutagenesis and validation in a vast, discrete sequence space, making them prone to local optima
and false positives [6, 12, 5]. Latent space optimization (LSO) offers a more efficient alternative
by using continuous, low-dimensional representations, but its integration with directed evolution
remains underexplored.

Protein design is a black-box model-based optimization (MBO) problem, where the objective is to
identify sequences maximizing fitness. While online MBO iteratively proposes designs based on
feedback, its effectiveness is limited by the availability of experimental data. Offline MBO, which
relies on a static dataset, is more efficient but can struggle with out-of-distribution inputs, causing the
learned model f̂(x) to predict fitness inaccurately [27].

To address these challenges, we propose Latent-based Directed Evolution (LDE), the first method to
integrate directed evolution within a latent space. Leveraging the latent space of ESM-2 [28], LDE
uses a variational autoencoder (VAE) to reconstruct and predict the fitness of sequences. Combining
the strengths of both MBO approaches, LDE first uses gradient ascent to guide latent representations
toward high-fitness regions and then integrates directed evolution by introducing noise to explore

∗ Equal contribution
† Now at Mila, McGill University
‡ Correspondence at thy@uab.edu

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/HySonLab/LatentDE

E
SM

L
atent E

ncoder

D
ec

od
er :

: Oracle

Latent-based DE in G generations

K variant sequences Sample B neighbors around each
latent vectors

K x B decoded sequences Select Top K Sequences

Sample K neighboring latent encodings

E
SM

D
ec

od
er

L
atent E

ncoder MAADGYLPDWLEDTLSE

Wild-type sequence

Figure 1: Overview of our proposed method. Top: Encoding of the wild-type sequence into latent
variables and gradient ascent towards high-fitness regions. Bottom: Latent-based directed evolution
performed over G generations, sampling B neighbors around the latent variables for evaluation by a
black-box oracle.

locally. This process enables efficient sampling and optimization of sequences using oracles such as
wet-lab experiments or ML models.

2 Method

Algorithm 1 Latent-based directed evolution ac-
celerated by gradient ascent
Input: xwt, encoder ϕ, decoder θ, fitness predictor
f , # iterations T , # generations G, beam size B,
oracleO.

1: P0 ←− ∅
2: for i = 1 to K do
3: Sample z ∼ N (µϕ(x

wt), σϕ(x
wt)2)

4: zT ←− gradient_ascent(z, f, T) in Equa-
tion (5)

5: x̂←− θ(zT)
6: P0 ←− P0 ∪ {(x̂,O(x̂))}
7: end for
8: for g = 1 to G do
9: Pg ←− ∅

10: for k = 1 to K do
11: for b = 1 to B do
12: Sample zk,b ∼ N (µϕ(xk), σϕ(xk)

2)
13: p ∼ U [0, 1)
14: if p > threshold then
15: Inject noise to zk,b based on Equa-

tion (6)
16: end if
17: x̂k,b ←− θ(zk,b)
18: Pg ←− Pg ∪ {(x̂k,b,O(x̂k,b)}
19: end for
20: Pg ←− Pg ∪ Pg−1

21: Pg ←− topK(Pg)
22: end for
23: end for

Optimizing the latent variables of generative
models has proven effective in various drug and
protein design tasks [20, 42]. Our work intro-
duces a novel approach that utilizes directed
evolution to efficiently discover optimal protein
sequences directly from their latent representa-
tions. The theoretical background for Directed
Evolution (DE) and Latent Space Optimization
(LSO), which form the basis of our approach,
is discussed in detail in Appendix A. We be-
gin with the problem formulation in Section 2.1.
Then, we present our pre-trained regularized
variational autoencoders (VAEs) [23] in Sec-
tion 2.2 and how to perform directed evolution,
which is accelerated by gradient ascent, in the
latent space of VAEs in Section 2.3. We describe
our model architecture in Appendix B.

2.1 Problem Formulation

We aim to find high-fitness protein sequences
s in the sequence space VL, where V is the vo-
cabulary of amino acids and L is the sequence
length. The goal is to maximize a black-box pro-
tein fitness function O : VL 7→ R, which can
only be evaluated through wet-lab experiments:

x∗ = argmaxx∈VLO(x). (1)

For in-silico evaluation, we use an oracle Oψ
parameterized by ψ to approximate O. Given
a training subset Dt, our task is to generate se-
quences x̂ that optimize the fitness predicted by
Oψ. We focus on designing sequences starting
from a wild-type sequence and iteratively gener-
ating candidates with improved properties, as illustrated in Figure 1.

2

2.2 Regularized Variational Autoencoder

Given a dataset Dt = {(xi, yi)}Ni=1 of protein sequences xi ∈ VL with fitness values yi ∈ R, we
train a VAE with an encoder ϕ : VL 7→ Rdh and a decoder θ : Rd 7→ VL. The VAE encodes each
sequence into a latent vector zi ∈ Rd sampled from N (µi, σ

2
i) and reconstructs it back to x̂i ∈ VL.

The training objective combines cross-entropy loss C(x̂i, xi) and Kullback-Leibler (KL) divergence:

Lvae =
1

N

N∑
i=1

C(x̂i, xi) +
β

N

N∑
i=1

DKL(N (µi, σ
2
i)∥N (0, Id)). (2)

where β controls the disentanglement of the VAE’s latent space.

Latent Space Regularization The KL-divergence regularizer in Equation (2) encourages the
encoder ϕ to produce a latent space close to the unit Gaussian prior. However, this may reduce
the meaningfulness of latent representations [9]. To address this, following prior works [8, 16], we
jointly train the VAE with a fitness predictor f : Rd 7→ R to enhance the separation of high-fitness
representations:

L = Lvae +
1

N

N∑
i=1

||f(zi)− yi||22, (3)

where yi is the experimental fitness of sequence xi, and zi = ϕ(xi). This L2 regularization aligns
latent representations with their fitness scores.

2.3 Latent-Based Directed Evolution

Inspired by nature’s evolutionary process, where subtle mutations in a protein’s sequence enhance
fitness, our method explores the latent space around the wild-type sequence through iterative sampling
from the pretrained encoder ϕ.

A key challenge is that the latent representation z of xwt may reside in low-fitness regions, slowing
convergence. To address this, we use gradient ascent to initialize the population P0, guiding the
search toward higher fitness areas. Algorithm 1 outlines our approach, with further details on the
evolutionary process and sampling techniques provided in Appendix C.

2.4 Efficient Sampling and Optimization

Traditional directed evolution is effective but computationally intensive for protein design. Our latent-
based algorithm improves sampling efficiency by compressing long sequences into low-dimensional
latent representations via VAEs, simplifying the mutation process as noise addition in latent space.
This approach, unlike complex mutation operators [3, 46], requires no domain knowledge and is more
computationally efficient. The gradient ascent benefits from VAE regularization, creating a smoother
optimization landscape and reducing the risk of local optima. Furthermore, even if the optimization
converges to a local optimum, latent-based directed evolution (DE) can explore surrounding regions
through controlled random perturbations for a broader search, enabling a more comprehensive search
of promising areas.

3 Experiments

We conducted a comprehensive set of experiments to evaluate the effectiveness of our proposed
LDE in protein sequence design. The experimental setup, including datasets, implementation details,
baseline algorithms, oracles, and evaluation metrics, is described in Appendix D. Complete results of
these experiments are provided in Appendix E.

Comparison with Baseline Algorithms As shown in Table 1, LDE outperforms other algorithms
across eight protein benchmarks, especially for longer sequences (e.g., avGFP with 237 amino acids).
This highlights LDE’s advantage in efficiently exploring complex, high-dimensional protein spaces.
While AAV contains shorter sequences (up to 28 amino acids), LDE’s latent representations still
enhance optimization. The diversity and novelty metrics in Tables 3 and 4 provide further insights into
the exploration-exploitation trade-offs of various methods. It is important to note that maximizing
these metrics does not always indicate better overall performance, as different algorithms have
different objectives (e.g., optimizing fitness scores, maximizing diversity) [41, 35, 24]. For example,
GFN-AL and COMs achieve high diversity but low fitness scores in the AMIE dataset.

3

Table 1: Maximum fitness scores across eight protein datasets. Shaded rows indicate the result of
ablation studies.

avGFP AAV TEM E4B AMIE LGK Pab1 UBE2I

xwt 1.408 -6.778 -0.015 0.774 -2.789 -1.260 0.014 -0.262
AdaLead [40] 3.323 -1.545 0.248 -0.373 -1.483 -0.047 0.382 2.765
DyNA PPO [1] 5.331 -2.817 0.570 -0.575 -2.790 -0.060 0.183 2.630
CbAS [5] 5.187 -2.800 0.481 -0.658 -1.784 -0.056 0.276 2.693
CMA-ES [17] 5.125 -3.267 0.590 -0.658 -2.790 -0.086 0.254 2.527
COMs [45] 3.544 -3.533 0.472 -0.860 -20.182 -0.087 0.156 2.086
PEX [35] 3.796 2.378 0.252 4.317 -0.364 0.009 1.326 3.578
GFN-AL [19] 5.028 -4.444 0.654 -0.831 -37.360 -5.738 1.399 3.850
GGS [24] 3.368 2.442 1.121 -1.147 -3.364 -0.972 0.059 4.101

LDE (ours) 8.058 2.636 1.745 5.120 -0.103 0.018 1.548 4.297
− w/o GA 6.407 2.148 1.220 4.597 -0.099 -0.531 1.592 3.254
− w/o DE 3.677 0.919 -0.024 3.052 -0.701 -1.597 0.285 0.766

t-SNE Dimension 1 t-S
NE D

im
en

sio
n 2

fit
ne

ss

2 1 0 1 2 3 4 5 6

(a)

t-SNE Dimension 1 t-S
NE D

im
en

sio
n 2

fit
ne

ss

1 0 1 2 3 4

(b)

Figure 2: The fitness landscape approxi-
mated by regularized VAEs of E4B pro-
teins.

Impact of Gradient Ascent and Directed Evolution
An ablation study demonstrates the contribution of each
component of LDE. Variants without gradient ascent (w/o
GA) or without directed evolution (w/o DE) show reduced
performance, as seen in the two bottom lines of Table 1.
This confirms the importance of combining gradient ascent
for initialization with latent-based DE to achieve optimal
results.

Latent Space Visualization Figures 2a and 2b illustrate
the approximated fitness landscapes of protein sequences
in the E4B family. These suggest that applying VAE reg-
ularization, as in Equation (3), organizes latent represen-
tations by fitness. Figure 2a demonstrates that our VAEs
generate meaningful latent representations based on true
fitness values, while Figure 2b effectively approximates
a smooth fitness landscape, enabling effective gradient-based optimization methods. These results
highlight the effectiveness of our latent-based directed evolution approach.

4 Conclusion and Future Work

In this work, we present Latent-based Directed Evolution (LDE), a novel method that combines
directed evolution with gradient ascent in a regularized VAE latent space to efficiently optimize
and design protein sequences. This approach leverages deep representation learning capabilities
of generative models to significantly speed up the evolutionary process, achieving superior results
compared to traditional methods solely operating in sequence space. LDE holds significant promise
for accelerating protein engineering and drug discovery efforts, and we invite further research on
integrating it with in vitro protein characterization for real-world validation.

On-going Direction However, our present work is not complete and has limitations, including
its reliance on a single fitness predictor that could destabilize the optimization if poorly calibrated.
To address this, we are planning to use ensembles of surrogate models with risk-aware strategies to
handle uncertainty, along with robustness checks and sensitivity analyses to examine model stability
and parameter impact. Previous studies [32, 49] have explored this issue and shown promising results.
A potential extension would involve integrating structural information [47, 44] into the optimization
process, ensuring that the generated structures closely resemble the wild-type to maintain functionality.
Additionally, LDE could be adapted for multi-objective optimization. These ongoing efforts will
enhance the robustness, applicability, and effectiveness of our method, connecting computational
predictions with real-world biological outcomes.

4

References
[1] Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy,

and Lucy Colwell. Model-based reinforcement learning for biological sequence design. In
International Conference on Learning Representations, 2020.

[2] Frances H. Arnold. Directed evolution: Creating biocatalysts for the future. Chemical Engi-
neering Science, 51(23):5091–5102, 1996.

[3] Frances H Arnold. Design by directed evolution. Accounts of chemical research, 31(3):125–131,
1998.

[4] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. In Stefan Riezler and Yoav Goldberg,
editors, Proceedings of the 20th SIGNLL Conference on Computational Natural Language
Learning, pages 10–21, Berlin, Germany, August 2016. Association for Computational Linguis-
tics.

[5] David Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling
for robust design. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 773–782. PMLR, 09–15 Jun 2019.

[6] David H Brookes, Amirali Aghazadeh, and Jennifer Listgarten. On the sparsity of fitness
functions and implications for learning. Proceedings of the National Academy of Sciences,
119(1):e2109649118, 2022.

[7] Drew H. Bryant, Ali Bashir, Sam Sinai, Nina K. Jain, Pierce J. Ogden, Patrick F. Riley, George M.
Church, Lucy J. Colwell, and Eric D. Kelsic. Deep diversification of an aav capsid protein by
machine learning. Nature Biotechnology, 39(6):691–696, Jun 2021.

[8] Egbert Castro, Abhinav Godavarthi, Julian Rubinfien, Kevin Givechian, Dhananjay Bhaskar,
and Smita Krishnaswamy. Transformer-based protein generation with regularized latent space
optimization. Nature Machine Intelligence, 4:1–12, 09 2022.

[9] Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman,
Ilya Sutskever, and Pieter Abbeel. Variational lossy autoencoder. In International Conference
on Learning Representations, 2017.

[10] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–
decoder for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter
Daelemans, editors, Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1724–1734, Doha, Qatar, October 2014. Association for
Computational Linguistics.

[11] Cyrus Chothia. Principles that determine the structure of proteins. Annual Review of Biochem-
istry, 53(1):537–572, June 1984.

[12] Christian Dallago, Jody Mou, Jody Mou, Kadina Johnston, Bruce Wittmann, Nicholas Bhat-
tacharya, Samuel Goldman, Ali Madani, and Kevin Yang. Flip: Benchmark tasks in fitness
landscape inference for proteins. In J. Vanschoren and S. Yeung, editors, Proceedings of the
Neural Information Processing Systems Track on Datasets and Benchmarks, volume 1. Curran,
2021.

[13] Patrick Emami, Aidan Perreault, Jeffrey Law, David Biagioni, and Peter St. John. Plug and play
directed evolution of proteins with gradient-based discrete mcmc. Machine Learning: Science
and Technology, 4(2):025014, April 2023.

[14] Elad Firnberg, Jason W. Labonte, Jeffrey J. Gray, and Marc Ostermeier. A Comprehensive,
High-Resolution Map of a Gene’s Fitness Landscape. Molecular Biology and Evolution,
31(6):1581–1592, 02 2014.

5

[15] N Go. Theoretical studies of protein folding. Annual Review of Biophysics and Bioengineering,
12(1):183–210, June 1983.

[16] Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel,
Ryan P. Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS Central Science, 4(2):268–276, 2018. PMID:
29532027.

[17] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolu-
tion strategies. Evolutionary Computation, 9(2):159–195, 2001.

[18] Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure
F. P. Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang,
Lena Simine, Payel Das, and Yoshua Bengio. Biological sequence design with GFlowNets. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 9786–9801. PMLR, 17–23 Jul 2022.

[19] Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with gflownets. In International Conference on Machine Learning,
pages 9786–9801. PMLR, 2022.

[20] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In Jennifer Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 2323–2332. PMLR, 10–15 Jul 2018.

[21] Kadina E Johnston, Clara Fannjiang, Bruce J Wittmann, Brian L Hie, Kevin K Yang, and
Zachary Wu. Machine learning for protein engineering. arXiv preprint arXiv:2305.16634,
2023.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[23] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 27.
Curran Associates, Inc., 2014.

[24] Andrew Kirjner, Jason Yim, Raman Samusevich, Shahar Bracha, Tommi S Jaakkola, Regina
Barzilay, and Ila R Fiete. Improving protein optimization with smoothed fitness landscapes. In
The Twelfth International Conference on Learning Representations, 2023.

[25] Justin R. Klesmith, John-Paul Bacik, Ryszard Michalczyk, and Timothy A. Whitehead. Compre-
hensive sequence-flux mapping of a levoglucosan utilization pathway in e. coli. ACS Synthetic
Biology, 4(11):1235–1243, September 2015.

[26] Sathvik Kolli, Amy X. Lu, Xinyang Geng, Aviral Kumar, and Sergey Levine. Data-driven
optimization for protein design: Workflows, algorithms and metrics. In ICLR2022 Machine
Learning for Drug Discovery, 2022.

[27] Aviral Kumar and Sergey Levine. Model inversion networks for model-based optimization. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 5126–5137. Curran Associates, Inc., 2020.

[28] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi,
Tom Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-
level protein structure with a language model. Science, 379(6637):1123–1130, 2023.

6

[29] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based
neural machine translation. In Lluís Màrquez, Chris Callison-Burch, and Jian Su, editors, Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages
1412–1421, Lisbon, Portugal, September 2015. Association for Computational Linguistics.

[30] John Maynard Smith. Natural selection and the concept of a protein space. Nature,
225(5232):563–564, February 1970.

[31] Daniel Melamed, David L. Young, Caitlin E. Gamble, Christina R. Miller, and Stanley Fields.
Deep mutational scanning of an rrm domain of the saccharomyces cerevisiae poly(a)-binding
protein. RNA, 19(11):1537–1551, September 2013.

[32] Pascal Notin, José Miguel Hernández-Lobato, and Yarin Gal. Improving black-box optimization
in VAE latent space using decoder uncertainty. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021.

[33] Yuchi Qiu, Jian Hu, and Guo-Wei Wei. Cluster learning-assisted directed evolution. Nature
Computational Science, 1(12):809–818, December 2021.

[34] Yuchi Qiu and Guo-Wei Wei. Clade 2.0: Evolution-driven cluster learning-assisted directed
evolution. Journal of Chemical Information and Modeling, 62(19):4629–4641, September
2022.

[35] Zhizhou Ren, Jiahan Li, Fan Ding, Yuan Zhou, Jianzhu Ma, and Jian Peng. Proximal exploration
for model-guided protein sequence design. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pages 18520–18536. PMLR, 17–23 Jul 2022.

[36] Karen S. Sarkisyan, Dmitry A. Bolotin, Margarita V. Meer, Dinara R. Usmanova, Alexander S.
Mishin, George V. Sharonov, Dmitry N. Ivankov, Nina G. Bozhanova, Mikhail S. Baranov,
Onuralp Soylemez, Natalya S. Bogatyreva, Peter K. Vlasov, Evgeny S. Egorov, Maria D.
Logacheva, Alexey S. Kondrashov, Dmitry M. Chudakov, Ekaterina V. Putintseva, Ilgar Z.
Mamedov, Dan S. Tawfik, Konstantin A. Lukyanov, and Fyodor A. Kondrashov. Local fitness
landscape of the green fluorescent protein. Nature, 533(7603):397–401, May 2016.

[37] Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. A hybrid convolutional variational
autoencoder for text generation. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel, editors,
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pages 627–637, Copenhagen, Denmark, September 2017. Association for Computational
Linguistics.

[38] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations, 2018.

[39] Huajie Shao, Shuochao Yao, Dachun Sun, Aston Zhang, Shengzhong Liu, Dongxin Liu, Jun
Wang, and Tarek Abdelzaher. ControlVAE: Controllable variational autoencoder. In Hal Daumé
III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 8655–8664. PMLR,
13–18 Jul 2020.

[40] Sam Sinai, Richard Wang, Alexander Whatley, Stewart Slocum, Elina Locane, and Eric D.
Kelsic. Adalead: A simple and robust adaptive greedy search algorithm for sequence design.
CoRR, abs/2010.02141, 2020.

[41] Zhenqiao Song and Lei Li. Importance weighted expectation-maximization for protein sequence
design. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages 32349–
32364. PMLR, 23–29 Jul 2023.

7

[42] Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton
Greenside, and Andrew Gordon Wilson. Accelerating Bayesian optimization for biological se-
quence design with denoising autoencoders. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pages 20459–20478. PMLR, 17–23 Jul 2022.

[43] Lea M. Starita, Jonathan N. Pruneda, Russell S. Lo, Douglas M. Fowler, Helen J. Kim, Joseph B.
Hiatt, Jay Shendure, Peter S. Brzovic, Stanley Fields, and Rachel E. Klevit. Activity-enhancing
mutations in an e3 ubiquitin ligase identified by high-throughput mutagenesis. Proceedings of
the National Academy of Sciences, 110(14):E1263–E1272, 2013.

[44] Jin Su, Chenchen Han, Yuyang Zhou, Junjie Shan, Xibin Zhou, and Fajie Yuan. Saprot: Protein
language modeling with structure-aware vocabulary. In The Twelfth International Conference
on Learning Representations, 2024.

[45] Brandon Trabucco, Aviral Kumar, Xinyang Geng, and Sergey Levine. Conservative objective
models for effective offline model-based optimization. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 10358–10368. PMLR, 18–24 Jul 2021.

[46] Thanh V. T. Tran and Truong Son Hy. Protein design by directed evolution guided by large
language models. bioRxiv, 2024.

[47] Michel van Kempen, Stephanie S. Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee,
Cameron L. M. Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein
structure search with foldseek. Nature Biotechnology, 42(2):243–246, Feb 2024.

[48] Yajie Wang, Pu Xue, Mingfeng Cao, Tianhao Yu, Stephan T. Lane, and Huimin Zhao. Directed
evolution: Methodologies and applications. Chemical Reviews, 121(20):12384–12444, Oct
2021.

[49] Yanzheng Wang, TIANYU SHI, and Jie Fu. Sample-efficient antibody design through protein
language model for risk-aware batch bayesian optimization. In NeurIPS 2023 AI for Science
Workshop, 2023.

[50] Jochen Weile, Song Sun, Atina G Cote, Jennifer Knapp, Marta Verby, Joseph C Mellor,
Yingzhou Wu, Carles Pons, Cassandra Wong, Natascha van Lieshout, Fan Yang, Murat Tasan,
Guihong Tan, Shan Yang, Douglas M Fowler, Robert Nussbaum, Jesse D Bloom, Marc Vidal,
David E Hill, Patrick Aloy, and Frederick P Roth. A framework for exhaustively mapping
functional missense variants. Molecular Systems Biology, 13(12):957, 2017.

[51] Ronald J Williams and David Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural computation, 1(2):270–280, 1989.

[52] Bruce J. Wittmann, Yisong Yue, and Frances H. Arnold. Informed training set design enables
efficient machine learning-assisted directed protein evolution. Cell Systems, 12(11):1026–
1045.e7, November 2021.

[53] Emily E. Wrenbeck, Laura R. Azouz, and Timothy A. Whitehead. Single-mutation fitness
landscapes for an enzyme on multiple substrates reveal specificity is globally encoded. Nature
Communications, 8(1):15695, Jun 2017.

[54] S. Wright. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Pro-
ceedings of the XI International Congress of Genetics, 8:209–222, 1932.

A Preliminaries

A.1 Directed Evolution Theory

Directed evolution (DE) is a widely used approach in protein engineering, focusing on identifying
optimal protein sequences from a large set of unlabeled candidates S with minimal experimental

8

Sequence Space Latent Space

Figure 3: We perform directed evolution within the smooth and continuous latent space of a generative
model. Our algorithm begins by identifying high-fitness regions through gradient ascent. Within
these regions, we strategically sample a defined number of neighboring points (gray circles) to create
a diverse population for the evolutionary process. This population then undergoes iterative selection
and mutation within the latent space, ultimately converging to sequences with enhanced fitness.

validation [21, 48]. DE involves iterative cycles of mutation and selection, where protein variants
with enhanced properties are chosen for subsequent rounds. This process effectively explores local
regions of high-fitness proteins within the vast sequence space, capitalizing on the clustering of
functional proteins observed in [30]. As depicted in the left part of Figure 3, DE begins with wild-type
sequences, applying targeted mutations to discover variants with improved functions.

A.2 Latent Space Optimization

Latent space optimization (LSO) is a model-based technique that operates within the latent space Z
of deep generative models. Here, an objective function f : Z 7→ R predicts objective values directly
from latent representations. LSO is particularly effective when Z is low-dimensional and continuous,
simplifying optimization challenges typically encountered in discrete, high-dimensional spaces. This
transformation enables the application of techniques like gradient ascent and Bayesian optimization
(BO) [38]. Moreover, f is trained using an encoder ϕ : X 7→ Z , which maps an input sample x ∈ X
to its corresponding latent representation z ∈ Z .

B Implementation Details

E
SM

-2

L
atent E

ncoder

Predictor

Fitness Values

Input Sequences
(max length L)

U
ps

am
pl

er . . .

Autoregressive
model

Decoder

. . .

. . .

. . .
. . .
. . .

. . .

Teacher Forcing

Reconstructed
Sequences

(max length L)

Figure 4: Schematic illustration of the VAE model used in the study.

B.1 VAEs’ Architecture

In this section, we go into detail regarding the architecture of the VAE used in our study. As mentioned
in the main text, our regularized VAE consists of an encoder, a predictor, and a decoder.

9

Encoder Figure 4 depicts that the encoder incorporates a pre-trained ESM-2 [28] followed by a la-
tent encoder to compute the latent representation z. In our study, we leverage the powerful representa-
tion of the pre-trained 30-layer ESM-2 by making it the encoder of our model. Given an input sequence
x = ⟨x0, x1, · · · , xL⟩, where xi ∈ V , the transformer-based ESM-2 computes representations for
each token xi in x, resulting in a token-level hidden representation H = ⟨h0, h1, · · · , hL⟩, hi ∈ Rdh .
We calculate the global representation h ∈ Rdh of x via a weighted sum of its tokens:

h =

L∑
i=1

ωT exp (hi)∑L
i=1 ω

T exp (hi)
hi. (4)

here, ω is a learnable global attention vector. Then, two multi-layer perceptrons (MLPs) are used
to compute µ = MLP1(h) and log σ = MLP2(h), where the latent dimension is d. Finally, a latent
representation z ∈ Rd is sampled from N (µ, σ2), which is further proceeded to the decoder to
reconstruct the sequence x̂. We use an auxiliary MLP as a fitness predictor that maps the latent z to
the fitness score, i.e. y′ = MLP(z). The hidden dimensional size of the predictor is set to 512, with
the dropout of 0.2. We set dh = 1280 and d = 320 for the main experiments in our study.

Decoder Inspired from [37], we construct our decoder as the combination of two components: an
’upsampler’ component comprising 3 layers of transposed convolutions with stride of 2 to upsample
the latent vector z to a sequence matching the output sequence’s length; and an autoregressive com-
ponent consisting of an attention-based GRU [10, 29] with 512 units. To cope with the optimization
difficulties reported when training VAE with powerful autoregressive decoders [4, 37], we follow [4]
by applying 40% dropout to the amino acid context supplied as input to the GRU during training.
This encourages the network to depend on the information conveyed through the upsampled latent
code along with the conditional information in the masked amino acid sequence to make predictions.
Additionally, we apply teacher forcing [51] with a ratio of 50% for faster convergence.

B.2 Oracles

We establish the optimization oracle O(·), utilized for latent-based directed evolution, by leveraging
features generated by the pre-trained 33-layer ESM-2 with a dimension of 1280. Subsequently, we
fine-tune an Attention1D model to predict fitness values based on these representations. As for the
evaluation oracle E(·), which acts as the "ground-truth" evaluator, we employ the trained oracle
provided by [35] to assess all methods.

B.3 Training Configurations

We employ the ControlVAE mechanism to prevent KL vanishing and enhance the diversity of
generated data during training. Across all tasks, we configure the coefficients Kp and Ki of the P
term and I term to 0.01 and 0.0001, respectively. For the LGK benchmark, the desired KL-divergence
C is set to 40, while for all other tasks, C = 20 is utilized. The batch size for each task is determined
to be as large as possible, as long as the total steps in one epoch for each task are higher than 100.

C Detailed Methodology
Gradient Ascent (GA) At the beginning of our algorithm, the wild-type protein sequence xwt
is encoded by the encoder ϕ to produce its mean µϕ(xwt) and log variance log σϕ(x

wt). A latent
representation z is then sampled from N (µϕ(x

wt), σϕ(x
wt)2). Subsequently, we perform gradient

ascent with a learning rate of α in T iterations to move z to high-fitness regions as:
zt+1 = zt + α∇zf(z)|z=zt , 0 ≤ t < T, (5)

where∇zf(z)|z=zt is the gradient of the fitness predictor f with respect to zt. After T iterations, we
add zT to the initial population P0. The procedure is iteratively executed until K pairs of decoded
sequences along with their respective fitness scores are obtained. At this stage, the fitness scores are
computed by the latent predictor f , allowing fast computation and efficient latent sampling (see lines
1 to 7).

Evolutionary Process From lines 8 to 23, a latent-based directed evolution is conducted in G
generations to generate K protein sequences with high fitness values. For each candidate xk,

10

we sample B latent variables from its posterior distribution, where each is denoted as zk,b ∼
N (µϕ(xk), σϕ(xk)

2). These latent representations are then decoded into sequences by the decoder θ,
i.e. x̂k,b = θ(zk,b). Wet-lab experiments then evaluate the decoded sequences to obtain their fitness
scores. All sequences generated in generation g are added into Pg . Finally, at the end of g, the top K
sequences are selected from both Pg−1 and Pg .

Random Exploration Although sampling around the local areas of high-fitness latent codes can
guarantee the superiority of the generated sequences, the search process may be prone to be trapped
in these local regions after a certain number of generations, thereby hindering the exploration of
potentially promising sequences, which are unseen before. As a result, we randomly add white noise
to the latent variables when p ∼ U [0, 1) is higher than a threshold. As demonstrated in line 14 of
Algorithm 1, the formula is defined as:

zl = z + (γ − δg)ϵ, ϵ ∼ N (0, I), (6)

where γ ∈ R denotes the step size that controls the exploration rate, and δ is the annealing factor at
the generation g of the evolution process. We hypothesize that when g gets close to G, i.e., the total
number of generations, the population tends to contain superior samples; thus, we slow down the
exploration to avoid degeneration at the end of the algorithm.

D Experimental Setup

Table 2: Detailed information and statistics of the eight protein datasets.

Dataset Organism Protein Optimization Target Length Size Percentiles
0.25 0.50 0.75

avGFP [36] Aequorea victoria GFP Brightness 237 51, 715 1.428 3.287 3.161
AAV [7] Homo sapiens VP1 AAV viabilities 28 42, 330 −3.964 −0.840 1.321
TEM [14] Escherichia coli TEM-1 β-Lactamase Thermodynamic stability 286 5, 199 0.049 0.444 0.934
E4B [43] Mus musculus UBE4B Ubiquitin ligase activity 102 91, 032 −1.830 −0.984 −0.093
AMIE [53] Escherichia coli Amidase Hydrolysis activity 341 6, 417 −1.228 −0.666 −0.263
LGK [25] Lipomyces starkeyi Levoglucosan kinase Levoglucosan utilization 439 7, 633 −0.871 −0.562 −0.394
Pab1 [31] Saccharomyces cerevisiae Poly(A)-binding mRNA binding 75 36, 389 −0.116 −0.022 0.036
UBE2I [50] Homo sapiens UBE2I Growth rescue rate 159 3, 022 0.068 0.492 0.766

Datasets Following [35] and [41], we assess the performance of our method across eight protein
engineering benchmarks: (1) Green Fluorescent Protein (avGFP), (2) Adeno-Associated Viruses
(AAV), (3) TEM-1 β-Lactamase (TEM), (4) Ubiquitination Factor Ube4b (E4B), (5) Aliphatic
Amide Hydrolase (AMIE), (6) Levoglucosan Kinase (LGK), (7) Poly(A)-binding Protein (Pab1),
(8) SUMO E2 Conjugase (UBE2I). The comprehensive dataset information, including the protein
name, organism, optimization target, sequence length, data size, and data percentiles, is provided in
Table 2. Each dataset represents distinct optimization target, which we simplify as a singular term

“fitness” when reporting the benchmark results. Detailed descriptions of the data are provided in the
Supplementary Material.

Implementation Details The model training is conducted using a single NVIDIA A100 card,
employing the Adam optimization algorithm [22] with a learning rate of 2e-4. Each dataset is
randomly split into training and validation sets at a ratio of 9:1. To control the disentanglement
property in the latent representation, we adopt the strategy proposed by [39] and set the expected KL
values to be 20. We train the VAE model for 130 epochs and choose the best checkpoint for later
inference. The experiments are run five times, and the average scores are reported. For inference,
we perform gradient ascent as the warm-up phase for T = 500 iterations with the learning rate
α ∈ [0.001, 0.01]. The latent-based directed evolution involves G = 10 iterative processes, with the
candidate number set to K ×B = 128. In our implementation, we set the number of samples and
beam size to K = 128 and B = 1, respectively. Finally, for the random exploration, we try multiple
combinations of annealing factor δ = 0.1 and exploration step size γ ∈ [1.5, 6] and report the best
outcomes.

Baseline Algorithms We compare our method against the following representative baselines: (1)
AdaLead [40] is an advanced implementation of model-guided evolution. (2) DyNA PPO [1] applies
proximal policy optimization to search sequences on a learned landscape model. (3) CbAS [5] is a

11

probabilistic modeling framework and uses an adaptive sampling algorithm. (4) CMA-ES [17] is a
famous evolutionary search algorithm. (5) COMs [45] is conservative objective models for offline
MBO. (6) PEX [35] is a model-guided sequence design algorithm using proximal exploration. (7)
GFN-AL [19] applies GFlowNet to design biological sequences. (8) GGS [24] is a graph-based
smoothing method to optimize protein sequences. To ensure precise evaluation, we re-execute and
re-evaluate all baseline methods using the same oracle. For the implementation from (1) to (4),
we employ the open-source implementation provided by [40]. Regarding other baseline methods,
we utilize the codes released by their respective authors. We were unable to evaluate [41] due to
unrunnable public code.

Oracles To ensure unbiased evaluation and avoid circular use of oracles, following [26], we use
two separate oracles for each fitness dataset: (1) the optimization oracle that guides the model
optimization and (2) the evaluation oracle that assesses the performance of the methods. Following
[35], we freeze the ESM-based encoders and fine-tune an attention 1D decoder stacked after them
to predict the fitness scores. For fair comparisons, we only train the optimization oracle with the
pre-trained 33-layer ESM-2 as the encoder, while using the pre-trained evaluation oracle provided by
[35] to assess our method and other baselines.

Evaluation Metrics We use three metrics defined in [18] to evaluate our method and compare
with other baselines: (1) MFS: maximum fitness score, (2) Diversity, (3) Novelty. The metrics are
computed as follows:

• MFS = max({E(pi)}Ni=1),

• Diversity =

∑N
i=1

∑N
j=1,j ̸=i d(pi, pj)

N(N − 1)
,

• Novelty =
∑N
i=1 minsj∈D d(pi, sj)

N
,

where d(·, ·) is the Levenshtein distance, and D is the initial dataset (i.e., training dataset). It is
crucial to emphasize that greater diversity and novelty do not equate to superior performance, but
offer insights into the exploration and exploitation trade-offs exhibited by different methods.

E Additional Experimental Results

Table 3: Diversity across eight protein datasets. This table provides insight into the exploration and
exploitation trade-off among methods.

Models avGFP AAV TEM E4B AMIE LGK Pab1 UBE2I Average

AdaLead 9.814 6.904 8.071 7.412 6.898 7.430 7.441 7.439 7.676
DyNA PPO 204.376 114.229 157.964 140.617 171.123 205.098 185.145 179.212 169.721
DbAS 205.717 115.426 159.524 142.044 172.539 206.819 186.761 180.758 171.199
CbAS 205.709 115.437 159.502 142.033 172.526 206.823 186.766 180.769 171.196
CMA-ES 173.365 96.882 134.633 119.388 145.151 174.274 157.098 152.058 144.106
COMs 70.319 45.761 73.191 68.398 100.731 126.623 115.242 109.650 88.739
PEX 7.048 4.782 6.692 6.625 6.388 7.031 7.012 7.219 6.600
GFN-AL 6.253 0.501 1.234 29.057 46.577 11.248 27.134 3.253 28.231
GGS 4.630 12.712 7.385 10.577 14.692 16.151 16.730 3.011 10.744

LDE (ours) 94.646 1.604 61.652 4.504 35.762 108.053 9.040 14.666 41.806

12

Table 4: Novelty across eight datasets. This table provides insight into the exploration and exploitation
trade-off among methods.

Models avGFP AAV TEM E4B AMIE LGK Pab1 UBE2I Average

AdaLead 13.486 17.805 41.405 48.934 41.167 78.868 73.526 78.548 47.967
DyNA PPO 201.702 111.566 156.784 139.227 170.368 205.815 185.686 179.801 168.869
DbAS 201.838 111.544 156.858 139.222 170.066 205.439 185.366 179.545 168.735
CbAS 201.825 111.549 156.845 139.172 170.031 205.404 185.354 179.549 168.716
CMA-ES 202.155 111.467 156.968 139.126 157.701 193.991 175.414 170.746 163.446
COMs 184.177 98.831 111.931 101.930 123.590 150.657 134.298 129.795 129.401
PEX 4.323 1.930 4.461 4.748 3.031 8.614 4.356 4.779 4.530
GFN-AL 220.632 2.452 255.939 29.062 326.255 413.951 64.046 145.458 192.728
GGS 3.552 2.061 4.029 8.081 9.989 20.990 8.380 2.862 7.493

LDE (ours) 91.863 0.657 62.508 2.037 10.423 65.145 2.875 126.495 45.250

13

	Introduction
	Method
	Problem Formulation
	Regularized Variational Autoencoder
	Latent-Based Directed Evolution
	Efficient Sampling and Optimization

	Experiments
	Conclusion and Future Work
	Preliminaries
	Directed Evolution Theory
	Latent Space Optimization

	Implementation Details
	VAEs' Architecture
	Oracles
	Training Configurations

	Detailed Methodology
	Experimental Setup
	Additional Experimental Results

