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Abstract001

We present an efficient approach for training002
dual-encoder models in large-scale retrieval003
tasks, aimed at reducing computational over-004
head and improving retrieval performance. Our005
method introduces a novel combination of006
similarity-based large negative sampling and007
direct gradient updates to cached target embed-008
dings. By leveraging a pre-trained encoder to009
initialize target embeddings and storing them010
in a buffer, we eliminate the need for frequent011
recomputation, thereby reducing both compu-012
tational cost and memory usage. Negative sam-013
ples are selected from the top-k most similar014
target embeddings within the batch and across015
queries, and cached embeddings are updated016
directly through gradient descent. Additionally,017
we utilize the Faiss library to manage nearest018
neighbor search, periodically rebuilding the in-019
dex to maintain efficiency. Our approach accel-020
erates training and improves retrieval accuracy,021
especially for quantized index types, providing022
a scalable solution for large-scale retrieval tasks023
that balances both computational efficiency and024
retrieval precision.025

1 Introduction026

Efficient retrieval of relevant information from027

large document corpora is a critical task in mod-028

ern retrieval-based systems, underpinning applica-029

tions like open-domain question answering, search030

ranking, and fact verification (Kwiatkowski et al.,031

2019; Xu et al., 2024; Chen et al., 2022). Tra-032

ditional sparse retrieval methods, such as BM25,033

have long been employed for document matching034

but face challenges, particularly with vocabulary035

mismatch and the reliance on bag-of-words embed-036

dings (Croft et al., 2010).037

Recent advancements in dense retrieval aim to038

overcome these limitations by leveraging continu-039

ous vector embeddings learned through deep neu-040

ral networks, enabling more flexible and powerful041
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Figure 1: Overview of our approach. We use a pre-
trained g to embed all target texts Y . For any given
query x, the f produces a query embedding. From the
cached target embeddings, the top-k most similar neg-
ative samples are selected. The target embeddings are
directly updated based on the gradients during training.

document matching (Zhao et al., 2024). Among 042

these, dual-encoder models have gained promi- 043

nence. In this architecture, an input query and 044

candidate document are encoded separately by neu- 045

ral networks, and their relevance is determined by 046

the inner product of their respective embeddings 047

(Karpukhin et al., 2020). However, training these 048

models presents a challenge: directly computing 049

softmax logits over all possible target documents 050

is computationally infeasible. As a result, approx- 051

imations, such as truncated softmax and negative 052

sampling, are employed to reduce the computa- 053

tional burden, though these methods still suffer 054

from inefficiencies due to the staleness of cached 055

target embeddings (Reddi et al., 2019; Lindgren 056

et al., 2021). Additionally, constructing effective 057

negative instances during training remains a sig- 058

nificant challenge, especially in the first stage of 059

retrieval, where models must distinguish relevant 060
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from irrelevant documents (Karpukhin et al., 2020).061

In this paper, we propose a novel method to en-062

hance dual-encoder training for large-scale retrieval063

tasks. Our approach combines similarity-based064

large negative sampling with direct gradient up-065

dates to cached target embeddings. By initializing066

target embeddings with a pre-trained encoder and067

storing them in a buffer, we eliminate the need068

for frequent recomputation, thereby reducing both069

computational overhead and memory usage. We070

use truncated softmax for efficient gradient compu-071

tation and select negative samples from the top-k072

most similar targets within the batch and across073

queries, where k can be large to build a more com-074

prehensive negative sample set. The cached target075

embeddings are then updated through gradient de-076

scent. We further integrate the Faiss library for077

efficient nearest neighbor search and periodically078

rebuild the index to maintain retrieval accuracy.079

Our key contributions are: 1. Efficient target em-080

bedding cache with direct gradient updates, elimi-081

nating the need for costly recomputations and en-082

suring up-to-date embeddings. 2. The introduction083

of similarity-based large negative sampling, com-084

bined with in-batch negative samples, to better ap-085

proximate the full softmax distribution and improve086

the training efficiency. 3. Experimental results087

showing significant improvements in retrieval accu-088

racy, particularly with quantized indices, achieving089

faster retrieval and reduced index size for large-090

scale tasks.091

2 Related Work092

Sparse and Dense Retrieval Methods Tradi-093

tional retrieval methods, such as TF-IDF and BM25094

(Robertson et al., 2009), rely on lexical overlap095

and are limited in capturing semantic relationships.096

Dense Passage Retrieval (DPR) (Karpukhin et al.,097

2020) improves upon these methods by learning098

dense vector embeddings for both queries and pas-099

sages, which enhances retrieval accuracy (Zhan100

et al., 2021; Zhao et al., 2024; Luan et al., 2021).101

However, training dense models on large corpora102

remains computationally expensive (Arabzadeh103

et al., 2021; Monath et al., 2024).104

Negative Sampling Negative sampling is vital105

for training dense retrieval models. Traditional106

methods, such as random and batch-based sam-107

pling, can limit diversity. Approaches like using108

BM25 for "hard" negatives (Karpukhin et al., 2020)109

improve sample quality but still face limitations.110

Approximate Nearest-Neighbor Contrastive Learn- 111

ing (ANCE) (Xiong et al., 2020) enhances this by 112

selecting hard negatives based on similarity, im- 113

proving the quality of negative samples. Dynamic 114

Indexes (Monath et al., 2023) use tree structures 115

for more efficient negative mining, while methods 116

like TriSampler (Yang et al., 2024) further improve 117

performance by providing more informative nega- 118

tives. 119

Target Embedding Caching and Indexing Dur- 120

ing training, methods like ANCE (Xiong et al., 121

2020) and Corrector Networks (Monath et al., 122

2024) often build a cache of target embeddings to 123

avoid recalculating embeddings for every query. 124

In passage retrieval tasks (Sachan et al., 2022), 125

caching target embeddings is also used to accel- 126

erate retrieval by enabling fast lookup during query 127

processing. Several indexing methods are em- 128

ployed to balance retrieval speed and memory 129

usage, including Exact Search for L2 distances 130

(Norouzi et al., 2013), Hierarchical Navigable 131

Small World (HNSW) graphs (Lin and Zhao, 2019), 132

and Inverted File Indexes with post-verification 133

(Kukreja et al., 2023). Product Quantization (PQ) 134

(Thakur et al., 2022) is also commonly used to com- 135

press the index size at the expense of retrieval accu- 136

racy, offering a scalable solution for large datasets 137

with limited memory. 138

3 Preliminaries 139

This section introduces the foundational concepts 140

of dual-encoder architectures in dense retrieval 141

models, the softmax function used for ranking rele- 142

vance, and techniques like truncated softmax and 143

top-k sampling that make training efficient at scale. 144

Dual-Encoder Architecture In dense retrieval 145

models, a dual-encoder architecture is commonly 146

used to compute the unnormalized logits, sx,y, by 147

factorizing the embeddings of both the query and 148

the target. Specifically, each input (the query x and 149

the target y) is encoded using deep neural networks 150

into D-dimensional embeddings. The query x is 151

encoded by a function f(x; Θ), and the target y is 152

encoded by a function g(y; Θ). The logits are then 153

computed as the dot product between the query and 154

target embeddings: 155

sx,y = ⟨f(x; Θ), g(y; Θ)⟩. (1) 156

This architecture is effective in learning seman- 157

tic embeddings for both queries and targets, facil- 158
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itating retrieval tasks by ranking the relevance of159

candidate passages based on the similarity between160

their embeddings.161

Softmax Function Given the dual-encoder162

framework, we now define a probability distribu-163

tion over a set of N targets, Y , based on the sim-164

ilarity between the query x and the target y. The165

softmax function is commonly used to compute166

this distribution as follows:167

P (y|x) = exp(τsx,y)

Zx

=
exp(τsx,y)∑

y′∈Y exp(τsx,y′)
,

(2)168

where τ is the temperature parameter that controls169

the smoothness of the distribution, and sx,y rep-170

resents the unnormalized score or logit of the tar-171

get y given the query x. This formulation is com-172

monly used in retrieval tasks, where x corresponds173

to a query and the targets, y, represent candidate174

passages (e.g., in the Natural Questions dataset175

(Kwiatkowski et al., 2019), where x is a question,176

and the targets are passages from Wikipedia).177

The softmax function assigns a probability to178

each target based on its relevance to the query.179

This is useful in tasks such as information retrieval,180

where the goal is to rank passages according to181

their relevance to a given query.182

Training with Truncated Softmax In the dual-183

encoder framework, training typically involves op-184

timizing a task-specific loss function, such as cross-185

entropy, using gradient descent (Rawat et al., 2019).186

This process requires computing the softmax dis-187

tribution over all possible targets, which is com-188

putationally expensive due to the large number of189

potential candidates (often in the millions or bil-190

lions). The exact computation of the normalizing191

constant Zx—which requires evaluating the sum192

over all targets—becomes intractable during train-193

ing.194

To address this challenge, we approximate the195

softmax function by using a truncated version,196

P̃ (y|x), which includes only a subset of targets197

S(Y) ⊂ Y:198

P̃ (y|x) = exp(τsx,y)∑
y′∈S(Y) exp(τsx,y′)

. (3)199

By truncating the softmax to a subset S(Y),200

the computation of the normalization term is sig-201

nificantly reduced, making it feasible to perform202

efficient optimization of the dual-encoder param- 203

eters. While this truncated softmax introduces 204

a bias—since it only considers a subset of tar- 205

gets—the approximation enables tractable training 206

while preserving the model’s ability to learn effec- 207

tive semantic embeddings. 208

Top-K Sampling Approximations Efficiently 209

selecting the subset S(Y) for truncated softmax is 210

crucial. Traditional methods like BM25 select top- 211

k candidates based on lexical similarity. For dense 212

retrieval, top-k targets are selected based on embed- 213

ding similarity, measured using the inner product 214

between query and target embeddings. Advanced 215

methods, such as Gumbel-Max (Lindgren et al., 216

2021) and large-scale sampling algorithms (Xiong 217

et al., 2020), offer more efficient top-k selection, 218

improving retrieval performance while scaling to 219

large datasets. 220

4 Methodology 221

In this section, we present an efficient approach to 222

training the dual-encoder model, focusing on two 223

main objectives: enhancing the query encoder’s 224

learning process and optimizing the update of tar- 225

get embeddings through cached embeddings. The 226

key idea is to utilize similarity-based sampling to 227

select hard negative samples and directly update 228

the cached target embeddings using gradients, elim- 229

inating the need to re-evaluate the target encoder 230

during training. This significantly reduces compu- 231

tational overhead, making it feasible to train large- 232

scale retrieval models. An overview of the overall 233

architecture is shown in Figure 1, highlighting the 234

key components and workflow of the proposed ap- 235

proach. 236

Target embedding Initialization To address the 237

computational challenges of large-scale training, 238

we begin by initializing the target embeddings us- 239

ing a pre-trained target encoder, g(y; Θ). For each 240

target yi, the corresponding embedding is com- 241

puted as: 242

byi = g(yi; Θ), (4) 243

where byi ∈ RD represents the D-dimensional 244

vector for target yi. These initial embeddings are 245

stored in a buffer, B ∈ RY×D, which contains the 246

cached embeddings for all targets in the dataset. 247

The interaction between the query encoder and 248

a cached target embedding is computed as the dot 249
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product:250

sx,by = ⟨f(x; Θ), by⟩, (5)251

where by represents the cached embedding of a252

target stored in the buffer.253

Using these scores, the truncated softmax distri-254

bution is expressed as:255

P̃ (by|x) =
exp(τsx,by)∑

by′∈S(B) exp(τsx,by′ )
, (6)256

where S(B) denotes the subset of cached target257

embeddings selected from the buffer.258

By focusing on a subset of target embeddings259

in the buffer, we can avoid recalculating target em-260

beddings using the target encoder. This approach261

drastically reduces memory usage and computa-262

tion, allowing us to sample a large number of263

high-similarity negative samples efficiently. Con-264

sequently, this strategy accelerates the training pro-265

cess without compromising the model’s ability to266

learn high-quality semantic embeddings.267

Negative Sample Construction A critical com-268

ponent of this methodology is the construction of269

negative samples, which are essential for effective270

training of the dual-encoder model. In large-scale271

retrieval tasks, the goal is to select negative sam-272

ples that are highly similar to the query embedding,273

as these “hard” negatives are crucial for optimizing274

the training objective.275

We adopt a hybrid strategy for constructing the276

negative sample set, Sneg(B), for each query. This277

set consists of:278

• The top-k most similar target embeddings (ex-279

cluding the positive sample) retrieved based280

on the query embedding.281

• The top-k most similar target embeddings for282

all other queries in the same batch.283

Thus, for each query, the negative sample set284

contains k × batch negative samples. For instance,285

with a batch size of 32 and k set to 500, the total286

number of negative samples is 16,000. This is287

a large number compared to those used in other288

studies.289

This strategy ensures that the negative sample290

set captures both highly relevant hard negatives and291

diverse negatives across the batch. To improve the292

approximation of the softmax distribution, k can293

be set to a large value (e.g., 500). The complete294

sample set Sneg(B) for each query is then formed295

by including the corresponding positive sample by.296

Cached Target embedding Update We update 297

only the selected cached target embeddings using 298

gradients, which reduces the overall training time 299

and memory usage. 300

To further enhance training efficiency, we intro- 301

duce a batch update mechanism for the cached tar- 302

get embeddings. Let Sneg(B) denote the subset of 303

cached target embeddings selected from the buffer 304

for each query. These embeddings are the ones that 305

will undergo gradient updates during training. 306

After selecting the top-k negative samples for 307

each query, we compute the gradients of the cross- 308

entropy loss with respect to the cached target em- 309

beddings. The loss function, L, based on the trun- 310

cated softmax, is defined as: 311

L = −
∑
x∈B

log P̃ (by|x), (7) 312

where P̃ (by|x) is computed using the truncated 313

softmax equation from earlier. Based on the gra- 314

dients of the loss with respect to the cached target 315

embeddings by, the cached target embeddings are 316

updated as follows: 317

by ← by − η
∂L
∂by

, (8) 318

where η is the learning rate. This update is applied 319

only to the target embeddings selected in the batch 320

S(B). 321

After updating the target embeddings for the 322

batch, the modified entries in the buffer are re- 323

placed with their updated values. These updated 324

buffer entries are then used for the next training 325

step. Additionally, the similarity-based sampling 326

process ensures that the top-k negative samples are 327

dynamically selected based on the updated embed- 328

dings. 329

Faiss Index Construction and Update To effi- 330

ciently retrieve the top-k most similar samples dur- 331

ing similarity-based sampling, directly computing 332

the inner product similarity scores and sorting them 333

is computationally infeasible. A common practice 334

is to use the Faiss library to construct an index 335

that enables fast retrieval of the top-k most similar 336

samples. The most basic index is the flat index, 337

which stores the full vectors and performs exhaus- 338

tive search. This index maximizes accuracy and is 339

often used in passage retrieval tasks to report opti- 340

mal test results. However, it is memory-intensive 341

and slow for large-scale datasets. 342
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To address these limitations, we employ the343

HNSWFlat index, which is based on the HNSW344

graph. This index allows for fast approximate near-345

est neighbor searches but still requires significant346

memory. To further optimize memory usage and347

retrieval speed, we combine HNSWFlat with In-348

verted File with Product Quantization (IVFPQ) in-349

dex. IVFPQ compresses the index size significantly350

while maintaining high retrieval speed, making it351

suitable for large-scale training and retrieval tasks.352

As the cached target embeddings are periodically353

updated, the Faiss index constructed on must also354

be updated to maintain fast and accurate nearest355

neighbor searches. To ensure efficient retrieval,356

we rebuild the Faiss index at fixed intervals, typi-357

cally every 0.5 epochs, to reflect the updated target358

embeddings.359

Algorithmic Process The overall training pro-360

cess, including query encoding, retrieval of neg-361

ative samples, loss calculation, and periodic up-362

dates to the Faiss index, is outlined in Algorithm 1.363

This procedure ensures the efficient training of the364

model without the need to repeatedly re-evaluate365

the target encoder, while also enabling scalable366

training with large datasets.367

Algorithm 1 Improving Dual-Encoder Training
with Gradient-Based Cached Embedding Refine-
ment
Require: Pre-trained query encoder f , target en-

coder g
Require: Target dataset Y = {yi}|Y|

i=1

Require: Learning rate η, batch size, negative
sample size k, faiss index update interval C

Ensure: Optimized query encoder f and updated
cached target embeddings B

1: Compute initial target embeddings: B =
{g(yi) | ∀yi ∈ Y}

2: Construct Faiss index for B
3: for each training step do
4: Sample a batch of queries B = {xj}batch

j=1

5: Compute query embeddings: exj = f(xj)
6: Retrieve top-k hard negatives from B for

each query
7: Compute loss L
8: Update query encoder parameters
9: Update B with modified target embeddings

10: if training step mod C == 0 then
11: Rebuild Faiss index with updated B
12: end if
13: end for

5 Experiments 368

In this section, we evaluate the effectiveness and 369

efficiency of our proposed method, Efficient Dual- 370

Encoder Training with Gradient-Based Cached Em- 371

bedding Updates, on large-scale retrieval tasks. Our 372

primary goals are to demonstrate the following key 373

improvements: 374

• Enhanced query encoder training through 375

similarity-based large negative sampling. 376

• Scalable and efficient updates to cached tar- 377

get embeddings through direct gradient-based 378

refinement. 379

The experiments were conducted on two 380

benchmark datasets: Natural Questions (NQ) 381

(Kwiatkowski et al., 2019) and TriviaQA (Joshi 382

et al., 2017). The NQ dataset is specifically de- 383

signed for end-to-end question answering tasks, 384

containing real Google search queries as questions, 385

with corresponding answers identified by human 386

annotators in the form of spans from Wikipedia 387

articles. TriviaQA, on the other hand, consists of 388

trivia questions with corresponding answers that 389

were scraped from the web. The dataset includes 390

over 21 million Wikipedia passages, which serve 391

as the target data for retrieval. 392

For evaluation, we primarily use Recall@k 393

(R@k) as the metric, which quantifies the frac- 394

tion of queries for which the relevant passage is 395

ranked among the top k results. 396

For all experiments, the query encoder and target 397

encoder were initialized using pre-trained models 398

from the DPR framework. The pre-trained target 399

encoder was used to embed all target texts, gen- 400

erating an initial buffer B ∈ RY×D that stores 401

the target embeddings. We trained the models for 402

10 epochs with a learning rate of 10−5 using the 403

Adam optimizer, linear learning rate scheduling 404

with warm-up, and a dropout rate of 0.1. The batch 405

size was set to 32, with a top-k of 500 and a temper- 406

ature of 8. We conducted the training on a system 407

equipped with two NVIDIA 3090 GPUs (24GB 408

memory each), an Intel(R) Xeon(R) CPU E5-2678 409

v3 @ 2.50GHz, and 125GB of RAM. The train- 410

ing was limited to 24 hours per session to ensure 411

stability and manage resource usage effectively. 412

5.1 Experimental Results 413

In this section, we compare the performance of 414

our method with several approaches. First, we 415
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use DPR (Karpukhin et al., 2020) as our baseline416

method. Next, we consider the ANCE method417

(Xiong et al., 2020), which shares similarities with418

our approach. Both methods leverage the DPR419

framework for initialization. However, the ANCE420

method asynchronously updates a Faiss index using421

a stale target encoder, and periodically re-embeds422

all target embeddings. In addition, we compare423

with the Corrector Networks (Monath et al., 2024),424

which proposes a scalable solution to this prob-425

lem by training a small parametric corrector net-426

work that adjusts stale cached target embeddings,427

enabling an accurate softmax approximation and428

sampling of high-scoring “hard negatives” in an429

efficient manner.430

Table 1 and Table 2 presents the retrieval per-431

formance of the various methods on the NQ and432

TriviaQA test datasets using the FlatL2 indexing433

method, evaluating Recall@k for different val-434

ues of k. Our approach consistently outperforms435

the other methods across multiple top-k retrievals.436

While the performance of our method is compa-437

rable to other approaches, it achieves notable im-438

provements in efficiency. Specifically, our method,439

leveraging similarity-based large negative sampling440

and efficient gradient updates to the cached embed-441

dings, significantly reduces computational com-442

plexity and training time, completing in just 10443

epochs.444

While FlatL2 indexing generally provides the445

highest retrieval precision on test datasets, practi-446

cal passage retrieval tasks often require a balance447

between retrieval precision, speed, and storage effi-448

ciency. Table 3 compares the index size and query449

speed of different indexing methods. The Quan-450

tized HNSW (QHNSW) index significantly outper-451

forms FlatL2 in both index size and query speed.452

Specifically, the QHNSW index is 30x smaller in453

size and achieves 300x faster query retrieval com-454

pared to FlatL2.455

Figure 2 further illustrates the retrieval perfor-456

mance of different Faiss index types on the NQ457

dataset. Our method significantly improves the pre-458

cision of the QHNSW index. In terms of R@1, our459

approach achieves a 5 percentage point improve-460

ment over the baseline. Even with compression,461

the precision of the QHNSW index closely approx-462

imates that of the uncompressed FlatL2 index. Im-463

proving the retrieval precision of quantized indices464

enhances the effectiveness of passage retrieval, par-465

ticularly in scenarios where storage space is lim-466

ited.467
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Figure 2: Comparison of retrieval precision using differ-
ent Faiss index types on the NQ dataset.

5.2 Ablation Study on Model Training 468

To better understand the individual contributions 469

of the components in our proposed method, we 470

conducted an ablation study using the NQ dataset. 471

Specifically, we evaluated the effects of similarity- 472

based large negative sampling and gradient-based 473

updates to cached target embeddings. 474

We started with a baseline configuration that 475

used the original Dual-encoder model trained 476

with standard settings, without incorporating ei- 477

ther similarity-based large negative sampling or 478

gradient-based updates to the target embeddings. 479

The following configurations were then tested: 480

• Large-Batch Negatives: In this configuration, 481

similarity-based large negative sampling was 482

incorporated during query encoder training. 483

• Full Model: This configuration combined 484

both similarity-based large negative sam- 485

pling and gradient-based updates to the tar- 486

get embeddings, representing the complete 487

approach. 488

The ablation study results, shown in Table 4, 489

demonstrate the effectiveness of the proposed com- 490

ponents. Similarity-based large negative sam- 491

pling improved retrieval performance across all 492

Recall@k metrics, particularly enhancing the query 493

encoder’s ability to differentiate relevant from irrel- 494

evant passages. Gradient-based updates to cached 495

target embeddings further boosted performance, 496

especially at higher recall levels, by ensuring the 497

embeddings remain accurate and aligned with the 498

evolving query representations. Combining both 499

strategies in the Full Model led to the best overall 500
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Table 1: Retrieval performance comparison on NQ and TriviaQA test sets (R@k %)

Dataset Method R@1 R@5 R@10 R@20 R@100

NQ

DPR 52.13 71.80 77.20 81.16 87.06
ANCE - - - 81.9 87.5

Corrector 50.61 71.00 77.73 82.66 88.39
Ours 52.49 71.85 77.84 81.91 87.40

Table 2: Retrieval performance comparison on TriviaQA
test sets (R@k %)

Method R@20 R@100

DPR 79.4 85.0
ANCE 80.3 85.3
Ours 80.1 85.6

Table 3: Index Size and Query Speed Comparison

Index Size (GB) Speed (ms)

FlatL2 61 16264
HNSW&IVFPQ 2.7 46

performance, outperforming both the Baseline and501

Large-Batch Negatives configurations. This high-502

lights the complementary benefits of these com-503

ponents in improving retrieval accuracy and effi-504

ciency.505

Overall, the ablation study confirms that506

similarity-based large negative sampling enhances507

the query encoder’s discriminative ability, while508

gradient-based updates ensure that the cached em-509

beddings stay aligned with the evolving query rep-510

resentations. Together, these strategies significantly511

improve retrieval performance, making the model512

more efficient for large-scale retrieval tasks.513

6 Conclusion514

In this paper, we introduced an enhanced approach515

to dual-encoder training by leveraging large-scale516

similarity-based negative sampling and embedding517

updates via cached embeddings. Our method en-518

ables the truncated softmax to closely approximate519

the full softmax, improving training efficiency. Di-520

rect updates to cached embeddings through back-521

propagation eliminate the need for continuous tar-522

get embedding recalculation. Experimental results523

demonstrate that our approach not only matches524

the accuracy of models using flatL2 indexing but525

also outperforms the current best methods on the526

quantized HNSW index, leading to superior re- 527

trieval efficiency and precision in practical passage 528

retrieval tasks. 529

7 Limitations 530

Our approach, while effective, has some limita- 531

tions. First, direct updates to cached embeddings 532

via backpropagation require storing the entire set 533

of embeddings in memory, leading to high mem- 534

ory consumption. For example, training on the 535

Wikipedia dataset requires up to 70GB of memory, 536

which may be prohibitive for large datasets. Sec- 537

ond, a large number of negative samples must be 538

transferred between memory and GPU, which can 539

create I/O bottlenecks, particularly with large batch 540

sizes and limited system memory. Additionally, our 541

method does not support synchronized updates to 542

the target encoder g, making it less suitable for sce- 543

narios where the target data changes rapidly. These 544

limitations could be addressed by optimizing mem- 545

ory usage and improving data transfer efficiency, 546

as well as enabling asynchronous updates to the 547

target encoder for dynamic content. 548
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