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Abstract

Recently, newly developed Vision-Language Models (VLMs), such as OpenAI’s
GPT-4o, have emerged, seemingly demonstrating advanced reasoning capabilities
across text and image modalities. Yet, the depth of these advances in language-
guided perception and abstract reasoning remains underexplored, and it is unclear
whether these models can truly live up to their ambitious promises. To assess the
progress and identify shortcomings, we enter the wonderland of Bongard prob-
lems, a set of classical visual reasoning puzzles that require human-like abilities
of pattern recognition and abstract reasoning. While VLMs occasionally succeed
in identifying discriminative concepts and solving some of the problems, they fre-
quently falter, failing to understand and reason about visual concepts. Surprisingly,
even elementary concepts that may seem trivial to humans, such as simple spirals,
pose significant challenges. Moreover, even when asked to explicitly focus on and
analyze these concepts, they continue to falter, suggesting not only a lack of under-
standing of these elementary visual concepts but also an inability to generalize to
unseen concepts. These observations underscore the current limitations of VLMs,
emphasize that a significant gap remains between human-like visual reasoning and
machine cognition, and highlight the ongoing need for innovation in this area.1

1 Introduction

Visual reasoning, the ability to understand, interpret, and reason about the visual world, is a fundamen-
tal aspect of human intelligence [22]. It allows us to navigate our environment, interact with objects,
and make sense of complex visual scenes. In recent years, the field of artificial intelligence (AI) has
advanced rapidly toward replicating aspects of this visual reasoning, with significant focus placed on
Vision-Language Models (VLMs) [5, 19, 20]. These models integrate visual and textual information
to generate descriptive content, aiming to mimic how humans comprehend and reason about the world.
Because of their human-like responses, VLMs often create the illusion of possessing human-like
perception and intelligence. However, as recent work shows, VLMs and the Large Language Models
(LLM) on which they are based have dramatic shortcomings in the case of reasoning [24] and visual
perception [8, 9, 27] or their combination [31, 38, 39]

Bongard problems (BPs), a class of visual puzzles that require the identification of underlying rules
based on a limited set of images, provide a unique and challenging benchmark for assessing visual
reasoning abilities in AI systems [4]. Conceived by Russian scientist Mikhail Bongard in 1967,
these visual puzzles test cognitive abilities in pattern recognition and abstract reasoning, posing a
formidable challenge even to advanced AI systems [11].

1Our code is available at https://github.com/ml-research/bongard-in-wonderland.
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Gemini:
LLaVA 1.6:

elongated or have a zigzag or wavy pattern

single continuous line without any breaks or intersections
symmetrical along a vertical axis

rectangular or have a combination of straight and triangular elements

multiple lines that intersect or overlap with each other
symmetrical along a horizontal axis

GPT-4o:

Left side: Figures elongated vertically Right side: Figures elongated horizontally

Figure 1: VLMs struggle to solve BPs out of the box. Although the concepts of vertical and
horizontal may seem trivial to a human, the VLMs struggle to generate discriminative rules.

Unlike pattern recognition in classification tasks, BPs are not about finding visual patterns that match
certain concepts but about finding concepts that allow for a pattern in the description of the diagrams
that matches the left-right separation. Thus, BPs test the ability to express distinctive and common
features of images, including the pattern recognition necessary to correctly associate the features with
images, as well as the ability to come up with textual rules that can characterize the meta-pattern (not
within each but) across all twelve diagrams that constitute a BP. An example BP is shown in Figure 1.

While traditional machine learning approaches have achieved some success with BPs [7, 26], the
potential of VLMs remains largely unexplored. Since VLMs already struggle with recognizing rather
simple visual patterns, as shown by [27] and [38], it is expected that BPs are still a particularly hard
challenge for VLMs and provide a valuable basis for exploring in more detail which patterns are
more or less difficult to identify by state-of-the-art models.

In this work, we investigate the performance of VLMs in the domain of BPs. We examine how
well different VLMs can discover the underlying rules in these puzzles, and identify strengths and
limitations in their reasoning capabilities. For this, we consider a setting where an open-ended
solution for the BPs needs to be discovered and a second multiple-choice setting in which the correct
rule-pair needs to be selected from a set of possible solutions. Further, we investigate the pattern
recognition abilities of the models on four problems in more detail. Our results provide insights into
the perceptual madness of VLMs and suggest opportunities for improvement.

2 Related Work

Bongard and ML. Depeweg et al. [7] define a formal language to represent compositional visual
concepts. Using this language and Bayesian inference, concepts can be induced from the examples
provided in each problem. For a subset of 35 problems, there is reasonable agreement between
the concepts with high posterior probability and the solutions formulated by Bongard himself. [7].
Raghuraman et al. [26] explore the principles of Bongard problems on the classical and real-world
image versions of them. However, they change the problem setting from an open-ended task, where a
rule has to be formulated, to a setting where a subset of the puzzle’s images needs to be classified
correctly. Youssef et al. [32] approach Bongard problems with a reinforcement learning setting for
extracting meaningful representations and counterfactual explanations.

Benchmarks for VLMs. Traditional visual machine learning benchmarks largely focus on straight-
forward machine perception tasks [6, 15, 17, 28]. In contrast, benchmarks specifically designed for
VLMs often go one step further and involve more complex tasks such as image captioning, scene
or diagram understanding, visual question answering (VQA), or visual-commonsense reasoning
[2, 12, 13, 14, 16, 23, 27, 33, 34, 35, 36]. Yet, most of these only require simple reasoning abilities.
More recent benchmarks have been introduced to probe advanced reasoning skills, e.g., logical
learning [10, 30], mathematical reasoning [21] or analogical visual reasoning [37]. Although this
shift towards more cognitively demanding tasks is promising, comprehensive diagnostic evaluations
of VLMs’ reasoning capabilities that pinpoint sources of error and model limitations remain scarce.
Furthermore, the degree to which these models genuinely comprehend complex, abstract visual
concepts is yet to be fully investigated.

3 Method

Each BP consists of twelve simple black-and-white diagrams divided into a left and a right group.
Usually, all images share some similarity, but for both sides, there is an opposing property or rule,
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Table 1: Performance of VLMs on 100 BPs (top) as well as multiple-choice BPs (bottom). Results
depict the rounded average of solved BPs over 3 runs. All models struggled with the classical
BP setup, with GPT-4o achieving the highest score, solving only 21 out of 100 BPs. Even on the
multiple-choice BPs, difficulties persist. Only when the number of choices is considerably limited
does the performance increase. *Context size of LLaVA 1.6 not sufficient.

GPT-4o Claude Gemini LLaVA 1.6 LLaVA 1.5

Solved BPs (of 100) 21 14 5 2 1

Multiple Choice (100) 23 28 16 -* 2
Multiple Choice (10) 68 69 59 24 2

respectively, that its six images have in common (and which is shared by no image of the other side).
An example BP is shown in Figure 1. The task is to find a linguistic expression of the underlying rule
that distinguishes the two groups. To analyze the VLM’s capabilities, we evaluate two approaches:
For the first approach, we provide the context to split the BP challenge into a description task and a
reasoning task. This is done by step-by-step instructions inside a single prompt for the first approach
(cf. Listing 1). The answers to the reasoning task are then compared to the ground truth2 by an
LLM-Judge, as the answer setting is open-ended (cf. Listing 3 for prompt). For the second approach,
we investigate the limitations with visual descriptions via a perception task. Here, the relevant concept
for the BP is provided and the task is to predict for each image of the BP whether it belongs to the
concept or not. For this four specific prompts were implemented (Listings 4, 5, 6, 7).

4 Experiments

In our experiments, we investigate to what extent state-of-the-art VLMs can solve Bongard problems.
At first, we evaluate the models quantitatively on all 100 puzzles and then investigate them qualita-
tively in more detail. For our evaluations, we consider the 100 original Bongard problems of [4]. We
use the dataset variation of [7], which contains high-resolution images of the original diagrams. For
the evaluations we use the models GPT-4o [1], LLaVA versions v1.6-34b [20] and v1.5-13b [19],
Gemini 1.5 Pro 29, and Claude 3.5 Sonnet [3]. For the LLM-judge, we use GPT-4o.

Can VLMs solve Bongard problems? As a first step, we want to investigate to what extent current
state-of-the-art VLMs can solve Bongard problems. For this, we ask our selection of VLMs to solve
each BP three times. The answers are given to the LLM-judge, which decides for each answer
whether it solves the BP or not. The results of this evaluation can be seen in the top row of Table 1.
We can see that GPT-4o is by far the best-performing models with an average of 22 solved BPs.
However, this performance is still surprisingly poor, especially considering human abilities [7, 18, 25].
In Table 2 we provide a more detailed overview of which BPs were solved. It shows that even rather
simple BPs with concepts like "small vs. large shapes" (BP#2) and "left vs. right figures" (BP#8) are
not solved correctly in most attempts.

In a further setting, we analyze how the results change when providing the models with all existing
rule pairs of the BPs and ask them to select the correct one (multiple choice). Interestingly, this does
not change the performance for GPT-4 and LLaVA-v1.5 significantly. However, Gemini and Claude’s
performance is better in this setting; Claude can even solve 28 BPs on average.

To further simplify the task, we reduce the number of options to 10 possible rule pairs and repeat
the procedure. Now, the models perform better, reaching up to 69 solved BPs. This is interesting
since before the correct solution was present as well, but the models could not select it correctly. It is
unclear whether the models actually caught the concepts or if merely the exclusion procedure was
easier. The question remains whether, with specialized context, it is possible to solve a BP if it has
not been solved before. We want to investigate this next using the example of four selected BPs.

Why do VLMs fail to solve Bongard problems? We saw that the VLMs show poor performance
on the BP dataset. This can be due to issues with the perception of the diagrams of the BPs but also
due to reasoning failures, i.e., when creating rules that apply to each side distinctively. None of the
models was able to solve BP#16, BP#19, BP#29. and BP#36 correctly even though the conceptual
complexity of the rules is rather small. We investigate this in more detail by providing individual

2https://www.foundalis.com/res/bps/bongard_problems_solutions.htm
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Figure 2: VLMs fail to identify simple visual concepts. VLMs challenged with identifying visual
concepts in BPs. Although the VLM is able to recognize some of the concepts when specifically
asked for (bottom), on the others, it continues to falter (top).

images of the BPs to the models and asking them directly for the relevant concepts. An excerpt of the
responses is displayed in Figure 2 (cf. Tab. 5, 6, 7, 8). When all images from the BP are correctly
categorized, we take it as an indication that the VLM has likely captured the concept.

Surprisingly, we find that for BP#16, even though some images are classified correctly, none of
the models can classify all images correctly. Instead, we can see a tendency to classify one of the
directions rather than the other. For BP#19 there is a similar behavior where none of the models
is able to classify the concepts of all images correctly. For BP#29, on the other hand, GPT-4o, for
example, is convinced that image 7 has as many shapes on the outside as on the inside. Except for
Claude, none of the models could count the shapes correctly, even though the final decision was
primarily correct. The observed behavior is remarkable and shows that perception is the key issue
for not identifying the correct rules. For the last BP, BP#36, the models can identify the concept
better, with some even classifying all 12 images correctly (cf. Table 8). Here, the perception seems to
work more reliably and the problem for solving the BP from scratch might be more on the pattern
recognition or reasoning side.

Limitations. While useful for assessing abstract reasoning, BPs represent a small and highly
specialized set of challenges, which might not fully capture the diverse challenges VLMs face in
real-world applications. Additionally, the reliance on our LLM-Judge introduces some uncertainty
in the evaluation process. Future work should expand these evaluations to more diverse tasks and
evaluate the judge’s performance and additional model architectures to address these limitations.

5 Discussion and Future Work

This work presented a diagnostic evaluation of VLMs using the classical Bongard problems, providing
valuable insides into their current capabilities of pattern recognition and abstract reasoning. Our
experiments highlight a significant gap between human-like visual reasoning and machine cognition.
Specifically, we found that VLMs are still largely unable to solve the majority of Bongard Problems,
with the best-performing model, GPT-4o, solving only 21 out of the 100 BPs. Moreover, our analysis
suggests that the limitations of current VLMs extend beyond just visual reasoning; they also struggle
to perceive and comprehend elementary visual concepts. E.g. concepts that appear trivial to humans,
such as simple spirals, posed considerable challenges to these models. A model that cannot recognize
the direction in which a spiral is rotating cannot reason about whether multiple spirals are rotating in
the same direction. Our findings raise several critical questions: Why do VLMs encounter difficulties
with seemingly simple Bongard Problems, despite performing impressively across various established
VLM benchmarks? How meaningful are these benchmarks in assessing true reasoning capabilities?

An intriguing direction for future research would be analyzing the visual and textual latent spaces.
Such an analysis could help pinpoint the specific sources of error and identify whether these failures
emerge from perceptual shortcomings, reasoning limitations, or both.

4



Acknowledgements

The authors would like to thank Frank Jäkel for useful discussions and Maurice Kraus for providing the
initial impetus to submit our work to the workshop. This work was supported by the Priority Program
(SPP) 2422 in the subproject “Optimization of active surface design of high-speed progressive tools
using machine and deep learning algorithms“ funded by the German Research Foundation (DFG).
We acknowledge support of the hessian.AISC Service Center (funded by the Federal Ministry of
Education and Research, BMBF, grant No 01IS22091), the “Third Wave of AI”, and “The Adaptive
Mind”. Further, this work was funded by the European Union (Grant Agreement no. 101120763 -
TANGO). Views and opinions expressed are however those of the author(s) only and do not necessarily
reflect those of the European Union or the European Health and Digital Executive Agency (HaDEA).
Neither the European Union nor the granting authority can be held responsible for them. The authors
of the Eindhoven University of Technology received support from their Department of Mathematics
and Computer Science and the Eindhoven Artificial Intelligence Systems Institute.

References
[1] Open AI. Gpt-4o. https://openai.com/index/hello-gpt-4o/. Accessed: 2024-09-25.

[2] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence
Zitnick, and Devi Parikh. VQA: visual question answering. In International Conference on
Computer Vision (ICCV), pages 2425–2433. IEEE Computer Society, 2015.

[3] Antropic. Claude 3.5 sonnet. https://www.anthropic.com/news/claude-3-5-sonnet.
Accessed: 2024-09-25.

[4] M.M. Bongard and J.K. Hawkins. Pattern Recognition. Spartan Books, 1970.

[5] Florian Bordes, Richard Yuanzhe Pang, Anurag Ajay, Alexander C Li, Adrien Bardes, Suzanne
Petryk, Oscar Mañas, Zhiqiu Lin, Anas Mahmoud, Bargav Jayaraman, et al. An introduction to
vision-language modeling. arXiv preprint arXiv:2405.17247, 2024.

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3213–3223. IEEE Computer Society, 2016.

[7] Stefan Depeweg, Constantin A Rothkopf, and Frank Jäkel. Solving bongard problems with a
visual language and pragmatic reasoning. Cognitive Science, 2024.

[8] Gregor Geigle, Radu Timofte, and Goran Glavaš. African or european swallow? bench-
marking large vision-language models for fine-grained object classification. arXiv preprint
arXiv:2406.14496, 2024.

[9] Chenhui Gou, Abdulwahab Felemban, Faizan Farooq Khan, Deyao Zhu, Jianfei Cai, Hamid
Rezatofighi, and Mohamed Elhoseiny. How well can vision language models see image details?
arXiv preprint arXiv:2408.03940, 2024.

[10] Lukas Helff, Wolfgang Stammer, Hikaru Shindo, Devendra Singh Dhami, and Kristian Kersting.
V-lol: A diagnostic dataset for visual logical learning, 2023.

[11] José Hernández-Orallo, Fernando Martínez-Plumed, Ute Schmid, Michael Siebers, and David L
Dowe. Computer models solving intelligence test problems: Progress and implications. Artificial
Intelligence, 230:74–107, 2016.

[12] Yining Hong, Li Yi, Josh Tenenbaum, Antonio Torralba, and Chuang Gan. PTR: A bench-
mark for part-based conceptual, relational, and physical reasoning. In Conference on Neural
Information Processing Systems (NeurIPS), pages 17427–17440, 2021.

[13] Drew A. Hudson and Christopher D. Manning. GQA: A new dataset for real-world visual
reasoning and compositional question answering. In Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6700–6709. Computer Vision Foundation / IEEE, 2019.

[14] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick,
and Ross B. Girshick. CLEVR: A diagnostic dataset for compositional language and elementary
visual reasoning. In Conference on Computer Vision and Pattern Recognition (CVPR), pages
1988–1997. IEEE Computer Society, 2017.

5

https://openai.com/index/hello-gpt-4o/
https://www.anthropic.com/news/claude-3-5-sonnet


[15] Laurynas Karazija, Iro Laina, and Christian Rupprecht. Clevrtex: A texture-rich benchmark
for unsupervised multi-object segmentation. In Conference on Neural Information Processing
Systems (NeurIPS), NeurIPS Datasets and Benchmarks, 2021.

[16] Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
Farhadi. A diagram is worth a dozen images, 2016.

[17] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In
European Conference on Computer Vision (ECCV), volume 8693, pages 740–755. Springer,
2014.

[18] Alexandre Linhares. A glimpse at the metaphysics of bongard problems. Artificial Intelligence,
121(1-2):251–270, 2000.

[19] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.

[20] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae
Lee. Llava-next: Improved reasoning, ocr, and world knowledge, January 2024. URL https:
//llava-vl.github.io/blog/2024-01-30-llava-next/.

[21] Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao
Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical
reasoning of foundation models in visual contexts. In International Conference on Learning
Representations (ICLR), 2024.

[22] David Marr. Vision: A computational investigation into the human representation and processing
of visual information. MIT press, 2010.

[23] Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A
benchmark for question answering about charts with visual and logical reasoning, 2022. URL
https://arxiv.org/abs/2203.10244.

[24] Marianna Nezhurina, Lucia Cipolina-Kun, Mehdi Cherti, and Jenia Jitsev. Alice in wonderland:
Simple tasks showing complete reasoning breakdown in state-of-the-art large language models.
arXiv preprint arXiv:2406.02061, 2024.

[25] Weili Nie, Zhiding Yu, Lei Mao, Ankit B Patel, Yuke Zhu, and Anima Anandkumar. Bongard-
logo: A new benchmark for human-level concept learning and reasoning. Advances in Neural
Information Processing Systems, 33:16468–16480, 2020.

[26] Nikhil Raghuraman, Adam W Harley, and Leonidas Guibas. Cross-image context matters for
bongard problems. arXiv preprint arXiv:2309.03468, 2023.

[27] Pooyan Rahmanzadehgervi, Logan Bolton, Mohammad Reza Taesiri, and Anh Totti Nguyen.
Vision language models are blind. arXiv preprint arXiv:2407.06581, 2024.

[28] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick
Schramowski, Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk,
and Jenia Jitsev. LAION-5B: an open large-scale dataset for training next generation image-text
models. In Conference on Neural Information Processing Systems (NeurIPS), 2022.

[29] Gemini Team. Gemini: A family of highly capable multimodal models, 2024. URL https:
//arxiv.org/abs/2312.11805.

[30] Ramakrishna Vedantam, Arthur Szlam, Maximilian Nickel, Ari Morcos, and Brenden M. Lake.
CURI: A benchmark for productive concept learning under uncertainty. In International
Conference on Machine Learning (ICML), volume 139 of Proceedings of Machine Learning
Research, pages 10519–10529. PMLR, 2021.

[31] Yiqi Wang, Wentao Chen, Xiaotian Han, Xudong Lin, Haiteng Zhao, Yongfei Liu, Bohan
Zhai, Jianbo Yuan, Quanzeng You, and Hongxia Yang. Exploring the reasoning abilities of
multimodal large language models (mllms): A comprehensive survey on emerging trends in
multimodal reasoning. arXiv preprint arXiv:2401.06805, 2024.
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A Experimental Details

In the following, the prompts used during the experiments are provided. The prompt for the main
experiment is shown in Listing 1. The prompt for the multiple choice setting is in Listing 2 and the
prompt for the LLM-judge is in Listing 3. The prompts for the second part of the experiment are
provided in Listings 4, 5, 6, 7.

1 You are provided with a black-and-white image consisting of 12 simple diagrams. Each
diagram represents shapes with specific features, such as geometric properties or
higher-level concepts.

2

3 - The 6 diagrams on the left side belong to Set A.
4 - The 6 diagrams on the right side belong to Set B.
5

6 ## Task:
7

8 Your task is to determine two distinct rules:
9

10 1. Set A Rule: Identify a rule that applies to all diagrams in Set A.
11 2. Set B Rule: Identify a separate rule that applies to all diagrams in Set B.
12

13 Important: The rule for Set A must not apply to any diagram in Set B, and the rule
for Set B must not apply to any diagram in Set A.

14

15 ## Step-by-Step Process:
16

17 1. Diagram Analysis: Carefully describe each diagram in detail, noting any geometric
properties, patterns, or conceptual features.

18 2. Rule Derivation: Based on your analysis, deduce the rule for Set A and the rule
for Set B, ensuring that each rule is unique to its set.

19

20 ## Final Answer Format:
21

22 Provide the final answer using the following format:
23

24 ```python
25

26 answer = {
27 'set A rule': '[LEFT RULE]',
28 'set B rule': '[RIGHT RULE]'
29 }
30 ```
31

32 Ensure that the rules are clearly defined, concise, and do not overlap between the
sets.

Listing 1: Prompt used in first experiment. The model is asked to provide rules for the left side and
the ride side images of the Bongard Problem.
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1 You are provided with a black-and-white image consisting of 12 simple diagrams. Each
diagram represents shapes with specific features, such as geometric properties or
higher-level concepts.

2

3 - The 6 diagrams on the left side belong to Set A.
4 - The 6 diagrams on the right side belong to Set B.
5

6 Additionally, you are given a list of possible rule pairs, one of which is true for
this image. Your goal is to identify the correct rule pair based on the features of
the diagrams in Set A and Set B.

7

8 ## Task:
9

10 Your task is to identify and select the correct rule pair that is true for the sets.
The rule pair is structured as follows:

11

12 1. Rule part 1: This rule should apply to all diagrams in Set A
13 2. Rule part 2: This rule should apply to all diagrams in Set B
14

15 Important: The rule for Set A must not apply to any diagram in Set B, and the rule
for Set B must not apply to any diagram in Set A.

16

17 ## Step-by-Step Process:
18

19 1. Diagram Analysis: Carefully describe each diagram in detail, noting any geometric
properties, patterns, or conceptual features.

20 2. Rule Derivation: Based on your analysis of the diagrams, select one rule from the
provided list for Set A and a different rule for Set B.

21

22 ## Available Rules
23 You can choose from the following rule pairs:
24

25 <SOLUTIONS>
26

27 ## Final Answer Format:
28

29 Provide the final answer using the following format:
30

31 ```python
32

33 answer = {
34 'answer': <Solution ID>,
35 }
36 ```
37 Where <Solution ID> is the number corresponding to the correct rule pair that fits

the criteria.

Listing 2: Prompt used in multiple choice experiment for solving BPs with solution options provided.
The model is asked to select the rules for the left side and the ride side images of the BP that fits best.
<SOLUTION> is replaced by a dictionary of the possible solutions the model can select from (either
all 100 or a subset of 10).
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1 You will be given a correct answer that states a rule for the left side and a rule
for the right side of a visual pattern or scenario. You will also be given an answer
from a model that attempts to describe these rules. Your task is to evaluate whether
the model’s answer accurately reflects the intent and essence of the correct answer.

2 # Evaluation Criteria:
3

4 1. Semantic Accuracy: Does the model’s answer convey the same underlying concept or
rule as the correct answer, even if the wording differs?

5 2. Logical Consistency: Is the model’s answer logically consistent with the correct
answer's rules?

6 3. Relevance: Does the model's answer directly address the rules provided in the
correct answer?

7

8 # Response Instructions:
9

10 - Respond with "answer": 1 if the model's answer is correct according to the
criteria above.

11 - Respond with "answer": 0 if the model's answer is incorrect.
12 - If the model's answer is only partially correct, consider whether the partial

match sufficiently conveys the intended rule. If it does, respond with "answer": 1;
otherwise, respond with "answer": 0.

13

14 # Examples:
15 ## Example 1:
16

17 - Correct Answer:
18 - Left: Round shapes
19 - Right: Angular shapes
20 - Model Answer:
21 - Left: Circles
22 - Right: Squares
23 - Expected Response:
24

25 ```python
26 {
27 "answer": 1
28 }
29 ```
30

31 ## Example 2:
32

33 - Correct Answer:
34 - Left: Large shapes
35 - Right: Small shapes
36 - Model Answer:
37 - Left: Circular shapes
38 - Right: Irregular shapes
39 - Expected Response:
40

41 ```python
42 {
43 "answer": 0
44 }
45 ```
46

47 Use the format above to judge the correctness of the model's answer based on the
given correct answer.

48

49 # Task
50 - Correct Answer:
51 - Left: LEFT_RULE_SOLUTION
52 - Right: RIGHT_RULE_SOLUTION
53 - Model Answer:
54 - Left: LEFT_RULE_ANSWER
55 - Right: RIGHT_RULE_ANSWER
56 - Response:

Listing 3: Prompt for LLM-judge used across the experiments. There are two example judgements
provided. The judge needs to decide whether the answer is correct based on the provided ground
truth (1) or incorrect (0).
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1 Your task is to determine the direction in which a spiral depicted in a 2D black and
white diagram is turning.

2 The given diagram shows a spiral-like shape. In which direction is the spiral
turning, starting from the center?

3

4 Please decide carefully whether the spiral is turning in clockwise or
counterclockwise direction. Take a deep breath and think step-by-step. Give your
answer in the following format:

5 ```
6 answer = {
7 "direction": <your answer>
8 }
9 ```

10 where <your answer> can be either "counterclockwise" or "clockwise".

Listing 4: Prompt for concepts of BP#16.

1 Your task is to determine the orientation of a pinch or neck in a 2D black and white
diagram.

2 The given diagram shows a shape that has a pinch in the middle. The pinch connects
the both ends of the shapes and can be interpreted as a bridge as well. Which
orientation does this pinch have, horizontal or vertical?

3

4 Please decide carefully. Take a deep breath and think step-by-step. Give your answer
in the following format:

5 ```
6 answer = {
7 "orientation": <your answer>
8 }
9 ```

10 where <your answer> can be either "horizontal" if the bridge is aligned horizontal
or "vertical" if the bridge is aligned vertical.

Listing 5: Prompt for concepts of BP#19.

1 Your task is to determine if the number of objects inside a big shape is bigger than
the number of objects outside of it in a 2D black and white diagram.

2 The given diagram shows a big shape that can contain smaller shapes inside it. There
can also be other small shapes outside of the big shape. Is the number of shapes
inside or outside the big shape higher?

3

4 Please decide carefully. Take a deep breath and think step-by-step. Give your answer
in the following format:

5 ```
6 answer = {
7 "more shapes": <your answer>
8 }
9 ```

10 where <your answer> can be either "inside" if the number of shapes inside the big
shape is higher or "outside" if the number of shapes outside the big shape is
higher.

Listing 6: Prompt for concepts of BP#29
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1 Your task is to determine the relative position of two objects in a 2D black and
white diagram.

2 The given diagram shows a triangle and a circle. Which of the shapes is located
above the other, i.e., has a higher y-value than the other?

3

4 Please decide carefully. Take a deep breath and think step-by-step. Give your answer
in the following format:

5 ```
6 answer = {
7 "shape": <your answer>
8 }
9 ```

10 where <your answer> can be either "triangle" if the triangle is above the circle or
"circle" if the circle is above the triangle.

Listing 7: Prompt for concepts of BP#36.

12



Table 2: Results of each VLM on the individual Bongard Problems. Each model was prompted three
times and the number of correct responses is reported (of 3).

BP# gpt-4o claude gemini llava 1.6 llava 1.5

1 2/3 3/3 3/3 0/3 0/3
2 3/3 0/3 0/3 0/3 0/3
3 3/3 3/3 3/3 0/3 0/3
4 0/3 1/3 0/3 0/3 0/3
5 2/3 3/3 3/3 2/3 0/3
6 3/3 2/3 0/3 0/3 2/3
7 1/3 1/3 0/3 0/3 0/3
8 0/3 0/3 0/3 0/3 0/3
9 0/3 0/3 0/3 0/3 0/3
10 2/3 0/3 0/3 0/3 0/3
11 0/3 0/3 0/3 0/3 0/3
12 0/3 0/3 0/3 0/3 0/3
13 1/3 0/3 0/3 0/3 0/3
14 0/3 0/3 0/3 0/3 0/3
15 3/3 0/3 0/3 0/3 0/3
16 1/3 0/3 0/3 0/3 0/3
17 0/3 1/3 0/3 0/3 0/3
18 0/3 0/3 0/3 0/3 0/3
19 0/3 0/3 0/3 0/3 2/3
20 0/3 0/3 0/3 0/3 0/3
21 0/3 0/3 0/3 0/3 0/3
22 0/3 0/3 0/3 0/3 0/3
23 3/3 3/3 1/3 0/3 0/3
24 0/3 0/3 0/3 0/3 0/3
25 3/3 1/3 0/3 0/3 0/3
26 0/3 0/3 0/3 0/3 0/3
27 1/3 0/3 0/3 0/3 0/3
28 0/3 0/3 0/3 0/3 0/3
29 0/3 1/3 0/3 0/3 0/3
30 3/3 1/3 1/3 0/3 0/3
31 0/3 0/3 0/3 0/3 0/3
32 3/3 2/3 0/3 0/3 0/3
33 2/3 0/3 0/3 0/3 0/3
34 0/3 0/3 0/3 0/3 0/3
35 0/3 0/3 0/3 0/3 0/3
36 0/3 0/3 0/3 0/3 0/3
37 0/3 0/3 0/3 0/3 0/3
38 0/3 2/3 0/3 0/3 0/3
39 0/3 0/3 0/3 0/3 0/3
40 0/3 0/3 0/3 0/3 0/3
41 0/3 0/3 0/3 0/3 0/3
42 0/3 0/3 0/3 0/3 0/3
43 0/3 0/3 0/3 0/3 0/3
44 0/3 0/3 0/3 0/3 0/3
45 0/3 0/3 0/3 0/3 0/3
46 0/3 0/3 0/3 0/3 0/3
47 3/3 3/3 0/3 0/3 0/3
48 0/3 0/3 0/3 0/3 0/3
49 0/3 0/3 0/3 0/3 0/3
50 0/3 0/3 0/3 0/3 0/3

BP# gpt-4o claude gemini llava 1.6 llava 1.5

51 0/3 0/3 0/3 0/3 0/3
52 0/3 0/3 0/3 0/3 0/3
53 0/3 0/3 0/3 0/3 0/3
54 0/3 0/3 0/3 0/3 0/3
55 0/3 0/3 0/3 0/3 0/3
56 0/3 0/3 0/3 0/3 0/3
57 1/3 0/3 0/3 0/3 0/3
58 0/3 0/3 0/3 0/3 0/3
59 3/3 1/3 0/3 0/3 0/3
60 0/3 1/3 0/3 0/3 0/3
61 0/3 0/3 0/3 0/3 0/3
62 0/3 0/3 0/3 0/3 0/3
63 0/3 0/3 0/3 0/3 0/3
64 0/3 0/3 0/3 0/3 0/3
65 0/3 0/3 0/3 0/3 0/3
66 1/3 0/3 0/3 0/3 0/3
67 0/3 0/3 0/3 0/3 0/3
68 0/3 0/3 0/3 0/3 0/3
69 0/3 0/3 0/3 0/3 0/3
70 0/3 0/3 0/3 0/3 0/3
71 0/3 0/3 0/3 0/3 0/3
72 0/3 0/3 0/3 0/3 0/3
73 0/3 0/3 0/3 0/3 0/3
74 0/3 0/3 0/3 0/3 0/3
75 0/3 0/3 0/3 0/3 0/3
76 0/3 2/3 0/3 0/3 0/3
77 0/3 0/3 0/3 0/3 0/3
78 0/3 0/3 0/3 0/3 0/3
79 0/3 0/3 0/3 0/3 0/3
80 0/3 0/3 0/3 0/3 0/3
81 0/3 0/3 0/3 0/3 0/3
82 0/3 0/3 0/3 0/3 0/3
83 0/3 0/3 0/3 0/3 0/3
84 3/3 0/3 1/3 0/3 0/3
85 0/3 0/3 0/3 0/3 0/3
86 0/3 0/3 0/3 0/3 0/3
87 0/3 0/3 0/3 0/3 0/3
88 0/3 0/3 0/3 0/3 0/3
89 0/3 0/3 0/3 0/3 0/3
90 0/3 0/3 0/3 1/3 0/3
91 0/3 0/3 0/3 0/3 0/3
92 0/3 0/3 0/3 0/3 0/3
93 0/3 0/3 0/3 0/3 0/3
94 2/3 1/3 0/3 0/3 0/3
95 3/3 3/3 0/3 0/3 0/3
96 3/3 0/3 0/3 1/3 0/3
97 3/3 3/3 0/3 2/3 0/3
98 3/3 1/3 3/3 0/3 0/3
99 0/3 0/3 0/3 0/3 0/3
100 3/3 3/3 1/3 0/3 0/3

B Additional Results

In the following the detailed results of the evaluations are presented. In Table 2, Table 3 and Table 4
the results for the single BPs for each model are reported. Please note that LLaVA-v1.6-34b could
not be considered for Table 3 since the context size of the model was too small to consider all 100
options.

Further, we report the classification results of the second part of the experiments for the concepts of
BP#16 (Table 5), BP#19 (Table 6), BP#29 (Table 7 and BP#36 (Table 8).
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Table 3: Results of each VLM on the individual Bongard Problems when provided with all possible
solutions. Each model was prompted three times and the number of correct responses is reported (of
3).

BP# gpt-4o claude gemini llava 1.5

1 3/3 3/3 3/3 0/3
2 1/3 3/3 0/3 0/3
3 3/3 3/3 3/3 0/3
4 0/3 2/3 2/3 0/3
5 3/3 3/3 3/3 0/3
6 3/3 3/3 3/3 0/3
7 3/3 3/3 0/3 0/3
8 0/3 0/3 0/3 0/3
9 3/3 3/3 3/3 0/3
10 3/3 3/3 3/3 2/3
11 0/3 1/3 0/3 0/3
12 0/3 0/3 0/3 0/3
13 0/3 2/3 3/3 0/3
14 0/3 0/3 0/3 0/3
15 0/3 0/3 0/3 0/3
16 2/3 0/3 0/3 0/3
17 0/3 0/3 0/3 0/3
18 0/3 0/3 0/3 0/3
19 0/3 0/3 0/3 0/3
20 0/3 1/3 1/3 0/3
21 0/3 0/3 0/3 0/3
22 0/3 0/3 0/3 0/3
23 3/3 3/3 0/3 0/3
24 1/3 3/3 3/3 0/3
25 2/3 0/3 1/3 0/3
26 0/3 1/3 2/3 0/3
27 1/3 2/3 0/3 0/3
28 0/3 1/3 0/3 0/3
29 1/3 2/3 3/3 0/3
30 3/3 2/3 3/3 0/3
31 0/3 2/3 0/3 0/3
32 0/3 0/3 0/3 0/3
33 0/3 1/3 0/3 0/3
34 0/3 2/3 0/3 0/3
35 0/3 1/3 0/3 0/3
36 2/3 3/3 0/3 0/3
37 1/3 0/3 0/3 0/3
38 0/3 1/3 0/3 0/3
39 2/3 2/3 3/3 0/3
40 0/3 1/3 0/3 0/3
41 0/3 0/3 0/3 0/3
42 0/3 0/3 0/3 0/3
43 0/3 1/3 0/3 0/3
44 0/3 0/3 0/3 0/3
45 0/3 1/3 0/3 0/3
46 0/3 0/3 0/3 0/3
47 3/3 2/3 0/3 0/3
48 0/3 0/3 0/3 0/3
49 0/3 0/3 0/3 0/3
50 0/3 0/3 0/3 0/3

BP# gpt-4o claude gemini llava 1.5

51 0/3 0/3 0/3 0/3
52 0/3 0/3 0/3 0/3
53 0/3 3/3 0/3 0/3
54 0/3 1/3 0/3 0/3
55 0/3 1/3 0/3 0/3
56 0/3 0/3 0/3 0/3
57 0/3 2/3 0/3 0/3
58 0/3 0/3 0/3 0/3
59 0/3 0/3 0/3 0/3
60 0/3 0/3 0/3 0/3
61 0/3 1/3 0/3 0/3
62 0/3 0/3 0/3 0/3
63 0/3 0/3 0/3 0/3
64 0/3 0/3 0/3 0/3
65 0/3 0/3 0/3 0/3
66 0/3 0/3 0/3 0/3
67 1/3 1/3 2/3 0/3
68 0/3 0/3 0/3 0/3
69 0/3 1/3 3/3 0/3
70 0/3 1/3 0/3 0/3
71 0/3 0/3 0/3 0/3
72 0/3 0/3 0/3 0/3
73 0/3 0/3 0/3 0/3
74 0/3 0/3 0/3 0/3
75 0/3 0/3 0/3 0/3
76 0/3 0/3 0/3 0/3
77 0/3 0/3 0/3 0/3
78 0/3 0/3 0/3 0/3
79 0/3 0/3 0/3 0/3
80 0/3 0/3 0/3 0/3
81 0/3 0/3 0/3 0/3
82 0/3 0/3 0/3 0/3
83 0/3 0/3 0/3 0/3
84 0/3 0/3 0/3 0/3
85 2/3 0/3 0/3 0/3
86 3/3 0/3 0/3 0/3
87 0/3 0/3 0/3 0/3
88 0/3 0/3 0/3 0/3
89 3/3 0/3 0/3 0/3
90 0/3 0/3 0/3 0/3
91 0/3 0/3 0/3 0/3
92 0/3 0/3 0/3 0/3
93 0/3 0/3 0/3 0/3
94 2/3 3/3 2/3 0/3
95 3/3 1/3 0/3 0/3
96 3/3 0/3 0/3 2/3
97 3/3 1/3 0/3 0/3
98 3/3 3/3 3/3 1/3
99 0/3 0/3 0/3 0/3
100 3/3 3/3 0/3 0/3
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Table 4: Results of each VLM on the individual Bongard Problems when provided with a selection of
10 possible solutions. Each model was prompted three times and the number of correct responses is
reported (of 3).

BP# gpt-4o claude gemini llava 1.6 llava 1.5

1 3/3 3/3 3/3 0/3 1/3
2 2/3 1/3 0/3 1/3 0/3
3 3/3 3/3 2/3 0/3 0/3
4 3/3 3/3 1/3 0/3 0/3
5 3/3 3/3 3/3 0/3 0/3
6 3/3 3/3 3/3 0/3 0/3
7 3/3 3/3 3/3 0/3 1/3
8 0/3 0/3 0/3 0/3 0/3
9 3/3 3/3 3/3 0/3 0/3
10 3/3 3/3 3/3 0/3 0/3
11 3/3 2/3 1/3 0/3 0/3
12 3/3 2/3 1/3 1/3 0/3
13 3/3 3/3 3/3 2/3 0/3
14 3/3 0/3 0/3 1/3 0/3
15 2/3 2/3 0/3 0/3 0/3
16 3/3 3/3 1/3 0/3 3/3
17 2/3 2/3 2/3 1/3 0/3
18 3/3 2/3 0/3 0/3 0/3
19 3/3 2/3 0/3 1/3 0/3
20 3/3 2/3 2/3 0/3 0/3
21 3/3 3/3 3/3 0/3 0/3
22 0/3 0/3 0/3 0/3 0/3
23 3/3 3/3 3/3 0/3 0/3
24 3/3 3/3 2/3 0/3 0/3
25 3/3 0/3 3/3 1/3 0/3
26 2/3 3/3 3/3 0/3 0/3
27 2/3 2/3 1/3 1/3 0/3
28 2/3 2/3 1/3 2/3 0/3
29 3/3 3/3 2/3 2/3 0/3
30 3/3 2/3 3/3 1/3 0/3
31 1/3 1/3 1/3 0/3 0/3
32 3/3 2/3 3/3 1/3 0/3
33 2/3 3/3 2/3 0/3 0/3
34 1/3 2/3 3/3 0/3 0/3
35 2/3 3/3 3/3 1/3 0/3
36 2/3 3/3 2/3 2/3 0/3
37 2/3 0/3 2/3 1/3 0/3
38 2/3 3/3 0/3 1/3 0/3
39 3/3 3/3 3/3 3/3 0/3
40 3/3 3/3 3/3 3/3 0/3
41 0/3 2/3 0/3 2/3 0/3
42 1/3 2/3 0/3 0/3 0/3
43 3/3 2/3 0/3 3/3 0/3
44 3/3 2/3 3/3 0/3 0/3
45 2/3 3/3 2/3 0/3 0/3
46 1/3 2/3 2/3 0/3 0/3
47 3/3 3/3 3/3 2/3 1/3
48 1/3 0/3 0/3 0/3 0/3
49 1/3 3/3 1/3 1/3 0/3
50 0/3 1/3 3/3 1/3 0/3

BP# gpt-4o claude gemini llava 1.6 llava 1.5

51 2/3 1/3 2/3 0/3 0/3
52 3/3 3/3 2/3 3/3 0/3
53 2/3 3/3 3/3 1/3 0/3
54 2/3 3/3 0/3 1/3 0/3
55 0/3 2/3 1/3 0/3 0/3
56 3/3 0/3 0/3 0/3 0/3
57 2/3 3/3 0/3 1/3 0/3
58 0/3 0/3 0/3 0/3 0/3
59 2/3 2/3 0/3 0/3 0/3
60 1/3 0/3 1/3 0/3 0/3
61 3/3 3/3 3/3 1/3 0/3
62 2/3 3/3 3/3 0/3 0/3
63 1/3 0/3 0/3 0/3 0/3
64 2/3 1/3 2/3 0/3 1/3
65 1/3 0/3 0/3 0/3 0/3
66 3/3 1/3 0/3 0/3 0/3
67 3/3 3/3 3/3 2/3 0/3
68 3/3 2/3 3/3 2/3 0/3
69 2/3 3/3 2/3 3/3 0/3
70 3/3 3/3 3/3 3/3 0/3
71 1/3 2/3 3/3 0/3 0/3
72 3/3 0/3 2/3 0/3 0/3
73 1/3 1/3 0/3 0/3 0/3
74 1/3 3/3 0/3 2/3 0/3
75 1/3 3/3 3/3 0/3 0/3
76 2/3 3/3 1/3 0/3 0/3
77 1/3 2/3 1/3 0/3 0/3
78 1/3 1/3 3/3 0/3 0/3
79 1/3 3/3 2/3 0/3 0/3
80 1/3 1/3 2/3 0/3 0/3
81 2/3 0/3 3/3 1/3 0/3
82 0/3 1/3 2/3 2/3 0/3
83 3/3 3/3 3/3 0/3 0/3
84 3/3 3/3 3/3 0/3 0/3
85 3/3 3/3 3/3 3/3 0/3
86 3/3 3/3 3/3 3/3 0/3
87 0/3 1/3 0/3 1/3 0/3
88 0/3 0/3 3/3 3/3 0/3
89 3/3 1/3 3/3 3/3 0/3
90 0/3 2/3 0/3 0/3 0/3
91 0/3 1/3 0/3 0/3 0/3
92 0/3 2/3 3/3 0/3 0/3
93 1/3 1/3 1/3 0/3 0/3
94 3/3 3/3 1/3 0/3 0/3
95 3/3 3/3 2/3 0/3 0/3
96 3/3 3/3 3/3 0/3 0/3
97 3/3 3/3 3/3 0/3 0/3
98 3/3 3/3 3/3 0/3 0/3
99 2/3 3/3 2/3 0/3 0/3
100 3/3 3/3 2/3 3/3 0/3

Table 5: BP#16. Classification results when providing the single images of BP#16 and asking for
clockwise or counterclockwise.

Clockwise Counter-Clockwise

1 2 3 4 5 6 7 8 9 10 11 12

GPT-4o 0/3 0/3 0/3 0/3 0/3 0/3 2/3 3/3 3/3 2/3 3/3 3/3
Claude 0/3 0/3 0/3 0/3 0/3 0/3 3/3 3/3 2/3 2/3 0/3 3/3
Gemini 2/3 0/3 3/3 2/3 1/3 0/3 3/3 1/3 3/3 2/3 1/3 0/3
LLaVA 1.6 2/3 2/3 2/3 1/3 1/3 2/3 1/3 2/3 2/3 3/3 1/3 2/3

15



Table 6: BP#19. Correctly classified for concepts of BP#19. Models were asked whether the present
pinch in the diagram is horizontal or vertical.

Horizontal Vertical

1 2 3 4 5 6 7 8 9 10 11 12

GPT-4o 3/3 3/3 0/3 2/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
Claude 3/3 3/3 3/3 1/3 3/3 2/3 3/3 2/3 3/3 1/3 3/3 3/3
Gemini 3/3 3/3 3/3 0/3 1/3 3/3 3/3 3/3 2/3 3/3 3/3 3/3
LLaVA 1.6 1/3 1/3 0/3 3/3 2/3 1/3 3/3 3/3 3/3 3/3 3/3 2/3

Table 7: BP#29. Correctly classified concepts of BP#29. Models were asked wether there are more
shapes inside or outside the big figure.

Inside Outside

1 2 3 4 5 6 7 8 9 10 11 12

GPT-4o 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 1/3 3/3 0/3 3/3
Claude 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
Gemini 3/3 3/3 0/3 1/3 1/3 0/3 3/3 3/3 3/3 3/3 3/3 3/3
LLaVA 1.6 3/3 3/3 3/3 3/3 3/3 3/3 1/3 1/3 0/3 0/3 0/3 0/3

Table 8: BP#36. Correctly classified concepts for BP#36. Models were asked to output whether
triangle or circle is on top.

Triangle Circle

1 2 3 4 5 6 7 8 9 10 11 12

GPT-4o 3/3 3/3 3/3 3/3 3/3 3/3 3/3 1/3 3/3 3/3 3/3 3/3
Claude 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
Gemini 3/3 3/3 2/3 3/3 3/3 2/3 3/3 3/3 3/3 3/3 3/3 3/3
LLaVA 1.6 2/3 1/3 0/3 0/3 0/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
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