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ABSTRACT

The tokenization of speech with neural audio codec models is a vital part of mod-
ern AI pipelines for the generation or understanding of speech, alone or in a multi-
modal context. Traditionally such tokenization models have concentrated on low
parameter-count architectures using only components with strong inductive bi-
ases. In this work we show that by scaling a transformer architecture with large
parameter count to this problem, and applying a flexible Finite Scalar Quantization
(FSQ) based bottleneck, it is possible to reach state-of-the-art speech quality at ex-
tremely low bit-rates of 400 or 700 bits-per-second. The trained models strongly
out-perform existing baselines in both objective and subjective tests.

1 INTRODUCTION

Compressed coding of audio and speech data in digital format has been an active area of re-
search since the 1970s , and reached particular prominence in the late 1990s with the emergence
of mp3 (Painter & Spanias, 2000). Research into improving the sound quality and compression ratio
of such codecs (mainly using signal processing techniques) has continued (Valin et al., 2016). The
main purpose of these codecs is to improve the efficiency of transmission and storage of what is
traditionally a data-intensive medium.

In recent times, the research community began to apply the techniques of machine learning to the
audio coding problem (Zeghidour et al., 2021). These models are referred to as neural audio codecs
(NACs). Initially the goal of these models was similar to traditional audio codecs, which aim to
maximise compression and audio quality at low computational cost. However, a paradigm shift
occurred with the proposal of powerful generative models utilizing the token sequences produced by
these codecs (Borsos et al., 2023a; Wang et al., 2023; Borsos et al., 2023b). With the arrival of these
models and the plethora of new use-cases they encompass, the design goals of NACs have shifted to
be less concerned with computational complexity, and more concerned with pushing compression
(especially in the temporal dimension) to the maximum level possible.

Our goal is to design a speech codec model in the spirit of this paradigm shift, whose primary
purpose is to be used in combination with modern generative architectures for generation or under-
standing of speech signals. We make the observation that in a typical modern generative pipeline for
speech there may be models totalling billions of parameters, a tiny fraction of which is usually ded-
icated to the codec model. There is therefore some headroom to increase the size of this component
without overly impacting overall computational burden. This opens up scaling of the codec model
size as a route to higher quality audio and higher compression levels.

Neural audio codec models have largely been based on convolutional or recurrent architectures,
which can be challenging to scale to larger model sizes without placing restrictions on the architec-
ture. Even with such restrictions, the largest successful purely convolutional networks are generally
below 1B parameters (Woo et al., 2023). Transformers (Vaswani et al., 2017) have shown the ability
to scale to billions of parameters in many domains (Hoffmann et al., 2022), but have not been fully
utilized in a codec context yet. Recent work has also deployed transformer blocks in the bottle-
neck of a convolutional codec, showing improvements in compression ratio (Défossez et al., 2024).
However, transformers have not so far been deployed as the main component of a codec model.
One major contribution of this work is to design a new codec architecture that is predominantly
transformer-based, and scale such an architecture into the 1B parameter range.
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The majority of current codecs utilize a Residual Vector Quantizer (RVQ) (Zeghidour et al., 2021) in
some form. This is effective in maximising the expressivity of the bottleneck for a given bit-rate, but
presents a number of challenges for generative modelling. One challenge is that it produces many
parallel hierarchical streams of tokens. The causal relationship between the streams introduces a
variety of complications that must be accounted for during training and inference (Borsos et al.,
2023a; Copet et al., 2023; Défossez et al., 2024). An additional challenge is that VQs and RVQs
can suffer from poor or inconsistent codebook utilisation, making the process of learning the token
distribution more difficult and prone to bias. In this work we address some of the issues of VQ
and RVQ by instead adopting a quantization scheme derived from Finite Scalar Quantization (FSQ)
(Mentzer et al., 2023), and a novel post-hoc method decomposing FSQ into low-order residuals.

We demonstrate how these contributions enable the training of a waveform codec model that
achieves high compression for speech, with ultra-low bitrates of 400 bps and 700 bps, while still
preserving good audio quality.

Our audio examples are available at: https://taae-iclr-2025.github.io/taae_
anonymised/. Code and pre-trained models will be released after the anonymous review phase.

1.1 RELATED WORK

1.2 NEURAL AUDIO CODECS

The dominant paradigm for training NACs has so far been based on the VQ-VAE structure, consist-
ing of a classic autoencoder-like structure of encoder and decoder model with an information bottle-
neck placed in between them in the form of a quantizer. Soundstream (Zeghidour et al., 2021) was
the first example of such a model aimed at handling varying bit-rates and types of audio with a single
model. Soundstream introduced an adversarial loss in addition to reconstruction loss, and residual
vector quantization (RVQ) for use in the bottleneck. EnCodec (Défossez et al., 2022) proposed a
number of improvements to this formulation and achieved higher audio quality. SpeechTokenizer
(Zhang et al., 2023b), building on Encodec, introduces the use of semantic tokens in the first channel
of discrete RVQ codecs, bridging the gap between text tokens and acoustic tokens for speech coding.

DAC (also known as improved RVQGAN) (Kumar et al., 2023) investigated several design choices
in this type of NAC, including the introduction of periodic inductive biases and improvements in
codebook utilisation. This approach achieved notable performance, compressing 44.1 kHz audio
into discrete codes at an 8 kbps bitrate. While DAC delivers high-quality reconstruction at this
compression level, its bitrate remains relatively high for generative audio modeling, requiring over
700 tokens per second for 44.1 kHz audio due to the large number of residual tokens.

1.3 LOW BITE-RATE SPEECH CODING

Recently, there has been growing interest (Li et al., 2024; Liu et al., 2024; Défossez et al., 2024)
in optimizing bitrate efficiency in NACs while maintaining high reconstruction quality. Such low-
bitrate, high-fidelity codecs are particularly crucial for improving efficiency and reducing latency
in generative audio modeling. However, achieving extremely low bitrates (such as below 1 kbps
for 16 kHz audio) remains challenging due to the complexities involved in accurately compressing
high-frequency components in the audio waveform.

SingleCodec (Li et al., 2024) addressed neural speech coding by proposing an enhanced VQ-VAE
combined with bidirectional LSTM for mel-spectrogram compression, achieving a notably low
bandwidth of 304 bps for 24 kHz speech mel-spectrogram coding, followed by BigVGAN (gil
Lee et al., 2023) as a vocoder for waveform reconstruction. Inspired by recent advances in gen-
erative models, SemantiCodec (Liu et al., 2024) offers a different approach by leveraging a latent
diffusion model to generate latent features from a pre-trained mel-spectrogram VAE (which also
requires a vocoder for waveform reconstruction). The diffusion model is conditioned on k-means
clustered audio tokens derived from a pre-trained AudioMAE encoder. SemantiCodec supports low
bitrates ranging from 0.31 kbps to 1.43 kbps for 16 kHz speech mel-spectrogram coding, offering a
promising solution for maintaining high reconstruction quality at extremely low bitrates.

Mimi (Défossez et al., 2024) is a recent end-to-end waveform codec for speech based on Sound-
Stream and Encodec. Mimi introduces transformer layers around the RVQ bottleneck between
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Figure 1: Architecture of the proposed model. Detail is shown for the encoder block and sub-blocks.
The decoder block is configured identically to the encoder block, with the exception of the strided
convolution, which is replaced with its transposed equivalent and moved to the end of the Tm blocks.

the convolutional encoder and decoder. By scaling its training data to 7 million hours, Mimi has
achieved impressive performance in neural speech coding, operating at 1.1 kbps with a 12.5 kHz
latent for 24 kHz speech in a causal way, utilizing 8 tokens per latent frame (100 tokens per second).

1.3.1 GENERATIVE MODELS FOR AUDIO AND SPEECH

Autoregressive models can operate directly on quantized audio waveforms, but can be slow during
inference (Oord et al., 2016). Recent models, such as VALL-E (Wang et al., 2023), AudioLM (Bor-
sos et al., 2023a) or MusicGen (Copet et al., 2023) improve efficiency by instead modeling quantized
latent sequences. Non-autoregressive models (Oord et al., 2018) and adversarial audio synthesis
(Donahue et al., 2018) were developed to overcome the inefficiencies of autoregressive models. Re-
cent non-autoregressive models such as VampNet (Garcia et al., 2023), SoundStorm (Borsos et al.,
2023b), or StemGen (Parker et al., 2024) are based on masked token modeling (Chang et al., 2022).
End-to-end diffusion modeling can also be computationally demanding (Rouard & Hadjeres, 2021;
Pascual et al., 2023). Recent efficiency improvements rely on latent diffusion models (Liu et al.,
2023; Evans et al., 2024a;b;c; Yang et al., 2024), which often rely on VAEs for latent encoding. The
recent growth of multi-modal and speech-first generative models such as SpeechGPT (Zhang et al.,
2023a; 2024), LLaMA3 (Dubey et al., 2024) and Moshi (Défossez et al., 2024) is also heavily reliant
on tokenized representations of speech and audio. As such, learning quantized or continuous latent
spaces with codecs is crucial for advancing audio and speech generation.

2 ARCHITECTURE

The architecture of the codec is shown in overview form in Fig. 1. We will discuss the design of the
encoder and decoder sections with FSQ-based bottleneck separately.

2.1 ENCODER AND DECODER

Our encoder and decoder structures are designed to look very similar to a standard transformer ar-
chitecture. Both consist of multiple blocks, each operating at a specific temporal resolution. These
sections consist of a strided 1d dense convolution layer (for downsampling in the encoder) or its
transposed equivalent (for upsampling in the decoder) and a chain of relatively standard transformer
blocks. The only difference between the encoder and decoder architecture is that the downsampling
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or upsampling layer is placed in a different location—in the encoder at the start of the block, and in
the decoder at the end of the block. This maintains symmetry of the architecture. The stacked trans-
former blocks consist of a self-attention section and a feedforward section, with pre-norm placement
of layer norm blocks. The layer norm blocks are configured with a higher than standard ϵ as dis-
cussed in Appendix B.1. In addition, the self-attention utilizes QK-norm. The feedforward block
consists of a reverse bottleneck with a gated MLP, utilizing the SiLU activation function. Both
attention blocks and feedforward blocks are followed by LayerScale (Touvron et al., 2021), to fur-
ther stabilize training. The self-attention uses a sliding window to restrict receptive field and aid
generalization of the architecture to arbitrary length sequences. The self-attention mechanism in-
corporates Rotary Positional Embeddings (RoPE) (Su et al., 2024) and operates without a causal
attention mask. However, a causal variant suited for streaming purposes is possible with relatively
minor modifications, as described in Appendix A.4. We further examine the model’s receptive field,
causality, and latency in Appendix B.2.

In contrast to convolutional architectures, we want the majority of temporal downsampling or up-
sampling of the signal to occur at the input or output to the architecture. This is to avoid feeding
very small dimension embeddings to the transformer blocks, and also to limit sequence length.
Only minimal further resampling happens within the architecture using the strided convolutions
and transposed convolutions in each encoder or decoder block. To achieve this we can use any
filter-bank representation of the input signal which conforms to perfect reconstruction criteria. The
details of this choice are discussed in Appendix B.4. Following the conclusions of this analysis and
taking inspiration from Vision Transformer (ViT) architectures (Dosovitskiy et al., 2021), we utilize
sequence-wise patching of the signal before passing to the encoder.

Additionally we utilize dense 1d convolutional blocks at the inputs and outputs of the encoder and
decoder structure. These blocks map between the embedding dimension used within the transformer
(which is uniform) and the required dimension for the input/output patches and the latent represen-
tation used in the bottleneck. All convolutional layers use a weight-normalized parameterization.

We call the resulting architecture a Transformer Audio AutoEncoder (TAAE).

A major distinction between TAAE and traditional CNN-based codecs is the extensive use of trans-
former layers in TAAE, which results in a larger model size compared to CNN-based codecs Zeghi-
dour et al. (2021); Défossez et al. (2022); Kumar et al. (2023). CNN-based models leverage convo-
lutional operations, which offer a strong inductive bias and high parameter efficiency. In contrast,
the TAAE uses a transformer-based architecture, providing enhanced scalability, albeit with reduced
parameter efficiency. An explanation of these differences and discussion comparing convolution and
attention mechanisms can be found in the App B.3.

2.2 DISCRETE BOTTLENECK

In order to mitigate the inherent problems of VQ and RVQ quantization, we employ a modified
version of Finite Scalar Quantization (FSQ) (Mentzer et al., 2023). Instead of a learnable codebook
of embeddings connected to particular tokens as in VQ/RVQ, FSQ derives a token sequence by pro-
jecting the latent representation to a low-dimensional space, then scalar quantizing each dimension
of this space in regular intervals. Each combination of quantized levels can then be mapped to a
unique integer value, producing the tokenization. FSQ is known to exhibit almost full codebook
utilisation even with very large codebook sizes (e.g., 218) (Mentzer et al., 2023).

We make some modifications to the FSQ algorithm to preserve symmetry of the quantized latents
around the origin for any number of levels. Our formulation for the scalar quantizer function QL for
a given fixed number of levels L, applied to some scalar x is given by:

QL(x) =
2

L− 1
⌊(L− 1)

tanhx+ 1

2
+

1

2
⌋ − 1 (1)

This scalar quantization function is applied (potentially with different L per dimension), to the ele-
ments of a latent vector z to produce the quantized latent.

To train with this scalar quantizer, we use a hybrid approach. Some percentage of the time we emu-
late the effect of quantization by adding uniform noise (Brendel et al., 2024), giving an approximate
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quantization function:

QL(x) ≈ tanhx+
U{−1, 1}
L− 1

(2)

which contains no explicit quantization. The remaining time we use straight-through gradient es-
timation. We find that mixing these two approaches with 50% probability produces better perfor-
mance compared to utilizing only one or the other. During training we randomly select uniformly
between a pre-selected set of quantization level numbers L. This is similar to the quantizer-dropout
process used in training RVQ-based bottlenecks, and allows us to trade-off quality and codebook
size at inference time.

2.2.1 POST-TRAINING BOTTLENECK MODIFICATION

The formulation of FSQ used here has many post-training possibilities for adjusting the reconstruc-
tion quality against the number and range of the discrete tokens. Firstly, the regularization provided
by training the FSQ bottleneck with uniform noise allows the number of levels for each dimension
of the FSQ to be modified after training. As long as the number of levels is greater than or equal
to the smallest seen during training, the error produced by the quantization is within the bounds
previously seen and therefore is still valid.

By default FSQ produces one token per time-step. In general this is advantageous for our purposes.
However, if the use-case requires it, we can decompose this single token post-hoc into multiple to-
kens using either a parallel partitioning of the dimensions, or (for particular choices of quantization-
level number) into a hierarchical residual set of tokens ala RVQ. Parallel partitioning introduces a
bi-directional causal relationship between tokens which is unexplored in the generative modelling
context, and therefore for this work we concentrate on the hierarchical residual decomposition.

Residual FSQ can be applied post-hoc to a bottleneck trained with a single quantizer but requires
some restrictions. Namely, is required to only use numbers of levels conforming to L = 2n +
1, n ∈ Z+. This sequence of levels can be derived by starting from levels at {−1, 0, 1} (L =
3), and continually subdividing the intervals between levels exactly at the half way point. These
level configurations are shown up to n = 3 in Tab. 1. We denote the set containing the postions
corresponding to a particular number of levels L, as ℓL. We can clearly see by examination that each
larger set is a superset of the previous sets i.e ℓ2n+1 ⊃ ℓ2n−1+1, and also that we can can construct
any particular set of levels using the Minkowski sum of smaller ℓ3 sets, progressively halved e.g
ℓ3 + ℓ3

2 ⊃ ℓ5, ℓ3 + ℓ3
2 + ℓ3

4 ⊃ ℓ9 (albeit with extraneous new values outside the original range).
A similar analysis holds for other level numbers conforming to the restriction given above, with the
scalings consequently changed. We can utilize this property to do post-hoc residual quantization,
using the standard formulation of a residual quantizer for a given latent z:

ẑ =

K∑
k=0

qk,

q0 = κ0(z),

qk = κk(z−
k−1∑
i=0

qi) (3)

where qk denote the quantizer outputs, and κk denote the quantizer functions themselves, which we
define in terms of our scalar quantizer function using levels L = 2n + 1, n ∈ Z+, Q2n+1 as:

κk(z) =
Q2n+1((2n)

kz)

(2n)k
(4)

Quantized Positions
ℓ3 {−1, 0, 1}
ℓ5 {−1, −0.5, 0, 0.5, 1}
ℓ9 {−1, −0.75, −0.5, −0.25, 0, 0.25, 0.5, 0.75, 1}

Table 1: FSQ quantization points for level num-
bers conforming to L = 2n + 1, n ∈ Z+, up to
n = 3.

Using this formulation, we have the guarantee
that the quantized latent ẑ belongs to the set of
quantized levels seen during training, despite
not having been trained using a residual for-
mulation. A downside of this approach is that
some rare combinations of tokens result in la-
tents outside the bounds of those seen origi-
nally. This can be guarded against by clipping
the output of the quantizer in the inteval [−1, 1].
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It is also possible to remove the quantization entirely and use the latents as a continuous embed-
dding, by retaining only the tanh section of the quantization function in which case the autoencoder
operates as if it has a tanh bottleneck of the same latent dimension as the FSQ bottleneck.

2.2.2 CALCULATING FSQ BITS-PER-SECOND

Using the post-hoc modification strategies described in Sec. 2.2.1, it is possible achieve varying
bits-per-second rates even for the same level of resolution.

We calculate bits-per-second (bps) for a decomposition with n residual levels as:

bps = fr

n∑
i=0

⌈log2(ki)⌉ (5)

where fr is the number of frames per second of the codec (i.e. its latent rate) and the ki are the
codebook sizes for each stage of the residual decomposition. We obtain these codebook sizes as:

k = Ld (6)

where L is the number of FSQ levels for the residual stage and d is the FSQ dim.

For example, if we have an FSQ bottleneck with L = 17, d = 6 and a frame rate of 25Hz during
training, this results in an effective bps of 25×⌈log2(176)⌉ = 625. If we partition this codebook into
a residual formulation of 2 stages with 5 levels, we have an effective bps of 25×2×⌈log2(56)⌉ = 700
but with a much more manageable codebook size for generative modelling. The same calculation of
bitrate can be used for RVQ, using the chosen codebook size for each residual level.

2.3 DISCRIMINATOR

We employ a discriminator inspired by that used in Encodec (Défossez et al., 2022), consisting of
multiple complex STFTs at different resolutions, followed by a combination of 1d and 2d convolu-
tions. We make three major changes compared to previous versions of this discriminator: we scale
parameter count by increasing the number of channels, we address systemic biases in the discrim-
inator by adopting unevenly spaced STFT resolutions, and we address a late-training bias towards
the noise-floor of the signal by scaling the magnitude of the complex STFTs before they are pro-
cessed by the convolutional networks. The last two of these changes are motivated by analysing the
sensitivity of the discriminator to different regions of the input, and are justified in Appendix B.5.

2.4 TRAINING OBJECTIVES

Training the model is conducted in two stages with slightly different loss configurations - which we
refer to as pretraining and finetuning. In each stage, the loss is a composite between several recon-
struction losses and an adversarial loss derived from the discriminator network, which is trained in
parallel. The main difference between pretraining and finetuning stages is in which reconstruction
losses are used.

Similar to Défossez et al. (2024), we simplify the adversarial loss by removing the direct adversarial
classifier loss term and using only a normalized feature-matching L1 loss on the M per-layer features
of the multi-discriminator network containing N individual discriminators, given by:

Ldisc(x, x̂) =
1

MN

M∑
m=1

N∑
n=1

∥Dm
n (x)−Dm

n (x̂)∥1
mean(∥Dm

n (x)∥1)
, (7)

where Dm
n is the output of the m-th layer of the n-th individual discriminator, x is the target signal

and x̂ is the reconstructed signal. This can be interpreted as a reconstruction loss using more se-
mantically focused projections of the signal, which additionally adapt throughout the training as the
discriminator improves. The discriminator is trained as usual as a binary classifier for real and fake
examples utilizing a hinge loss.

During the pretraining stage we include a traditional L1 reconstruction loss and L1 STFT loss to
boost convergence. This loss is weighted by a coefficient that decays exponentially per-step. This
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ensures that the reconstruction loss does not influence the training after an initial period defined by
the exponential decay factor. The overall loss during pretraining is given by:

Lpre(x, x̂) = Ldisc(x, x̂) + γkL1(x, x̂) + γkL1(|X|, |X̂|) (8)

where γ is an exponential decay coefficient, k is the training step and X, X̂ are the bins of the STFT
of the target and reconstructed signals respectively.

During the finetuning stage, we add a perceptual loss based on a pre-trained WavLM-Large(Chen
et al., 2022) model. This perceptual loss is calculated similarly to discriminator feature-matching
loss given in Eq. 9, by calculating L1 loss on the layer features of the target and reconstructed
examples and normalizing by the mean magnitude of the target feature across the batch:

Lperc(x, x̂) =
1

M

M∑
m=1

∥Cm(x)− Cm(x̂)∥1
mean(∥Cm(x)∥1

), (9)

where Cm is the m-th layer of the model. We utilize all individual layer features supplied by the
model. The overall loss during finetuning is given by:

Lfine(x, x̂) = Ldisc(x, x̂) + Lperc(x, x̂) (10)

We found this finetuning stage to be essential in producing intelligible speech, as well as improving
objective metrics, as shown in the ablation studies presented in Appendix A.1.

3 EXPERIMENTS

3.1 DATA

For training speech codec models, we use the Librilight dataset (60k hours) and the English portion
of the Multilingual LibriSpeech (MLS) dataset (45k hours). Both datasets contain 16 kHz original
speech data, amounting to a total of approximately 105k hours of training data. For evaluation, we
utilize the test-clean subset of LibriSpeech for speech data, selecting audio clips with durations
ranging from 5 to 10 seconds to create a test set of 900 clean speech samples at 16 kHz.

3.2 MODEL AND TRAINING DETAILS

The codec model is configured with a patch size of 320 samples at the input. There are two encoder
blocks. One directly follows the patching, and contains 8 transformer blocks. This is followed
by a further encoder block performing 2x downsampling, which contains 20 transformer blocks.
The embedding dimension of the transformer blocks is 1024, whilst the reverse bottleneck of the
feedforward layer is 4x larger. The head dimension of the self-attention block is 128. Layer norms
are configured with ϵ = 1 × 10−2, and the sliding attention window is of size 128. The decoder
is configured to be symmetrical with the encoder. The resulting model has approximately 950M
parameters. The bottleneck is 6 dimensional, and trained with 17, 9 and 5 levels for every dimension,
randomly chosen. The ensemble discriminator is configured as described in Appendix B.5, with
each discriminator having a channel count of 256. We use FlashAttention (Dao et al., 2022) to
ensure computational efficiency. The model is trained with FP16 mixed precision.

The AdamW optimizer is used for both the autoencoder and discriminator, both with a learning
rate of 0.0008. The autoencoder additionally uses weight decay with a coefficient of 0.01. Data
is randomly chunked into segments of 5.12 seconds for training. 16 H100 GPUs are utilized, with
an effective batch size of 128. Pretraining is conducted for 500k steps, with a decay coefficient of
γ = 0.9999 applied to the reconstruction losses. The STFT loss utilizes 2048 bins, a hop size of
512 and a Hanning window. The finetuning stage is conducted for a further 150k steps using the
WavLM-Large perceptual reconstruction loss in addition to the adversarial feature-matching loss.
In both stages, all loss terms are weighted equally.

3.3 OBJECTIVE AND SUBJECTIVE METRICS

A set of objective metrics are used to assess perceptual quality, compression levels, reconstruction
fidelity and semantic performance. These metrics are described in Appendix D. We further conduct
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Model BPS TPF TPS SISDR ↑ Mel ↓ STFT ↓ PESQ ↑ STOI ↑ MOSNet ↑

DAC 1000 2 100 −6.51 1.49 1.76 1.64 0.75 2.77
2000 4 200 −0.37 1.07 1.41 2.29 0.85 2.95

Encodec 1500 2 150 −0.22 1.14 1.49 2.36 0.85 2.87
3000 4 300 2.77 0.95 1.33 2.84 0.90 2.98

SpeechTokenizer 1000 2 100 −3.30 1.06 1.37 2.41 0.85 2.94
1500 3 150 −1.33 0.91 1.25 2.70 0.88 3.10

SemantiCodec 337.5
2

25 – 1.20 1.53 2.21 0.79 3.24
675 50 – 0.98 1.32 2.65 0.86 3.29

Mimi 550 4 50 −4.45 1.19 1.55 2.48 0.85 3.11
1100 8 100 2.20 0.94 1.31 3.01 0.90 3.24

TAAE 400 1 25 3.18 0.97 1.35 2.96 0.90 3.36
700 2 50 4.73 0.86 1.26 3.09 0.92 3.36

+ no quant. − − − 5.08 0.85 1.25 3.12 0.92 3.36

Table 2: Evaluation results for objective metrics on speech codec models. We do not report SI-SDR
results for SemantiCodec, as it is a generative model that lacks precise temporal alignment.

a subjective test with 24 participants that rate a total of 25 reconstructions from the same dataset used
for objective metrics. We follow the precedent of previous works (Zhang et al., 2023b; Défossez
et al., 2022) and employ the MUSHRA (Schoeffler et al., 2018) format without hidden anchor.
Listeners compare multiple versions of an example at once, including a labelled reference and a
hidden reference and are asked the question “Please evaluate the quality proximity between an audio
sample and its reference. Please listen carefully to the reference audio and then rate the quality of
each test audio clip compared to the reference. Use the scale where 0 indicates no resemblance
to the reference, and 100 means perfectly the same as the reference.”. Participants were gathered
online by openly by sharing a link to the test in a number of public forums. To limit the length of
the subjective test, we only select a subset of the baselines for inclusion. These are chosen based
on overall performance on objective metrics vs bits-per-second. The demographic breakdown of the
participants is shown in Appendix E.

3.4 BASELINES

We compare our results against the 16 kHz models DAC, SpeechTokenizer, and SemantiCodec, as
well as the 24 kHz models Encodec and Mimi. For DAC, which produces speech tokens at 50 Hz,
we use the first two or four levels of RVQ to achieve bitrates of 1 kbps and 2 kbps, respectively.
SpeechTokenizer operates with the same token rate as DAC, and we retain the first two or three
levels of EVQ to obtain bitrates of 1 kbps and 1.5 kbps. For SemantiCodec, we select the variant
with a codebook size of 16, 384 and evaluate it at token rates of 25 and 50 per second, corresponding
to bitrates of 340 bps and 680 bps. Encodec is evaluated at 1.5 kbps and 3 kbps. For Mimi, we use
all 8 RVQ levels for a bitrate of 1.1 kbps, and the first 4 levels to achieve 550 bps. For the 24 kHz
models Encodec and Mimi, we first upsample the test audio to 24 kHz for reconstruction and then
downsample it back to 16 kHz for evaluation.

The baseline models differ in design goals and applications: DAC, Encodec, and SemantiCodec sup-
port diverse audio domains (multilingual speech, music, general audio); Mimi focuses on streaming
efficiency; and SpeechTokenizer is English speech-specific. Parameter counts also vary widely.
While our work focuses on speech coding with training and evaluation on English datasets, the aim
is to demonstrate the feasibility of a transformer-based speech codec and its scalability to larger
parameter counts. The comparison between these models is framed within this context, as they rep-
resent recently published audio codecs with strong performance in speech coding. Differences in
streamability, training data, and model size are detailed in Tab. 12.

3.5 MAIN RESULTS

We evaluate two variations of our model, with different post-hoc configurations of the FSQ bottle-
neck. One variant utilizes a single token per step, utilizing 6 levels for each of the 6 dimensions. This
leads to an effective codebook size of 66 = 46656. The other variant uses the residual decomposi-
tion described in Sec. 2.2.1 to use two residual tokens per step, each with an effective codebook size
of 56 = 15625. The procedure for calculating the quoted bits-per-second is described in Sec. 2.2.2.
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We additionally show objective results of the model with the quantizer removed from the bottleneck,
giving an indication of the performance of the model if used with a diffusion model.

Results of the evaluation with the proposed objective metrics are given in Tab. 2. The two variants
of our proposed structure show increased performance against the baselines in all objective metrics,
whilst also being amongst the lowest in terms of bits per second and tokens per second. The residual
variant of our proposed model shows higher performance by these metrics compared to the single-
token and lower bits-per-second variant, but not by a large margin. The variant with FSQ bottleneck
removed, and hence continuous latents, shows modestly boosted performance.

200 400 600 800 1000 1200 1400 1600
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0

20

40

60

80

100
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MUSHRA Scores by bits-per-second

TAAE
Mimi
SemantiCodec
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Figure 2: Results of MUSHRA test.

The results of the MUSHRA subjective test, shown in
Fig. 2 indicate that the proposed model obtains state-of-
the-art results outperforming, by a significant margin, re-
cently published speech codecs. Importantly, the pro-
posed model obtains results that are close to the ground
truth. Comparing these evaluation results with the base-
line model parameter counts shown in Tab. 12 indicates
the potential of scaling transformer-based codec architec-
tures to achieve new benchmarks in terms of speech qual-
ity and compression.

3.6 ADDITIONAL RESULTS

To evaluate the impact of model size, we conducted scaling experiments with TAAE architectures
containing approximately 250M, 500M, and 1B parameters. The results confirm that the proposed
structure scales effectively with parameter count, as detailed in Appendix A.2.

We also explored higher compression rates by modifying the encoder/decoder for 2× additional
up/downsampling (latent rate 12.5 Hz) and increasing the FSQ bottleneck dimension to d = 8.
While this model achieves lower bitrates (e.g., 200 bps), it underperforms the main model and
converges more slowly, as discussed in Appendix A.3.

In Appendix A.4, we describe and evaluate a causal version of the TAAE model. This variant shows
minimal degradation compared to the non-causal version and outperforms the streaming codec Mimi
in objective metrics, despite being trained with significantly fewer steps and data hours.

Additionally, we evaluated our proposed TAAE model across various settings beyond its original
intended use case. In App. A.5, we assess the model performance on a range of languages, demon-
strating its ability to generalize effectively to unseen languages, with results that are better or compa-
rable to models trained on multiple languages. In App. A.6, we validate the model’s generalization
to utterances of varying lengths, including those longer or shorter than seen during training. We also
compare our model with a HuBERT-based codec, analyzing key differences in design and perfor-
mance, as discussed in Appendix A.7.

Finally, we analyse the codebook utilisation of TAAE, showing nearly optimal efficiency in its us-
age. A detailed comparison of codebook utilisation and entropy-encoded bitrates across baselines
is provided in Appendix A.8. A comparison of real-time factor between TAAE and the baselines
is provided in Appendix A.9. This shows that despite the much larger parameter count, TAAE is
competitive with baselines in terms of inference performance.

3.7 LIMITATIONS

The presented model has a number of limitations compared to baselines, primarily related to the
training dataset rather than the architecture. We use only a modest amount of English-only speech
data, 100k hours. The data is also at 16 kHz sampling rate, whereas 24 kHz or higher might be
desirable in many applications. The dataset is predominantly made of audiobook recordings, so we
might also expect the model to have difficulties with speech that is from a very different setting (e.g.
overlapping speakers) or contains a significant amount of environmental sound. The limitations of
the architecture are primarily related to parameter count and computational efficiency. The main
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presented model has a large parameter count which means that it may require greater computational
resources than presented baselines, albeit mitigated by the availability of efficient transformer im-
plementations. Future work should explore scaling up to a much larger and more diverse dataset at
a higher sampling rate.

4 CONCLUSIONS

In this work we proposed a new scalable architecture for neural coding of speech waveforms, based
on transformer-based encoder and decoder models and a flexible discrete bottleneck using Finite
Scalar Quantization (FSQ). We described a number of techniques for altering or decomposing the
tokens produced by this discrete bottleneck in order to fit the needs of various use-cases. We trained
this architecture on a dataset of 16 kHz speech. We conducted objective and subjective evaluations of
this model, showing state-of-the-art speech coding performance as well as generalization to unseen
languages. The model can be adapted to streaming use-cases with little performance degradation,
and is competitive with existing codec models in terms of inference speed, despite utilizing a much
larger parameter count.
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A APPENDIX: ADDITIONAL RESULTS

We performed a number of additional experiments during the training process of the main presented
model, the results of which are shown here.

A.1 ABLATION ON FINETUNING USING PERCEPTUAL LOSS

Tab. 3 shows objective metrics for the main presented model, before and after the finetuning stage
with using the WavLM perceptual feature-matching loss. As can be seen, this finetuning boosted
sound quality metrics significantly, as well as significantly improving intelligibility – albeit at the
cost of a tiny degradation in SI-SDR.

Model SI-SDR ↑ Mel ↓ STFT ↓ PESQ ↑ STOI ↑

TAAE 4.73 0.86 1.26 3.09 0.92
w.o. perceptual loss 4.80 1.18 1.59 2.82 0.88

Table 3: Evaluation results for the TAAE model at 700 BPS with and without perceptual loss.

A.2 ABLATION STUDIES ON MODEL SCALING

To evaluate the effect of increasing model size on the performance of the TAAE architecture, we
repeated the 500k step pretraining phase with models of approximately half and one quarter the pa-
rameter count of the main presented model. This is achieved by reducing the transformer embedding
dimension to 768 and 512 respectively, whilst keeping all other hyper-parameters the same. Objec-
tive metrics for the trained models are shown in Tab. 4. We can see that scaling parameter count
shows a clear improvement in objective metrics, although the smaller models still have respectable
performance compared to baselines.

Param. count SI-SDR ↑ Mel ↓ STFT ↓ PESQ ↑ STOI ↑

240M 3.52 1.24 1.67 2.74 0.87
540M 4.31 1.21 1.66 2.80 0.88
950M 4.80 1.18 1.59 2.82 0.88

Table 4: Evaluation results for TAAE model at 700 BPS with a variety of parameter counts.

A.3 TRAINING MODELS WITH HIGHER COMPRESSION RATES

Tab. 5 shows the objective results of training the same architecture as our main presented model, with
two major changes. The larger block in the encoder/decoder is split into two to provide an extra 2x
upsampling/downsampling, giving an overall latent rate of 12.5 Hz. Additionally the dimension d of
the FSQ bottleneck is increased to 8. The parameter count is the same, apart from a minor difference
in the layers mapping into and out of the bottleneck. This model performs worse than the presented
model (as shown in Tab. 2) in most metrics, albeit operating at a much lower bit-rate. Observation
during training showed that this model converged much slower than the presented model, so this gap
might close with additional training.

Latent (Hz) FSQ (L × d) BPS TPF TPS SI-SDR ↑ Mel ↓ STFT ↓ PESQ ↑ STOI ↑

12.5

4 × 8 200 1 12.5 −1.40 1.26 1.61 2.34 0.82
5 × 8 325 2 25 0.58 1.13 1.49 2.49 0.84
9 × 8 488 3 37.5 2.56 1.05 1.42 2.66 0.87

17 × 8 650 4 50 3.37 1.02 1.40 2.73 0.88

25 6 × 6 400 1 25 3.18 0.97 1.35 2.96 0.90
17 × 6 700 2 50 4.73 0.86 1.26 3.09 0.92

Table 5: Objective results for proposed speech codec models with different latent rate.
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A.4 CAUSAL MODEL VARIATION FOR STREAMING USE

Although the purpose of this work was not to produce an audio codec intended for streaming use, it
is possible to make some small modifications to the structure to make it fully causal. Firstly we shift
the sliding attention window so that it is purely causal, instead of symmetrical around the query.
Secondly, we replace the non-causal convolution layers with causal implementations.

In order to test the impact of these design changes, we finetune a fully trained non-causal model
with these causal modification for 200k steps using the same objective as the finetuning phase of
the main model. Objective metrics for this model are shown in Tab. 6. We can see that the causal
version of the model performs marginally worse in terms of objective metrics, but is still competitive
with Mimi, which is the strongest baseline trained with 4 million steps and 7 million hours of speech
data. Note that if designing a model ground-up for streaming use, it may be wise to choose a smaller
parameter count in order to meet a specific real-time compute budget. The results in Appendix A.2
suggest that smaller models may be viable in this use-case.

In fully causal mode, the latency of the model is dictated by the latent rate. The model presented
here has a latent rate of 25Hz, resulting in a latency of 40ms.

Model BPS SI-SDR ↑ Mel ↓ STFT ↓ PESQ ↑ STOI ↑ MOSNet ↑

Mimi 1100 2.20 0.94 1.31 3.01 0.90 3.24
TAAE (causal) 700 4.04 0.94 1.31 3.09 0.92 3.34
TAAE (non-causal) 700 4.73 0.86 1.26 3.09 0.92 3.36

Table 6: Evaluation results for the TAAE model at 700 BPS, before and after causal finetune.

A.5 GENERALISATION ON MULTILINGUAL SPEECH DATASETS

We assess the generalisation capability of the TAAE model using the Multilingual LibriSpeech
(MLS) dataset (Pratap et al., 2020). For this evaluation, we randomly select 500 audio clips for
each non-English language: Italian, Polish, Dutch, French, German, Spanish and Portuguese. Each
clip is between 5 and 10 seconds in duration and sampled at 16 kHz. TAAE is tested at 700 bps,
with its performance compared against baseline audio codecs at low bite-rates. Objective metrics
from Table 2 are used, except for MOSNet, which is excluded due to its training on English-only
data. The results of this evaluation are detailed in Table 7.

Despite being trained exclusively on English speech data, TAAE generalizes effectively to multilin-
gual datasets, consistently outperforming codecs trained with multilingual data, such as Encodec,
DAC, and SemantiCodec, as well as SpeechTokenizer, another English-only model, across all ob-
jective metrics for all evaluated languages. Additionally, when compared to Mimi, which utilizes
a massive dataset of 7 million hours of predominantly English speech (approximately 700 times
larger than the training set of TAAE), TAAE achieves better performance on SI-SDR, Mel Distance,
and STFT Distance, matches performance on STOI, and is only slightly underperformed on PESQ.
These results highlight TAAE’s ability to generalize to unseen languages despite its English-only
training, suggesting its potential for even greater performance when trained on multilingual data,
making it a promising solution for a wide range of multilingual applications.

A.6 LENGTH GENERALIZATION

In Fig. 3 we show results from evaluating the presented model and baselines on utterances from
the test-clean subset of LibriSpeech binned into categories at a variety of different lengths.
Each length bin consists of utterances ±1s from the stated value. We see that all models handle
inference at various lengths fairly gracefully. The TAAE clearly shows better performance around
the 5s length it was trained on, and degrades slightly with longer utterances. Similarly, Mimi has
its best performance at the longer utterances length it was trained on, and degrades slightly with
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Model BPS SI-SDR ↑ Mel ↓ STFT ↓ PESQ ↑ STOI ↑

Italian
Encodec 1500 0.63 1.20 1.55 2.40 0.85

DAC 2000 −0.13 1.11 1.46 2.23 0.84
SemantiCodec 675 − 1.05 1.41 2.57 0.84
SpeechTokenizer 1000 −2.61 1.07 1.42 2.40 0.84

Mimi 1100 2.69 1.02 1.42 3.00 0.90
TAAE 700 4.54 0.99 1.38 2.89 0.89

Polish
Encodec 1500 1.39 1.12 1.49 2.42 0.86

DAC 2000 1.30 1.02 1.40 2.38 0.87
SemantiCodec 675 − 1.08 1.42 2.36 0.85
SpeechTokenizer 1000 −1.70 1.08 1.42 2.36 0.85

Mimi 1100 2.68 1.04 1.46 2.82 0.90
TAAE 700 4.45 0.95 1.36 2.66 0.89

Dutch
Encodec 1500 1.18 1.13 1.51 2.59 0.86

DAC 2000 1.30 0.98 1.36 2.55 0.87
SemantiCodec 675 − 1.09 1.42 2.34 0.83
SpeechTokenizer 1000 −5.01 1.09 1.42 2.34 0.83

Mimi 1100 2.84 0.98 1.39 3.01 0.90
TAAE 700 4.03 0.90 1.29 2.93 0.88

French
Encodec 1500 3.12 1.16 1.50 2.51 0.85

DAC 2000 2.68 0.98 1.34 2.41 0.87
SemantiCodec 675 − 1.02 1.36 2.54 0.83
SpeechTokenizer 1000 −0.50 1.04 1.36 2.38 0.84

Mimi 1100 4.61 0.98 1.38 2.98 0.89
TAAE 700 6.70 0.94 1.30 2.87 0.88

Portuguese
Encodec 1500 −0.46 1.18 1.56 2.49 0.84

DAC 2000 −1.05 1.07 1.44 2.35 0.84
SemantiCodec 675 − 1.04 1.42 2.59 0.83
SpeechTokenizer 1000 −4.15 1.07 1.42 2.43 0.83

Mimi 1100 1.45 0.98 1.42 3.04 0.89
TAAE 700 3.14 0.93 1.33 2.93 0.87

German
Encodec 1500 0.04 1.17 1.53 2.40 0.84

DAC 2000 −0.53 1.09 1.44 2.34 0.85
SemantiCodec 675 − 1.07 1.43 2.31 0.83
SpeechTokenizer 1000 −3.86 1.10 1.43 2.31 0.83

Mimi 1100 1.84 1.01 1.42 2.95 0.89
TAAE 700 4.94 0.92 1.32 2.83 0.88

Spanish
Encodec 1500 2.32 1.21 1.54 2.42 0.86

DAC 2000 1.93 1.04 1.39 2.36 0.86
SemantiCodec 675 − 1.04 1.39 2.52 0.84
SpeechTokenizer 1000 −0.84 1.07 1.42 2.43 0.85

Mimi 1100 3.82 1.07 1.44 2.93 0.90
TAAE 700 6.15 0.98 1.37 2.80 0.89

Table 7: Evaluation results of objective metrics on the Multilingual LibriSpeech (MLS) dataset.

shorter utterances. Models using chunked inference exhibit the least performance variation with
longer input segments, which aligns with expectations.

A.7 COMPARISON WITH HUBERT-BASED CODEC

We compare our approach with an alternative family of speech codecs that leverage discrete (se-
mantic) tokens derived from self-supervised pre-trained speech models (e.g., HuBERT (Hsu et al.,
2021)). These tokens are subsequently used by a generative model to resynthesize the wave-
form. In this study, we employ the pre-trained unit-based HiFi-GAN vocoder (Kong et al., 2020)
model (unitHiFi-GAN), as used in SpeechGPT1, to resynthesize waveforms discrete tokens from
HuBERT-base model (95 M). The unitHiFi-GAN operates on HuBERT representations with a la-

1https://github.com/0nutation/SpeechGPT/blob/main/speechgpt/utils/
vocoder/
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Figure 3: Objective metrics for the TAAE and baselines, evaluated on utterances from length 3s to
25s, showing generalization of models across lengths. In cases where a baseline has multiple bitrate
versions evaluated in this work, the higher bitrate is evaluated here.

Model BPS SI-SDR ↑ Mel ↓ STFT ↓ PESQ ↑ STOI ↑ MOSNet ↑

unitHiFi-GAN 500 −45.95 3.14 3.24 1.12 0.16 2.98
TAAE 400 3.18 0.97 1.35 2.96 0.90 3.36
TAAE 700 4.73 0.86 1.26 3.09 0.92 3.36

Table 8: Comparison with HuBERT-based codec model.

tent rate of 50 Hz for 16 kHz speech signals and utilizes a k-means clustered codebook with 1000
entries, resulting in an effective bitrate of 500 bps for 16 kHz speech. We apply unitHiFi-GAN
to resynthesize the audio in the test set and report objective metrics to compare its performance
with that of our proposed TAAE models. Results are shown in Table 8. We observe that unitHiFi-
GAN performs poorly across all metrics when compared with TAAE at both 400 bps and 700 bps.
Although the resynthesized audio achieves an acceptable perceptual quality with a MOSNet score
of 2.98, it exhibits poor performance on critical metrics such as SI-SDR and Mel/STFT distance.
This suggests that HuBERT’s discrete tokens fail to preserve sufficient acoustic detail, resulting in
reconstructed audio that does not have close alignment with the reference audio.

The HuBERT-based codec approach benefits from the low bitrate of speech tokens and the semantic
(e.g., phonemic) representations learned through self-supervised objectives. However, it may intro-
duce trade-offs, such as the loss of acoustic details and timbre in the resynthesized audio (Mousavi
et al., 2024). These limitations can be mitigated by incorporating discrete tokens derived from ad-
ditional speech models, such as those for pitch tracking and speaker classification (Polyak et al.,
2021). In contrast, the scope of this work is to explore an end-to-end trained waveform codec model
that achieves high-quality reconstruction while maintaining low-bitrate compression.
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A.8 ANALYSIS OF CODEBOOK UTILISATION AND ENTROPY-CODED BITRATES

This section examines the codebook utilisation and entropy-coded bitrates of our proposed TAAE
models alongside baseline audio codecs. The evaluation is conducted using the LibriSpeech
train-clean-360 set, which consists of 104140 speech clips totaling 360 hours of audio.

To measure codebook utilisation, we compute the Normalized Entropy (Thomas & Joy, 2006), de-
fined as:

Normalized Entropy = − 1

log2(N)

N∑
x=1

p(x) log2(p(x)),

where N is the size of the codebook, and p(x) represents the probability of each codebook index x.
The normalization factor, 1

log2(N) , ensures the entropy is scaled by the maximum possible entropy
of the codebook, log2(N), resulting in a value within the range [0, 1]. Higher values of normalized
entropy indicate more efficient and uniform codebook utilisation.

We use Huffman coding (Huffman, 1952) as an entropy coding method to compress the output
token stream by assigning shorter codes to more frequently occurring tokens, thereby minimizing
the average bitrate. To compute the Huffman-coded bitrate values, we first determine the probability
distribution p(x) of each codebook index based on its frequency of occurrence in the dataset. Using
these probabilities, Huffman coding assigns variable-length binary codes to each index, minimizing
the average bitrate. The Huffman-coded bitrate is then calculated as:

Huffman-Coded Bitrate =

N∑
x=1

p(x)l(x),

where l(x) is the length of the Huffman code assigned to index x. This value represents the com-
pressed bitrate achieved after entropy coding.

The results presented in the Table 9 show the codebook utilisation and Huffman coding efficiency
of the evaluated codec models. Encodec exhibits relatively low normalized entropy (0.78–0.86),
indicating suboptimal codebook utilisation. In contrast, recent RVQ-based approaches, such as DAC
and Mimi, achieve significant improvements through techniques like Exponential Moving Average
(EMA), factorized codes, and L2-normalized codes (Yu et al., 2021), reaching normalized entropy
values of up to 0.99 and 0.92, respectively, across multiple RVQ levels. FSQ and residual FSQ
(RFSQ), used in TAAE, achieve near-perfect utilisation, with normalized entropy reaching 0.97.

The performance of Huffman coding correlates with codebook utilisation. Models with lower nor-
malized entropy benefit more from entropy coding due to their skewed token distributions. For
example, Encodec achieves a 16.67% reduction in bitrate, from 3000 bps to 2510 bps. In contrast,
our proposed TAAE and recent RVQ-based models, such as SpeechTokenizer and Mimi, exhibit
smaller gains from entropy coding (e.g., TAAE achieves a reduction from 700 bps to 670 bps). This
reflects a design choice: these models prioritize efficient codebook utilisation to enhance reconstruc-
tion quality, limiting the potential for additional bitrate reduction through entropy coding.

A.9 COMPARISON OF REAL-TIME FACTOR PERFORMANCE BETWEEN TAAE AND BASELINES

To evaluate the real-time performance of different audio codec models, Real-Time Factor (RTF)
values were computed for three audio durations: 5 seconds, 30 seconds, and 60 seconds. Each test
set consisted of 1000 audio clips, ensuring a robust assessment. The experiments were conducted on
an NVIDIA H100 GPU. The RTF values indicate the processing speed relative to real-time playback,
with lower values denoting faster processing. The results are shown in Tab. 10. We can see that the
TAAE is competitive with the baselines in terms of RTF, despite a much larger parameter count.
This can largely be attributed to a combination of the availability of highly optimized transformer
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Model Codebook Codebook Size Normalized Entropy BPS Huffman-Coded

DAC

RVQ-1

1024

0.87

2000 1900
RVQ-2 0.97

RVQ-3 0.97

RVQ-4 0.99

Encodec

RVQ-1

1024

0.78

3000 2510
RVQ-2 0.84

RVQ-3 0.85

RVQ-4 0.86

SpeechTokenizer
RVQ-1

1024

0.98

1500 1450RVQ-2 0.95

RVQ-3 0.95

SemantiCodec
Semantic 16384 0.86

675 625
Acoustic 8192 0.99

Mimi

RVQ-1

2048

0.91

1100 1005

RVQ-2 0.90

RVQ-3 0.90

RVQ-4 0.91

RVQ-5 0.92

RVQ-6 0.92

RVQ-7 0.92

RVQ-8 0.92

TAAE (400 BPS) FSQ-1 46656 0.97 400 378

TAAE (700 BPS)
RFSQ-1

15625
0.97

700 670
RFSQ-2 0.95

Table 9: Comparison of codebook utilisation and Huffman coding performance across different
codec models and configurations.

Model Parameters (M) RTF (5s) RTF (30s) RTF (60s)

DAC 76 0.0048 0.001 0.0008

Encodec 14 0.0049 0.0025 0.0024

SpeechTokenizer 104 0.0038 0.0024 0.0024

SemantiCodec 507 1.2327 0.8111 0.7085

Mimi 80 0.0047 0.0007 0.0003

TAAE 950 0.0143 0.0024 0.0013

Table 10: Real-Time Factors (RTFs) for audio codec models on test audio clips of 5s, 30s, and 60s
duration using an H100 GPU.

implementations, and the efficiency gains of offloading the majority of downsampling/upsampling
to the very computationally efficient patched transform.

B APPENDIX: ADDITIONAL ARCHITECTURE DISCUSSION

B.1 LAYER NORMALIZATION IN TRANSFORMERS WITHOUT TRAINABLE EMBEDDINGS

In contrast to the standard use-cases of transformers which involve discrete inputs with trainable em-
beddings, our architecture must deal with diverse inputs derived directly from signals. This includes
very low amplitude embeddings corresponding to silent sections of audio. This is a particular chal-
lenge when combined with sliding-window attention, as the entire context of a particular attention
block could consist of low-level channel or rounding noise which has been amplified to high levels
by the layer-norm block. In early experiments we found that this problem prevented convergence
of the architecture by causing instability and poor gradients if a batch contained too much silence.
This can be mitigated by stripping silence from the dataset, but such an approach does not produce

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2024

a model robust to real-world use-cases that may indeed contain silence. Instead we raise the ϵ con-
stant used in the calculation of normalization factors in the layer norm blocks, effectively capping
the maximum factor by which the layer norm can amplify an embedding. This allows embeddings
corresponding to silence to remain at a very low level, and allows convergence of the architecture.
The exact appropriate value for ϵ is data dependent and related to the average noise floor of the
data. In this work, we use ϵ = 1 × 10−2, whereas the default ϵ value in PyTorch LayerNorm2 is
1× 10−5. This choice caps the maximum amplification to 40 dB, instead of 100 dB for the default
setting. To contextualise these values, the total dynamic range of 16-bit fixed-point audio is 96 dB,
which means at the default LayerNorm settings even rounding noise at the input could be amplified
to full-scale embeddings.

B.2 MODEL CONTEXT LENGTHS, CAUSALITY AND LATENCY

Any layer which processes information across sequence steps has a particular context length or
receptive field. In the case of a convolutional layer, this receptive field is finite and defined by the
kernel size of the convolution as well as any striding or dilation. In the case of RNNs and self-
attention the receptive field is limited only by the length of the data. Adding a sliding-window
mask to self-attention limits the context to be finite like a convolutional layer. The receptive field
of a complete network is the sum of the receptive fields of the individual layers, as each layer is
potentially able to pass information from one extreme of it’s per-layer receptive field to the other.

Correctly choosing the receptive field is a key design parameter in networks that must generalize over
different sequence lengths. If it’s chosen to be too short, the network may not learn important long-
term dependencies in the data. If it’s chosen to be too long, the network can fail to generalize both
to shorter sequences (if the whole context is needed for proper operation) and to longer sequences
(if during training the network never sees a sequence exceeding its receptive field). This choice is
especially crucial on a per-layer basis.

Related to the topic of receptive field is the concept of streamability. A streamable codec model
could be used for live encoding and decoding of an audio stream, in a real-time operation context.
To be viable for this operation mode, a model needs to have a reasonable latency i.e. delay between
audio input and output. The simplest way of achieving low latency is to design a model which is
strictly causal. The latency of the model is then dictated by the lowest temporal sampling frequency
within the model, which is usually the latent rate. Alternatively, non-causal models may be made
streamable by employing chunked inference. This means that the input signal is split up into (usually
fixed size) chunks, with a certain amount of overlap to reduce boundary issues. In this case the
latency is equal to two chunks. This is usually much too high for real-time applications.

B.2.1 COMPARISON BETWEEN BASELINES

Our proposed TAAE model uses a sliding attention window of 128 steps in the main presented non-
causal version, giving it a maximum per-layer receptive field 5.12s and an overall receptive field of
approximately 200s, centered on the current time-step. The causal variation described in App.A.4
uses a causal sliding attention window of 64 steps, giving it a maximum per-layer receptive field of
2.56s and an overall receptive field of approximately 100s. When configured in a causal fashion, the
streaming latency is 40ms.

Mimi (Défossez et al., 2024) uses a causal attention window of 250 steps, which given the attention
happens only on 12.5Hz latents would give it a maximum per-layer receptive field of 20s and a
total receptive field approximately 320s. It is capable of streaming with a latency of 80ms. Length
generalization is not addressed in detail but is said to be acceptable up to 5mins, which is consistent
with the total receptive field.

Encodec (Défossez et al., 2022) employs an RNN as part of its design, giving effectively unlimited
per-layer and total receptive fields. The potential negative impact on length generalization during

2https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html
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inference is mitigated by encoding and decoding audio in fixed-size chunks of 1s using overlap,
when in non-streaming mode. In streaming mode, this potential negative impact is not addressed.

DAC (Kumar et al., 2023) is purely convolutional, so has a much smaller receptive field than the
other models considered here. Its maximum per-layer receptive field is 0.16s, whilst its total re-
ceptive field is 0.76s. It is not causal, but its limited receptive field means that it could be used for
streaming purposes with a latency of 0.38s.

SemantiCodec (Liu et al., 2024) uses both RNNs and attention without a sliding window, giving it
effectively unlimited per-layer and total receptive fields. It is trained on 10s segments, and inference
is also chunked to this length with overlap. It is non-causal, but streaming is possible with a large
latency due to the chunked inference.

SpeechTokenizer (Zhang et al., 2023b) uses RNNs, giving it effectively unlimited per-layer and total
receptive fields. It is trained on 3s segments. The authors do not discuss if chunked inference is used
to aid length generalization or to allow streaming.

All models are expected to effectively scale as O(n) with sequence length, due to the use of limited
attention context windows or chunked inference. We summarize the above information in Tab. 11.

Model Max Per-Layer RF Total RF Causal Latency Chunked Inference

Encodec Unlimited Unlimited Yes 13ms Optional
DAC 0.16s 0.76s No 0.38s (non-chunked) Optional
SemantiCodec Unlimited Unlimited No 20s Yes
SpeechTokenizer Unlimited Unlimited No N/A Not discussed
Mimi 20s ∼ 320s Yes 80ms No
TAAE (Non-Causal) 5.12s ∼ 200s No N/A No
TAAE (Causal) 2.56s ∼ 100s Yes 40ms No

Table 11: Comparison of receptive field and streamability across different models. RF stands for the
receptive field. Unlimited RF values do not take into account chunked inference.

B.3 CONVOLUTION VS ATTENTION

The most fundamental change compared to previous codec models in our architecture is the switch
from a predominantly convolutional architecture to one that closely resembles a standard trans-
former. As discussed above, this is predominantly motivated by the success of scaling such archi-
tectures in other fields (Hoffmann et al., 2022; Dosovitskiy et al., 2021). This switch represents a
move from an architecture with strong inductive bias, high parameter efficiency but poor scaling, to
an architecture that is more general, less parameter efficient, but has more potential to scale. Beyond
these high-level differences, it is interesting to also explore the difference between convolution and
attention, and how this motivates the change.

Convolution and attention are actually more similar than it would first appear. Attention maps, being
weighted sums over an input, are essentially a 1d convolution kernel. Compared to the convolution
kernels learned in a typical 1d convolution layer however, they have four major differences. Firstly,
attention maps generally cover a much larger receptive field than learned convolution kernels. Sec-
ondly, the nature of the softmax function used to calculate the attention map restricts the individual
weights to be purely positive and sum to one (imparting a overall lowpass characteristic to the re-
sulting kernel). Thirdly, convolution kernels are usually learned and applied in a dense format or
per-channel, whereas attention maps are applied uniformly over a projection of the channels (an
attention head). Lastly, the attention maps can vary dynamically with input and are therefore not
restricted to be shift-invariant (although they may learn to be). We would argue that even with the
lowpass constraint and the restriction of attention heads, attention can effectively be thought of as a
superset of the capabilities of convolution.

The relaxation of the shift-invariant constraint in particular could be useful for a model that is in-
tended to perform compression of information. A particular audio input sequence does not nec-
essarily have an even distribution of information along the sequence, for example silent segments
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will contain much less information than active speaking. Intuitively using purely a shift-invariant
operation would make it harder to address this difference in information density, given that it acts
uniformly across the sequence. In contrast, attention is able to freely move information around and
utilize the whole length of the sequence as it see’s fit – potentially allowing it to dedicate more capac-
ity to the information-dense portions of the input signal and less to the information-sparse portions.

B.4 FILTERBANK CHOICE FOR CODEC DESIGN

The above described architecture relies on using a fixed non-learnable transform on the raw audio
waveforms to perform a large proportion of the temporal downsampling and channel expansion.
This type of transform is known in the signal processing literature as a filter-bank or time-frequency
representation (Smith, 2011). The most common example of such a transform is the Short Time
Fourier Transform (STFT).

When choosing an appropriate transform, there is a number of important qualities to consider. Firstly
there is perfect-reconstruction – this means that an exact inverse of the transform exists which can
recover the original waveform. Secondly there is critical-sampling – which means the number of
channels of the transform matches the temporal down-sampling and hence does not expand the
amount of data. Thirdly, there is the resistance of these transforms to manipulation and error. This
property is mostly effected by how heavily the transform relies on time-domain aliasing cancellation
(TDAC) to counteract the effect of the aliasing produced by downsampling each channel. TDAC
requires very specific relationships between channels to be maintained in order to work, which may
be perturbed by reconstruction error resulting in errors in the final waveform.

We now describe some of the transforms that were considered during the development of this model.

STFT – The STFT only fulfills both the perfect-reconstruction and critical-sampling criteria in a
single case - when a rectangular window with no overlap is used. In this configuration the transform
is highly sensitive to errors, which generally manifest themselves as periodic transients at the bound-
aries between STFT frames. If the critical-sampling requirement is relaxed and windowing with the
correct overlap is used, an STFT may have both perfect-reconstruction and excellent error resistance,
however achieving this generally expands the length of the input sequence very significantly.

MDCT – The Modified Discrete Cosine Transform (MDCT) is used in many traditional audio cod-
ing algorithms. It is both critically sampled and possesses perfect reconstruction. In practice we
found that, like the rectangular-windowed STFT, the artefacts resulting from error before recon-
struction were periodic and perceptually undesirable.

PQMF – The Pseudo Quadrature Mirror Filter (PQMF) approach is also used it traditional audio
coding algorithms. It is critically sampled, but does not conform exactly to the perfect-reconstruction
criteria. Its error resistance is fairly strong, as TDAC only happens between adjacent channels in the
representation.

Patched transform / Polyphase – In the signal-processing literature, the patched transform is gen-
erally known as a polyphase filterbank (Smith, 2011). It is an edge-case in the world of transforms,
in that each channel covers the same frequency band, but with a different phase offset. It conforms
to both the perfect-reconstruction and critically-sampled criteria, and is often used for efficient filter-
implementation in the signal processing literature for this reason. The polyphase transform looks at
first glance to have poor resistance to error, given that TDAC happens between all channel simul-
taneously. However, in practice this means that the effect of the error after reconstruction is much
more evenly distributed across both time and frequency, lacking the periodic elements seen with
other transforms. We found that this made reconstruction error perceptually much improved, and
consequently chose the patched / polyphase transform as the appropriate transform for this model.

B.5 SYSTEMATIC BIAS IN LOSS FUNCTIONS

During the initial experiments leading to the work described here, we noticed a tendency for the
presented architecture to produce consistent periodic artifacts (seen as lines in a spectrogram), espe-
cially in the upper frequencies of a sound. These artefacts often disappeared with additional training,
but not consistently. One theory for their origin was that the increased capacity of the proposed ar-
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chitecture compared to previous codec models encouraged the model to overfit on biases in the
training objective.

In order to examine this theory, we can define a per-sample sensitivity metric for any particular loss
L(x), with respect to the input signal samples xn of the input signal x:

sn =

∣∣∣∣∂L(x)
∂xn

∣∣∣∣ (11)

This metric can be extracted easily from a given neural network structure and an example signal,
using automatic differentiation.

In addition, if we want a more detailed view of the sensitivity of the loss to any particular frequency
element of the input signal, we can first perform a time-frequency transformation like an STFT to
the signal, apply the inverse transformation before processing with the network, and calculate the
derivative with respect to the bins Xn,f of the transformed signal:

sn,f =

∣∣∣∣∂L(x)
∂xn,f

∣∣∣∣ (12)

To measure bias using this metric, we average the Sn,f values over many different example inputs.

We first conducted this analysis on common reconstruction loss metrics including L1 loss, L2 loss
and STFT-based losses. All showed no systematic bias. In the STFT case, this is predicated on
correct windowing and overlap of the STFT to fulfill the requirements for perfect reconstruction.

However, performing this analysis on the feature-matching, adversarial and discriminator losses
used for adversarial training revealed clear systematic bias. A freshly initialised Encodec discrim-
inator using power-of-two FFT sizes and overlaps, as is standard, produced clear horizontal and
vertical lines in the sensitivity spectrum. Each of these set of lines appeared to be connected to a
single STFT discriminator. This indicated that the the gradients used to train both the discriminator
and the codec were biased towards particular time-steps and towards particular frequencies. This
analysis was repeated on a fully trained discriminator network. The training process somewhat mit-
igated this bias, but clear horizontal and vertical lines were still present. We postulated that this was
the source of the periodic artefacts in the reconstructions from the model. Similar behaviour was
seen in the discriminator design from DAC (Kumar et al., 2023) and BigVGAN (gil Lee et al., 2023),
with DAC seeming to be suffer particularly from periodic artefacts due to the multi-period part of
its discriminator. A deeper examination of the reason why this bias effects a transformer-based
architecture more than previous convolutional architectures is left to future work.

As the regular patterns in the sensitivity appeared to be related to the FFT sizes used, an attempt
was made to mitigate using techniques inspired by older work in artificial reverberation. When
designing an artificial reverberator, one of the main challenges is to make sure that the regular
spectral peaks produced by comb or allpass filters do not coincide and cause metallic ringing. One
strategy is to tune these filters to be maximimally inharmonically related. We achieve this for FFT
sizes, by choosing a base FFT hop size and then generating a number of new hop sizes by multiplying
with a constant interval. The FFT sizes are then chosen to be double this hop size, to maintain
perfect reconstruction for the used Hanning window. Using an optimization procedure, the constant
interval that produced the most inharmonic relationship was found to be close to the golden ratio
φ = 1+

√
5

2 . Using FFT sizes derived with this approach removed sharp lines from the sensitivity
spectrum of the discriminator, and left a pattern closer to noise. Training using these updated settings
proved to lack the previous periodic artefacts in the spectrum. The final chosen FFT sizes are
{78, 126, 206, 334, 542, 876, 1418, 2296}.

B.5.1 LEARNED BIAS DURING TRAINING

We can perform a similar sensitivity analysis on the discriminator during training on single exam-
ples from the validation dataset. This allows examination of which parts of a particular sound the
discriminator is paying the most attention to. Examining many such plots during late-period training
revealed an interesting behavior - the discriminator loss was mainly being influenced by extremely
low magnitude parts of the signal spectrum, to the exclusion of the higher energy parts of the spec-
trum. This behavior would indicate that the discriminator is learning to tell the difference between
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fake and real by looking at patterns in inaudible parts of the signal spectrum. To attempt to mitigate
this behavior, the magnitude of the bins Xn,f of the complex spectrograms were scaled by a power
law - essentially weighting small magnitude bins lower and higher magnitude bins higher:

X̂n,f = Xn,f |Xn,f |α (13)

Experimentally, α = 1/2 was found to be an appropriate value. Higher values of α make the dis-
criminator concentrate more on spectral peaks, which can damage overall timbre and intelligibility.
A more involved analysis for addressing this issue is left to future work.

C APPENDIX: BASELINE AUDIO CODEC MODELS

Model Causal Training Datasets Multilingual Speech Domain #Params (M)

Encodec Optional DNS, CommonVoice, AudioSet, FSD50K, and Jamendo Yes General 14

DAC No DAPS, DNS, CommonVoice, VCTK, MUSDB, and Jamendo Yes General 76

Mimi Yes Predominantly English speech (7 million hours) Likely Speech 80

SpeechTokenizer No LibriSpeech No Speech 104

SemantiCodec No GigaSpeech, multilingual audios from OpenSLR, Million Song Dataset,
MedleyDB, MUSDB18, AudioSet, WavCaps, and VGGSound Yes General 507

Table 12: Comparison of audio codecs and their characteristics.

D APPENDIX: OBJECTIVE METRICS

Bits Per Second (BPS) – A metric that reflects the compression efficiency by measuring the number
of bits transmitted per second. We’ll use this metric to discuss the trade-off between compression
and quality.

Tokens Per Frame (TPF) – A metric which shows how many parallel tokens are needed for each
timestep of the encoded audio. This is important as it effects the easy of modelling the token se-
quence with a generative model.

Tokens Per Second (TPS) – A metric that describes how many tokens are needed per second of
audio. This is important as it dictates how much of the context of a generative model is needed per
second of encoded audio, if residual tokens are used in flattened form.

Scale-Invariant Source-to-Distortion Ratio (SI-SDR) – A waveform-based metric similar to
signal-to-noise ratio, with modifications to make it invariant to scale differences (Le Roux et al.,
2019). When used alongside spectral metrics, SI-SDR provides insights into the quality of phase
reconstruction.

Mel Distance – This is a combination of two distances calculated between mel spectrograms of the
reconstructed and ground truth waveforms. We use a Hanning window of size 2048, FFT size of
2048, hop size of 256, and 128 mel bins. The first component is the L1 distance between log-scaled
magnitudes. The second component is the spectral convergence calculated between the linear-scaled
magnitudes (Steinmetz & Reiss, 2020). Both components are weighted equally.

STFT Distance – This utilizes the same two distance measures used in the Mel Distance metric, but
with a standard linearly spaced spectrogram. We use a Hanning window of size 2048, FFT size of
2048 and hop size of 512. This metric captures high-frequency fidelity better than the Mel Distance.

PESQ (Perceptual Evaluation of Speech Quality) – A speech quality assessment metric that com-
pares the reconstructed speech to a reference, providing a score that correlates with subjective human
judgment from 1 to 5 (Rix et al., 2001).

STOI (Short-Time Objective Intelligibility) – A metric that measures speech intelligibility by
comparing short-time spectral envelopes between the reconstructed and ground truth speech. Scores
range from 0 to 1, where higher values indicate better intelligibility (Andersen et al., 2017).
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MOSNet – A neural network-based metric that predicts the mean opinion score (MOS) from 1 to
5 for speech quality by learning from human-labeled datasets. It offers a reference-free method for
estimating perceptual speech quality (Lo et al., 2019).

E APPENDIX: DEMOGRAPHIC BREAKDOWNS OF THE PERCEPTUAL TEST

The demographic data of participants in the perceptual test reveal that 68.2% of respondents are
affiliated with academia, while 31.8% represent industry professionals. A majority (59.1%) are in-
volved in audio or music production and research, highlighting a strong relevance to our listening
test. Regarding equipment used during the perceptual test, 63.6% of participants relied on head-
phones, 22.7% on laptop speakers, and 13.6% on professional-grade speakers.

Figure 4: Demographic breakdowns of the perceptual test.
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