
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TANDEMFOILSET: DATASETS FOR FLOW FIELD
PREDICTION OF TANDEM-AIRFOIL THROUGH
THE REUSE OF SINGLE AIRFOILS

Anonymous authors
Paper under double-blind review

ABSTRACT

Accurate simulation of flow fields around tandem geometries is critical for engi-
neering design but remains computationally intensive. Existing machine learning
approaches typically focus on simpler cases and lack evaluation on multi-body
configurations. To support research in this area, we present TandemFoilSet: five
tandem-airfoil datasets comprising over 4000 fluid simulations, paired with their
single-airfoil counterparts. We provide benchmark results of a curriculum learning
framework using a directional integrated distance representation, residual pre-
training, training schemes based on freestream conditions and smooth-combined
estimated fields, and a domain decomposition strategy. Evaluations demonstrate
notable gains in prediction accuracy. We believe these datasets will enable future
work on scalable, data-driven flow prediction for tandem-airfoil scenarios.

1 INTRODUCTION

In engineering design, simulating flow around geometries using computational fluid dynamics (CFD)
is a critical step for component modelling. Studying partial differential equations (PDEs) with
intricate, multi-body geometries is particularly important for applications like high-lift aircraft
wings (Rumsey & Ying, 2002) and wind farm wake interactions (Deskos et al., 2020). Due to the
complexity of these problems, analytical solutions are generally unavailable. In practice, such complex
geometries can be built by assembling simpler shapes, with the downside of increased mesh resolution
and domain size requirements, leading to high computational cost (Spalart & Venkatakrishnan, 2016).

Previous work on accelerating flow field prediction using neural networks (NNs) has largely focused
on single-object cases with abundant data (Pfaff et al., 2021; Lino et al., 2021; Fortunato et al., 2022;
Cao et al., 2023). Industries such as aerospace and marine have previously generated simulation
data for single-body geometries like airfoils and hydrofoils, presenting an opportunity to exploit
existing datasets for more efficient prediction of flow fields around multiple geometries. However, the
extension to interacting multi-body systems, such as tandem configurations, a sequentially arranged
airfoil setting, remains underexplored. Such a configuration is representative of many engineering
applications, including compressor blades in turbomachinery (McGlumphy et al., 2007), unmanned
aerial vehicles (Yin et al., 2021; Okulski & Ławryńczuk, 2022), hydrofoil systems for maritime
vessels (Maram et al., 2021), and race car engineering (Azmi et al., 2017).

To address this gap, we make the following contributions:

• TandemFoilSet: A collection of five high-fidelity tandem-airfoil flow field datasets paired
with four single-airfoil datasets under various flow settings. It is the first to comprehensively
capture interactions between front and rear airfoils, providing a foundation for benchmarking
data-driven surrogate models in tandem-airfoil aerodynamic environments.

• Novel benchmark curriculum learning scheme in which models are first trained on single-
airfoil flow fields and then fine-tuned on tandem-airfoil configurations in a memory-efficient
multi-network approach which, on average, outperforms the baselines by 65%.

• First use of freestream condition (Ferm, 1990) as a physics prior for residual pre-training
and smooth combination of single-airfoil flow predictions, enabling reduced training com-
plexity and improved accuracy.
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• Extension of directional integrated distance (DID) (Jessica et al., 2024) to represent
two-body flow fields, effectively encoding directional pressure and velocity distributions in
tandem-airfoil configurations. This is the first application of DID in setups with more than
one object.

We believe that these datasets and benchmark results will enable further research into data-driven
prediction of flow around tandem objects.

2 PRELIMINARIES AND RELATED WORK

2.1 PRELIMINARIES

Graph Construction The CFD simulation mesh M is represented as a graph G = (V,E), where
V and E are the sets of nodes and edges, respectively. The mesh nodes are directly represented as
graph nodes i ∈ V , and the faces between them as bi-directional edges (i, j), (j, i) ∈ E.

Geometry Representations This work employs the shortest vector (SV) and DID methods intro-
duced by Jessica et al. (2024) to encode geometries as input node features. The SV represents the
shortest vector from a node to the geometry, while each DID value captures the average distance
between the node and the geometry within a given angular segment, up to a maximum distance dmax.
These were originally demonstrated only on single-object geometries. The DID was numerically
calculated via the procedure in Alg. 1 in Appx. E. Although extending the DID to multiple geometries
is conceptually straightforward, the numerical calculations grow significantly more complex with
each additional object. These challenges are discussed in Appx. E.

Solid Bodies within a Flow Flow around solid bodies is a fundamental problem in fluid mechanics
and, in applications such as aircraft design, is typically modelled within an infinite flow region (Wu,
1976). In such settings, the influence of solid bodies can be viewed as a localised force field that
accelerates or diverts the flow, with the velocity gradually recovering towards a freestream condition
at large distances (Fan & Li, 2019). Mathematically, the flow velocity U can be decomposed as:

U = U∞ +U ′,

where U∞ is the freestream condition and U ′ the flow perturbation induced by the body. This
decomposition is analogous to transformations from inertial to body frames (Speziale, 1998), and
is applicable across turbulent flows (Speziale, 1998) and potential flows (Collicott et al., 2017).
This underlying principle informs the design of the smooth-combining and residual pre-training
techniques in Secs. 4.1 and 4.3, which aim to enhance learning efficiency when leveraging freestream
conditions. The datasets constructed reflect these flow characteristics to support future studies
exploring freestream-informed models.

2.2 RELATED WORK

Previous NN-based strategies for accelerating CFD simulations have explored various architectural
adaptations. Graph neural networks (GNNs) have become a leading approach, outperforming MLPs
and CNNs (Pfaff et al., 2021; Ogoke et al., 2020; Bonnet et al., 2022). Chen et al. (2021) improved
performance by incorporating both node and edge features. Encoder-processor-decoder architectures
with such graph convolutions were subsequently adopted by Pfaff et al. (2021) and Sanchez-Gonzalez
et al. (2020), and further improvements in scalability and information propagation speed were
achieved through multi-scale designs (Lino et al., 2021; Fortunato et al., 2022; Cao et al., 2023;
Gladstone et al., 2024). These developments largely shaped network and convolutional design for
CFD prediction, though relatively little attention has been given by these to leveraging existing
datasets or embedding physical priors.

Physical priors have been incorporated through different means by other works. Raissi et al. (2019)
integrated physical equations directly into the training loss of NNs, a technique later extended to graph
convolutional networks (GCNs) (Würth et al., 2024). While effective in reducing reliance on training
data, these approaches were evaluated primarily on scenarios without internal objects. Physics-based
solvers were also incorporated into the model itself (Obiols-Sales et al., 2020; Belbute-Peres et al.,
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2020; Lim et al., 2024). Physics-inspired features and loss terms were combined (Libao et al., 2023),
building on Pfaff et al. (2021). However, none of these approaches address the interaction of flows
between two objects in tandem configurations. The concept of using coarse simulations as a basis
for improved predictions has also been explored using CNNs (Kochkov et al., 2021). More recently,
Jessica et al. (2024) and Lim et al. (2025) applied residual learning techniques, previously used in
image super-resolution (Zhang et al., 2018; Yang et al., 2019), to GCNs for fluid prediction, though
this too relied on coarse simulations. Domain decomposition for grid-based simulations has been
addressed using fixed-size subdomains and CNN-based architectures (Mao et al., 2024), but did not
directly address mesh-based scenarios with tandem shapes.

Finally, public datasets only feature single-body flows (Bonnet et al., 2022; Schillaci et al., 2021; Liu
et al., 2024; Agarwal et al., 2024; Yang et al., 2024) and have limited focus on interactions between
multiple bodies like tandem airfoils. On the other hand, multi-geometry data like that of Bartoldson
et al. (2023) were not paired with their single-object counterparts. In all, the existing datasets did not
facilitate research of reusing single-object data to improve tandem-object flow field prediction.

3 TANDEMFOILSET

TandemFoilSet is a comprehensive collection of nine 2D datasets that span a wide range of configu-
rations across both aerial and ground-effect environments. Built primarily from four-digit NACA
airfoil (MPXX), the datasets vary systematically to cover diverse aerodynamic characteristics. They
are categorized into two domains: seven air- and two land-based datasets.

The aerial datasets simulate cruise and takeoff conditions. Cruise datasets assume ideal freestream
(far from ground), while Takeoff datasets include ground effect. For both, NACA parameters are
uniformly sampled as M,P ∈ [0, 6] and XX ∈ [5, 25], covering both symmetric and asymmetric
airfoils. The land-based Race Car datasets model inverted airfoils as simplified 2D spoilers operating
near the ground. Their NACA parameters are also uniformly sampled with M ∈ [2, 9], P ∈ [2, 8],
and XX ∈ [5, 20]. Additionally, five high-lift airfoils (CH10, E423, FX74-CL5-140, LA5055,
S1210) were included to expand aerodynamic diversity. With over 8000 cases, including 4152
tandem-airfoil configurations, TandemFoilSet is the first public tandem-airfoil dataset of its kind,
supporting advanced studies in aerodynamics modelling and machine learning-based flow prediction.

3.1 DATASET CATEGORISATION AND CONFIGURATION

Figure 1: The schematic drawings of tandem-
airfoil configuration with ground effect, such
as (a) Takeoff and (b) Race Car.

The datasets are categorised based on flow conditions,
providing a mix of low and high Reynolds number, Re,
scenarios. The Cruise and Takeoff datasets are designed
to capture stable aerodynamic characteristics under fixed
and low Re = 500 conditions, with angles of attack
(AOA) set at 0◦ or 5◦. The Takeoff dataset incorporates
ground effect, with height variations between the airfoil
and the ground, simulating conditions typical of UAV
takeoff as illustrated in Fig. 1(a). These configurations
enable the analysis of steady aerodynamic behaviours
under controlled flow conditions. In contrast, the Cruise
Random and Race Car datasets operate under high Re,
randomly selected from the range [105, 5 × 106], and
AOA varying between [−10◦, 7◦]. The Race Car dataset
captures aerodynamic interactions near the ground, rep-
resenting the downwash effect caused by inverted air-
foils, a critical feature in high-performance automotive
applications (Fig. 1(b)). It includes a mix of standard
NACA airfoils and five high-lift airfoils, enhancing the
diversity of aerodynamic shapes.

The datasets are summarised in Tab. 1. The near-field x−component velocity, u, and kinematic
pressure, p, contours of selected cases are shown in Fig. 5. In experiments, the datasets are uniformly
sampled in a 8:1:1 ratio for training, validation, and test sets, respectively, unless otherwise stated.
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Table 1: Total number of cases, average grid cells and the range of Re and AOA as well as stagger, gap, and
height (see Fig. 1) normalised by the chord length, for TandemFoilSet. More are available in Appx. A.

DATASET CASES AVE. CELLS Re AOA [◦] STAGGER GAP HEIGHT

SINGLE 1014× 2 122788 500 0 , 5 - - -
CRUISE 784× 2 351315 500 0 , 5 [0.5, 2] [−0.4, 0.4] -

TAKEOFF 784 271316 500 5 [0.5, 2] [−0.2, 0.6] [0.4, 1]

SINGLE RANDOM 1025 111370
[
105, 5× 106

]
[−5, 7] - - -

CRUISE RANDOM 900 210181
[
105, 5× 106

]
[−5, 6] [0.5, 2] [−0.8, 0.8] -

SINGLE INVERTED 899 87108
[
105, 5× 106

]
[−10, 0] - - [0.1, 1.1]

RACE CAR 900 130276
[
106, 5× 106

]
[−10, 0] [−0.5, 0.05] [0.05, 0.1] [0.1, 1.1]

3.2 MESHING AND SIMULATION SETUP

Two meshing methods were employed to simulate the aerodynamic properties of the airfoils. For
single airfoils, the blockMesh utility from OpenFOAM-v2112 (Jasak et al., 2007) was used to create
a C-grid hexahedral mesh. For tandem-airfoils, the overset meshing method (Benek et al., 1986) with
a combination of background meshes and overset grids generated by Pointwise (Karman & Wyman,
2019) was used. This allowed flexible manipulation of airfoil orientation while maintaining quality.

For low Re cases, the freestream velocity was 0.146 m/s with a kinematic viscosity of 2.92 ×
10−4 m2/s, resulting in Re = 500. Mesh resolution was tuned to achieve boundary layer resolution
of y+ ≈ 1, ensuring accurate modelling of near-wall flow characteristics. High Re simulations setups
have higher grid density to accommodate the high flow velocities. Further details are in Appx. A.

Simulations were done using the simpleFoam solver for single airfoil setups and overSimpleFoam for
tandem-airfoil setups. Both used the k − ω SST turbulence model (Menter et al., 2003), employing
the SIMPLE algorithm (Caretto et al., 1973) for steady-state incompressible Navier–Stokes (NS)
equations. Detailed configurations of solver settings and turbulence model parameters are in Appx. A.

3.3 DATASET VALIDATION AND VERIFICATION

For all datasets, we performed mesh independence studies to guarantee numerical convergence. For
high Re datasets, we validated simulation results against experimental data from literature, ensuring
that the chosen mesh configuration maintained high accuracy across a range of AOAs. For tandem-
airfoil configurations, we replicated previous studies on tandem-airfoil ground effects to benchmark
the simulation setup, confirming consistency with established results. These comprehensive checks
ensure that the dataset accurately represents aerodynamic phenomena relevant to both low and high
Re conditions. The full details of the procedures and results are in Appx. A.

4 BENCHMARKING SETUP

This section introduces the schemes developed to optimise the use of existing single-airfoil datasets
for predicting flow around tandem-airfoil configurations—a traditionally resource-intensive task. The
overall framework is illustrated in Fig. 2 and proceeds as follows:

1. A NN is pre-trained on single-airfoil cases to predict flow fields from geometry representa-
tions and boundary conditions, with freestream conditions serving as prior estimate fields
for residual training.

2. The pre-trained network is used to predict flow fields around single airfoils. The x-velocity,
y-velocity, and pressure fields are then smoothly combined to generate preliminary tandem-
airfoil flow fields.

3. The NNs for the multiple-geometry task are initialised with the weights of the pre-trained
single-geometry model.

4. These networks are then residually trained to predict tandem airfoil flow fields, using the
smoothly combined fields as estimates.

The multiple-geometry model may consist of multiple neural networks. Full technical details of each
stage are provided to establish a benchmark for future research on single-to-tandem flow prediction.
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Figure 2: Overview of the benchmarking method, using (a) freestream based residual pre-training, (b) smooth-
combining, and (c) combined field based residual training. Here, the multiple-geometry model is portrayed as a
single network for simplicity. Note that a multi-NN as shown in Fig. 4 may be used instead.

4.1 SMOOTH-COMBINING

This section introduces the procedure for combining multiple fields to obtain a cost-effective amalga-
mate field. Let y1, . . . ,yL denote the L fields to be combined. The combined field ỹ at node i is
then computed as:

ỹ(i) = γ1(i) · y1(i) + · · ·+ γL(i) · yL(i) . (1)
Here, γ1, . . . ,γL represents the weight of the respective original fields in the combined field. These
will be assigned based on their absolute deviation from a reference field y0:

γl(i) =
|y0(i)− yl(i)|

|y0(i)− y1(i)|+ · · ·+ |y0(i)− yL(i)|
. (2)

At nodes i where all fields do not deviate from the reference field, or y1(i) = · · · = yL(i) = y0(i),
the weights can be set to γ1(i), . . . ,γL(i) = 1/L. This results in the final combined field exactly
matching the reference field at these nodes, i.e., ỹ(i) = y0(i).

Deviation from Freestream When combining flow fields (see Fig. 2(b)), we can assign weights to
each field based on their deviation from the freestream. Let y1,y2 = U1,U2 be two flow fields such
as the x-velocity fields. Let y0 = U∞ be the freestream flow field with no internal geometry. Then:

Ũ(i) = γ1(i) ·U1(i) + γ2(i) ·U2(i) ,

γl(i) =
|U∞(i)−U l(i)|

|U∞(i)−U1(i)|+ |U∞(i)−U2(i)|
=

|U ′l(i)|
|U ′1(i)|+ |U ′2(i)|

.

Figure 3: γ1 for the front airfoil (NACA 0024),
as described in Eqn. (2). Note that γ2 for the aft
airfoil (NACA 4424) is given by 1− γ1.

The approach is guided by the physical principles
outlined in Sec. 2.1, which suggest that the influence
of a solid body in a flow field can be conceptualised
as deviation from the freestream, U ′. Hence, em-
ploying weights based on these deviations creates a
combined field that preserves the influences of both
airfoils. This novel concept offers both accuracy and
efficiency due to its simplicity and the extra-low com-
putational cost of the freestream conditions.

Figure 3 provides an example of the resulting weights. Note that, where the flow fields are very
similar but not equal to the freestream, the weights may still significantly favour the field that is most
different from the freestream, such as in the blue area close to the front (left) airfoil.
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4.2 DID CALCULATION FOR MULTIPLE OBJECTS

As mentioned, the SV and DID are incorporated into the neural network inputs as geometry represen-
tations. While both were utilised in previous applications, this marks the inaugural use of DID in a
multiple-object scenario. Numerically calculating DID values using the original algorithm becomes
progressively more complex and time-consuming with the addition of each object.

Deviation from Maximum We propose an alternative procedure that capitalises on the smooth-
combining scheme, using the deviation from the maximum value dmax as weights. Here, y0 = dmax,
and y1, . . . ,yL are the individual DID fields to be combined. This alternative method is detailed in
Alg. 2 in Appx. E, providing an estimated DID representation of multiple geometries in a significantly
reduced time-frame, ensuring computational efficiency of DID in a multi-object setting.

4.3 RESIDUAL TRAINING

In this section, we will introduce two residual training schemes, one supporting the utilisation of
pre-training, and the other capitalising on the smooth-combining techniques outlined in the previous
section. Residual training, extensively used in image super-resolution, involves utilising an estimate
to ease the learning. Let the network output be Û . Instead of directly predicting the flow field Ugt,
the model is trained to predict the residual field Ugt − Ũ est and minimise the loss function,

L̃ = α

{
L
(
Ugt, Û + Ũ est

)}
boundary cells

+

{
L
(
Ugt, Û + Ũ est

)}
internal cells

, (3)

where Ũ est represents an estimated flow field and α is a weight parameter. In CFD cases, this
estimate often takes the form of a cost-effective lower-resolution simulation result (Jessica et al.,
2024).

Freestream Conditions Rather than a lower-resolution result, this paper suggests an innovative
approach: using freestream conditions as an estimate for single geometries, or setting Ũ est = U∞.
This concept, like the smooth-combining procedure, aligns with the physical principles discussed
in Sec. 2.1 that assert that freestream conditions should serve as a reliable estimate for the majority
of the field. In contrast to lower-resolution fields, freestream conditions do not need to be derived
from any physics-based simulator, so its computational cost is minimal. The residually pre-trained
network is used not only to predict the flow fields of single airfoils for smooth-combining, but also to
initialise the weights of the network for predicting tandem-airfoil. This initialisation can improve the
final prediction performance. Figure 2(a) illustrates the freestream based residual pre-training.

Combined Flow Fields To estimate the flow field of tandem-airfoil, we propose employing com-
bined flow fields, obtained through the smooth-combining procedure discussed in the previous section
and illustrated in Fig. 2(b), or setting Ũ est = Ũ . The combined flow field may still differ from the
target tandem-airfoil flow field, but it provides a cost-effective estimate for improving the learning
through residual training. The combined field-based residual training process is visually presented
in Fig. 2(c), where it can be seen as part of the consolidated pre-training, smooth-combining, and
residual training method. Both residual training procedures in the proposed method use different
estimates, one based on the freestream conditions and the other on the combined flow fields, which
are unlike previous methods based on low-resolution simulation results.

4.4 MULTI-NN INFERENCE PROCEDURE

Multi-NN inference involves training multiple NNs to predict CFD domains with tandem geometries.
While the multiple-geometry model shown in Fig. 2(c) can be conceivably handled by a single NN,
predicting a tandem-geometry case after being pre-trained on solely single-geometry instances would
be particularly demanding. The multi-NN technique hence ensures that each NN exclusively predicts
a field with at most one airfoil, mitigating these challenges.

To implement this procedure, the domain is partitioned into distinct sub-graphs. In our im-
plementation, these partitions segregate the graph into front, back, upper, and lower flow

6
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fields, with overlapping regions to ensure continuity and synchronisation between the sub-fields.
An individual NN is then trained to predict each sub-field. The detailed steps involved in
the multi-NN inference procedure are depicted in Fig. 4, and can be summarised as follows:

Figure 4: Inference of tandem-airfoil fields using
a multi-NN inference procedure. Overlap regions
(highlighted) are updated by the most recent NN.

1. The CFD domain is subdivided into front,
back, upper, and lower flow fields. Inputs
like the SV, DID or estimated fields are
segmented accordingly.

2. The front flow field is predicted, with in-
let values serving as an input feature for
nodes along the inlet. The rest of the field
will receive a zero-value here.

3. The predicted values within the overlap
regions between the front and back sub-
graphs are utilised as the corresponding in-
put features to predict the back flow field.

4. The previous step is repeated, employing
both the inlet values and appropriate over-
lap data from the front and back fields, to
compute the upper and lower fields.

5. All sub-fields are combined to generate
the final prediction for the complete flow
field, with the latest and most updated pre-
diction used for the overlap regions.

The dependency structure of our multi-NN ap-
proach is tied to geometric settings where the division of flow fields aligns with predefined boundaries
and inlets. This structure ensures coherent information propagation across sub-domains, similar to
domain decomposition in CFD (Chan & Mathew, 1994). Upper and lower fields can be predicted
using diverse strategies (e.g., freestream conditions, interpolation), to reduce the required NNs.
Sub-domains may even be omitted if deemed unnecessary, providing flexibility for diverse CFD
applications, similar to domain decomposition customisation (Lim et al., 2023).

5 BENCHMARKING RESULTS

In this section, we evaluate the effectiveness of our schemes through four experiments, assessing: (i)
the multi-object DID representation method, (ii) the smooth-combining, pre-training, and residual
training schemes, (iii) the multi-NN inference, and (iv) the overall framework in varying flow condi-
tions. We employ the five datasets in TandemFoilSet, and two highly influential GNN architectures:
MeshGraphNet (MGN) (Pfaff et al., 2021) and invariant edge-GCNN (IVE) (Chen et al., 2021), to
test performance across various flow conditions and convolutional types.

5.1 EXPERIMENT 1: MULTI-OBJECT DID EFFECTIVENESS

Table 2: MSE (×10−2) performance evaluation of DID.

MODEL / DATASET CRUISE AOA=0◦ TAKEOFF

MGN + SV 11.51 ± 5.48 - 8.17 ± 3.37 -
MGN + SV + DID 1.03 ± 0.60 91.1% 3.74 ± 1.95 54.22%

In the first experiment, to assess the effectiveness of the multiple-object DID representation, we
compare MGN performance with and without DID on the Cruise AOA=0° and Takeoff datasets. No
additional methods are applied. As shown in Tab. 2, the DID significantly improves performance for
both datasets, with over 91% reduction in MSE test loss for the Cruise AOA=0° case. This suggests
that the DID representation remains effective when estimated using the smooth-combining method.
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5.2 EXPERIMENT 2: ABLATION STUDY

The second set of experiments evaluates the effectiveness of pre-training, smooth-combining, and
residual training in various geometric shapes and configurations on both MGN and IVE. Hence, three
datasets with fixed and low Re conditions were considered: Cruise AOA=0°, Cruise AOA=5°, and
Takeoff. We compare the baseline against the following four combinations of the suggested schemes:

• PRE: A single-airfoil model is pre-trained, and its weights are used to initialise the networks
of the main tandem-airfoil model before training.

• PRE-FREE + COMB: Additionally, the freestream condition is used as an input feature to
the pre-trained single-airfoil model, and the combined flow fields from the single-airfoil
network are used as input features to the main tandem-airfoil model.

• RES-FREE + RES-COMB: The single-airfoil model is residually trained using the freestream
conditions as the estimate fields. Likewise, the main tandem-airfoil model is residually
trained using the combined flow fields as estimate fields. However, its weights are not
initialised with those of the single-airfoil model.

• PRE-RES-FREE + RES-COMB: The pre-trained single-airfoil model is freestream-based resid-
ually trained. Its weights are used to initialise the main combined field-based residually
trained tandem-airfoil model.

The single-airfoil dataset with the same AOA value (0◦ or 5◦) as the tandem-airfoil dataset is used.
All models, including the baselines, incorporate both SV and DID. Likewise, multi-NN inference
was used in all models. The outcome of this ablation study is shown in Tab. 3.

Table 3: MSE (×10−2) performance evaluation of ablation study. Average improvement is measured relative to
baseline over three datasets. The best performance is in bold while the second best is underlined.

MODEL / DATASET CRUISE AOA=0◦ CRUISE AOA=5◦ TAKEOFF IMPROV.

MGN (BASELINE) 1.03 ± 0.60 - 1.34 ± 0.67 - 3.74 ± 1.95 -
MGN + PRE 1.04 ± 0.62 -0.7% 1.21 ± 0.64 10.1% 3.69 ± 2.01 1.27% 3.55%
MGN + PRE-FREE + COMB 0.42 ± 0.50 59.3% 0.74 ± 0.58 44.7% 1.31 ± 0.67 64.9% 56.3%
MGN + RES-FREE + RES-COMB 0.49 ± 0.67 52.0% 0.68 ± 0.37 48.9% 1.24 ± 0.67 66.9% 55.9%
MGN + PRE-RES-FREE + RES-COMB 0.45 ± 0.69 56.1% 0.67 ± 0.50 49.4% 1.12 ± 0.57 70.0% 58.5%

IVE (BASELINE) 0.85 ± 0.55 - 1.05 ± 0.69 - 2.53 ± 1.24 -
IVE + PRE 0.98 ± 0.55 -16.0% 1.05 ± 0.59 -0.07% 2.73 ± 1.37 -7.74% -7.94%
IVE + PRE-FREE + COMB 0.60 ± 0.40 29.2% 0.73 ± 0.40 30.0% 0.89 ± 0.39 65.0% 41.4%
IVE + RES-FREE + RES-COMB 0.54 ± 0.34 36.2% 0.62 ± 0.36 40.4% 0.77 ± 0.36 69.7% 48.8%
IVE + PRE-RES-FREE + RES-COMB 0.52 ± 0.29 38.9% 0.63 ± 0.30 40.3% 0.83 ± 0.37 67.3% 48.8%

Table 4: MSE (×10−2) aerodynamic performance analysis of the airfoil boundary cells, lift, cl, and drag, cd,
coefficients for Cruise AOA=5° and Takeoff datasets, using the comprehensive model relative to the baseline.

MODEL / DATASET
CRUISE AOA=5° TAKEOFF

MSEb MSEcl
MSEcd

MSEb MSEcl
MSEcd

MGN (BASELINE) 2.52 ± 2.19 0.05 ± 0.07 0.32 ± 0.29 7.61 ± 7.27 0.15 ± 0.38 0.23 ± 0.16
MGN + PRE-RES-FREE + RES-COMB 1.06 ± 0.84 0.05 ± 0.08 0.21 ± 0.40 1.55 ± 1.32 0.04 ± 0.07 0.13 ± 0.26

IMPROVEMENT 58.2% 0% 34.4% 79.6% 73.3% 43.5%

The importance of the smooth-combined field, as either an input or for residual training, is demon-
strated by the last three models always outperforming the first two significantly, with up to 70%
improvement of accuracy over the MGN and IVE baseline models. While the best performance was
occasionally achieved through pre-training or residual training alone, the comprehensive method with
both schemes together shows the most consistent performance, often having errors within an order
below the standard deviation of the best model. Overall, these results suggest that the freestream
condition and combined-field based residual training both individually enhance the performance of
models across various scenarios, but perform most consistently when used in conjunction with one
another. As it is observed that the MGN models demonstrate a higher average improvement from the
schemes at over 55%, subsequent experiments focused on the MGN architecture.

Also, to analyse the model’s prediction on the aerodynamic performance of the tandem-airfoil, Tab. 4
presents the MSE of the airfoil boundary cells, as well as the lift and drag coefficients for Cruise

8
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AOA=5° and Takeoff datasets. The comprehensive method reduced error from the baseline by up to
almost 80%, and showed superior capability in more complex flow fields as in the Takeoff dataset.

5.3 EXPERIMENT 3: MULTI-NN EFFECTIVENESS

In the third experiment, we assess the effectiveness of the multi-NN inference by comparing MGN
performance in a single-NN versus a multi-NN setup, where the field is split into front and back
sub-fields. The upper and lower fields were excluded due to memory limitations. The experiment uses
just the Cruise AOA=0° dataset to showcase its performance. As in Tab. 5, multi-NN outperforms the
single-NN in both models, suggesting that separate and specialised NN predictions enhance accuracy.

Table 5: MSE (×10−2) performance evaluation of Multi-NN on Cruise AOA=0° dataset.

MODEL / DATA SCHEME SINGLE-NN MULTI-NN IMPROVEMENT

MGN + RES-FREE + RES-COMB 1.66 ± 1.71 0.49 ± 0.67 70%
MGN + PRE-RES-FREE + RES-COMB 1.51 ± 1.61 0.45 ± 0.69 70%

5.4 EXPERIMENT 4: EFFECTIVENESS IN VARYING FLOW CONDITIONS

In the final experiment, we assess the model under varying conditions using the Cruise Random
dataset through two sampling styles: Uniform and Extrapolation. In Extrapolation, the data reflecting
the highest and lowest 5% of the AOA or Re value range is used as the test set, while the training
and validation sets are uniformly sampled from the middle 90% range. In addition, the Race Car
dataset is also used with uniform sampling to examine the model performance in sophisticated flow
conditions. Table 6 shows that the MSE test losses are higher than the datasets with fixed and low
Re flow conditions, which is expected due to the varied conditions without an increase in dataset or
model size. The proposed model still achieves up to 94% and 65% reductions in MSE test losses of
Cruise Random and Race Car datasets, respectively, demonstrating its effectiveness.

Table 6: MSE performance evaluation on Cruise Random and Race Car datasets with varying flow conditions.

MODEL / DATA SCHEME UNIFORM AOA Re RACE CAR

MGN (BASELINE) 1.79 ± 1.38 2.03 ± 1.96 4.85 ± 1.82 0.61 ± 0.51
MGN + PRE-RES-FREE + RES-COMB 0.10 ± 0.13 0.18 ± 0.24 0.36 ± 0.53 0.21 ± 0.29

IMPROVEMENT 94.4% 91.1% 92.6% 65.6%

5.5 ADDITIONAL RESULTS

Neural network prediction times showed a 76% reduction in wall time compared to simulations
(Appx. C). A parametric study of DID parameters demonstrated that it remains robust and consistently
outperforms the baseline (Appx. F). The smooth-combining method was evaluated against freestream
and linear interpolation approaches, and showed to be the best performing (Appx. H). Model
accuracy was validated across varying tandem-airfoil positions and flow parameters, with the method
consistently outperforming the baseline (Appx. I). Navier–Stokes residual analysis confirmed high
prediction accuracy, with residuals significantly below maximum thresholds (Tab. 23).

6 CONCLUSION

This paper introduces TandemFoilSet: five tandem-airfoil datasets with four paired single-airfoil
datasets to support future research on flow prediction in multi-airfoil scenarios. It also utilises a
smooth-combining technique that extends the DID representation to multi-object flow fields, a pre-
training and residual training procedure leveraging freestream and combined fields, and a multi-NN
inference scheme for tandem geometries. Our benchmark method was evaluated across two baseline
settings and the datasets, demonstrating consistent improvements in prediction performance. Due to
computational limitations, we were not able to test the method on three-dimensional objects or other
geometries. For future work, the generalising capabilities of the method should be further tested in,
for instance, multiple-airfoil cases like in a turbomachinery stage, and bluff body configurations such
as cylinder or sphere.
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A DATABASE GENERATION

A.1 DATASET CHARACTERISTICS AND CONFIGURATION

In this study, TandemFoilSet is created to form a comprehensive collection of five tandem- and
four single-airfoil datasets that explore a wide range of aerodynamic configurations in both aerial
and ground-effect environments. They mainly consist of four-digit (MPXX) NACA airfoil, with
systematically varied parameters to capture diverse aerodynamic characteristics. The datasets can be
broadly categorized into two application domains: air- and land-based configurations.

For aerial configurations, five datasets simulate cruise and takeoff scenarios. The Cruise datasets
assume an idealized freestream setting (i.e., height, H → ∞), while the Takeoff datasets incorporate
ground effect through finite height values. In both cases, the NACA airfoil parameters are uniformly
sampled with camber magnitude M ∈ [0, 6], camber location P ∈ [0, 6], and thickness XX ∈ [5, 25].
These settings ensure a diverse distribution of symmetric and asymmetric airfoils across typical flight
conditions.

For land-based configurations, two Race Car datasets model the behavior of inverted airfoils as
simplified 2D representations of a spoiler operating near the ground. Here, the NACA parameters
are also uniformly sampled, with M ∈ [2, 9], P ∈ [2, 8], and XX ∈ [5, 20], reflecting common
high-performance automotive aerodynamic profiles. To further enrich the dataset with complex,
high-lift geometries, five additional non-NACA airfoils: CH10, E423, FX74-CL5-140, LA5055, and
S1210, were included in the land-based configurations.

In general, the datasets can also be categorised based on their flow conditions, providing a balanced
exploration of both low and high Reynolds number, Re, scenarios as tabulated in Tab. 1. The Cruise
and Takeoff datasets are generated under fixed low Reynolds number conditions (Re = 500), with
angles of attack (AOA) set at 0◦ or 5◦. The Takeoff dataset is further distinguished by the inclusion
of ground effect, where height variations between the airfoil and the ground are introduced to capture
near-ground aerodynamic interactions. In contrast, the Cruise Random and Race Car datasets are
designed to capture high Re conditions, where Re is randomly sampled from the range [105, 5×106],
and AOA is varied between [−10◦, 7◦]. The Race Car dataset is also subjected to ground effect,
specifically configured to simulate the aerodynamic characteristics of high-performance vehicles,
where inverted airfoils generate substantial downwash forces.

Figure 5 illustrates representative flow field visualisations for the Cruise AOA=5◦, Takeoff, Cruise
Random, and Race Car datasets, showcasing the diversity of aerodynamic interactions captured.
The x-component velocity, u, and kinematic pressure, p, contours highlight the differences in flow
behavior across configurations, including the noticeable ground effect in the Takeoff and Race Car
datasets.

In short, TandemFoilSet encompasses 8104 cases, including 4152 tandem-airfoil configurations,
making it one of the largest publicly available tandem-airfoil datasets for machine learning applica-
tions. The datasets are divided into training, validation, and test sets following an 8:1:1 ratio, ensuring
a balanced representation of aerodynamic characteristics across all partitions. The distribution of key
geometric and flow parameters across the training, validation, and test sets is illustrated in Figs. 6 to
9. For extrapolation experiments, data representing the top and bottom 5% of the AOA or Re ranges
are isolated for testing, while the remaining 90% are uniformly sampled to a 8 : 1 ratio for training
and validation.

A.2 MESH GENERATION

For single airfoil datasets, a two-dimensional C-grid type of hexahedral mesh is adopted where the
airfoil is situated at the center of the domain with a domain size of 20 chord lengths as shown in
Fig. 10 (a), whereas the near-field views of the airfoil are illustrated on the left of Fig. 10, showing (b)
symmetric and (c) chambered NACA airfoils. For low Re datasets, a total number of 278 airfoil cells
is used upon grid convergence study in Appx. A.4 with both the leading edge, ∆xLE , and trailing edge,
∆xTE grid sizes equal to 5 mm. the first cell thickness adjacent to the airfoil wall, ∆xBL = 1 mm
such that y+ ≈ 1 to fully resolve the boundary layer around the airfoil geometry without adopting
any wall function. Near the domain boundary, the far-field grid resolution, ∆xfar-field = 0.2 m with a
total expansion ratio of 40 along the outwards direction, resulting in a total of 188 cells.
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Figure 5: Examples of the (left) x−component velocity, u, and (right) kinematic pressure, p, contours of Cruise
AOA=5°, Takeoff, Cruise Random, and Race Car datasets.

Figure 6: Distribution of stagger and gap parameters in train, valid, and test sets for (top row) Cruise
AOA=0° and (bottom row) Cruise AOA=5° datasets.

For tandem-airfoil datasets, the the computational domain is divided into a background mesh gener-
ated by blockMesh and two independent overset meshes created using Pointwise (Karman & Wyman,
2019), which defines the grids surrounding the airfoil as presented in Fig. 11 for configuration with
ground effect. To set up an overset computational domain, each subdomain is required to assign a
‘zoneID’ via setFields and/or topoSet utility to identify the types of mesh and further classify the cell
types as shown in Fig. 11. For background mesh, its ‘zoneID’ is always set to 0, whereas other overset
meshes can take any number but must contain an overset boundary patch where the information is
shared. Figure 11(a) shows the red zones having the airfoil shapes identified as hole cells (i.e. omitted
during simulation), surrounded by interpolated cells (white contour lines along the airfoils) of the
background mesh to couple with the overset meshes. For the overset meshes, as illustrated in Fig. 11
(b), the hole (red) cells are identified where they are outside of the background mesh. The internal
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Figure 7: Distribution of stagger, gap, and height parameters in train, valid, and test sets for Takeoff
AOA=5° dataset.

Figure 8: Distribution of stagger, gap, Re, and AOA parameters in train, valid, and test sets for
Cruise Random dataset.

cells of overset meshes are labeled as calculated type (blue), whereas the overset boundary cells are
labeled as interpolated type to couple with the background mesh.

For the Takeoff dataset, the background mesh with ground has a domain size of 24× 11 m which
consists of total 240000 structural grids with the smallest grid resolutions (∆x = 0.01 m) between
−0.5 < x < 4.5 and −1 < z < 0.5 where the overset meshes are located at. For the Cruise datasets,
the background domain size is larger, having 320000 cells with a domain size of 24 × 20 m, and
the finest resolution grids range between −0.5 < x < 4.5 and −0.5 < z < 0.5. The grid size is
geometrically increased to 0.02m within the extension of 0.5m from the finest grid region; thereafter,
the grid size is then further increased to 0.2m geometrically to domain boundaries. 28 four-digit
NACA airfoils are meshed as overset meshes using Pointwise (Karman & Wyman, 2019). This helps
to reduce the total number of cells while retaining the quality of the mesh. Similar to the single airfoil
dataset, the thickness of the first cell adjacent to the airfoil wall is xBL = 1 mm to keep y+ ≈ 1.
The wall boundary cells are then extruded normally until achieving a maximum grid size of 0.01m,
resulting in approximately 15000 cells for each overset mesh.

The same meshing method used in the Cruise and Takeoff datasets is used in high Re datasets (both
Cruise Random and Race Car datasets). Each simulation contains approximately a total number of
798 airfoil cells with ∆xLE = ∆xTE = 0.2mm. ∆xBL = 2× 10−5 m is used such that to reduce
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Figure 9: Distribution of stagger, gap, height, Re, and AOA (α) parameters in train, valid, and test
sets for Race Car dataset.

Figure 10: (a) A type C-grid mesh is adopted where the airfoil is situated at the center of the domain.
The near-field views of the airfoil are illustrated on the left side, showing (b) symmetric and (c)
chambered NACA airfoils

the non-orthogonality of the mesh and to ensure the 30 ≤ y+ ≤ 100 for the wall function to work
efficiently. For the datasets that utilize the overset technique, the background mesh consists of a
domain size of roughly −21× 10. or −21× 20 for simulation with or without ground effect. The
flow and geometry interaction regions, where the overset meshes are placed, are refined to have a
grid size of ∆x = ∆y = 0.01 m, then geometrically coarsened to domain boundaries at a cell-to-cell
expansion ratio of 1.1.
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Figure 11: Calculated cells (blue cells), interpolated cells (white cells), and hole (red cells) defined
for (a) background and (b) overset meshes. The left column represents the Takeoff meshes, while the
right column represents the Race Car meshes.

A.3 BOUNDARY CONDITIONS AND SOLVER SETTINGS

Tables 7 and 8 tabulate the applied boundary conditions on the steady-state flow variables, namely
the ensemble-averaged velocity, U and kinematic pressure, p which is divided by density, ρ, and the
additional turbulent-related variables, such as turbulent kinetic energy, k, turbulent specific dissipation
rate, ω, and turbulent kinematic viscosity, νt, are introduced due to adopting k − ω SST turbulence
model. No slip condition is used on the airfoil wall, however, slip condition (normal velocity is zero)
is applied on the ground to avoid the viscous boundary layer formation. Freestream boundaries refer
to the outer domain boundary for which the positive flux (outflow) uses zeroGradient whereas the
negative flux (inflow) uses fixedValue.

Table 7: The boundary conditions used for the datasets considering low Re flow condition.
Fields Airfoil Walls Freestream boundaries Ground
U

[
m/s

]
noSlip freestreamVelocity U∞ slip

p
[
m2/s2

]
zeroGradient freestreamPressure p∞

zeroGradientk
[
m2/s2

]
fixedValue kwall freestream k∞

ω
[
s−1

]
fixedValue ωwall freestream ω∞

νt
[
m2/s

]
fixedValue 0 freestream νt∞

Table 8: The boundary conditions used for the datasets considering high Re flow condition.
Fields Airfoil Walls Freestream boundaries Ground
U

[
m/s

]
noSlip freestreamVelocity U∞ slip

p
[
m2/s2

]
zeroGradient freestreamPressure p∞

zeroGradientk
[
m2/s2

]
kLowReWallFunction freestream k∞

ω
[
s−1

]
omegaWallFunction freestream ω∞

νt
[
m2/s

]
nutLowReWallFunction freestream νt∞

For low Re datasets, the freestream velocity, U∞ = 0.146 m/s and the kinematic viscosity, ν =
2.92× 10−4 m2/s such that the Reynolds number, Re = 500. Gauge pressure is considered, hence
the freestream pressure, p∞ = 0 m2/s2. The turbulent freestream values are chosen based on
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recommendations in Menter (1994),

νt∞ = 10−3ν , (4a)

ω∞ =
CωU∞

L
, (4b)

k∞ = νt∞ω∞ , (4c)

where L is the approximate length of the computational domain, Cω = 2 for thin airfoil, XX ≥ 20,
and Cω ≥ 20 for thick airfoil, XX > 20. For the wall boundary condition, the following is
recommended,

kwall = 0 , (5a)

ωwall = 10
6ν

β1y2BL

, (5b)

where β1 = 0.075. For high Re datasets, the U∞ is calculated based on the Re, which varies between
105 and 5×106 with ν = 1.461×10−5 and the chord length of the airfoil as the characteristic length.
Note that, the characteristic length in Race Car dataset is the effective chord length, ceff , between
the leading edge of the main airfoil and the trailing edge of the secondary airfoil. omegaWallFunction
is used as the wall functions of the ω field, estimating y+ by blending between the viscous and inertial
sublayer estimations with a binomial function (Menter, 2001). The corresponding wall functions for
k and νt are kLowReWallFunction and nutLowReWallFunction, respectively.

simpleFoam, an incompressible steady-state turbulence flow solver, is used to generate the single
airfoil datasets, whereas all the tandem airfoil datasets, which involve overset meshes, are simulated
by using overSimpleFoam, the simpleFoam counterpart. Both solvers discretize the steady-state
incompressible NS equations coupled with k − ω SST turbulence model (Menter et al., 2003), using
SIMPLE algorithm (Caretto et al., 1973). The temporal and spatial discretization schemes used in each
solver are summarized in Tab. 9 together with the convergence criteria. The resulting linear equations
are solved using preconditioned (bi-)conjugate gradient (PCG) and stabilized preconditioned (bi-
)conjugate gradient (PBiCGStab) for symmetric and asymmetric matrices, respectively. The selected
preconditioners are diagonal incomplete-Cholesky, (DIC), and diagonal incomplete LU, (DILU) for
symmetric and asymmetric, respectively. The convergence criteria of each field vary in between the
order of 10−6 to 10−5.

Table 9: The discretization schemes chosen for dataset generation
Terms Discretization Scheme
Time (∂/∂t) Steady state
Gradient (∇) 2nd order Gauss linear
Divergence (∇·) 2nd order Upwind biased
Laplacian (∇2) 2nd order Gauss linear
Interpolation 2nd order linear interpolation

A.4 DATASET VALIDATION AND VERIFICATION

A.4.1 DATASETS WITH Re = 500 FLOW CONDITION

To validate the low Re datasets, the grid sensitivity study was conducted on three different levels of
grid resolutions as tabulated in Tab. 10 with their corresponding lift, cl, and drag, cd, coefficients.
Note that the thickness of the first cell adjacent to the airfoil wall is maintained at y+ < 1 for all
three grid resolutions. The cl and cd differences between the fine and dense cases are less than 0.5%,
suggesting that the solutions are converged. Thus, the fine grid resolution is used for the datasets
with low Re flow conditions.

For the tandem-airfoil configurations, the parametric study of tandem-airfoil simulations with ground
effect in Yin et al. (2021) is replicated for validation purposes. The optimum computational domain
size as described in Appx. A.2 is obtained upon verifying the boundaries are far enough so that the
near-field flow interaction between two tandem-airfoils is not affected by the numerical boundaries.
In this validation, the airfoil geometry is fixed using NACA 0012 airfoil with a 5◦ angle of attack
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Table 10: The mesh independent analysis for NACA 0012 at Re = 500 and α = 5◦

Resolutions Total number of cells Cl Cd

Coarse 30832 0.25881 0.18191
Fine 122952 0.26326 0.18179
Dense 512864 0.26254 0.18175

under a low Reynolds number of 500. Figure 12 compares and shows that the simulation results (red
lines) of cl, cd, and cl/cd are in excellent agreement with the reference solutions (Yin et al., 2021)
(black lines) for parameter study of stagger, S, height, H, and gap, G, respectively.

Figure 12: (top row) Lift coefficient, cl, (middle row) drag coefficient, cd, and (bottom row) lift-to-
drag ratio, cl/cd as a function of (left column) stagger, (middle column) gap, and (right column)
height distances.

A.4.2 DATASETS WITH HIGH Re FLOW CONDITION

The mesh independence study for datasets that consider high Re flow conditions was conducted with
NACA 0012 airfoil at Re = 6×106 and α = 0◦ flow condition. The domain size of 20 chord lengths
is found sufficient as shown in Fig. 13(a). Thereafter, three different grid resolutions were conducted
for grid sensitivity analysis, and the cd results are tabulated in Tab. 11, indicating the fine grid
resolution is converged. With the fine grid resolution and same Re, a comparison with experimental
data (Abbott & Von Doenhoff, 2012; Ladson, 1988; McCroskey, 1987) was then conducted with a
range of angles of attack between −16◦ to 18◦ as shown in Fig. 13(b). The simulation results agree
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with the references, especially between −10◦ to 10◦, thus, the fine grid resolution is adopted for
the generation of the datasets, which consider high Re. For the Race Car dataset, the analyses of
computational domain size and accuracy of cl and cd are presented in Fig. 14, indicating that the
adopted domain size and grid resolution are well aligned with the reference Grabis & Agarwal (2019).

Table 11: The mesh independent analysis for NACA 0012 at Re = 6× 106 and α = 0◦

Resolutions Total number of cells Cd

Coarse 60876 0.007575
Fine 111036 0.007594
Dense 345280 0.007565

Figure 13: Analyses of (a) domain independence and (b) accuracy for high Re datasets (NACA 0012,
Re = 6× 106, α = 0◦). In (b), the simulated cl is given by a solid line, while its experimental coun-
terparts are denoted by dotted-line (McCroskey, 1987), circles (Ladson, 1988), and squares (Abbott
& Von Doenhoff, 2012).

Figure 14: Analyses of (a) domain independence, benchmarking of (b) cl and (c) cd of Race Car
datasets through Grabis & Agarwal (2019).

B INPUT AND NEURAL NETWORK PARAMETERS

In all experiments, the angle segments
(
θj , θ

′
j

)
∈
[(
−π

8 ,
π
8

)
,
(
π
8 ,

3π
8

)
, . . . ,

(
13π
8 , 15π

8

)]
were used

to calculate the DID estimates. These were chosen to give 8 arcs each spanning π
4 degrees, centred at

π
4 intervals. Also, the maximum distance value used was dmax = 5. The weighing parameter α = 1
was used for the training loss.

Table 12 shows the neural network model parameters and training parameters used in the experiments.
The input features (and their sizes) to all models consist of the node positions (2), SV (2), DID (8),
inlet/overlap values (3) and freestream/combined field (3) when residual training was done, making
the input layer size 15 without residual training and 18 with. Likewise, the number of output features

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 12: Neural network parameters

MGN IVE

NUMBER OF HIDDEN LAYERS 15 8
HIDDEN LAYER SIZE (NODE) [128, 128, . . . , 128] [128, 256, . . . , 256, 128]
HIDDEN LAYER SIZE (EDGE) [128, 128, . . . , 128] [64, 128, 256, . . . , 256]

LOSS FUNCTION MSE MSE
OPTIMIZER ADAM ADAM
LEARNING RATE SCHEDULER LAMBDA DECAY LAMBDA DECAY
LAMBDA FUNCTION (1 + k · λ0)

−1 (1 + k · λ0)
−1

INITIAL LEARNING RATE (λ0) 5.0E-05 2.0E-04

Table 13: Number of GPUs used in parallel

DATASET \MODEL MGN IVE

CRUISE AOA=0◦ 4 4
CRUISE AOA=5◦ 4 4
TAKEOFF AOA=5◦ 4 4
CRUISE RANDOM 4 -
RACE CAR 4 -

of all models was 3, for the x-velocity, y-velocity and pressure fields. We use the standard mean
squared error (MSE) loss function and Adam optimizer to train the neural networks. A custom
decay function is used for the learning rate, as defined in Tab. 12. All models were trained using
half-precision, NVIDIA GeForce RTX 4080 SUPER and RTX 4080 graphics cards and distributed
data parallel with the number of GPUs as specified in Tab. 13.

C SIMULATION AND PREDICTION TIMINGS

This section compares the average wall time required to simulate a flow scenario compared to
predicting the flow fields using a neural network. Table 14 shows the average wall time per simulation
for each dataset used in training and testing. Note that, each simulation runs in parallel with 64 CPUs.
Likewise, Tab. 15 shows the average time per double-airfoil case for each step involved in the neural
network prediction using the MGN + PRE-RES-FREE + RES-COMB model.

Table 14: Average simulation timings

NUMBER OF AIRFOILS DATASET SIMULATION TIME (S)

SINGLE
AIRFOIL

CRUISE AOA=0◦ 304.42 ± 32.59
CRUISE AOA=5◦ 152.64 ± 14.99
AVERAGE 228.53

DOUBLE
AIRFOIL

CRUISE AOA=0◦ 252.02 ± 56.63
CRUISE AOA=5◦ 284.93 ± 127.49
TAKEOFF AOA=5◦ 292.96 ± 246.70
AVERAGE 276.64

Note that the single-airfoil cases are meshed using the standard C-grid mesh, while an overset or
“chimera" mesh is used in the double-airfoil cases. The background mesh uses a rectangular mesh
and the overset mesh uses a handcrafted mesh. The background mesh cells are then connected to
their nearest neighbour cells in the overset mesh to avoid importing two disjointed graphs. Hence,
importing a double-airfoil mesh takes longer than a single-airfoil mesh.

From Tabs. 14 and 15, we can see that the average total prediction time comes up to only 65.57
seconds. This is a 76% reduction from the average wall time of 276.64 seconds it takes to simulate a
double-airfoil case using OpenFOAM in parallel.
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Table 15: Average neural network prediction timings

STAGE OPERATION SIMULATION TIME (S)

SINGLE AIRFOIL
PREDICTIONS

READ CFD FILE 12.00 ± 0.72
CALCULATE GEOMETRIC FEATURES (×2) 3.34 ± 0.27
INFERENCE (×2) 0.30 ± 0.00

DOUBLE AIRFOIL
PREDICTION

READ CFD FILE + PROCESS OVERSET MESH 18.97 ± 0.72
CALCULATE GEOMETRIC FEATURES 17.03 ± 1.02
COMBINE FIELDS 8.60 ± 0.68
INFERENCE 1.10 ± 0.00

EXPORT CFD FILE 4.22 ± 0.39
TOTAL 65.57 ± 3.80

D TRAINING SCHEMES AND TIMINGS

This section presents the average time required by the various NNs in the multi-NN model to train.
Note that while the NNs had a maximum epoch of 300, an early-stopping mechanism was utilised,
such that training would cease if the validation loss did not improve after 20 epochs, indicating
convergence. Additionally, the MGN front models would have a minimum epoch of 200 to ensure
sufficient training, due to having more turbulent validation losses.

The training and validation loss curves as shown in Fig. 15 for each sub-domain: (a) front, (b) back,
(c) upper, and (d) lower, exhibit consistent convergence. For the front and back sub-domains, the
validation losses closely follow training losses across 200 epochs, indicating good generalization
to unseen data. Similarly, for the upper and lower sub-domains, both losses converge rapidly and
remain stable, suggesting no signs of overfitting. It is worth noting that the size of the computational
domain (graph) is large. Prior to domain decomposition, the model may have been underfitting, and
this structural decomposition allows the networks to effectively capture sub-domain-specific flow
features without increasing the risk of overfitting. These results collectively demonstrate that our
approach maintains a balance between model complexity and generalization.

Figure 15: Training and validation loss curves of the various sub-domains.

The average training times of the MGN models using the Takeoff AOA=5◦ dataset are shown in
Tab. 16. The single-airfoil models had larger training set sizes, leading to longer training times.
Likewise, due to the simplicity of the upper and lower fields, the upper and lower NNs take the least
training time to converge. Hence, these categories are separated.
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Table 16: Average neural network training timings

NN MODEL AVERAGE TRAINING TIME (S)

SINGLE-AIRFOIL
MGN (BASELINE) 27,067

21,883MGN + FREE 28,020
MGN + RES- FREE 10,562

FRONT AND BACK

MGN (BASELINE) 10,452

14,517
MGN + PRE-FREE 15,739
MGN + PRE-FREE + COMB 14,056
MGN + RES-FREE + RES-COMB 11,878
MGN + PRE-RES-FREE + RES-COMB 20,459

UPPER AND LOWER

MGN (BASELINE) 2,853

2,191
MGN + PRE-FREE 2,644
MGN + PRE-FREE + COMB 1,905
MGN + RES-FREE + RES-COMB 1,770
MGN + PRE-RES-FREE + RES-COMB 1,782

E A DISCUSSION ON THE DID

In this section, we will discuss the challenges of calculating the DID as done in the original work and
present the justification for using the smooth-combine method to estimate it instead.

As mentions previously, the DID was estimated numerically following the procedure outlined
in Algorithm 1. Although extending the theoretical definition of DID to multiple geometries is
conceptually straightforward, the numerical calculations grow significantly more complex with each
additional object. These challenges are indicated in red within Algorithm 1, and are illustrated in
Figs. 16 and 17.

Algorithm 1 DID calculation. Steps that gain complexity with additional objects are shown in red.
Input: nodes V ; positions [(xi, yi) : i ∈ V ]; boundary indices bd = [k ∈ V : k is on the boundary of a geometry]; angle segments[(

θj , θ
′
j

)
: 0 ≤ j < J

]
; maximum dmax

DID← [ ]
for j ∈ [0, . . . , J − 1] do

DIDj ← [ ]
for i ∈ V do

d← [ distance between i and k, ∀k ∈ [k ∈ bd : (θj < θi,k < θ′
j) and (k is unobstructed from i)] ]

d← minimum(d, dmax)
DIDθ ← average values of d

wθ ← proportion of
(
θj , θ

′
j

)
where (k is unobstructed from i), ∀k ∈ [k ∈ bd : (θj < θi,k < θ′

j)]

DIDi ← wθ∗DIDθ + (1− wθ) ∗ dmax

end for
append DIDi to DIDj

end for
append DIDj to DID
Return: DID

The first challenge is in determining whether the point on the object boundary k is obstructed from
the point of reference i. As shown in Fig. 16(a), in a single object scenario, it suffices to ascertain
that either boundary face adjacent to k is on the side of the object that faces i. However, as seen in
Fig. 16(b), there is the possibility that k is obstructed from i by the boundary faces of another object.
Determining obstruction is a process that increases in complexity with the addition of every object.

Likewise, the second challenge is in determining the proportion of the angular range (θj , θ
′
j) where

i is obstructed by an object. As shown in Fig. 17(a), in a singular object scenario, this proportion
can be represented as one continuous segment using the minimum and maximum value of θi,k, the
angle at which k is with respect to i. However, in a double object scenario, this proportion may be
represented as one continuous segment as seen in Fig. 17(b), or two separate segments as seen in
Fig. 17(c). Multiple objects involve pair-wise comparisons of each object in determining whether
they overlap (as in the former case) or not (as in the latter case), greatly increasing complexity.
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Figure 16: Determining obstruction of a boundary point from the reference point in a (a) single-object case and
(b) double-object case. Note how a boundary point that is unobstructed in the first case may be obstructed by
another object in the second case.

Figure 17: Determining the angular range that faces an object boundary (shown in green) in a (a) single-object
case, (b) overlapping double-object case, and (c) non-overlapping double-object case. Note that the angle
segment (θj , θ′j) used was (0, π/2) in (a) and (b) and (π/4, 3π/4) in (c).

To circumvent these challenges, a smooth-combining method using the deviation from the maximum
value dmax was utilised to estimate the DID fields for multiple objects in this paper, detailed in
Alg. 2.

Algorithm 2 DID estimation for L number of objects.
Input: nodes V ; positions [(xi, yi) : i ∈ V ]; boundary indices bdl = [k ∈ V : k is on the boundary of geometry l] ∀ geometries

l ∈ {1, . . . , L}; angles segments
[(

θj , θ
′
j

)
: 0 ≤ j < J

]
; maximum value dmax

y0 ← dmax

for l = 1 to L do
yl ← DIDl value calculated using Alg. 1 and boundary indices bdl.

end for
DIDest ← combined field ỹ calculated using Eqn. 1 and Eqn. 2, with (y0, . . . ,yL)
Return: DIDest

While there is a difference between the resulting smooth-combined fields from the direct DID
calculation, it is important to highlight that these differences are minimal. To illustrate this, the
DID fields for two angle segments from a direct calculation and smooth-combining, as well as their
difference, are shown in Fig. 18.

As can be seen from the figures, the most significant difference occurs in points i when both objects
are within its angular range. In these areas, the smooth-combination will overestimate the DID
when the objects do not overlap (blue regions), and underestimate the DID when the objects overlap
(red regions). On the other hand, when only one object is in the angular range of i, both the direct
numerical calculation and the smooth-combined calculation calculates its average distance to every
unobstructed boundary point j on the objects using a relatively uniform weight. Hence, there is little
difference between the two. Importantly, the smooth-combined calculation produces a close estimate
without harsh lines.

The timings and maximum memory usage of the DID calculation done directly was estimated using a
small sample of the datasets. It is compared against the estimation using the smooth-combine scheme
in Tab. 17. Note that the direct calculation was not optimised, and some steps that could be done

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 18: Comparison of the DID field calculated directly with that from smooth-combined estimate. Above:
Angular range is [0, π]. Below: Angular range is [π/2, 3π/2].

in parallel were instead done in succession. Doing them in parallel would decrease the timing but
increase the memory overhead.

Table 17: Comparison of DID calculation times and memory overhead

CALCULATION TYPE AVG. TIME PER FIELD (S) MAX. MEMORY USAGE (GB)

DIRECT 5221.641 25.5
WITH SMOOTH-COMBINE 3.492 23.3

As can be seen, using the smooth-combined estimate saves a significant amount of calculation time
for a similar amount of memory required, making it the ideal choice. For a dataset of size 784, the
direct DID calculations would take an estimated 47 days. The accuracy performance of the direct
DID is hence irrelevant when the goal is to produce faster results than numerical simulations.

F SENSITIVITY STUDIES ON THE DID

To ensure a fair comparison with the baseline methods, hyperparameters such as learning rate,
network depth, and layer sizes were kept consistent with the baseline settings. This minimizes
variability and ensures that the observed improvements are due to our proposed approach rather
than hyperparameter tuning. However, sensitivity to certain domain-specific parameters, such as
the maximum DID distance, dmax and the number of angle segments used in DID computation,
could impact performance. These parameters influence the granularity of the directional distance
representation and its ability to capture relevant physical interactions. Sensitivity studies were
conducted using the model MGN + PRE-RES-FREE + RES-COMB on the Cruise AOA= 5◦ dataset.
The results, as shown in Tab. 18, reveal the impact of varying dmax and the number of angle segments
on MSE.

Table 18: MSE performance evaluation for sensitivity studies on DID parameters.

dmax NO. OF ANGLE SEGMENTS MSE(×10−2)

5 8 0.68±0.50
2.5 8 0.85±0.38
5 4 0.89±0.44
5 16 0.51±0.29

Reducing dmax to 2.5 increases MSE, likely because a smaller dmax limits the model’s ability to
capture longer-range interactions. Similarly, decreasing the number of angle segments to 4 also leads
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to higher errors, suggesting that fewer angle segments reduce the directional resolution of the DID
representation. In contrast, increasing the number of angle segments to 16 improves the performance
at the expense of higher computation time for the DID features. Compared with the baseline MGN,
whose MSE is 1.34× 10−2 on the same Cruise AOA= 5◦ dataset, the variations of these results are
relatively minor, indicating the proposed method’s robustness and insensitivity to these parameters.

G FEASIBILITY OF INDIVIDUAL DID OF EACH OBJECT

Computing a single DID for both objects simultaneously is primarily a practical decision aimed at
improving efficiency and scalability. While Alg. 1 can technically compute a single DID for multiple
objects simultaneously, its numerical complexity increases significantly with each additional object,
resulting in slower training and inference speeds. For instance, Alg. 1 required 5222 seconds to
compute the DID for tandem airfoils, whereas Alg. 2, which computes separate DIDs for individual
airfoils and then combines them, completed the task in only 3.5 seconds.

Additionally, calculating separate DIDs for each object would increase the input size proportionally
to the number of objects. If the dimension of a single object’s DID is N and there are M objects, the
total input size would scale as N ×M , leading to higher memory requirements and computational
load on GPUs. By combining the DIDs into a single representation, our approach maintains scalability
and significantly reduces computational overhead. Algorithm 2 strikes an effective balance, allowing
for efficient handling of multi-object scenarios without sacrificing performance, as discussed in
Appendix E.

To further evaluate the feasibility of using individual DIDs for each object, an experiment was
conducted to compare the performance and resource usage of individual DIDs versus a single
combined DID using the model MGN + PRE-RES-FREE + RES-COMB on the Cruise AOA= 5◦

dataset. The results, as tabulated in Tab. 19, reveal that the single combined DID achieves better
computational efficiency and prediction accuracy.

Table 19: Performance evaluation of experiment using single combined and individual DID on Cruise AOA= 5◦

dataset.

METHOD AVERAGE GPU MEMORY USAGE (GB) MSE (×10−2)

SINGLE COMBINED DID 16.64 0.68±0.50
INDIVIDUAL DID 23.37 0.80±0.42

H SMOOTH-COMBINING METHOD VALIDATION

To validate the effectiveness of the smooth-combining method, we compared its performance against
freestream and a simple linear interpolation weighted by the distance to each airfoil as defined,

Ũ(i) = γ(i) ·U1(i) +
(
1− γ(i)

)
·U2(i) ,

γ(i) =
d2(i)

d1(i) + d2(i)
,

(6)

where d1 and d2 are the shortest distances to front (leading) and back (trailing) airfoils, respectively.
Figure 19 illustrates the weighting field, γ1, generated from distance-based linear interpolation,
showing a smooth gradient between the two airfoils. The comparison between (a) freestream, (b)
distance-based linear interpolation, and (c) smooth-combining methods is presented in Fig. 20,
which shows the absolute error contours of the combined velocity components and pressure fields
relative to their corresponding ground truths. The smooth-combining method demonstrates the lowest
errors, particularly in the downstream and flow interaction regions, where the freestream and linear
interpolation methods show pronounced inaccuracies.

This qualitative observation is supported by the quantitative results in Tab. 20, where the smooth-
combining method achieves the lowest mean absolute error (MAE) with respect to ground truths
across all evaluated metrics, including velocity components and pressure. Specifically, the smooth-
combining method outperforms both freestream and linear interpolation with an overall MAE
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Figure 19: Distance-based linear interpolation weight values for the front airfoil, γ1.

Figure 20: Absolute error contours of combined flow field variables u (top row), v (middle row), and p (bottom
row) via (a) freestream, (b) distance-based linear interpolation, and (c) smooth-combining with respect to ground
truth u, v, and p.

(×10−3) of 1.46 ± 0.31, compared to 1.76 ± 0.23 and 6.45 ± 0.53 for linear interpolation and
freestream, respectively.

Table 20: MAE of combined flow fields via various methods against ground truths.

METHOD / VARIABLE u (×10−2) v (×10−3) p (×10−4) OVERALL (×10−3)

FREESTREAM 1.57± 0.13 3.08± 0.28 5.45± 0.58 6.45± 0.53
LINEAR INTERPOLATION 0.39± 0.05 1.14± 0.15 1.95± 0.25 1.76± 0.23
SMOOTH-COMBINING 0.31 ± 0.07 1.07 ± 0.16 1.71 ± 0.31 1.46 ± 0.31

To further assess the utility of smooth-combining, we conducted an additional experiment using the
linear-interpolated flow fields as initial estimators for training the model (MGN + PRE-RES-FREE +
RES-COMB) on the Cruise AOA=5◦ dataset. As shown in Tab. 21, the smooth-combining approach
results in significantly lower MSE than linear interpolation. These results confirm that smooth-
combining not only provides a more accurate starting point for further training, but also captures
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complex flow interactions more effectively than alternative approaches. Its superior performance in
both initial approximation and subsequent training highlights its importance for this framework.

Table 21: Evaluation of model performance using linear interpolated vs smooth-combined flow fields

METHOD MSE (×10−2)

LINEAR INTERPOLATION 1.15 ± 0.58
SMOOTH-COMBINING 0.68 ± 0.50

I ANALYSIS OF PREDICTED FLOW FIELDS

To showcase the effects of varying distance between the two airfoils and increasing AOA on the
accuracy of our NN model, we have crafted Figs. 21 and 22. The initial qualitatively compares
the prediction of x-velocity, û, to the ground truth, uGT, for (a) two closely-separated airfoils (S =
0.92, G = -0.2) with strong influence by the front airfoil on the aft airfoil and (b) two distant airfoils
(S = 1.8, G = 0.38) that are just mildly interacting with each other. The latter shows contours of
x-velocity for approximately (a) positive and (b) negative AOA extremes considered in this work (i.e.,
[−5◦, 6◦]). All the cases illustrate that, visually, there are little differences between the ground truths
and corresponding predictions, thus verifying the robustness of our NN model for a decent range of
separation distance between the two airfoils and AOA.

Figure 21: Comparison of (top) ground truth x-velocity, uGT, (middle) predicted û flow fields by model MGN
+ PRE-RES-FREE + RES-COMB, and (bottom) normalised x-velocity error flow fields at (a) closely-separated
and (b) distant airfoils for Cruise AOA= 5◦ dataset.

As the loss function used in training the MGN model includes a boundary loss component, which
directly penalizes errors on the airfoil surface, ensuring that the model learns to capture surface
flow characteristics accurately. Figure 23 illustrate the correlation between the ground truth and
MGN-predicted lift, cl, and drag, cd, coefficients for three datasets: (a) Cruise AOA=5◦, (b) Takeoff,
and (c) Cruise Random. For cl, the data points generally follow the diagonal line, indicating a
strong correlation between the MGN predictions and the ground truth values for both front and
back airfoils. However, a slight deviation is observed in the Cruise Random dataset, suggesting
greater prediction variability under complex flow conditions. For cd, the predicted values also show a
reasonable correlation with the ground truth, though a noticeable spread exists, especially for the back
airfoil (blue circles). This spread is more significant in the Takeoff and Cruise Random datasets,
indicating that the MGN model has difficulties in capturing velocity-related drag characteristics in
these scenarios. These results demonstrate that the MGN model effectively predicts lift coefficients,
dominated by pressure, for both front and back airfoils, but its performance on drag prediction is
more sensitive to variations in flow conditions and the relative position of the airfoil.
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Figure 22: Comparison of (top) ground truth x-velocity, uGT and (middle) predicted û flow fields by model
MGN + PRE-RES-FREE + RES-COMB, and (bottom) normalised x-velocity error flow fields at (a) positive and
(b) negative AOA for Cruise Random datasets.

Figure 23: Correlation of ground truth and MGN-predicted (left) lift and (right) drag coefficients for
(a) Cruise AOA=5◦, (b) Takeoff, and (c) Cruise Random datasets. White squares and blue circles
represent the front and back airfoils, respectively, in the tandem-airfoil configuration.

To quantify the accuracy of our NN model across different scenarios, we have tabulated the MSE
values of our predictions relative to their ground truths under varying Reynolds number, Re, AOA, S,
and G in Tab. 22. Like the qualitative assessment in Figs. 21 and 22, Tab. 22 confirms once again
the consistent robustness of our NN model, with the MSE remaining within a remarkable range of
0.10 (an order smaller than the baseline MSE of 1.79 for the uniform training condition in Tab. 6)
regardless of Re, AOA, S, and G.
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Additionally, we evaluated the normalized residual values of the discrete incompressible
Navier–Stokes equations of the SIMPLE algorithm with the predicted x- and y-velocity, û and
v̂, respectively, in Tab. 23. Both variables were predicted with residual that is at least two orders
smaller than the maximum value of 1, thus reinforcing the accuracy of our NN as the residual for
Navier–Stokes equations is a direct indicator of error relative the exact solution to the simulation
(Versteeg & Malalasekera, 2007).

Table 22: Normalized MSE of NN predictions under varying Re, AOA, S, and G.

VARIABLE RANGE MSE

Re
Re < 106 0.007± 0.004
106 ≤ Re < 3× 106 0.04± 0.03
Re ≥ 3× 106 0.21± 0.14

AOA
AOA < −2◦ 0.07± 0.08
−2◦ ≤ AOA < 2◦ 0.08± 0.09
AOA ≥ 2◦ 0.15± 0.18

S
S < 1.0 0.11± 0.13
1.0 ≤ S < 1.5 0.10± 0.17
S ≥ 1.5 0.08± 0.08

G
G < −0.4 0.09± 0.10
−0.4 ≤ G < 0.4 0.10± 0.15
G ≥ 0.4 0.10± 0.10

Table 23: Mean and standard deviation of normalised residuals of discrete incompressible Navier–Stokes
equations of SIMPLE algorithm over 10% of the random cruise tandem airfoils datasets.

VARIABLE NORMALISED RESIDUAL (MAXIMUM OF 1)

u 0.00203± 0.00017
v 0.0168± 0.00074
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