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Abstract
Neural operators generalize neural networks to
learn mappings between function spaces from
data. They are commonly used to learn solution
operators of parametric partial differential equa-
tions (PDEs) or propagators of time-dependent
PDEs. However, to make them useful in high-
stakes simulation scenarios, their inherent predic-
tive error must be quantified reliably. We intro-
duce LUNO, a novel framework for approximate
Bayesian uncertainty quantification in trained neu-
ral operators. Our approach leverages model lin-
earization to push (Gaussian) weight-space un-
certainty forward to the neural operator’s pre-
dictions. We show that this can be interpreted
as a probabilistic version of the concept of cur-
rying from functional programming, yielding a
function-valued (Gaussian) random process be-
lief. Our framework provides a practical yet theo-
retically sound way to apply existing Bayesian
deep learning methods such as the linearized
Laplace approximation to neural operators. Just
as the underlying neural operator, our approach is
resolution-agnostic by design. The method adds
minimal prediction overhead, can be applied post-
hoc without retraining the network, and scales to
large models and datasets. We evaluate these as-
pects in a case study on Fourier neural operators.

1. Introduction
Scientific computing increasingly demands efficient repre-
sentations of complex non-linear maps between functions.
Examples include solution operators of parametric partial
differential equations (PDEs) or the propagators of time-
dependent PDEs. Operator learning is an approach to this
problem that generalizes regression algorithms from finite-
dimensional to infinite-dimensional function-space input-
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output pairs (Boullé & Townsend, 2023). Neural operators,
including Fourier neural operators, have emerged as a pow-
erful class of models for operator learning, particularly for
the solution operators of PDEs (Kovachki et al., 2023). They
have been applied successfully across domains including
weather forecasting (Pathak et al., 2022; Bonev et al., 2023),
fluid dynamics (Grady et al., 2022; Renn et al., 2023; Li
et al., 2022), and automotive aerodynamics (Li et al., 2023b).
Instead of learning to solve a specific PDE, these models
learn the operator that maps a functional parameter of the
PDE (such as initial values, boundary conditions, force
fields, or material parameters) to the corresponding solution.
This approach amortizes computational cost by learning to
solve entire families of PDEs.

Although neural operators have demonstrated strong pre-
dictive capabilities, they are unable to quantify the inherent
uncertainty in their predictions. Predictive uncertainty quan-
tification is indispensable for many downstream tasks, such
as decision-making in safety-critical scenarios. For exam-
ple, a neural operator trained on past climate data should
increase predictive uncertainty under distribution shifts due
to climate change, reflecting potential losses in accuracy.
Furthermore, uncertainty quantification is also useful for
improving neural operator training via active learning strate-
gies (Musekamp et al., 2025), potentially reducing the cost
of generating computationally expensive numerical simula-
tions as training data.

Extensive previous work has shown that the structured uncer-
tainty provided by Gaussian process (GP) models is particu-
larly suitable for such downstream tasks, including closed-
form acquisition functions for active learning and Bayesian
optimization for optimal selection of future queries or exper-
iments (Garnett, 2023); enabling online model adaptation to
continuously update with new data while preserving consis-
tency with prior knowledge (Sliwa et al., 2024); facilitating
sensitivity analysis through the GP’s kernel structure reveal-
ing system responses to parameter changes; and seamlessly
integrating with probabilistic numerical computation (Hen-
nig et al., 2022; Pförtner et al., 2022) to quantify, marginal-
ize, and propagate computational uncertainty.

Motivated by the capabilities of GPs, we propose LUNO, a
practical yet theoretically sound framework that provides lin-
earized predictive uncertainty in neural operators. LUNO
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Figure 1: Illustration of the steps involved in LUNO. A trained neural operator F (top left) is converted into an equivalent
neural network f with outputs in Rd′U using (reverse) currying (top right). Linearizing f around the mean of the Gaussian
weight belief results in a Gaussian process posterior f quantifying the uncertainty about the function learned by f (bottom
right). Finally, probabilistic currying transforms f into a function-valued Gaussian process posterior F over the operator
learned by the neural operator F (bottom left).

quantifies uncertainty over the mapping learned by the neu-
ral operator via a Gaussian process with values in a separable
Banach space of functions—a higher-order generalization
of GPs that, when evaluated, returns a Gaussian random
function rather than a finite-dimensional Gaussian random
variable, as in standard GPs. This function-valued GP is
constructed through model linearization from a Gaussian
distribution quantifying uncertainty in the neural operator’s
(finite-dimensional) weight space. We show that LUNO
can be interpreted as a probabilistic generalization of the
concept of currying in functional programming. This con-
nection makes LUNO compatible with established methods
for quantifying weight-space uncertainty in deep neural net-
works, including the Laplace approximation (Ritter et al.,
2018; Daxberger et al., 2021a; Kristiadi et al., 2020; Papa-
markou et al., 2024), SWAG (Maddox et al., 2019), or mean-
field variational inference (Blundell et al., 2015). LUNO
is practical, introduces minimal computational overhead,
and can be applied post-hoc, without requiring to retrain
the neural operator. It scales to large models and datasets
and, like neural operators, is inherently resolution-agnostic.
We demonstrate the capabilities of the framework in a case

study on Fourier neural operators.

LUNO is designed to be compatible with arbitrary (non-
Gaussian) weight-space beliefs (see e.g. Appendix A.4).
Nevertheless, we focus our exposition and experiments on
Gaussian weight-space uncertainty, as, in the future, we aim
to explore the use of the resulting function-valued Gaus-
sian process in downstream tasks such as the ones outlined
above.

In Section 2, we review the fundamentals of neural operators
and (multi-output) Gaussian processes. Section 3 presents
our main contribution. We first develop Gaussian processes
that take values in (infinite-dimensional) Banach spaces of
functions, along with the notion of probabilistic currying,
which formalizes their equivalence to (multi-output) Gaus-
sian processes. Using probabilistic currying, we construct
function-valued Gaussian processes from neural operators
with Gaussian weight beliefs. In Section 4, we discuss prior
work on operator learning and related uncertainty quantifica-
tion. Finally, we demonstrate in Section 5 the effectiveness
of LUNO in common PDE learning settings.
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2. Background
We first review neural operators, with emphasis on Fourier
neural operators, which serve as the primary case study for
our analysis. Then, we provide an overview of multi-output
Gaussian processes.

2.1. Neural Operators

Neural operators (NOs) (Kovachki et al., 2023) are
neural network architectures that map between (infinite-
dimensional) Banach spaces of functions. A neural operator
is a function F : A×W → U, where

• A is a (separable) Banach space of functions a : DA →
Rd′A with domain DA ⊂ RdA ,

• U is a (separable) Banach space of functions u : DU →
Rd′U with domain DU ⊂ RdU ,

• W is a set of parameters (typically W ⊂ Rp or W ⊂
Cp).

To keep training tractable, neural operators are trained on
datasets {(a(i)(X

(i)
A ),u(i)(X

(i)
U ))}ni=1 consisting of pairs

of input and corresponding output functions (a(i),u(i)) ∈
A × U that are discretized at finitely many points X(i)

A ∈
(DA)

n
(i)
A and X

(i)
U ∈ (DU)

n
(i)
U , respectively. The training

objective is typically given by the empirical risk

R(w) =
1

n

n∑

i=1

L(u(i)(X
(i)
U ),F (a(i)(X

(i)
A ),w)(X

(i)
U ))

or a regularized version of the empirical risk. Neural opera-
tors were originally developed, and are commonly used, to
learn the solution operator of non-linear, parametric partial
differential equations. In this case, typically, DA = DU, the
input functions a ∈ A correspond to parameters and/or ini-
tial conditions of the PDE, and the output functions u ∈ U
are the corresponding solutions of the PDE (at later time
points). There are many different realizations of the abstract
neural operator framework, including low-rank neural op-
erators (Kovachki et al., 2023), (multipole) graph neural
operators (Li et al., 2020b;a), and (spherical) Fourier neural
operators (Li et al., 2021; Bonev et al., 2023).

Example 2.1 (Fourier Neural Operators). As a case study
we will focus on Fourier neural operators (FNOs) (Li
et al., 2021), a popular variant of the neural operator ar-
chitecture that applies all spatially global operations in the
spectral domain. An FNO F transforms a periodic input
function a into a periodic output function F (a,w)(x) :=

q(v(L)(x),wq) with

v
(l+1)
i (x) := σ(l)

( d′v∑

j=1

F−1

((
R

(l)
kijF

(
v
(l)
j

)
k

)kmax

k=1

)
(x)

+W
(l)
ij v

(l)
j (x)

)

for l = 1, . . . , L − 1 and v(1)(x) = p(a(x),wp) ∈ Rd′v ,
where F denotes the Fourier transform of a periodic func-
tion.1 p : Rd′A × Wp → Rd′v and q : Rd′v × Wq → Rd′U
are parametric functions called lifting and projection, re-
spectively. R(l) ∈ Ckmax×d′v×d

′
v and W (l) ∈ Rd′v×d′v , and

w = (wp,W
(1),R(1), . . . ,W (L−1),R(L−1),wq). The

map v(l) → v(l+1) is the l-th Fourier layer. If the inputs a
are discretized on a regular grid, F can be computed by a
real fast Fourier transform (RFFT).

2.2. (Gaussian) Random Processes

Aiming to generalize the notion of a Gaussian process later,
we provide its formal definition from mathematical statis-
tics that is rarely used in machine learning. For a set Ω
and a set F of functions on Ω with values in a measur-
able space, we denote by σ(F ) the smallest σ-algebra for
which all f ∈ F are measurable. The Borel σ-algebra
on a topological space Ω is denoted by B (Ω). A random
process on a probability space (Ω,A,P) with index set A
and values in a measurable space (S,AS) is a function
f : A × Ω → S such that f(a, · ) is A-AS-measurable for
all a ∈ A. We use the shorthand f(a) := f(a, ·). One can
show that ω 7→ f(·, ω) is a function-valued random vari-
able with values in (RA, σ(δA)), where δA denotes the set
of point evaluation functionals on the set BA of functions
from A to B. A random process is called Gaussian or a
Gaussian process (GP) if it has values in (R,B (R)) and
ω 7→ (f(a1, ω), . . . , f(an, ω)) is an Rn-valued Gaussian ran-
dom variable for all n ∈ N and a1, . . . , an ∈ A. The mean
function of f is given by a 7→ EP [f(a)] and the covariance
function of f is given by (a1, a2) 7→ CovP [f(a1), f(a2)].
We denote by f ∼ GP (m, k) that f is a Gaussian process
with mean function m and covariance function k.

It is common to extend the concept of a GP to finitely many
output dimensions. A d′-output Gaussian process f is a
random process with values in (Rd,B

(
Rd
)
) such that ω 7→(

f(a1, ω)
⊤ · · · f(an, ω)

⊤)⊤ is an Rn·d′-valued Gaus-
sian random variable for all n ∈ N, and a1, . . . , an ∈ A.
We use the shorthand f(a) := f(a, ·). The mean function of
f is given by a 7→ EP [f(a)] ∈ Rd′ and the covariance func-
tion of f is (a1, a2) 7→ CovP [f(a1), f(a2)] ∈ Rd′×d′ . We

1More precisely, the operator F : L2(Td,R) → ℓ2(C) maps a
real-valued square-integrable function on the d-dimensional torus
to the coefficients of the corresponding Fourier series.
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denote by f ∼ GP (m,K) that f is a multi-output Gaussian
process with mean function m and covariance function K.
While the notion of a multi-output Gaussian process might
seem more general than the notion of a Gaussian process, it
is possible to “emulate” a function with multiple outputs by
augmenting the input space of a Gaussian process:

Lemma 2.1. Let (Ω,A,P) be a probability space, f : A×
Ω → Rd′ , I = {1, . . . , d′}, and f : (A× I)× Ω → R with
(f(a, ·))i = f((a, i), ·) for all a ∈ A and i ∈ I (P-almost
surely). Then f ∼ GP (m,K) if and only if f ∼ GP (m, k),
where, for all a ∈ A and i ∈ I,

(m(a))i = m(a, i),

as well as, for all a1, a2 ∈ A and i, j ∈ I,

(K(a1, a2))ij = k((a1, i), (a2, j)).

3. LUNO: Linearized Predictive Uncertainty
in Neural Operators

In this section, we show how to obtain linearized predic-
tive uncertainty in neural operators (LUNO). We lever-
age model linearization to propagate Gaussian weight-
space uncertainty through the neural operator to its pre-
dictions. LUNO can be applied to trained models as a
post-processing step, and does not require expensive re-
training. Furthermore, LUNO employs the framework of
function-valued Gaussian processes. To that end, we first
develop the concept of a function-valued Gaussian process
and draw an important parallel with currying in functional
programming, which offers a natural interpretation of our
method. Figure 1 illustrates the main steps comprising our
methodology.

3.1. Function-Valued Gaussian Processes and
Probabilistic Currying

We want to use model linearization to extend the Gaussian
belief over the parameters of a neural network f : Rd ×
Rp → Rd′ into a (multi-output) Gaussian process belief
over the function learned by the neural network. However,
this is not immediately applicable to neural operators, since
their outputs do not lie in Rd′ , but in a potentially infinite-
dimensional Banach space of functions. Hence, we need to
generalize (multi-output) Gaussian processes to the notion
of a Banach-valued Gaussian process.

Definition 3.1 (Banach-Valued Gaussian Process). Let U
be a real separable Banach space and L a set2 of linear
functionals on U. A random process F : A × Ω → U on
a probability space (Ω,A,P) with index set A and values
in (U, σ(L)) is called Gaussian or a Gaussian process if

2Technically, L needs to separate the points in U. See Ap-
pendix A.1 for additional details.

ω 7→ (F(a1, ω), . . . ,F(an, ω)) is a jointly Gaussian ran-
dom variable3 for all n ∈ N and a1, . . . , an ∈ A.

As above, we use the shorthand F(a) := F(a, ·). Moreover,
the map ω 7→ F(·, ω) is a random variable with values in the
space of (linear and non-linear) operators (UA, σ(δA)). This
warrants the interpretation of U-valued Gaussian processes
as Gaussian random operators.

In the context of neural operators, U is a Banach space of
Rd′U-valued functions on a common domain DU. In this
case, we can show that U-valued Gaussian processes are
closely related to multi-output Gaussian processes with an
augmented input space. This is in analogy to Lemma 2.1,
but requires some additional technical assumptions.

Theorem 3.2 (Probabilistic Currying in Banach Spaces;
proof in Appendix A.3). Let (Ω,A,P) be a probability
space and U a real separable Banach space of Rd′-valued
functions with domain DU. Let F : A×Ω → U and f : (A×
DU) × Ω → Rd′ such that F(a, ·)(x) = f((a,x), ·) for
all a ∈ A and x ∈ DU (P-almost surely). Then (i) F is
a random process with values in (U, σ(δU)) if and only if
f is a Rd′-valued random process, (ii) F is Gaussian if
and only if f is Gaussian, and (iii) if all evaluation maps
δx : U → Rd′ ,u 7→ u(x) are continuous, then (i) holds for
F with values in (U,B (U)).

Theorem 3.2 reveals an insight into the abstract concept of
function-valued Gaussian processes: Function-valued Gaus-
sian processes are equivalent to (multi-output) Gaussian
processes with augmented input spaces. This equivalence
enables the translation of real-valued GPs, a computationally
feasible structure, into infinite-dimensional function-valued
objects.

Probabilistic Currying We note that Theorem 3.2 con-
stitutes a probabilistic analogue of the concept of cur-
rying from functional programming (and category the-
ory more generally). The Theorem shows the equiva-
lence of the vector-valued (Gaussian) random function
f : A × DU → Rd′ and the (Gaussian) random operator
F : A → (DU → Rd′) with F(a)(x)

a.s.
= f(a,x).

Example 3.1 (Currying a Continuous Bivariate Gaussian
Process). Let f ∼ GP (m, k) be a bivariate 2-output Gaus-
sian process with compact index set X1 × X2 ⊂ R2 on
(Ω,A,P) with (P-almost surely) continuous paths. For in-
stance, this assumption is fulfilled if m is continuous and
k is a multivariate Matérn covariance function (Da Costa
et al., 2023). Then a 7→ f(a, ·) is a function-valued Gaussian
process. More precisely, Theorem 3.2 shows that the map
F: X1 × Ω → C(X2), (a, ω) 7→ (x 7→ f((a, x), ω)) is a
C(X2)-valued Gaussian process with index set X1.

3See Definition A.4 and Remark A.5.
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Thus, an intuitive way to understand function-valued Gaus-
sian processes is as objects that, when evaluated, return
a Gaussian process. Currying can also be used to relate
the mean and covariance functions of function-valued or
more general vector-valued (Gaussian) random processes,
and their counterparts defined on the corresponding multi-
output (Gaussian) random process. As this discussion is
rather technical, we defer it to Appendix A.3.

Appendix A provides an in-depth explanation of our theoret-
ical framework and contains a plethora of theoretical results
on Gaussian processes with values in arbitrary (infinite-
dimensional) vector spaces that are not necessarily Banach
or function spaces. For example, such results are vital for
quantifying uncertainty in neural operators applied to PDEs
that only admit weak solutions (see Appendix A.4).

3.2. Linearization Turns Neural Operators into
Function-Valued Gaussian Processes

We use the notion of function-valued Gaussian processes
to develop LUNO. We delineate the key components into
different steps, visually represented in Figure 1.

Step 0 Let F : A × W → U ⊂ (Rd′U)DU be a neural
operator as in Section 2.1 with W = Rp.

Step 1 By uncurrying F , we define the function

f : (A× DU)×W → Rd
′
U , ((a,x),w) 7→ F (a,w)(x).

Step 2 We obtain a Gaussian belief w ∼ N (µ,Σ) over
the parameters of the network. In Bayesian deep learning,
a common way to obtain this Gaussian belief is by plac-
ing a Gaussian prior p(w) on the network’s parameters and
then approximating the posterior distribution given the data
p(w | D). Well-established (approximate) inference tech-
niques to obtain the posterior over w include the Laplace
approximation (Ritter et al., 2018; Daxberger et al., 2021a;
Immer et al., 2021), variational inference (Graves, 2011;
Blundell et al., 2015; Khan et al., 2018), and SWAG (Mad-
dox et al., 2019). Since f has values in Rd′U , following Khan
et al. (2019); Immer et al. (2021) and Appendix B, we can
linearize the model around µ:

f((a,x),w) ≈ f lin
µ ((a,x),w)

:= f((a,x),µ) + Dwf((a,x),w)|µ (w − µ)

to arrive at an induced approximate d′U-output Gaussian
process belief f := f lin

µ (·,w) ∼ GP (m,K) with index set
A× DU, m(a,x) = f((a,x),µ), and

K((a1,x1), (a2,x2))

= Dwf((a1,x1),w)|µ Σ Dwf((a2,x2),w)|⊤µ .

The function f lin
µ is linear in the weights, but it re-

mains highly nonlinear in the input. Moreover, we have
f lin
µ (·,µ) = f(·,µ), which means that the mean function

of f matches the prediction of the trained neural operator
(before linearization) if we set µ to the weights w⋆ found
during training.

Step 3 Probabilistic currying constructs a Gaussian ran-
dom operator from f . Namely, we define the function

F : A× Ω → U, (a, ω) 7→ (x 7→ f((a,x), ω)).

(For this F to be well-defined, we need to assume that
f((a, · ), ω) is ∈ U for all a ∈ A. See also Appendix A.4).
Theorem 3.2 then shows that F is a U-valued Gaussian
process. Moreover, E [F(a)(x)] = F (a,µ)(x), and

Cov [F(a1)(x1),F(a2)(x2)]

= DwF (a1,w)(x1)|µ Σ DwF (a2,w)(x2)|⊤µ .

The entire construction, in particular Theorem 3.2, still ap-
plies if w is not Gaussian. In this case, f and F are no
longer Gaussian, but the formulae for the mean and covari-
ance functions remain valid. We derive a generalization
of the method for general separable Banach spaces U in
Appendix A.4. For instance, this is useful if the functions
in U are not pointwise defined, such as weak solutions of
PDEs.

3.2.1. CASE STUDY: FOURIER NEURAL GAUSSIAN
RANDOM OPERATORS

The exposition so far applies generally to neural operators.
For Fourier neural operators, a particularly efficient repre-
sentation of the function-valued posterior process is avail-
able. To simplify the exposition, we focus on the case where
the Gaussian belief is restricted to the parameters of the
final Fourier block wL−1 := (R(L−1),W (L−1)). This is
a common approach in the context of last-layer Laplace
approximation (Kristiadi et al., 2020). In Appendix C.1,
we show that the function-valued GP obtained by applying
LUNO in this case takes the form

F(a)(x) = q̃(mz(L−1)(x)) +
(
Dq̃ (mz(L−1)(x))

· (z(L−1)(x)−mz(L−1)(x))
)
,

i.e., F(a) ∼ GP (ma,Ka) with

ma(x) = F (a,w⋆)(x), and
Ka(x1,x2) = Dq̃ (mz(L−1)(x1))Kz(L−1)(x1,x2)

·Dq̃ (mz(L−1)(x2))
⊤
,

where z(L−1) ∼ GP (mz(L−1) ,Kz(L−1)) is a multi-output
parametric Gaussian process whose moments only depend
on v(L−1), µ, and Σ, and q̃ = q( · ,wq) ◦ σ(L−1).
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There are two practical benefits arising from this representa-
tion. First, computing the moments of, and drawing samples
from F(a) only needs access to the hidden state v(L−1)

of the neural operator. We can thus evaluate the Gaussian
process belief at arbitrary output points x ∈ DU, without
the need to compute more than one (full) forward pass of
the neural operator. Secondly, since the Gaussian process
belief F(a) over the output function is parametric, we can
efficiently sample entire functions from it that can then be
lazily evaluated at arbitrary points. This is in contrast to gen-
eral non-parametric Gaussian processes, where one typically
discretizes the GP before drawing samples of the function
values at the given finite set of points. Such lazy functional
samples can be used e.g. for active experimental design and
Bayesian optimization (Wilson et al., 2021).

4. Related Work
Azizzadenesheli et al. (2024) provide a comprehensive
overview of neural operator architectures. These include
graph neural operators (Li et al., 2020a), physics-informed
neural operators (Li et al., 2024), multi-wavelet neural oper-
ators (Gupta et al., 2021) and the widely used Fourier neural
operators (Li et al., 2021). FNOs have gained particular
prominence, finding applications across various PDE prob-
lems (Pathak et al., 2022; Zhang et al., 2023; Li et al., 2023a;
Rashid et al., 2022; Qin et al., 2024; Kossaifi et al., 2023;
Bonev et al., 2023). Theoretical foundations for FNOs have
been established, with Kovachki et al. (2021) proving their
universal approximation capabilities for continuous oper-
ators, and Lanthaler et al. (2024) analyzing discretization-
induced aliasing errors.

While neural operator architectures have advanced, incorpo-
rating uncertainty estimation remains challenging. Recent
work has approached this problem from different angles.
Garg & Chakraborty (2023) applied variational inference to
estimate Bayesian posteriors in DeepONets. More closely
related to our work, Magnani et al. (2022) developed uncer-
tainty estimates for graph neural operators using Laplace
approximation, though their approach does not extend to
FNOs, nor does it consider function space formulations.
Kumar et al. (2024) combined Gaussian Process priors
with Wavelet Neural Operators, optimizing hyperparameters
through negative log-marginal likelihood minimization. Ad-
ditional Bayesian operator frameworks have been explored
by Garg & Chakraborty (2022); Batlle et al. (2024); Zou
et al. (2024); Mora et al. (2025).

Function-valued Gaussian processes have been studied in
the Hilbert space setting by Owhadi (2023); Batlle et al.
(2024). Our approach formulates the theory natively within
the context of Banach spaces, as neural operators are defined
as mappings between such spaces. In the Appendix we
prove that, when restricted to the Hilbert space setting, the

theoretical framework Owhadi (2023); Batlle et al. (2024)
embeds into ours.

To generate a probabilistic belief over a neural network’s
weights, various Bayesian posterior approximation tech-
niques are available. One of the most popular is the Laplace
approximation, introduced to deep learning by Mackay
(1992), which has gained popularity in the Bayesian deep
learning community (Ritter et al., 2018; Daxberger et al.,
2021a; Kristiadi et al., 2020; Papamarkou et al., 2024). This
is also due to its scalability, achieved through various strate-
gies including using log-posterior Hessian approximations
(Ritter et al., 2018; Martens, 2020), treating only a subset of
the model probabilistically (Daxberger et al., 2021b), em-
ploying linearized Laplace (Foong et al., 2019; Immer et al.,
2021), or using scalable Gaussian processes methods (Deng
et al., 2022; Ortega et al., 2024). Other Bayesian deep learn-
ing methods include variational inference (Graves, 2011;
Blundell et al., 2015; Khan et al., 2018; Zhang et al., 2018),
Markov Chain Monte Carlo (Neal, 1996; Welling & Teh,
2011; Zhang et al., 2020), SWAG (Maddox et al., 2019), or
heuristic methods (Gal & Ghahramani, 2016; Maddox et al.,
2019). Finally, a widely used approach for uncertainty quan-
tification in deep learning is ensembles (Lakshminarayanan
et al., 2017; Hansen & Salamon, 1990), that train multiple
independent neural networks with different random initial-
izations and aggregate the predictions.

5. Experiments
We evaluate linearized predictive uncertainty (LUNO-∗)
against sample-based approaches (Sample-∗), which require
additional approximations to impose a Gaussian Process
structure over the output space. To be precise, in the Sample-
∗ methods, we draw samples from the weight-space belief,
map the samples through the (nonlinear) map w 7→ F (·,w),
and compute a function-valued Gaussian process belief over
the prediction by moment matching the empirical mean
and covariance function. We consider isotropic Gaussian
(∗-Iso) and low-rank Laplace approximated (∗-LA) weight-
space uncertainties, in both their sample-based (Sample) and
linearized (LUNO) forms. We compare these weight-space-
Gaussian methods against input perturbations (Pathak et al.,
2022), and deep ensembles. Deep ensembles were trained
10 times with different random seeds on the original Fourier
neural operator (FNO) architecture. We evaluate our model
on time-dependent PDEs in one and two spatial dimensions,
predicting the next time step autoregressively from the pre-
vious ten. We assess uncertainty quantification in two key
settings: (1) a low-data regime, where the model is trained
on a limited number of trajectories, and (2) out-of-distribu-
tion (OOD) scenarios, where physical phenomena unseen
during training are introduced at test time.

We evaluate the predictive uncertainty using standard met-
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Figure 2: FNO predictive uncertainty quantified by several different methods. Top row: target function ( ), mean ( ) and
1.96 standard deviations ( ) of, as well as samples ( ) from, the predictive belief. For the ensemble, the samples are four of
the ensemble members. Bottom row: spread of the predictive distribution around the mean. For the sample-/ensemble-based
methods, we construct a Gaussian distribution from the empirical covariance matrix and draw four samples ( ). We plot
1.96 standard deviations ( ) of the predictive belief, as well as the top-three eigenfunctions ( ) and a heatmap of the
predictive covariance matrix (top right corner of panels).

rics: the expected root mean squared error (RMSE) of the
mean predictions, the expected marginal χ2 statistics, and
the expected marginal negative log-likelihood (NLL) over
250 test input-output pairs. Hyperparameters are optimized
via grid search using the expected marginal NLL on a valida-
tion set as the target. Full details, including data generation,
training procedures, uncertainty estimation methods, and
more detailed results are provided in the Appendix.

Code. We provide an efficient implementation of the
LUNO framework in JAX (Bradbury et al., 2018) at

� / MethodsOfMachineLearning / luno.

The code for our experiments can be found at

� / 2bys / luno-experiments.

Low data regime. We train an FNO for 100 epochs on
25 simulated solutions of Burgers’ equation with 59-time
steps and evaluate their uncertainty on 250 unseen test pairs.
Figure 2 visualizes the predictive uncertainty for input per-
turbations, deep ensemble, Sample-LA, and LUNO-LA
on a single test data point of Burgers’ equation. Table 1
shows that LUNO-LA outperforms the other approaches.
This trend holds across two other one-dimensional time-
dependent PDE datasets, which are included in the Ap-
pendix (Table 4 and Table 5). While all methods produce
marginal confidence bands around the network prediction,
their sample path covariances differ qualitatively.

Out-of-Distribution. To assess OOD robustness, we train
an FNO (or an ensemble of 10 FNOs) on a two-dimensional
Advection-Diffusion equation with initial conditions sam-
pled from Gaussian blobs and a random constant velocity

Method RMSE (↓) χ2 NLL (↓)

Input Perturbations 3.63× 10−2 0.894 −1.8720
Ensemble 3.49 × 10−2 5.597 −0.8145
Sample-Iso 3.72× 10−2 0.977 −1.9341
LUNO-Iso 3.62× 10−2 0.864 −1.9488
Sample-LA 5.59× 10−2 2.774 −1.1572
LUNO-LA 3.62× 10−2 1.022 −2.0787

Table 1: Comparison of UQ methods for an FNO trained on
25 trajectories of Burgers’ equation.

Method Base Flip Pos-Neg-Flip

Input Perturbations −2.586 2.573 494.935
Ensemble −5.313 −3.825 −1.014
Sample-Iso −2.921 4.071 43.362
LUNO-Iso −2.892 3.450 37.733
Sample-LA −2.576 4.395 27.046
LUNO-LA −2.934 −1.126 1.164

Table 2: Expected marginal NLL evaluation across OOD
datasets for different methods. Lower is better.

field. We introduce various additional physical phenomena
to the test set. These include reversing the velocity field at
the center (Flip), introducing a triangular heat source (Pos),
and a cloud-shaped heat sink (Neg). Table 2 reports ex-
pected marginal NLL over a variation of out-of-distribution
datasets. Additional and more granular results can be found
in the Appendix. While LUNO-LA outperforms the other
weight space methods and input perturbations, deep ensem-
bles achieve the lowest expected marginal NLL in next-step
prediction. However, their uncertainty representation is fun-
damentally different. Figure 3 compares deep ensemble
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Figure 3: Comparing an ensemble (left), LUNO-LA (right). Top row shows target, residuals, and the predictive standard
deviation. Bottom row shows the absolute ratio of the pointwise residual and the predictive standard deviation as well as a
sample from the predictive belief. Since the uncertainty structure of the ensemble prediction is of low rank, we also include
its unexplained error by projecting the residual vector onto the null space of the predictive covariance.

with LUNO-LA. Deep ensembles approximate uncertainty
using a small set of discrete hypotheses, represented by a col-
lection of point masses in parameter space. While this repre-
sentation is not confined to the analytic form of a Gaussian
distribution, it has other constraints: For example, although
marginal uncertainty estimates (panel 3 in the figure) can be
relatively well-structured, the associated empirical covari-
ance across the ensemble is fundamentally rank-deficient.
This limitation is critical, as it leaves certain types of errors
entirely unaccounted for (panel 8, which projects residuals
onto the null space of the ensemble covariance). By contrast,
LUNO-LA constructs a covariance matrix whose rank is
(in theory) only bounded by the number of parameters con-
sidered.4 As a result, a plot like panel 8 in Figure 3 does not
make sense for LUNO-LA, since, in principle, it explains
any variation in the data (albeit with varying calibration).
This behavior is also evident in full-trajectory evaluations.
Although FNOs are trained for next-step prediction, they are
often used for auto-regressive roll-outs, where predictions
are recursively fed back as inputs. Such roll-outs cause a
subtle yet significant distribution shift, as prediction errors
accumulate and are treated as ground truth for subsequent
steps. While the deep ensemble improves upon the network
prediction in terms of RMSE, its uncertainty estimate does
not adapt to the increasing error, as reflected in the NLL (cf.
Figure 4).

Wall-clock times for single-trajectory predictions across all

4Numerical instabilities and (near) singular Jacobians might
reduce the rank in practice.

methods are reported in the Appendix. Due to the efficiency
of Jacobian-vector products and analytical tractability of
the inverse real fast Fourier transform, LUNO-∗ methods
outperform their Samples-∗ counterparts, with LUNO-Iso
being even faster than the deep ensemble in our implemen-
tation. Each method comes with its own additional cost.
While deep ensembles need fully separate training runs with
different random seeds, LUNO-LA’s main computational
bottleneck is computing the low-rank approximation of the
generalized Gauss–Newton matrix (GGN). This cost is dom-
inated by network size, the selected rank, and the amount of
data used for the GGN approximation.

6. Conclusion
We introduced LUNO, a framework for predictive uncer-
tainty quantification in neural operators using function-
valued Gaussian processes. LUNO can be interpreted as
a probabilistic generalization of currying in functional pro-
gramming. By leveraging model linearization, it offers
a computationally efficient and theoretically grounded ap-
proach to incorporating weight-space uncertainties in neural
operators. The framework endows neural operators with
structured weight-space uncertainty quantification capabili-
ties while preserving their resolution-agnostic nature. We
demonstrate this for LUNO-LA in the FNO setting under
low-data regimes and out-of-distribution scenarios.

LUNO’s main limitation lies in the challenges associated
with modeling weight-space covariances. Nevertheless, by
successfully constructing a structured Gaussian process over
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Figure 4: Averaged performance of different UQ methods on
an autoregressive rollout of the FNO on 50 trajectories from
the Pos-Neg-Flip dataset. We compare input perturbations
( ), deep ensembles ( ), Sample-Iso ( ), LUNO-Iso
( ), Sample-LA ( ), LUNO-LA ( ).

the output space, LUNO paves the way for future applica-
tions of GP-valued neural operators in scientific and engi-
neering domains.

Impact Statement
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of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Supplementary Materials

A. Theoretical Results
A.1. Dual Spaces

We aim to quantify epistemic uncertainty about learned (nonlinear) operators F : A → U, where U is a (typically infinite-
dimensional) real vector space of functions. If U is a space of real-valued functions, at the very least, we want to be able to
express a probabilistic belief over all point evaluations F (a)(x) =: δx(F (a)). Note that point evaluation δx : U → R of
functions in U is a linear map, since δx(α1u1+α2u2) = (α1u1+α2u2)(x) = α1u1(x)+α2u2(x) = α1δx(u1)+α2δx(u2).
Many interesting operations that map functions into real numbers like (point-evaluated) derivatives and integrals are linear.

Now let U be an arbitrary real vector space. Real-valued linear maps on U are referred to as linear functionals. The set of all
linear functionals on U is referred to as the algebraic dual (space) of U and denoted by U#. A subset L of U# is said to
be total or to separate the points in U if for any u1, u2 ∈ U with u1 ̸= u2, there is ℓ ∈ L such that ℓ(u1) ̸= ℓ(u2). Such
subsets are useful, since they allow us to identify elements from the primal space U uniquely. For instance, the set of all
point evaluation functionals on a vector space of real-valued functions separates the points in the space. If U is a topological
vector space (for instance a separable Banach space in the context of neural operators), then the subspace of continuous
linear functionals is denoted by U′ ⊂ U#.
Remark A.1 (The Bidual Embedding). The algebraic dual space U# with pointwise addition and scalar multiplication is
a real vector space itself. Hence, any subspace L ⊂ U#, has an algebraic dual space L#. The elements ϕ ∈ L# of this
space are linear functions mapping linear functionals into real numbers, i.e., ϕ(ℓ) ∈ R for ℓ ∈ L ⊂ U#. L is a vector
space of real-valued functions, so we can consider its point evaluation functionals δu : L → R, ℓ 7→ ℓ(u). Note that the
map ιU,L# : U → L#, u 7→ δu is linear and, if L separates the points in U, injective. Hence, U is isomorphic to its image
δU := ιU,L#(U) under ιU,L# . We refer to the map ιU,L# as the bidual embedding. Abusing notation, we write U ⊂ L#,
u ∈ L# for u ∈ U, etc.

A.2. Probability Measures on Vector Spaces

Our framework models the predictive uncertainty over an output of a neural operator as a random variable with values in an
(infinite-dimensional) vector space U of functions. As noted before, we at least want to quantify the uncertainty about a
given set L ⊂ U# of linear functionals. Hence, we need to make the linear functionals in L measurable.

Let (Ω,A,P) be a probability space, U a real vector space and L ⊂ U# a vector subspace of linear functionals separating
the points in U. We equip U with the smallest σ-algebra σ(L) that makes all the functionals in L measurable. A random
variable u with values in (U, σ(L)) (U-valued for short) is an A-σ(L)-measurable function u: Ω → U.

Similar to their finite-dimensional counterparts, probability measures on and random variables with values in (infinite-
dimensional) vector spaces admit the definition of a mean and a (cross-)covariance operator.

Definition A.2 (Mean and Covariance Operator (see e.g., Bogachev, 1998, Definition 2.2.7)). Let γ be a probability measure
on σ(L).

(a) If L ⊂ L1(γ), then mγ ∈ L# defined by

mγ(ℓ) := Eγ [ℓ] =
∫

U
ℓ(u)γ(du) ∀ℓ ∈ L

is called the mean of γ. The mean mu of a random variable u: Ω → U with values in (U, σ(L)) is defined as the mean
mP◦u−1 of its law.
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(b) If L ⊂ L2(γ), then the linear operator Cγ : L → L# defined by

Cγ(ℓ1)(ℓ2) := Covγ [ℓ1, ℓ2] =

∫

U
(ℓ1(u)−mγ(ℓ1)) (ℓ2(u)−mγ(ℓ2))γ(du) ∀ℓ1, ℓ2 ∈ L

is called the covariance operator of γ. The covariance operator Cu of a random variable u: Ω → U with values in
(U, σ(L)) is defined as the covariance operator CP◦u−1 of its law.

Definition A.3 (Cross-Covariance Operator). Let u1,u2 : Ω → U be random variables with values in (U, σ(L)) such that
L ⊂ L2(U, σ(L),P ◦ u−1

i ) for i = 1, 2. The operator Cu1,u2
: L → L# defined by

Cu1,u2
(ℓ1)(ℓ2) := Cov [ℓ1(u1), ℓ2(u2)] =

∫

U
(ℓ1(u1(ω))−mu1

(ℓ1)) (ℓ2(u2(ω))−mu2
(ℓ2)) P(dω)

is called the cross-covariance operator between u1 and u2.

Gaussian measures on U are defined by generalizing the closure properties of Gaussian measures on Rd.
Definition A.4 (Gaussian Measure (see e.g., Bogachev, 1998, Definition 2.2.1(a))). A probability measure γ on (U, σ(L))
is called Gaussian if every linear functional ℓ ∈ L is a univariate Gaussian random variable on (U, σ(L), γ). A random
variable u: Ω → U with values in (U, σ(L)) is called Gaussian if its law P ◦ u−1 is Gaussian.

If L is not a vector space, then we say that a random variable is Gaussian with values in (U, σ(L)) if and only if it is
Gaussian with values in (U, σ(spanL)). Note that σ(spanL) = σ(L) for any subset L ⊂ U# (by Klenke, 2014, Definition
1.79 and Theorem 1.91).
Remark A.5 (Jointly Gaussian Measures). To define Gaussian processes with values in U, we need the notion of a joint
Gaussian measure on Un. Fortunately, we can also leverage Definition A.4 for this. Un is a vector space under elementwise
addition and scalar multiplication. Its algebraic dual space (Un)# is isomorphic to (U#)n, i.e. ℓ ∈ (Un)# if and only if
there are ℓ1, . . . , ℓn ∈ U# such that

ℓ(u1, . . . , un) =

n∑

i=1

ℓi(ui) ∀u1, . . . , un ∈ U.

It follows that σ(Ln) = σ(L)⊗n, where the latter denotes the product σ-algebra. Hence, following Definition A.4, we
call a probability measure γ on (Un, σ(L)⊗n) Gaussian if every ℓ ∈ Ln is a univariate Gaussian random variable on
(Un, σ(L)⊗n, γ).
Remark A.6 (Probability Measures on Separable Banach Spaces). The case where U is a real separable Banach space is
of particular interest in the context of neural operators. In this case, we choose L = U′, i.e. all linear functionals that are
continuous with respect to the norm topology. Then the σ-algebra σ(U′) coincides with the Borel σ-algebra B (U) generated
by the norm topology (Bogachev, 1998, Theorem A.3.7). For Gaussian random variables u with values in (U,B (U)) (and
Gaussian measure on B (U)), the mean mu is an element of U and the covariance operator maps into U (Bogachev, 1998,
Theorem 3.2.3). Moreover, for jointly Gaussian random variables u1,u2 with values in (U,B (U)), the cross-covariance
operator Cu1,u2 maps from U′ to U (Bogachev, 1998, Theorem 3.2.4).

A.3. Random Processes with Values in Vector Spaces

Now we have all the necessary preliminaries to define a Gaussian process with values in (U, σ(L)).
Definition A.7 (Gaussian Process). A Gaussian process with index set A and values in (U, σ(L)) on (Ω,A,P) is a function
F: A× Ω → U such that ω 7→ (F(a1, ω), . . . ,F(an, ω)) is a joint, i.e., (Un, σ(L)⊗n)-valued, Gaussian random variable
for all n ∈ N and a1, . . . , an ∈ A.

As for real-valued or Rd-valued processes, we can also define mean and covariance functions for random processes with
values in arbitrary real vector spaces. However, their definition is more technically involved.
Definition A.8. Let F be a random process with index set A and values in (U, σ(L)) on (Ω,A,P).

(a) If L ⊂ L1(P ◦ F(a, · )−1) for all a ∈ A, then the function

M : A → L#, a 7→ mF(a, · )

is called the mean function of F.
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(b) If L ⊂ L2(P ◦ F(a, · )−1) for all a ∈ A, then the function

K : A× A → (L → L#), (a1, a2) 7→ CF(a1, · ),F(a2, · )
is referred to as the covariance function of F.

Remark A.9 (Moments of Banach-Valued Gaussian Processes). If U is a separable Banach space, then mean function M
takes values in U and the covariance function K takes values in the space of nuclear operators U′ → U (Bogachev, 1998,
Theorem 3.11.24).

In the following, we aim to establish a correspondence between (Gaussian) random processes with values in (U, σ(L))
and (Gaussian) random processes with values in (R,B (R)), which we dub (generalized) probabilistic currying. Unlike
in Lemma 2.1, we need additional technical assumptions for this to work both ways. Denote by sclw∗(L̂) := {ℓ ∈ L |
∃{ℓi}i∈N ⊂ L̂ : ℓi →w∗ ℓ} the weak-* sequential closure of a set L̂ ⊂ L, where ℓi →w∗ ℓ if and only if ℓi(u) → ℓ(u) for
all u ∈ U (Aliprantis & Border, 2006, Section 5.14).
Assumption A.10. Let L̂ ⊂ L a set of linear functionals on U such that there is an nscl ∈ N0 with sclnscl

w∗ (span L̂) = L.

Theorem A.11 (Generalized Probabilistic Currying). Let L̂ ⊂ L be a set of linear functionals separating the points in U.
Let F: A× Ω → U and f : (A× L̂)× Ω → R such that ℓ(F(a, ω)) = f((a, ℓ), ω) for all a ∈ A, ℓ ∈ L̂, and P-almost all
ω ∈ Ω.

(i) If F is a random process with values in (U, σ(L)), then f is a random process with values in (R,B (R)), and

(ii) if F is Gaussian, then so is f .

If Assumption A.10 is satisfied, then the reverse implications hold as well.

We will need the following generalization of Theorem B.6 from (Pförtner et al., 2022).
Lemma A.12. Let L̂ ⊂ L such that Assumption A.10 holds. Then L̂ separates the points in U. Moreover, a function
u: Ω → U is

(a) A-σ(L)-measurable if ℓ ◦ u is A-B (R)-measurable for all ℓ ∈ L̂,

(b) a Gaussian random variable with values in (U, σ(L)) if (ℓ1 ◦ u, . . . , ℓn ◦ u) is jointly Gaussian for all n ∈ N and
ℓ1, . . . , ℓn ∈ L̂.

Proof. Define {L̂n}nscl
n=0 with L̂0 := span L̂ and L̂n+1 := sclw∗(L̂n). By assumption, L̂nscl

= L.

Assume that L̂ does not separate the points in U. Then there is u ∈ U such that ℓ(u) = 0 for all ℓ ∈ L̂. We proceed by
induction. Pick ℓ ∈ L̂0. Then there are α1, . . . , αm ∈ R and ℓ1, . . . , ℓm ∈ L̂ such that ℓ =

∑m
i=1 αiℓi. Hence,

ℓ(u) =

m∑

i=1

αiℓi(u) = 0.

Now assume that ℓ(u) = 0 for n < nscl and all ℓ ∈ L̂n. Fix ℓ ∈ L̂n+1. Then there is {ℓi}i∈N ⊂ L̂n such that ℓi →w∗ ℓ.
Hence,

ℓ(u) = lim
i→∞

ℓi(u) = 0.

All in all, it follows that L = L̂nscl
does not separate the points in U, which is a contradiction. Hence L̂ separates the points

in U.

(a) We need to show that ℓ ◦ u is measurable5 for all ℓ ∈ L (Klenke, 2014, Theorem 1.81). We proceed by induction.
Let ℓ ∈ L̂0. Then there are α1, . . . , αm ∈ R and ℓ1, . . . , ℓm ∈ L̂ such that ℓ =

∑m
i=1 αiℓi. By assumption, ℓi ◦ u is

measurable for all i = 1, . . . ,m. Hence, ℓ is measurable by Theorem 1.91 in (Klenke, 2014). Now assume that ℓ ◦ u is
measurable for all ℓ ∈ L̂n with n < nscl. Fix ℓ ∈ L̂n+1. Then there is a sequence {ℓi}i∈N ⊂ L̂n such that ℓi

w∗−−→ ℓ.
This implies that ℓi ◦u → ℓ ◦u pointwise, where, by the inductive hypothesis, ℓi ◦u is measurable for all i ∈ N. Hence,
ℓ ◦ u is measurable for all ℓ ∈ L̂n+1 (Klenke, 2014, Theorem 1.92).

5We will drop the A-B (R) prefix for real-valued functions in this proof.
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(b) By (a), u is A-σ(L)-measurable. It suffices to show that u is Gaussian with values in (U, σ(L̂n)) (Bogachev, 1998,
Definition 2.2.1(i)) for all n = 0, . . . , nscl, which is well-defined, since L̂ separates the points in U. Again, we proceed
by induction on n. Let ℓ ∈ L̂0. Then there are α1, . . . , αm ∈ R and ℓ1, . . . , ℓm ∈ L̂ such that ℓ =

∑m
i=1 αiℓi. By the

closure properties of Gaussians under linear maps, we have that ℓ ◦ u is Gaussian. Hence, u is Gaussian with values
in (U, σ(L̂0)). Now assume that u is Gaussian with values in (U, σ(L̂n)) for n < nscl. Fix ℓ ∈ L̂n+1. Then there
is a sequence {ℓi}i∈N ⊂ L̂n such that ℓi

w∗−−→ ℓ. This implies that ℓi ◦ u → ℓ ◦ u pointwise, where, by the inductive
hypothesis, ℓi ◦ u is Gaussian for all i ∈ N. Since pointwise limits of Gaussians random variables are Gaussian, ℓ ◦ u is
Gaussian. Hence, u is Gaussian with values in (U, σ(L̂n+1)).

Proof of Theorem A.11. ⇒ (i) Holds by definition.
(ii) Let a1, . . . , an ∈ A and ℓ1, . . . , ℓn ∈ L. By Remark A.5, the linear functionals

ℓ̃i : Un → R, (u1, . . . , un) 7→ ℓi(ui)

are measurable with respect to σ(L)⊗n. Moreover, ω 7→ (F(a1, ω), . . . ,F(an, ω)) is Gaussian by assumption.
Hence,

ω 7→
(
ℓ̃i(F(a1, ω), . . . ,F(an, ω))

)n
i=1

= (ℓi(F(ai, ω)))
n
i=1

= (f((ai, ℓi), ω))
n
i=1

is Gaussian with values in Rn.

⇐ (i) Follows directly by applying Lemma A.12(a) to each F(a, · ) individually.
(ii) Let a1, . . . , an ∈ A. We have to show that ω 7→ (F(a1, ω), . . . ,F(an, ω)) is a Gaussian random variable with

values in Un. It is easy to check that Assumption A.10 holds for L̂n ⊂ Ln. Hence, by Lemma A.12(b),
ω 7→ (F(a1, ω), . . . ,F(an, ω)) is Gaussian with values in Un.

The following Corollary shows that Assumption A.10 is automatically fulfilled for L = U′ in separable Banach spaces.

Corollary A.13 (Generalized Probabilistic Currying in Separable Banach Spaces). Let U be a real separable Banach space
and L̂ ⊂ U′ a set of continuous linear functionals separating the points in U. Let F: A×Ω → U and f : (A× L̂)×Ω → R
such that ℓ(F(a, ω)) = f((a, ℓ), ω) for all a ∈ A, ℓ ∈ L̂, and P-almost all ω ∈ Ω.

(i) F is a random process with values in (U,B (U)) if and only if f is a random process with values in (R,B (R)), and

(ii) F is Gaussian if and only if f is Gaussian.

Proof. We will show that Assumption A.10 is fulfilled for L = U′ and nscl = 1. Let ι : U → (L̂ → R), u 7→ (ℓ 7→ ℓ(u)),
which is linear and injective, since L̂ separates the points in U. Then Ũ := ι(U) is isomorphic to U (as a vector space).
Hence, Ũ equipped with the norm ∥ϕ∥Ũ := ∥ι−1(ϕ)∥U is a real separable Banach space which is isometrically isomorphic
to U. Moreover, Ũ is a space of functions with continuous point evaluation functionals, since

|δℓ(ι(u))| = |ℓ(u)| ≤ ∥ℓ∥U′∥u∥U = ∥ℓ∥U′∥ι(u)∥Ũ.

Thus, there is a sequence {δℓi}i∈N ⊂ Ũ′ separating the points in U (Steinwart, 2024, Theorem 4.10). This implies that
{ℓi}i∈N ⊂ L̂ separates the points in U. Finally, it follows that U′ = sclw∗(span L̂) (Steinwart, 2024, Proposition 4.3).
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If U ⊂ RDU is a vector space of real-valued6 functions and L = span δDU , then Theorem A.11 and Corollary A.13 become
substantially sharper.

Corollary A.14 (Probabilistic Currying). Let U ⊂ RDU be a vector space of real-valued functions, F: A× Ω → U, and
f : (A× DU)× Ω → R such that F(a, ω)(x) = f((a, x), ω) for all a ∈ A, x ∈ DU, and P-almost all ω ∈ Ω. Then

(i) F is a random process with values in (U, σ(δDU)) if and only if f is a random process with values in (R,B (R)),

(ii) F has a mean function M with values in U if and only if f has a mean function m, where M(a) = m(a, · ) for all
a ∈ A,

(iii) F has a covariance function K with values in span δDU → U if and only if f has a covariance function k, where
K(a1, a2)(δx) = k((a1, x), (a2, · )) for all a1, a2 ∈ A, and x ∈ DU, and

(iv) F is Gaussian if and only if f is Gaussian.

If U is a separable Banach space with continuous point evaluation functionals, then

(v) (i) and (iv) hold for F with values in (U,B (U)), and,

(vi) if it exists, then the covariance function K in (iii) has values in U′ → U, where

K(a1, a2)(ℓ)(x) = ℓ(k((a1, · ), (a2, x)))

for all ℓ ∈ U′ and x ∈ DU.

Proof. Follows from Theorem A.11 and Corollary A.13.

Finally, Theorem 3.2 from the main text is merely a corollary of the results developed above.

Theorem 3.2 (Probabilistic Currying in Banach Spaces; proof in Appendix A.3). Let (Ω,A,P) be a probability space and U
a real separable Banach space of Rd′ -valued functions with domain DU. Let F : A× Ω → U and f : (A× DU)× Ω → Rd′

such that F(a, ·)(x) = f((a,x), ·) for all a ∈ A and x ∈ DU (P-almost surely). Then (i) F is a random process with
values in (U, σ(δU)) if and only if f is a Rd′-valued random process, (ii) F is Gaussian if and only if f is Gaussian, and
(iii) if all evaluation maps δx : U → Rd′ ,u 7→ u(x) are continuous, then (i) holds for F with values in (U,B (U)).

Proof. Follows from Corollary A.14 and Lemma 2.1.

A.4. Banach-Valued Gaussian Processes from Linearized Neural Operators

For simplicity of the exposition, we limited the construction of the LUNO framework in Section 3.2 to neural operators,
which map into a Banach space of functions with continuous point evaluation functionals. This limits its applicability,
especially for solving PDEs, whose solutions are often not defined pointwise, but rather elements of Sobolev spaces
W p,k(DU) ⊂ Lp(DU). Hence, in this section, we extend LUNO to neural operators that map into abstract separable
Banach7 spaces U.

Step 0 Let U be a real separable Banach space, A a set, W ⊂ Rp a subspace, and F : A×W → U a neural operator.

Step 1 First, we select a subset L̂ ⊂ U′ of continuous linear functionals separating the points in U, for which we want to
quantify predictive uncertainty under the neural operator. Define

f : (A× L̂)×W → R, ((a, ℓ),w) 7→ ℓ(F (a,w)).

This is an uncurried version of the neural operator. To see this, note that a neural operator F : A×W → U can be uniquely
identified with the function

F̃ : A×W → (L̂ → R), (a,w) 7→ (ℓ 7→ ℓ(F (a,w))).

6By a generalization of Lemma 2.1, an analogous result holds in vector spaces of Rd′ -valued functions.
7With minor modifications, the construction below works in arbitrary real vector spaces.
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Proof. Let F1, F2 : A × W → U be neural operators with F1 ̸= F2. Then there are a ∈ A and w ∈ W such that
F1(a,w) ̸= F2(a,w). Since L̂ separates the points in U, this implies that there is ℓ ∈ L̂ such that F̃1(a,w)(ℓ) :=
F1(a,w) ̸= F2(a,w) =: F̃2(a,w)(ℓ). Hence, F̃1 ̸= F̃2.

Step 2 We model the uncertainty over the parameters as a random variable w : Ω → W on a probability space (Ω,A,P)
with supp(w) = W. As in Section 3.2, we will now linearize f in w around a point w0 ∈ W. To achieve this, we assume
that the directional derivatives

∂wf((a, ℓ), · ) (w0) = lim
h→0

f((a, ℓ),w0 + hw)− f((a, ℓ),w0)

h

at w0 exist for all a ∈ A, ℓ ∈ L̂, and w ∈ W, and are linear in w. For instance, this is the case if f((a, ℓ), · ) is differentiable
at w0. In this case, the linearization of f is given by

f((a, ℓ),w) ≈ f lin
µ ((a, ℓ),w) := f((a, ℓ),w0) + ∂w−w0f((a, ℓ), · ) (w0) .

Then the function
f : (A× L̂)× Ω → R, ((a, ℓ), ω) 7→ f lin

µ ((a, ℓ),w(ω))

is a random process. If w has a mean µ, then f has a mean function

m : A× L̂ → R, (a, ℓ) 7→ f((a, ℓ),w0) + ∂µ−w0
f((a, ℓ), · ) (w0) ,

and if w has a covariance matrix Σ, then f has a covariance function given by

k : (A× L̂)× (A× L̂) → R, ((a1, ℓ1), (a2, ℓ2)) 7→
p∑

i,j=1

∂if((a, ℓ1), · )(w0)Σij∂jf((a, ℓ2), · )(w0).

Note that f and m are linear in ℓ and k is bilinear in (ℓ1, ℓ2). Moreover, if w is Gaussian, then f is a Gaussian process.

Step 3 Finally, we construct a U-valued (Gaussian) random process F: A × Ω → U by probabilistically currying f .
However, this is more challenging for an abstract U. Intuitively, we want to undo the uncurrying operation from Step 1.
To this end, we assume8 that there is F: A× Ω → U with ℓ(F(a, ω)) = f((a, ℓ), ω) for all a ∈ A, ℓ ∈ L̂, and P-almost all
ω ∈ Ω. In this case, Corollary A.13 ensures that

(i) F is a random process with values in (U,B (U)),

(ii) F has a mean function M : A → U with

ℓ(M(a)) = m(a, ℓ) = f((a, ℓ),w0) + ∂µ−w0
f((a, ℓ), · ) (w0)

if w has a mean vector µ,

(iii) F has a covariance function K : A× A → (U′ → U) with

ℓ2(K(a1, a2)(ℓ1)) = k((a1, ℓ1), (a2, ℓ2)) =

p∑

i,j=1

∂if((a, ℓ1), · )(w0)Σij∂jf((a, ℓ2), · )(w0)

if w has a covariance matrix Σ, and

(iv) F is a Gaussian process if w is Gaussian.
8See Appendices A.4.1 and A.4.2 for more details on this assumption.
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A.4.1. WEAK GÂTEAUX DIFFERENTIABILITY

The existence of F: A× Ω → U with ℓ(F(a, ω)) = f((a, ℓ), ω) for all a ∈ A, ℓ ∈ L̂, and P-almost all ω ∈ Ω is equivalent
to F (a, · ) being τ(U, L̂#)-Gâteaux differentiable at w0, i.e., there is a linear operator δF (a, · ) (w0) : W → U such that

δF (a, · ) (w0) (w) = lim
h→0

F (a,w0 + hw)− F (a,w0)

h
in (U, τ(U, L̂#)) (A.1)

for all w ∈ W, where τ(U, L̂#) is the smallest topology on U for which all functionals in L̂ are continuous.

Proof. Note that, since W is a metric space, we can take sequential limits in Equation (A.1) without loss of generality.

⇒ Fix a ∈ A. We will constuct the Gâteaux derivative from F̃(a, ω). Since F̃(a, ω) ∈ ιU,L̂#(U) for P-almost all ω ∈ Ω,
there is N ∈ A with P(N) = 0 and F̃(a, ω) ∈ ιU,L̂#(U) for all ω ∈ Ω \N . We have suppw = W and hence there
are ω1, . . . , ωd ∈ Ω such that {bi}di=1 with bi := w(ωi) −w0 is a basis of W. Let λ : W → U be the unique linear
operator with

λ(bi) := ι−1

U,L̂#
(F̃(a, ωi))− F (a,w0)

= ι−1

U,L̂#
(f((a, · ), ωi)− f((a, ·),w0))

= ι−1

U,L̂#
(ℓ 7→ ∂w(ωi)−w0

f((a, ℓ), · ) (w0))

= ι−1

U,L̂#
(ℓ 7→ ∂bi

f((a, ℓ), · ) (w0)),

i.e. λ(w) = ι−1

U,L̂#
(ℓ 7→ ∂wf((a, ℓ), · ) (w0)) forall w ∈ W. Since W is finite dimensional, λ is τW-τ(U, L̂#)-

continuous, where τW is the norm topology on W. Let {hn}n∈N ⊂ R be any null sequence. Then for any ℓ ∈ L̂ we
have

ℓ

(
F (a,w0 + hnw)− F (a,w0)

hn

)
=
f((a, ℓ),w0 + hnw)− f((a, ℓ),w0)

hn
n→∞−−−−→ ∂wf((a, ℓ), · ) (w0) = ℓ(λ(w)).

Hence, F (a, · ) is τ(U, L̂#)-Gâteaux differentiable at w0 with Gâteaux derivative δF (a, · ) (w0) = λ.

⇐ If F (a, · ) is τ(U, L̂#)-Gâteaux differentiable at w0 for all a ∈ A, then we can construct F as

F: A× Ω → U, (a, ω) 7→ F (a,w0) + δF (a, · ) (w0) (w(ω)−w0) (A.2)

Then

ℓ(F(a, ω)) = ℓ(F (a,w0)) + ∂w(ω)−w0
ℓ(F (a, · )) (w0)

= f((a, ℓ),w0) + ∂w(ω)−w0
f((a, ℓ), · ) (w0)

= f lin
µ ((a, ℓ),w(ω))

= f((a, ℓ), ω)

for all a ∈ A, ℓ ∈ L̂, and ω ∈ Ω.

A stronger condition, namely (norm) Fréchet differentiability, has been verified for Fourier neural operators mapping
between Lp spaces (Kabri et al., 2023).

Note that we can also use the properties of the Gâteaux derivative to verify the conclusions of Corollary A.13. Since W is
finite-dimensional, the Gâteaux derivative δF (a, · ) (w0) is continuous with respect to any TVS topology on U. Hence, F

19



Linearization Turns Neural Operators into Function-Valued Gaussian Processes

as defined in Equation (A.2) is a random process with values in (U, σ(U′)) = (U,B (U)). If w has a mean µ, then the mean
function M : A → U of F is given by

M(a) = F (a,w0) + δF (a, · ) (w0) (µ−w0),

and, if w has a covariance matrix Σ, then the covariance function K : A× A → (U′ → U) of F is given by

K(a1, a2) = δF (a1, · ) (w0)ΣδF (a2, · ) (w0)
′
.

By the closure properties of Banach-valued Gaussian random variables under continuous affine maps (Bogachev, 1998,
Lemma 2.2.2), F is a Gaussian process if w is Gaussian.

While this construction is somewhat more direct, the currying approach outlined above mimics more closely how F is
constructed on a computer, especially when U ⊂ (Rd′U)DU and L̂ = {δx,i : x ∈ DU, i = 1, . . . , d′U} as in Section 3.2, and
does not require knowledge of Banach-valued derivatives.

A.4.2. BIDUAL RANDOM PROCESSES

If there is no F: A×Ω → U with ℓ(F(a, ω)) = f((a, ℓ), ω) for all a ∈ A, ℓ ∈ L̂, and P-almost all ω ∈ Ω, we can construct
a weaker version of F. Note that, if ℓ = α1ℓ1 +α2ℓ2 ∈ L̂, then f((a, ℓ), ω) = α1f((a, ℓ1), ω) +α2f((a, ℓ2), ω). This means
that f((a, · ), ω) can always be uniquely linearly extended to L = span L̂. Define

F̃ : A× Ω → L#, (a, ω) 7→ (ℓ 7→ f((a, ℓ), ω)).

We can use Corollary A.14 to show that F̃ is a random process with values in the algebraic dual L# of L equipped with the
smallest σ-algebra σ(δL#) that makes all point evaluation functionals measurable. We refer to such random processes as
bidual random processes.

Recall the bidual embedding ιU,L# from Remark A.1. If F exists, then F̃(a, ω) = ιU,L#(F(a, ω)).

A.5. Operator-Valued Gaussian Processes as Hilbert-Valued Gaussian Processes

Finally, we show that operator-valued Gaussian processes (Owhadi, 2023; Batlle et al., 2024; Mora et al., 2025) can be
embedded in the theoretical framework outlined above. Since operator-valued Gaussian processes are only defined on
separable Hilbert spaces, in this section, we let A,U be separable Hilbert spaces with inner products ⟨·, ·⟩A and ⟨·, ·⟩U,
respectively. In this case, the continuous dual U′ is identified with the primal space U via the Riesz isomorphism. We start
by reviewing the building blocks of operator-valued Gaussian processes.

Definition A.15 (Operator-Valued Kernel (Owhadi, 2023, Definition 9.1)). A function K : A× A → (U → U) is called
an operator-valued kernel if K(a1, a2) is a bounded linear operator with K(a1, a2) = K(a2, a1)

∗ for all a1, a2 ∈ A and∑m
i,j=1⟨ui,K(ai, aj)uj⟩U ≥ 0 for all m ∈ N, a1, . . . , am ∈ A, and u1, . . . , um ∈ U.

Definition A.16 (Gaussian Hilbert Space (Owhadi & Scovel, 2019, Definition 7.1)). A closed subspace H of L2(Ω,A,P) is
called a Gaussian Hilbert space if every h ∈ H is a univariate Gaussian random variable.

Definition A.17 (Operator-Valued Gaussian Process (Owhadi, 2023, Definition 5.1)). Let M : A → U, K : A×A → (U →
U) an operator-valued kernel, and H a Gaussian Hilbert space over (Ω,A,P). A function Ξ: A → (U → H) is called
an operator-valued Gaussian process if Ξ(a) is a bounded linear operator for all a ∈ A. Ξ is said to have mean M and
covariance kernel K if Ξ(a)(u) ∼ N (⟨u,M(a)⟩U, ⟨u,K(a, a)(u)⟩U) for all a ∈ A and u ∈ U, and

CovP [Ξ(a1)(u1),Ξ(a2)(u2)] = ⟨u1,K(a1, a2)(u2)⟩U.

Generally, operator-valued Gaussian processes are “equivalent to” a subset of Gaussian processes with values in (U′)# = U#

(see Appendix A.4.2).

Proposition A.18. Let F̃ : A× Ω → U#, H ⊂ L2(Ω,A,P) a Gaussian Hilbert space, and Ξ: A → (U → H) such that
F̃(a, · )(u) ∈ Ξ(a)(u) for all a ∈ A and u ∈ U. Then Ξ is an operator-valued Gaussian process with mean function
M : A → U and covariance kernel K : A× A → (U → U) if and only if

(a) F̃ is a (U#, σ(δU))-valued Gaussian process with mean M̃ : A → U′ and covariance function K̃ : A×A → (δU → U′),
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(b) (u, ω) 7→ F̃(a, ω)(u) is mean-square continuous9 for all a ∈ A, and

(c) u 7→ K̃(a1, a2)(δu) ∈ U′ is norm-continuous for all a1, a2 ∈ A.

We have ⟨M(a), · ⟩U = M̃(a) for a ∈ A, and ⟨K(a1, a2)(u), · ⟩U = K̃(a1, a2)(δu) for all a1, a2 ∈ A and u ∈ U.

Proof. This follows from Corollary A.14.

Moreover, the following results show that operator-valued Gaussian processes whose kernels map into the trace-class are
“equivalent to” Gaussian processes with values in (U,B (U)).
Proposition A.19. Let F be a U-valued Gaussian process on (Ω,A,P) with index set A, mean function M, and covariance
function K. Define H as the L2(Ω,A,P) closure of span{ω 7→ ⟨u,F(a, ω)⟩U | a ∈ A, u ∈ U} ⊂ L2(Ω,A,P). Then

Ξ: A → (U → H), a 7→ (u 7→ ⟨u,F(a, ·)⟩U)

is an operator-valued Gaussian process with mean M and covariance kernel K. Moreover, K(a, a) is trace-class for all
a ∈ A.

Proof. Let a ∈ A. For all u ∈ U we have

∥Ξ(a)(u)∥2H =

∫

Ω

(⟨u,F(a, ·)⟩)2 P(dω) ≤ ∥u∥2U
∫

Ω

∥F(a, ·)∥2UP(dω)
︸ ︷︷ ︸

<∞

by the Cauchy-Schwarz inequality and Fernique’s theorem (Bogachev, 1998, Theorem 2.8.5), i.e. Ξ(a) is a bounded linear
operator.

Theorem A.20. Let Ξ be an operator-valued Gaussian process with Gaussian Hilbert space H ⊂ L2(Ω,A,P), mean
function M, and covariance kernel K such that K(a, a) is trace class for all a ∈ A. Then there is a U-valued Gaussian
process F ∼ GP (M,K) on (Ω,A,P) such that ⟨u,F(a)⟩U ∈ Ξ(a)(u) for all a ∈ A and u ∈ U.

Proof. First, we will construct F: A × Ω → U. Let a ∈ A. Since U is separable and K(a, a) is self-adjoint, positive-
semidefinite, and trace class (and hence compact), there is an ONB {ψai }i∈I of U consisting of eigenvectors of K(a, a)
(Conway, 1997, Corollary 5.4). For every i ∈ I , fix zai ∈ (Ξ(a)(ψai )− ⟨ψai ,M(a)⟩). We will now show that the series

∑

i∈I
zai ψ

a
i (A.3)

converges P-almost surely in U. The {zai }i∈I are centered, independent Gaussian random variables with variances given by
the eigenvalues λai of K(a, a), since

EP [zai ] = EP [Ξ(a)(ψai )]− ⟨ψai ,M(a)⟩ = 0

and
CovP

[
zai , z

a
j

]
= CovP

[
Ξ(a)(ψai ),Ξ(a)(ψ

a
j )
]
= ⟨ψai ,K(a, a)(ψaj )⟩U = ⟨ψai , λajψaj ⟩U = λaj δij .

We have
∑
i∈I λ

a
i <∞ because the operator K(a, a) is trace-class. By Theorem 1.1.4 in Bogachev (1998), this means that

∑

i∈I
zai =

∑

i∈I
zai ∥ψai ∥U

converges P-almost surely, and hence Equation (A.3) P-almost surely absolutely convergent in U. Define

F(a)
a.s.
:= M(a) +

∑

i∈I
zai ψ

a
i .

9F̃(a, · )(u) L2−→ F̃(a, · )(u0) as u U−→ u0
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Then ⟨u,F(a)⟩ ∈ Ξ(a)(u) for u ∈ span{ψai }i∈I .

We will now show that ⟨u,F(a)⟩ ∈ Ξ(a)(u) for all a ∈ A and u ∈ U. To this end, fix u ∈ U and ya,u ∈ Ξ(a)(u).

There is {un}∞n=1 ⊂ span{ψai }i∈I such that u = limn→∞ un. Boundedness of Ξ(a) implies ⟨un,F(a)⟩
L2

−→ ya,u
and, by Remark 6.11 and Corollary 6.13 in Klenke (2014), there exists a subsequence {unk

}∞k=1 ⊂ {un}∞n=1 such that
⟨unk

,F(a)⟩ a.s.−−→ ya,u. Moreover, by continuity of the inner product, we know that ⟨unk
,F(a, ω)⟩ → ⟨u,F(a, ω)⟩ for all

ω ∈ Ω, and hence ⟨unk
,F(a)⟩ a.s.−−→ ⟨u,F(a)⟩. Since almost sure limits are unique up to almost sure equality (Klenke,

2014), we have ya,u
a.s.
= ⟨u,F(a)⟩. Hence, ⟨u,F(a)⟩ ∈ Ξ(a)(u).

The rest of the claim now follows from Corollary A.13 with f((a, u), ω) := ⟨u,F(a, ω)⟩ and L̂ = U′.

B. Linearized Laplace Approximation
The linearized Laplace approximation (LLA) (MacKay, 1992a;b; Immer et al., 2021) is a conceptually simple, yet effective
(Daxberger et al., 2021a) method for obtaining an approximate posterior distribution over the parameters w ∈ Rp of a neural
network f : Rd ×Rp → Rd′ . It applies whenever the objective function R used to train the neural network is (equivalent to)
a negative log-posterior

R(w) = − log p(w | D) = − log p(w)−
n∑

i=1

log p(y(i) | f(x(i),w)) + const.

of the network parameters given data D = {(x(i),y(i))}ni=1. It is common for the prior over the parameters to be Gaussian,
in which case − log p(w) acts as an L2-regularizer on the parameters. During training, we attempt to find a local minimum
w⋆ of the objective function R, i.e. a maximum a-posteriori (MAP) estimator of the network parameters given the data.

Following Immer et al. (2021), we approximate the posterior of the network weights as follows: First, we linearize the
model using a first-order Taylor approximation in the weights around the MAP estimator w⋆

f(x,w) ≈ f lin
w⋆(x,w) := f(x,w⋆) + Dwf(x,w)|w⋆ (w −w⋆).

Afterwards, we compute a second-order Taylor approximation of the negative log-posterior Rlin
w⋆ of the linearized network

at the MAP w⋆

Rlin
w⋆(w) := − log p(w)−

n∑

i=1

log p(y(i) | f lin
w⋆(x(i),w)) + const.

≈ R(w⋆) +∇R (w⋆)
⊤

︸ ︷︷ ︸
≈0

(w −w⋆) +
1

2
(w −w⋆)⊤P (w −w⋆)

=
1

2
(w −w⋆)⊤P (w −w⋆) + const. (B.1)

with P := − Hw log p(w)|w⋆ +G, where

G := −
n∑

i=1

Dwf(x(i),w)
∣∣∣
w⋆

Hf log p(y(i) | f)
∣∣∣
f(x(i),w⋆)

Dwf(x(i),w)
∣∣∣
⊤

w⋆
(B.2)

is the so-called generalized Gauss-Newton (GGN) matrix (Schraudolph, 2002). The GGN is guaranteed to be positive-
semidefinite. Equation (B.1) is the negative log-density of a (potentially degenerate) multivariate Gaussian distribution with
mean w⋆ and covariance matrix P †, i.e.

p(w = w | D) = expR(w) ≈ expRlin
w⋆(w) ≈ N

(
w;w⋆,P †).

This Gaussian distribution is referred to as the linearized Laplace approximation of p(w = w | D). Under the linearized
model, the approximate Gaussian posterior over the weights induces a tractable posterior predictive over the output of the
neural network (Khan et al., 2019; Immer et al., 2021). More precisely, using closure properties of Gaussian distributions
under affine maps, one can show that the pushforward of the LLA posterior through w 7→ f lin

w⋆(x,w) defines a (d′-output)
Gaussian process

f | D ∼ GP
(
f( · ,w⋆), (x1,x2) 7→ Dwf(x1,w)|w⋆ P

† Dwf(x2,w)|⊤w⋆

)
.
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C. Implementation Details
C.1. Last-Layer LUNO for FNOs

For an input a ∈ A, we can factorize the FNO as

F (a,w)(x) = (q(·,wq) ◦ σ(L−1))︸ ︷︷ ︸
=:q̃

(
z(L−1)(x,wL−1)

)
,

with

z
(L−1)
i (x,wL−1) :=

d′v∑

j=1

F−1
(
R

(L−1)
:ij ⊙ v̂

(L−1)
:j

)
(x) +

d′v∑

j=1

W
(L−1)
ij v

(L−1)
j (x)

=

d′v∑

j=1

kmax∑

k=1

Re(R
(L−1)
kij )Re(v̂

(L−1)
kj ) cos (⟨ωk,x⟩)︸ ︷︷ ︸

=:ϕkj(x)

+

d′v∑

j=1

kmax∑

k=1

Im(R
(L−1)
kij ) (−1) Im(v̂

(L−1)
kj ) sin (⟨ωk,x⟩)︸ ︷︷ ︸
=:φkj(x)

+

d′v∑

j=1

W
(L−1)
ij v

(L−1)
j (x)
︸ ︷︷ ︸

=:ψj(x)

,

where v̂
(L−1)
kj := F(v

(L−1)
j )k ∈ C for k ∈ {1, . . . , kmax}. We note that z(L−1)(x,wL−1) is linear in wL−1. Thus,

assuming a Gaussian belief over

wL−1
∼= (Re(R(L−1)), Im(R(L−1)),W (L−1))

induces a (multi-output) GP over z(L−1):

z(L−1) ∼ GP (mz(L−1) ,Kz(L−1)) with

mz(L−1) = z(L−1)(x,w⋆
L−1).

Moreover, z(L−1) is the sum of three (dependent) parametric Gaussian processes with feature functions ϕkj , φkj , and ψj ,
respectively. Consequently, the function-valued GP induced by the linearized FNO is given by

F(a)(x) = q̃(mz(L−1)(x)) + Dq̃ (mz(L−1)(x)) (z(L−1)(x)−mz(L−1)(x)),

i.e. F(a) ∼ GP (ma,Ka) with

ma(x) = F (a,w⋆)(x), and

Ka(x1,x2) = Dq̃ (mz(L−1)(x1))Kz(L−1)(x1,x2)Dq̃ (mz(L−1)(x2))
⊤
.

If the input function a ∈ A is discretized on a grid X
(i)
A ∈ (DA)

n
(i)
A , we set v̂(L−1)

kj := rfft(v
(L−1)
j (X

(i)
A ))k ∈ C and ψj(x)

interpolates v(L−1)
j (X

(i)
A ) (e.g. spline interpolation or Fourier interpolation).
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D. Experimental details
D.1. Data: PDE trajectories

D.1.1. LOW DATA GENERATION USING APEBENCH

To evaluate the performance of the uncertainty quantification methods discussed, we utilize the code in the APEBench for
generating data from Burgers’, Hyper Diffusion and Kuramoto-Sivashinsky equation (conservative) (cf. (Koehler et al.,
2024) for more details). Table 3 summarizes the characteristics of the datasets we use, the number of trajectories for training,
and testing, as well as the spatial and temporal resolutions.

PDE Name Dimensions Training Traj. Valid. Traj. Test Traj. Spatial Res. Temp. Res.
Burgers 1D 25 250 250 256 59
Hyper Diffusion 1D 25 250 250 256 59
Kuramoto-Sivashinsky (cons.) 1D 25 250 250 256 59

Table 3: Summary of PDE datasets generated using APEBench.

D.1.2. OUT-OF-DISTRIBUTION DATA GENERATION

We generated additional datasets based on the advection-diffusion-reaction equation

∂u

∂t
+ v · ∇u = α∇2u+R, (D.1)

to evaluate the robustness of the uncertainty quantification methods under out-of-distribution (OOD) scenarios. Here u
represents the scalar field (e.g., concentration or temperature), v is the velocity field, α is the diffusion coefficient, and R is
the reaction term, where α = 0.026 was held constant throughout the datasets. The following specifications guided this
process:

• Datasets: Trajectories for five variations of the advection-diffusion-reaction equation were generated (cf. Figure 5):

1. Base
– Random number (1-10) of Gaussian blobs as an initial condition.
– Constant random velocity field.
– No reaction terms.

2. Flip
– Random number (1-10) of Gaussian blobs as an initial condition.
– Constant random velocity field, which is reversed at the center of the domain.
– No reaction terms.

3. Pos
– Random number (1-10) of Gaussian blobs as an initial condition.
– Constant random velocity field.
– Randomly placed triangular heat source.

4. Pos-Neg
– Random number (1-10) of Gaussian blobs as an initial condition.
– Constant random velocity field.
– Randomly placed triangular heat source; randomly placed cloud-shaped heat sink.

5. Pos-Neg-Flip
– Random number (1-10) of Gaussian blobs as an initial condition.
– Constant random velocity field, which is reversed at the center of the domain.
– Randomly placed triangular heat source; randomly placed cloud-shaped heat sink.

• PDE Solver: We utilized a custom implementation to solve the advection-diffusion-reaction equation, relying on a
9-point stencil with Runge-Kutta 4 (RK4) with fine spatial and temporal resolutions.
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• Simulation Parameters:

– Spatial resolution: 100× 100 grid.
– Temporal resolution: ∆t = 5× 10−10 over 200-time steps, from which 59 are sub-sampled.

We train a Fourier neural operator on 1000 training trajectories of the Base dataset and calibrate uncertainty quantification
methods - if necessary - on a corresponding validation dataset with 250 input-output pairs. For the evaluation, we consider
250 random test pairs from some of the datasets. In Figure 5, we depict a single trajectory for each of these 5 datasets
generated. To seamlessly evaluate the various OOD datasets, we pad the training set with constant zeros for the velocity
field and reaction terms as a placeholder.

D.2. Model and training

For all experiments, we consider the original Fourier neural operator architecture (Li et al., 2021) with the hyperparameter
suggestions following (Koehler et al., 2024), i.e. 12 modes (per spatial dimension) and 18 hidden dimensions constant
throughout the network, with a total of 4 Fourier blocks. For the training, we consider 10 initial time steps and train to predict
the following time step. The velocity field and the reaction term are glued to the input. Furthermore, the input is always
padded by two constant zero grid points to reduce artifacts at the borders. Networks for the low data experiment are trained
for 100 epochs, all remaining networks are trained for 1000 epochs—where one epoch corresponds to iterating through a
single input-output pair per trajectory in the training set. During training the mean squared error loss was minimized using
AdamW (Loshchilov & Hutter, 2019) combined with a cosine decay learning rate scheduler with warmup. All training
implementations rely on jax (Bradbury et al., 2018), Flax NNX and optax.

D.3. Uncertainty quantification methods

D.3.1. INPUT PERTURBATIONS

Input Perturbations involve augmenting input data with small, random perturbations to introduce diversity into the model’s
predictions. This approach exploits the model’s sensitivity to input variations to approximate uncertainty in the output space.
Following the approach of Pathak et al. (2022), ensemble predictions are generated by forwarding a batch of pointwise
perturbed versions of a single input un. Perturbations are sampled as ϵx,t ∼ N (0, σ2) for each input value of the discretized
function state un(x, t). The parameter σ is calibrated to achieve accurate marginal uncertainty predictions.

D.3.2. ENSEMBLES

Deep ensembles rely on training multiple independent instances of a model, each initialized with different random seeds and
potentially trained on different subsets of the data (Lakshminarayanan et al., 2017). The diversity in the learned weight
configurations leads to a variety of predictions for a given input, enabling the computation of both mean predictions and
marginal uncertainty estimates. From a Bayesian perspective these weights represent close to true samples from the weight
space posterior distribution, that can only be found through the high cost of additional training runs.

D.3.3. ISOTROPIC GAUSSIAN (∗-ISO)

The isotropic Gaussian covariance structure represents the weight space uncertainty as:

N (w⋆,Σ := σ2I) (D.2)

where σ2 is the variance parameter and I is the identity matrix, reflecting independence and identical uncertainty across all
dimensions in the weight space. To calibrate the uncertainty, we tune the parameter σ2 as outlined below.

From a Bayesian perspective, as seen in methods such as Laplace, this can be viewed as just considering a calibrated prior
over the selected weight space.

D.3.4. LAPLACE APPROXIMATION (∗-LA)

In the linearized setting, a natural choice for a posterior Gaussian belief in weight space is given by the linearized Laplace
approximation, where the Hessian is given by the Generalized Gauss-Newton (GGN) HGGN (Immer et al., 2021). For further
details, see Equation (B.1).
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Figure 5: Initial condition and three-time steps of a single trajectory per generated dataset (Base, Flip, Pos, Pos-Neg,
Pos-Neg-Flip).
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For high-dimensional parameter spaces, approximations of the GGN are required. Common techniques include diagonal
approximations (Daxberger et al., 2021a), K-FAC (Martens & Grosse, 2015), or low-rank approximations (Dangel et al.,
2022). Since diagonal and K-FAC approximations do not capture correlations between weights acting on different Fourier
modes, we focus on a low-rank approximation of the GGN instead.

We extend the approach in (Dangel et al., 2022) by selecting the largest eigenspaces of the GGN and placing an isotropic
Gaussian prior over all weights instead of approximating the posterior covariance directly. This allows regions of uncertainty
to fall back to the prior belief. For a fixed input function and evaluation grid, the push-forward with the low-rank
approximation HGGN = V V T yields the normal distribution:

N (F(x·,θ),JθΣJTθ ), (D.3)

where Σ = (nV V T + σI)−1, n is the number of input-output pairs used to train the neural operator, and Jθ is the Jacobian
of the model with respect to the weights. In all experiments, we consider a low rank of 500. For the low data regime, we
consider all input-output pairs, while for the OOD experiment only a minibatch of 1000 input-output pairs.

D.3.5. SAMPLE-∗

For each weight-space covariance method and the input perturbation approach, we consider a sample-based pushforward
which generates an ensemble of predictions in the output space. This aligns with the way most weight-space covariance
methods are introduced in the literature (cf. Maddox et al., 2019). In our experiments, we generate 200 samples that are
propagated through the network. The empirical mean and standard deviation are then estimated using the set of predictions
in the output space.

D.3.6. LUNO-∗

The core implementation of LUNO leverages matrix-free Jacobian-vector products and the algebraic structure of the chosen
Gaussian covariance matrix in weight space. Our framework supports fully lazy evaluations, enabling efficient sampling,
marginal variance estimation, and matrix-vector products with the covariance of the output space.

When restricting the weight space uncertainty to only the last Fourier block, we can explicitly derive the matrix action of the
Jacobian of the inverse Fast Fourier Transform (IFFT). Additionally, we exploit the fact that the final linear layer is applied
pointwise in the spatial domain, significantly improving computational efficiency and reducing memory requirements
compared to traditional implementations of linearized pushforwards (Daxberger et al., 2021a).

D.4. Evaluation

We use the following metrics to evaluate model performance on 250 input-output pairs from the respective test trajectories.
Here, yi denotes the ground truth, ŷi represents the predicted mean, and σi is the predicted standard deviation for the i-th
sample. All reported numbers are the expected value over the test samples.

D.4.1. ROOT MEAN SQUARED ERROR (RMSE)

The root mean squared error

RMSE =

√√√√ 1

n

n∑

i=1

(yi − ŷi)2

measures the average magnitude of the errors between ensemble mean/linearized mean and ground truth values. Lower
RMSE indicates better predictive accuracy, with zero being the ideal value.

D.4.2. MARGINAL NEGATIVE LOG-LIKELIHOOD (NLL)

The marginal NLL quantifies how well the predictive distribution fits the data under the assumption of Gaussian uncertainty.
Lower NLL values indicate better calibration of the uncertainty estimates and higher likelihood of the observed data under
the predictive model. It represents a trade-off between lower variances and how much of the error is accurately captured by
the uncertainty.

NLL = −
n∑

i=1

log

(
1√
2πσ2

i

exp

(
− (yi − ŷi)

2

2σ2
i

))
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D.4.3. χ2-STATISTIC

The χ2-statistic measures the average squared error normalized by the predicted variance. A value close to 1 indicates
well-calibrated uncertainty predictions.

Q =
1

n

n∑

i=1

(yi − ŷi)
2

σ2
i

Values above one suggest overconfidence, while values below one indicate underconfident predictive uncertainty. From a
UQ perspective underconfidence is better than overconfidence.

D.5. Calibration

All hyperparameters of the discussed UQ methods (mostly σ2 in the above definitions) were calibrated using 250 input-output
pairs of the validation set to minimize the marginal negative log-likelihood. We calibrate each method’s hyperparameters
separately using grid search over a logarithmically spaced grid with 500 points centered around the relevant value.

D.6. Additional results

D.6.1. LOW DATA REGIME

Method RMSE (↓) χ2 NLL (↓)

Input Perturbations 1.98× 10−2 1.203 −2.3927
Ensemble 1.95 × 10−2 12.674 1.8957
Sample-Iso 2.02× 10−2 1.237 −2.4391
LUNO-Iso 1.99× 10−2 1.155 −2.4677
Sample-LA 2.18× 10−2 2.097 −2.2312
LUNO-LA 1.99× 10−2 0.984 −2.5248

Table 4: Performance metrics comparison for UQ methods evaluated on an FNO trained on 25 trajectories of the Hyper-
Diffusion equation.

Method RMSE (↓) χ2 NLL (↓)

Input Perturbations 7.84× 10−2 0.938 −1.0385
Ensembles 6.82 × 10−2 7.618 0.8489
Sample-Iso 7.88× 10−2 1.211 −1.0862
LUNO-Iso 7.82× 10−2 0.922 −1.0995
Sample-LA 1.46× 10−1 2.758 −0.1699
LUNO-LA 7.82× 10−2 1.058 −1.1653

Table 5: Performance metrics comparison for UQ methods evaluated on an FNO trained on 25 trajectories of the Kuramoto-
Sivashinsky (conservative) equation.
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Figure 6: FNO predictive uncertainty quantified by several different methods. Top row: target function ( ), mean ( ) and
1.96 standard deviations ( ) of, as well as samples ( ) from, the predictive belief. For the ensemble, the samples are four of
the ensemble members. Bottom row: spread of the predictive distribution around the mean. For the sample-/ensemble-based
methods, we construct a Gaussian distribution from the empirical covariance matrix and draw four samples ( ). We plot
1.96 standard deviations ( ) of the predictive belief, as well as the top-three eigenfunctions ( ) and a heatmap of the
predictive covariance matrix (top right corner of panels).
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Method Base Flip Pos Pos-Neg Pos-Neg-Flip

Input Perturbations −2.586 2.573 −1.174 69.346 494.935
Ensemble −5.313 −3.825 −4.802 −1.257 −1.014
Sample-Iso −2.921 4.071 −1.226 9.457 43.362
LUNO-Iso −2.892 3.450 −1.260 7.636 37.733
Sample-LA −2.576 4.395 −1.183 7.369 27.046
LUNO-LA −2.934 −1.126 −1.742 −0.818 1.164

Table 6: Negative Log-Likelihood (NLL) across different OOD datasets. Lower is better.

D.6.2. OUT-OF-DISTRIBUTION

Method RMSE (↓) χ2 NLL (↓)

Input Perturbations 1.46× 10−2 1.497 −2.5861
Ensemble 1.51 × 10−3 0.162 −5.3134
Sample-Iso 1.44× 10−2 1.217 −2.9214
LUNO-Iso 1.46× 10−2 1.189 −2.8919
Sample-Iso 1.73× 10−2 1.910 −2.5756
LUNO-LA 1.46× 10−2 0.841 −2.9340

Table 7: Metrics evaluated on OOD dataset Base.

Method RMSE (↓) χ2 NLL (↓)

Input Perturbations 4.36× 10−2 12.255 2.5727
Ensemble-Sample 4.43 × 10−3 0.215 −3.8249
Sample-Iso 4.37× 10−2 15.321 4.0715
LUNO-Iso 4.36× 10−2 13.983 3.4502
Sample-LA 4.62× 10−2 15.868 4.3953
LUNO-LA 4.36× 10−2 3.475 −1.1257

Table 8: Metrics evaluated on OOD dataset Flip.

Method RMSE (↓) χ2 NLL (↓)

Input Perturbations 2.94× 10−2 4.292 −1.1744
Ensemble 4.93 × 10−3 0.549 −4.8023
Sample-Iso 2.91× 10−2 4.552 −1.2261
LUNO-Iso 2.94× 10−2 4.408 −1.2596
Sample-LA 2.79× 10−2 4.622 −1.1835
LUNO-LA 2.94× 10−2 3.001 −1.7416

Table 9: Metrics evaluated on OOD dataset Pos.
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Method RMSE (↓) χ2 NLL (↓)

Input Perturbations 5.55× 10−2 145.561 69.3458
Ensemble 9.79× 10−2 1.161 −1.2569
Sample-Iso 5.55× 10−2 25.961 9.4566
LUNO-Iso 5.52 × 10−2 22.231 7.6355
Sample-LA 5.94× 10−2 21.685 7.3688
LUNO-LA 5.52 × 10−2 4.182 −0.8180

Table 10: Metrics evaluated on OOD dataset Pos-Neg.

Method RMSE (↓) χ2 NLL (↓)

Input Perturbations 1.10 × 10−1 997.143 494.9350
Ensemble 1.39× 10−1 1.006 −1.0140
Sample-Iso 1.10 × 10−1 93.712 43.3620
Prior-Iso 1.10 × 10−1 82.367 37.7331
Sample-LA 1.15× 10−1 60.728 27.0460
LUNO-LA 1.10 × 10−1 7.127 1.1642

Table 11: Metrics evaluated on OOD dataset Pos-Neg-Flip.

D.6.3. EVALUATION OF A SINGLE TRAJECTORY

Run-Time comparison

Method LUNO-∗ Sample-∗
Input Perturbations – 10.19± 0.006
Ensemble – 0.85± 0.004
∗-Iso 0.53± 0.004 14.00± 0.008
∗-LA 5.75± 0.017 27.70± 0.006

Table 12: Comparison of run-time performance between sampling-based (Sample-∗) and linearization-based (LUNO-∗)
methods across different uncertainty quantification techniques when out-rolling a single trajectory iteratively.
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Figure 7: Averaged performance of different UQ methods on an autoregressive rollout of the FNO on 50 trajectories from
the Base, Flip, Pos, Pos-Neg, and Pos-Neg-Flip datasets. We compare input perturbations ( ), deep ensembles ( ),
Sample-Iso ( ), LUNO-Iso ( ), Sample-LA ( ), LUNO-LA ( ).
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