Embedding Refinement

Anonymous ACL submission

Improving Dual-Encoder Training with Gradient-Based Cached

Abstract

We present an efficient approach for training
dual-encoder models in large-scale retrieval
tasks, aimed at reducing computational over-
head and improving retrieval performance. Our
method introduces a novel combination of
similarity-based large negative sampling and
direct gradient updates to cached target embed-
dings. By leveraging a pre-trained encoder to
initialize target embeddings and storing them
in a buffer, we eliminate the need for frequent
recomputation, thereby reducing both compu-
tational cost and memory usage. Negative sam-
ples are selected from the top-£ most similar
target embeddings within the batch and across
queries, and cached embeddings are updated
directly through gradient descent. Additionally,
we utilize the Faiss library to manage nearest
neighbor search, periodically rebuilding the in-
dex to maintain efficiency. Our approach accel-
erates training and improves retrieval accuracy,
especially for quantized index types, providing
a scalable solution for large-scale retrieval tasks
that balances both computational efficiency and
retrieval precision.

1 Introduction

Efficient retrieval of relevant information from
large document corpora is a critical task in mod-
ern retrieval-based systems, underpinning applica-
tions like open-domain question answering, search
ranking, and fact verification (Kwiatkowski et al.,
2019; Xu et al., 2024; Chen et al., 2022). Tra-
ditional sparse retrieval methods, such as BM25,
have long been employed for document matching
but face challenges, particularly with vocabulary
mismatch and the reliance on bag-of-words embed-
dings (Croft et al., 2010).

Recent advancements in dense retrieval aim to
overcome these limitations by leveraging continu-
ous vector embeddings learned through deep neu-
ral networks, enabling more flexible and powerful

Target Logits

T Update

Query Logits

g

The cached target
representations

Similarity-based retrieve

x; 0 Query Target x; 0
f(x:0) Encoder Encoder 9(x:)
Query x X e Target Y

y2

Yo

Figure 1: Overview of our approach. We use a pre-
trained g to embed all target texts). For any given
query z, the f produces a query embedding. From the
cached target embeddings, the top-k most similar neg-
ative samples are selected. The target embeddings are
directly updated based on the gradients during training.

document matching (Zhao et al., 2024). Among
these, dual-encoder models have gained promi-
nence. In this architecture, an input query and
candidate document are encoded separately by neu-
ral networks, and their relevance is determined by
the inner product of their respective embeddings
(Karpukhin et al., 2020). However, training these
models presents a challenge: directly computing
softmax logits over all possible target documents
is computationally infeasible. As a result, approx-
imations, such as truncated softmax and negative
sampling, are employed to reduce the computa-
tional burden, though these methods still suffer
from inefficiencies due to the staleness of cached
target embeddings (Reddi et al., 2019; Lindgren
et al., 2021). Additionally, constructing effective
negative instances during training remains a sig-
nificant challenge, especially in the first stage of
retrieval, where models must distinguish relevant

from irrelevant documents (Karpukhin et al., 2020).

In this paper, we propose a novel method to en-
hance dual-encoder training for large-scale retrieval
tasks. Our approach combines similarity-based
large negative sampling with direct gradient up-
dates to cached target embeddings. By initializing
target embeddings with a pre-trained encoder and
storing them in a buffer, we eliminate the need
for frequent recomputation, thereby reducing both
computational overhead and memory usage. We
use truncated softmax for efficient gradient compu-
tation and select negative samples from the top-k
most similar targets within the batch and across
queries, where & can be large to build a more com-
prehensive negative sample set. The cached target
embeddings are then updated through gradient de-
scent. We further integrate the Faiss library for
efficient nearest neighbor search and periodically
rebuild the index to maintain retrieval accuracy.

Our key contributions are: 1. Efficient target em-
bedding cache with direct gradient updates, elimi-
nating the need for costly recomputations and en-
suring up-to-date embeddings. 2. The introduction
of similarity-based large negative sampling, com-
bined with in-batch negative samples, to better ap-
proximate the full softmax distribution and improve
the training efficiency. 3. Experimental results
showing significant improvements in retrieval accu-
racy, particularly with quantized indices, achieving
faster retrieval and reduced index size for large-
scale tasks.

2 Related Work

Sparse and Dense Retrieval Methods Tradi-
tional retrieval methods, such as TF-IDF and BM25
(Robertson et al., 2009), rely on lexical overlap
and are limited in capturing semantic relationships.
Dense Passage Retrieval (DPR) (Karpukhin et al.,
2020) improves upon these methods by learning
dense vector embeddings for both queries and pas-
sages, which enhances retrieval accuracy (Zhan
et al., 2021; Zhao et al., 2024; Luan et al., 2021).
However, training dense models on large corpora
remains computationally expensive (Arabzadeh
et al., 2021; Monath et al., 2024).

Negative Sampling Negative sampling is vital
for training dense retrieval models. Traditional
methods, such as random and batch-based sam-
pling, can limit diversity. Approaches like using
BM?25 for "hard" negatives (Karpukhin et al., 2020)
improve sample quality but still face limitations.

Approximate Nearest-Neighbor Contrastive Learn-
ing (ANCE) (Xiong et al., 2020) enhances this by
selecting hard negatives based on similarity, im-
proving the quality of negative samples. Dynamic
Indexes (Monath et al., 2023) use tree structures
for more efficient negative mining, while methods
like TriSampler (Yang et al., 2024) further improve
performance by providing more informative nega-
tives.

Target Embedding Caching and Indexing Dur-
ing training, methods like ANCE (Xiong et al.,
2020) and Corrector Networks (Monath et al.,
2024) often build a cache of target embeddings to
avoid recalculating embeddings for every query.
In passage retrieval tasks (Sachan et al., 2022),
caching target embeddings is also used to accel-
erate retrieval by enabling fast lookup during query
processing. Several indexing methods are em-
ployed to balance retrieval speed and memory
usage, including Exact Search for L2 distances
(Norouzi et al., 2013), Hierarchical Navigable
Small World (HNSW) graphs (Lin and Zhao, 2019),
and Inverted File Indexes with post-verification
(Kukreja et al., 2023). Product Quantization (PQ)
(Thakur et al., 2022) is also commonly used to com-
press the index size at the expense of retrieval accu-
racy, offering a scalable solution for large datasets
with limited memory.

3 Preliminaries

This section introduces the foundational concepts
of dual-encoder architectures in dense retrieval
models, the softmax function used for ranking rele-
vance, and techniques like truncated softmax and
top-k sampling that make training efficient at scale.

Dual-Encoder Architecture In dense retrieval
models, a dual-encoder architecture is commonly
used to compute the unnormalized logits, s, 4, by
factorizing the embeddings of both the query and
the target. Specifically, each input (the query x and
the target y) is encoded using deep neural networks
into D-dimensional embeddings. The query x is
encoded by a function f(z;©), and the target y is
encoded by a function g(y; ©). The logits are then
computed as the dot product between the query and
target embeddings:

52y = (f(2;0),9(y; ©)).)]

This architecture is effective in learning seman-
tic embeddings for both queries and targets, facil-

itating retrieval tasks by ranking the relevance of
candidate passages based on the similarity between
their embeddings.

Softmax Function Given the dual-encoder
framework, we now define a probability distribu-
tion over a set of N targets,), based on the sim-
ilarity between the query x and the target y. The
softmax function is commonly used to compute
this distribution as follows:

exp(TSg.y)
P(y|lr) = Tw
X
exp(TSz.y)
Zy’ey exp(T8y,y)’

where T is the temperature parameter that controls
the smoothness of the distribution, and s, , rep-
resents the unnormalized score or logit of the tar-
get y given the query x. This formulation is com-
monly used in retrieval tasks, where x corresponds
to a query and the targets, ¥y, represent candidate
passages (e.g., in the Natural Questions dataset
(Kwiatkowski et al., 2019), where x is a question,
and the targets are passages from Wikipedia).

The softmax function assigns a probability to
each target based on its relevance to the query.
This is useful in tasks such as information retrieval,
where the goal is to rank passages according to
their relevance to a given query.

2

Training with Truncated Softmax In the dual-
encoder framework, training typically involves op-
timizing a task-specific loss function, such as cross-
entropy, using gradient descent (Rawat et al., 2019).
This process requires computing the softmax dis-
tribution over all possible targets, which is com-
putationally expensive due to the large number of
potential candidates (often in the millions or bil-
lions). The exact computation of the normalizing
constant Z,—which requires evaluating the sum
over all targets—becomes intractable during train-
ing.

To address this challenge, we approximate the
softmax function by using a truncated version,
P(y|x), which includes only a subset of targets
S(Y)cy:

exp(Tsz.y)
2yres(y) eXP(Tszy)
By truncating the softmax to a subset S(})),

the computation of the normalization term is sig-
nificantly reduced, making it feasible to perform

P(ylz) = 3)

efficient optimization of the dual-encoder param-
eters. While this truncated softmax introduces
a bias—since it only considers a subset of tar-
gets—the approximation enables tractable training
while preserving the model’s ability to learn effec-
tive semantic embeddings.

Top-K Sampling Approximations Efficiently
selecting the subset S()) for truncated softmax is
crucial. Traditional methods like BM25 select top-
k candidates based on lexical similarity. For dense
retrieval, top-k targets are selected based on embed-
ding similarity, measured using the inner product
between query and target embeddings. Advanced
methods, such as Gumbel-Max (Lindgren et al.,
2021) and large-scale sampling algorithms (Xiong
et al., 2020), offer more efficient top-£ selection,
improving retrieval performance while scaling to
large datasets.

4 Methodology

In this section, we present an efficient approach to
training the dual-encoder model, focusing on two
main objectives: enhancing the query encoder’s
learning process and optimizing the update of tar-
get embeddings through cached embeddings. The
key idea is to utilize similarity-based sampling to
select hard negative samples and directly update
the cached target embeddings using gradients, elim-
inating the need to re-evaluate the target encoder
during training. This significantly reduces compu-
tational overhead, making it feasible to train large-
scale retrieval models. An overview of the overall
architecture is shown in Figure 1, highlighting the
key components and workflow of the proposed ap-
proach.

Target embedding Initialization To address the
computational challenges of large-scale training,
we begin by initializing the target embeddings us-
ing a pre-trained target encoder, g(y; ©). For each
target y;, the corresponding embedding is com-
puted as:

by, = 9(yi;0), “4)

where b,, € RP represents the D-dimensional
vector for target ;. These initial embeddings are
stored in a buffer, B € RY*P, which contains the
cached embeddings for all targets in the dataset.
The interaction between the query encoder and
a cached target embedding is computed as the dot

product:
Sz,by = <f($7 @)a by>7)
where b, represents the cached embedding of a
target stored in the buffer.
Using these scores, the truncated softmax distri-
bution is expressed as:

exp(T5z,p,)

ﬁb xTr) =)
(Bole) Zby/eS(B) exp(ng,;’by,)

(6)

where S(B) denotes the subset of cached target
embeddings selected from the buffer.

By focusing on a subset of target embeddings
in the buffer, we can avoid recalculating target em-
beddings using the target encoder. This approach
drastically reduces memory usage and computa-
tion, allowing us to sample a large number of
high-similarity negative samples efficiently. Con-
sequently, this strategy accelerates the training pro-
cess without compromising the model’s ability to
learn high-quality semantic embeddings.

Negative Sample Construction A critical com-
ponent of this methodology is the construction of
negative samples, which are essential for effective
training of the dual-encoder model. In large-scale
retrieval tasks, the goal is to select negative sam-
ples that are highly similar to the query embedding,
as these “hard” negatives are crucial for optimizing
the training objective.

We adopt a hybrid strategy for constructing the
negative sample set, Snee (53), for each query. This
set consists of:

* The top-k most similar target embeddings (ex-
cluding the positive sample) retrieved based
on the query embedding.

* The top-k£ most similar target embeddings for
all other queries in the same batch.

Thus, for each query, the negative sample set
contains k x batch negative samples. For instance,
with a batch size of 32 and k set to 500, the total
number of negative samples is 16,000. This is
a large number compared to those used in other
studies.

This strategy ensures that the negative sample
set captures both highly relevant hard negatives and
diverse negatives across the batch. To improve the
approximation of the softmax distribution, k can
be set to a large value (e.g., 500). The complete
sample set Syeq(B) for each query is then formed
by including the corresponding positive sample b,,.

Cached Target embedding Update We update
only the selected cached target embeddings using
gradients, which reduces the overall training time
and memory usage.

To further enhance training efficiency, we intro-
duce a batch update mechanism for the cached tar-
get embeddings. Let Syeq(B) denote the subset of
cached target embeddings selected from the buffer
for each query. These embeddings are the ones that
will undergo gradient updates during training.

After selecting the top-k negative samples for
each query, we compute the gradients of the cross-
entropy loss with respect to the cached target em-
beddings. The loss function, £, based on the trun-
cated softmax, is defined as:

L= log P(b|x), 7

z€eB

where P(b,|x) is computed using the truncated
softmax equation from earlier. Based on the gra-
dients of the loss with respect to the cached target
embeddings b, the cached target embeddings are
updated as follows:

oL

by %by—naiby7

(®)
where 7 is the learning rate. This update is applied
only to the target embeddings selected in the batch
S(B).

After updating the target embeddings for the
batch, the modified entries in the buffer are re-
placed with their updated values. These updated
buffer entries are then used for the next training
step. Additionally, the similarity-based sampling
process ensures that the top-k negative samples are
dynamically selected based on the updated embed-
dings.

Faiss Index Construction and Update To effi-
ciently retrieve the top-k most similar samples dur-
ing similarity-based sampling, directly computing
the inner product similarity scores and sorting them
is computationally infeasible. A common practice
is to use the Faiss library to construct an index
that enables fast retrieval of the top-k most similar
samples. The most basic index is the flat index,
which stores the full vectors and performs exhaus-
tive search. This index maximizes accuracy and is
often used in passage retrieval tasks to report opti-
mal test results. However, it is memory-intensive
and slow for large-scale datasets.

To address these limitations, we employ the
HNSWFlat index, which is based on the HNSW
graph. This index allows for fast approximate near-
est neighbor searches but still requires significant
memory. To further optimize memory usage and
retrieval speed, we combine HNSWFlat with In-
verted File with Product Quantization (IVFPQ) in-
dex. IVFPQ compresses the index size significantly
while maintaining high retrieval speed, making it
suitable for large-scale training and retrieval tasks.

As the cached target embeddings are periodically
updated, the Faiss index constructed on must also
be updated to maintain fast and accurate nearest
neighbor searches. To ensure efficient retrieval,
we rebuild the Faiss index at fixed intervals, typi-
cally every 0.5 epochs, to reflect the updated target
embeddings.

Algorithmic Process The overall training pro-
cess, including query encoding, retrieval of neg-
ative samples, loss calculation, and periodic up-
dates to the Faiss index, is outlined in Algorithm 1.
This procedure ensures the efficient training of the
model without the need to repeatedly re-evaluate
the target encoder, while also enabling scalable
training with large datasets.

Algorithm 1 Improving Dual-Encoder Training

with Gradient-Based Cached Embedding Refine-

ment

Require: Pre-trained query encoder f, target en-
coder g

Require: Target dataset) = {y; },—
Require: Learning rate 7, batch size, negative
sample size k, faiss index update interval C
Ensure: Optimized query encoder f and updated
cached target embeddings B
1: Compute initial target embeddings:
{9(yi) | Vyi € V}
Construct Faiss index for B
for each training step do
Sample a batch of queries B = {z; }?a:tclh
Compute query embeddings: e, = f(x;)
Retrieve top-£ hard negatives from B for
each query
Compute loss £
Update query encoder parameters
: Update B with modified target embeddings
10: if training step mod C == 0 then

[V
i=1

B =

A AN S

[BN

11: Rebuild Faiss index with updated B
12: end if
13: end for

S Experiments

In this section, we evaluate the effectiveness and
efficiency of our proposed method, Efficient Dual-
Encoder Training with Gradient-Based Cached Em-
bedding Updates, on large-scale retrieval tasks. Our
primary goals are to demonstrate the following key
improvements:

* Enhanced query encoder training through
similarity-based large negative sampling.

* Scalable and efficient updates to cached tar-
get embeddings through direct gradient-based
refinement.

The experiments were conducted on two
benchmark datasets: Natural Questions (NQ)
(Kwiatkowski et al., 2019) and TriviaQA (Joshi
et al., 2017). The NQ dataset is specifically de-
signed for end-to-end question answering tasks,
containing real Google search queries as questions,
with corresponding answers identified by human
annotators in the form of spans from Wikipedia
articles. TriviaQA, on the other hand, consists of
trivia questions with corresponding answers that
were scraped from the web. The dataset includes
over 21 million Wikipedia passages, which serve
as the target data for retrieval.

For evaluation, we primarily use Recall@k
(R@K) as the metric, which quantifies the frac-
tion of queries for which the relevant passage is
ranked among the top k results.

For all experiments, the query encoder and target
encoder were initialized using pre-trained models
from the DPR framework. The pre-trained target
encoder was used to embed all target texts, gen-
erating an initial buffer B € RY*P that stores
the target embeddings. We trained the models for
10 epochs with a learning rate of 10~° using the
Adam optimizer, linear learning rate scheduling
with warm-up, and a dropout rate of 0.1. The batch
size was set to 32, with a top-k of 500 and a temper-
ature of 8. We conducted the training on a system
equipped with two NVIDIA 3090 GPUs (24GB
memory each), an Intel(R) Xeon(R) CPU E5-2678
v3 @ 2.50GHz, and 125GB of RAM. The train-
ing was limited to 24 hours per session to ensure
stability and manage resource usage effectively.

5.1 Experimental Results

In this section, we compare the performance of
our method with several approaches. First, we

use DPR (Karpukhin et al., 2020) as our baseline
method. Next, we consider the ANCE method
(Xiong et al., 2020), which shares similarities with
our approach. Both methods leverage the DPR
framework for initialization. However, the ANCE
method asynchronously updates a Faiss index using
a stale target encoder, and periodically re-embeds
all target embeddings. In addition, we compare
with the Corrector Networks (Monath et al., 2024),
which proposes a scalable solution to this prob-
lem by training a small parametric corrector net-
work that adjusts stale cached target embeddings,
enabling an accurate softmax approximation and
sampling of high-scoring “hard negatives” in an
efficient manner.

Table 1 and Table 2 presents the retrieval per-
formance of the various methods on the NQ and
TriviaQA test datasets using the FlatL.2 indexing
method, evaluating Recall@k for different val-
ues of k. Our approach consistently outperforms
the other methods across multiple top-k retrievals.
While the performance of our method is compa-
rable to other approaches, it achieves notable im-
provements in efficiency. Specifically, our method,
leveraging similarity-based large negative sampling
and efficient gradient updates to the cached embed-
dings, significantly reduces computational com-
plexity and training time, completing in just 10
epochs.

While FlatL.2 indexing generally provides the
highest retrieval precision on test datasets, practi-
cal passage retrieval tasks often require a balance
between retrieval precision, speed, and storage effi-
ciency. Table 3 compares the index size and query
speed of different indexing methods. The Quan-
tized HNSW (QHNSW) index significantly outper-
forms FlatL.2 in both index size and query speed.
Specifically, the QHNSW index is 30x smaller in
size and achieves 300x faster query retrieval com-
pared to FlatL2.

Figure 2 further illustrates the retrieval perfor-
mance of different Faiss index types on the NQ
dataset. Our method significantly improves the pre-
cision of the QHNSW index. In terms of R@1, our
approach achieves a 5 percentage point improve-
ment over the baseline. Even with compression,
the precision of the QHNSW index closely approx-
imates that of the uncompressed FlatL.2 index. Im-
proving the retrieval precision of quantized indices
enhances the effectiveness of passage retrieval, par-
ticularly in scenarios where storage space is lim-
ited.

Comparison of Faiss Index Types on Retrieval Precision

Index Type e
—e— dpr(HNSW + IVFPQ) ooozzEE

75 dpr(flat) =
—e— our(HNSW + IVFPQ)
e~ our(flat)

65

Precision

w @
@ 3

w
S

45

d
© &
Recall@k

Figure 2: Comparison of retrieval precision using differ-
ent Faiss index types on the NQ dataset.

5.2 Ablation Study on Model Training

To better understand the individual contributions
of the components in our proposed method, we
conducted an ablation study using the NQ dataset.
Specifically, we evaluated the effects of similarity-
based large negative sampling and gradient-based
updates to cached target embeddings.

We started with a baseline configuration that
used the original Dual-encoder model trained
with standard settings, without incorporating ei-
ther similarity-based large negative sampling or
gradient-based updates to the target embeddings.
The following configurations were then tested:

» Large-Batch Negatives: In this configuration,
similarity-based large negative sampling was
incorporated during query encoder training.

* Full Model: This configuration combined
both similarity-based large negative sam-
pling and gradient-based updates to the tar-
get embeddings, representing the complete
approach.

The ablation study results, shown in Table 4,
demonstrate the effectiveness of the proposed com-
ponents. Similarity-based large negative sam-
pling improved retrieval performance across all
Recall @k metrics, particularly enhancing the query
encoder’s ability to differentiate relevant from irrel-
evant passages. Gradient-based updates to cached
target embeddings further boosted performance,
especially at higher recall levels, by ensuring the
embeddings remain accurate and aligned with the
evolving query representations. Combining both
strategies in the Full Model led to the best overall

Table 1: Retrieval performance comparison on NQ and TriviaQA test sets (R@k %)

Dataset Method R@1 R@5 R@10 R@20 R@100
DPR 52.13 71.80 77.20 81.16 87.06
NQ ANCE - - 81.9 87.5
Corrector 50.61 71.00 77.73 82.66 88.39
Ours 5249 71.85 77.84 81091 87.40

Table 2: Retrieval performance comparison on TriviaQA
test sets (R@k %)

Method R@20 R@100

DPR 79.4 85.0
ANCE 80.3 85.3
Ours 80.1 85.6

Table 3: Index Size and Query Speed Comparison

Index Size (GB) Speed (ms)
FlatL2 61 16264
HNSW&IVFPQ 2.7 46

performance, outperforming both the Baseline and
Large-Batch Negatives configurations. This high-
lights the complementary benefits of these com-
ponents in improving retrieval accuracy and effi-
ciency.

Overall, the ablation study confirms that
similarity-based large negative sampling enhances
the query encoder’s discriminative ability, while
gradient-based updates ensure that the cached em-
beddings stay aligned with the evolving query rep-
resentations. Together, these strategies significantly
improve retrieval performance, making the model
more efficient for large-scale retrieval tasks.

6 Conclusion

In this paper, we introduced an enhanced approach
to dual-encoder training by leveraging large-scale
similarity-based negative sampling and embedding
updates via cached embeddings. Our method en-
ables the truncated softmax to closely approximate
the full softmax, improving training efficiency. Di-
rect updates to cached embeddings through back-
propagation eliminate the need for continuous tar-
get embedding recalculation. Experimental results
demonstrate that our approach not only matches
the accuracy of models using flatL.2 indexing but
also outperforms the current best methods on the

quantized HNSW index, leading to superior re-
trieval efficiency and precision in practical passage
retrieval tasks.

7 Limitations

Our approach, while effective, has some limita-
tions. First, direct updates to cached embeddings
via backpropagation require storing the entire set
of embeddings in memory, leading to high mem-
ory consumption. For example, training on the
Wikipedia dataset requires up to 70GB of memory,
which may be prohibitive for large datasets. Sec-
ond, a large number of negative samples must be
transferred between memory and GPU, which can
create I/O bottlenecks, particularly with large batch
sizes and limited system memory. Additionally, our
method does not support synchronized updates to
the target encoder g, making it less suitable for sce-
narios where the target data changes rapidly. These
limitations could be addressed by optimizing mem-
ory usage and improving data transfer efficiency,
as well as enabling asynchronous updates to the
target encoder for dynamic content.

References

Negar Arabzadeh, Xinyi Yan, and Charles LA Clarke.
2021. Predicting efficiency/effectiveness trade-offs
for dense vs. sparse retrieval strategy selection. In
Proceedings of the 30th ACM International Con-
ference on Information & Knowledge Management,
pages 2862-2866.

Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yixing Fan,
and Xueqi Cheng. 2022. Gere: Generative evidence
retrieval for fact verification. In Proceedings of the
45th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 2184-2189.

W Bruce Croft, Donald Metzler, and Trevor Strohman.
2010. Search engines: Information retrieval in prac-
tice, volume 520. Addison-Wesley Reading.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly

Table 4: Ablation study results on the NQ dataset. Retrieval performance is evaluated using the QHNSW index.

Configuration R@1 R@5 R@10 R@20 R@100
Baseline 46.06 6742 7376 77.83 84.65
Large-Batch Negatives 49.72 68.28 74.01 78.31 84.12
Full Model 51.52 70.55 76.01 79.81 86.15

supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Sanjay Kukreja, Tarun Kumar, Vishal Bharate, Amit
Purohit, Abhijit Dasgupta, and Debashis Guha. 2023.
Vector databases and vector embeddings-review. In
2023 International Workshop on Artificial Intelli-
gence and Image Processing (IWAIIP), pages 231—
236. IEEE.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453—

466.

Peng-Cheng Lin and Wan-Lei Zhao. 2019. A compar-
ative study on hierarchical navigable small world
graphs. Computing Research Repository (CoRR)
abs/1904.02077.

Erik Lindgren, Sashank Reddi, Ruiqi Guo, and Sanjiv
Kumar. 2021. Efficient training of retrieval models
using negative cache. Advances in Neural Informa-
tion Processing Systems, 34:4134—4146.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2021. Sparse, dense, and attentional
representations for text retrieval. Transactions of the
Association for Computational Linguistics, 9:329—

345.

Nicholas Monath, Will Grathwohl, Michael Boratko,
Rob Fergus, Andrew McCallum, and Manzil Zaheer.
2024. A fresh take on stale embeddings: improv-
ing dense retriever training with corrector networks.
arXiv preprint arXiv:2409.01890.

Nicholas Monath, Manzil Zaheer, Kelsey Allen, and
Andrew McCallum. 2023. Improving dual-encoder
training through dynamic indexes for negative min-
ing. In International Conference on Artificial Intelli-
gence and Statistics, pages 9308-9330. PMLR.

Mohammad Norouzi, Ali Punjani, and David J Fleet.
2013. Fast exact search in hamming space with multi-
index hashing. IEEE transactions on pattern analysis
and machine intelligence, 36(6):1107-1119.

Ankit Singh Rawat, Jiecao Chen, Felix Xinnan X Yu,
Ananda Theertha Suresh, and Sanjiv Kumar. 2019.
Sampled softmax with random fourier features. Ad-

vances in Neural Information Processing Systems,
32.

Sashank J Reddi, Satyen Kale, Felix Yu, Daniel
Holtmann-Rice, Jiecao Chen, and Sanjiv Kumar.
2019. Stochastic negative mining for learning with
large output spaces. In The 22nd International Con-

ference on Artificial Intelligence and Statistics, pages
1940-1949. PMLR.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm?25 and be-

yond. Foundations and Trends® in Information Re-
trieval, 3(4):333-389.

Devendra Singh Sachan, Mike Lewis, Mandar Joshi,
Armen Aghajanyan, Wen-tau Yih, Joelle Pineau, and
Luke Zettlemoyer. 2022. Improving passage retrieval
with zero-shot question generation. arXiv preprint
arXiv:2204.07496.

Nandan Thakur, Nils Reimers, and Jimmy Lin. 2022.
Domain adaptation for memory-efficient dense re-
trieval. arXiv preprint arXiv:2205.11498.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval.
arXiv preprint arXiv:2007.00808.

Shicheng Xu, Liang Pang, Jun Xu, Huawei Shen, and
Xueqi Cheng. 2024. List-aware reranking-truncation
joint model for search and retrieval-augmented gener-
ation. In Proceedings of the ACM on Web Conference
2024, pages 1330-1340.

Zhen Yang, Zhou Shao, Yuxiao Dong, and Jie Tang.
2024. Trisampler: A better negative sampling princi-
ple for dense retrieval. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38,
pages 9269-9277.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min
Zhang, and Shaoping Ma. 2021. Optimizing dense
retrieval model training with hard negatives. In Pro-
ceedings of the 44th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pages 1503-1512.

Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong
Wen. 2024. Dense text retrieval based on pretrained
language models: A survey. ACM Transactions on
Information Systems, 42(4):1-60.

	Introduction
	Related Work
	Preliminaries
	Methodology
	Experiments
	Experimental Results
	Ablation Study on Model Training

	Conclusion
	Limitations

