

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GARLIC: GRAPH ATTENTION-BASED RELATIONAL LEARNING OF MULTIVARIATE TIME SERIES IN INTEN- SIVE CARE

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

ICU (Intensive Care Unit) records comprise heterogeneous multivariate time series sampled at irregular intervals with pervasive missingness, yet clinical applications demand predictive models that are both accurate and interpretable. We present our Graph Attention-based Relational Learning for Intensive Care (GARLIC) model, a novel neural network architecture that imputes missing data through a learnable exponential-decay encoder, captures inter-sensor dependencies through time-lagged summary graphs, and fuses global patterns with cross-dimensional sequential attention. All attention weights and graph edges are learned end-to-end to serve as built-in observation-, signal-, and edge-level explanations. To reconcile auxiliary reconstruction and primary classification objectives, we develop an alternating decoupled optimization scheme that stabilizes training. On three ICU benchmarks (PhysioNet 2012 & 2019, MIMIC-III) for outcome prediction, GARLIC sets the new state of the art, significantly improving AUROC and AUPRC over best-performing baselines at comparable computational cost. Ablation studies confirm each modules contribution, and feature-removal trials validate importance attribution fidelity through a monotonic performance drop (full > top 50% > random 50% > bottom 50%). **Additionally, we also demonstrate GARLIC’s superiority in data imputation and classification on various datasets beyond the ICU domain, showing its generalizability and applicability to broader tasks and datasets.** Finally, real-time case studies demonstrate actionable risk warnings with transparent explanations, marking a significant advancement toward accurate, explainable deep learning for irregularly sampled ICU time series data.

1 INTRODUCTION

Continuous monitoring of critically ill patients in Intensive Care Units (ICU) generates vast streams of multivariate time series data, vital signs, laboratory results, and therapeutic interventions, which are irregularly sampled and rife with missing values. Effective analysis of this data promises timely detection of deterioration and personalized treatment, yet two challenges impede progress. First, the inherent irregularity and heterogeneity of clinical measurements render standard sequence models (*e.g.*, RNNs, Transformers) suboptimal: naïve imputation biases downstream tasks, while specialized approaches (*e.g.*, GRU-D Che et al. (2018), Latent-ODEs Chen et al. (2018), mTAND Shukla & Marlin (2021)) often ignore inter-sensor dependencies. Second, interpretability is paramount in healthcare, but prevalent post-hoc methods (*e.g.*, Integrated Gradients Duell et al. (2023), SHAP Lundberg & Lee (2017)) demand extra computation and can yield inconsistent explanations, and even inherently interpretable architectures (*e.g.*, RETAIN Choi et al. (2016), shapelet models Li et al. (2021); Wen et al. (2025)) either sacrifice performance or struggle with irregular sampling.

In this work, we introduce GARLIC, a unified framework displayed in Figure 1 that simultaneously addresses irregular sampling, missingness, and the need for transparent decision-making. GARLIC models each signals dynamics via a decay-based latent feature encoder, constructs time-lagged summary graphs to capture inter-signal relationships on signal horizons, and refines representations through a cross-dimensional sequential attention module. Critically, all attention weights and graph structures are learned end-to-end, yielding built-in explanations at the level of individual time steps, particular sensors, and their interactions, without degrading classification accuracy or efficiency.

054 Our key contributions are threefold: **Methodologically**, we propose a multistage graph-attention
 055 architecture that integrates (i) decay-based imputation for irregular missingness, (ii) self-attentive,
 056 time-lagged graph learning to exploit spatial dependencies, and (iii) cross-dimensional attention
 057 to fuse signal embeddings over time. Our method also achieves **integrated interpretability**. By
 058 compressing learned attention matrices and sparsifying summary graphs via \mathcal{L}_1 regularization,
 059 GARLIC provides concise, quantitative importance scores for each observation, signal, and edge
 060 in the sensor graph, enabling correct contribution estimations for practitioner-friendly explanations
 061 without an external explainer. **Empirically**, GARLIC sets a new state of the art, while maintaining
 062 computational cost on par with leading baselines on benchmark ICU datasets.
 063
 064
 065
 066
 067

068 2 RELATED WORK

069
 070
 071
 072 **Irregular Multivariate Time Series Classification.** To handle irregularly sampled multivariate
 073 time series, recent methods can be broadly categorized based on how they handle missingness and
 074 model temporal structure. Some approaches replace standard imputation with learnable interpola-
 075 tion mechanisms, such as exponential decay or decomposition-based interpolation, allowing more
 076 expressive modeling of temporal trends (Che et al., 2018; Chen et al., 2018; Shukla & Marlin, 2019).
 077 Others forgo explicit imputation by modeling continuous-time latent dynamics using neural ODEs or
 078 stochastic processes, sometimes integrating them with attention mechanisms (Rubanova et al., 2019;
 079 Chen et al., 2018; Jin et al., 2023; Chen et al., 2023; Park et al., 2025). Attention-based architectures
 080 further exploit temporal information via time-aware encoding, adaptive aggregation over observed
 081 values, or learnable gating schemes tailored to irregular inputs (Horn et al., 2020; Tipirneni & Reddy,
 082 2022; Shukla & Marlin, 2021; Huang et al., 2024; Wang et al., 2023; Zheng et al., 2024; Zhang
 083 et al., 2023). Some methods transform time series into alternative structures, such as images or
 084 graphs, to leverage architectures like vision transformers or message-passing networks (Li et al.,
 085 2023; Zhang et al., 2022). Inter-signal dependencies, though commonly used during classification,
 086 are rarely exploited during missingness modeling. For example, RAINDROP (Zhang et al., 2022)
 087 claims to learn such dependencies, yet both our results and the prior analysis (Zheng et al., 2024)
 088 show that its best performance comes from fixed graphs, indicating a limited benefit from graph
 089 learning. In contrast, GARLIC explicitly leverages both temporal and inter-signal dependencies
 during missingness modeling, leading to more effective handling of irregular time series.

090 **Explainable Models for Time Series.** Explainable methods in time series analysis are broadly cate-
 091 gorized into post-hoc explainers and self-interpretable models (Zhao et al., 2023). Post-hoc approaches—
 092 such as gradient-based attribution methods (Guo et al., 2019; Duell et al., 2023), perturbation-based
 093 techniques (Kashiparekh et al., 2019), and surrogate modeling via LIME or SHAP (Ribeiro et al.,
 094 2016; Lundberg & Lee, 2017)—aim to generate explanations after model training, often through back-
 095 propagation or input masking. Although these methods are model-agnostic and widely applicable,
 096 they require additional computation and may yield inconsistent attributions across similar inputs.
 097 Self-interpretable models aim to embed transparency directly into the training and inference process.
 098 Shapelet-based approaches (Li et al., 2021; Ma et al., 2020b; Younis et al., 2024; Qu et al., 2024; Wen
 099 et al., 2025) learn prototypical subsequences that act as human-readable components for classification.
 100 Despite offering intuitive visualization, these methods are primarily validated on regularly sampled
 101 physiological data such as EEG or ECG (Wen et al., 2025; Abdullah et al., 2023; Neves et al., 2021),
 102 and their interpretability remains hard to quantify objectively. Attention-based models provide more
 103 flexible explanations by interpreting learned attention weights or recalibration mechanisms (Choi
 104 et al., 2016; Guo et al., 2019; Qin et al., 2017; Ma et al., 2020a). However, most existing methods
 105 assume regular sampling and fully observed inputs, limiting their reliability on irregularly sampled
 106 medical data, where unmodeled temporal gaps can introduce explanation bias. These limitations
 107 motivate the need for interpretability methods that remain robust under real-world conditions. GARLIC
 108 addresses this need by incorporating interpretable modeling into the missingness-handling process,
 109 enabling faithful explanations in the presence of irregularity and missingness.

108

3 PROPOSED METHOD

109

3.1 PROBLEM DEFINITION

110 We consider the task of predicting clinical outcomes from irregularly sampled multivariate time
 111 series in intensive care settings. Formally, let $\mathcal{D} = \{(S_n, y_n)\}_{n=1}^N$ be a labeled dataset of N patient
 112 episodes, where $y_n \in \{1, \dots, C\}$ is the outcome label for episode S_n . Each episode S_n consists of
 113 asynchronous observations from K clinical signals (e.g., vital signs, laboratory tests), aligned to a
 114 timeline of up to T discrete time steps. We represent each episode as an input matrix $\mathbf{X} \in \mathbb{R}^{K \times T}$,
 115 where $x_{k,t}$ stores the value of signal k at time t , and a corresponding binary mask $\mathbf{M} \in \{0, 1\}^{K \times T}$
 116 indicating whether the value is observed. These signals exhibit heterogeneous statistical properties
 117 and are sampled at irregular intervals, leading to misaligned time axes and pervasive missingness.
 118 Our objective is to learn a model that (i) accurately predicts each y_n from the irregular multivariate
 119 time series S_n and (ii) provides transparent, observation-level attributions to foster clinical trust.
 120

121

3.2 GARLIC

122 We propose GARLIC, a modular framework for clinical outcome prediction that combines local
 123 reconstruction with global reasoning. Specifically, graph-based message passing reconstructs missing
 124 features from local temporal and inter-signal context, while cross-dimensional sequential attention
 125 captures global dependencies across time and signals for accurate prediction. To align the auxiliary
 126 reconstruction task with the primary prediction objective and stabilize the training, we employ an
 127 alternating decoupled optimization strategy that explicitly decouples these two tasks.
 128

129

3.2.1 LATENT FEATURE MODELING

130 Clinical time series are sparse, irregular, and heterogeneous, so naïve imputation (e.g., mean or zero
 131 fill) can distort signal-specific dynamics. We therefore introduce a *latent feature modeling* stage
 132 that combines time-aware imputation with per-signal encoding. We adopt an exponential-decay
 133 mechanism (Che et al., 2018) to model the diminishing relevance of past observations. Given the
 134 elapsed time Δ_t since the last observation, the decay factor γ_t and imputed value $\hat{x}_{k,t}$ at time t are
 135 defined as:
 136

$$\hat{x}_{k,t} = \gamma_t x_{k,t'} + (1 - \gamma_t) \bar{x}_k \quad \text{with} \quad \gamma_t = \exp\{-\max(0, w_k \Delta_t + b_k)\} \quad (1)$$

137 where w_k, b_k are learnable parameters, $x_{k,t'}$ is the most recent observed value, and \bar{x}_k is the empirical
 138 mean. We then construct an augmented input at each time step to retain both the observed or imputed
 139 value and the missingness indicator $m_{k,t} \in \{0, 1\}$:

$$\tilde{\mathbf{x}}_{k,t} = [x_{k,t} \cdot m_{k,t} + \hat{x}_{k,t} \cdot (1 - m_{k,t}), m_{k,t}]. \quad (2)$$

140 Given the heterogeneity of clinical signals, we apply a dedicated two-layer MLP to each augmented
 141 input $\tilde{\mathbf{x}}_{k,t}$, yielding latent embeddings $\mathbf{z}_{k,t} \in \mathbb{R}^D$:

$$\mathbf{z}_{k,t} = \text{MLP}_k(\tilde{\mathbf{x}}_{k,t}). \quad (3)$$

142 This signal-specific encoding enables the model to capture the distinct statistical scale, dynamics, and
 143 semantics of each clinical signal, which would be obscured under a shared encoder.
 144

145

3.2.2 TIME-LAGGED GRAPH MESSAGE PASSING

146 To reconstruct missing values in clinical time series, we introduce a local graph-based module
 147 that exploits the inherent locality of physiological signals, where each signal’s value is strongly
 148 influenced by its recent temporal history and interactions with related signals. This temporal and
 149 inter-signal locality motivates a design that restricts inference to a short-range window, in contrast
 150 to the global modeling used later for classification. Specifically, given latent embeddings $\mathbf{z}_{k,t}$, we
 151 extract a temporal window of length $\tau + 1$ for each signal, where τ controls the size of the local
 152 context, add sinusoidal positional embeddings $\text{PE}(j)$, and apply signal-wise lag attention:
 153

$$\bar{\mathbf{e}}_{k,t} = \text{LagAttn}_k(\{\mathbf{z}_{k,j} + \text{PE}(j)\}_{j=t-\tau}^t) = \sum_{j=t-\tau}^t \beta_{k,j,t} \mathbf{v}_{k,j}, \quad (4)$$

Figure 1: Overview of GARLIC. In the first stage, irregularly-sampled inputs are imputed into a signal-specific latent space. Then, inter-signal dependencies are modeled through a learnable graph-based message passing system, enabling the reconstruction of the original observations. Attention through time and signals enables a GRU model to learn dependencies on a medium time scale, to provide interpretable predictions.

with $\mathbf{v}_{k,j} = \mathbf{W}_v(\mathbf{z}_{k,j} + \text{PE}(j))$, $\mathbf{k}_{k,j} = \mathbf{W}_k(\mathbf{z}_{k,j} + \text{PE}(j))$, $\mathbf{q}_{k,t} = \mathbf{W}_q(\mathbf{z}_{k,t} + \text{PE}(t))$, and $\bar{\mathbf{e}}_{k,t} = \sum_{j=t-\tau}^t \beta_{k,j,t} \mathbf{v}_{k,j}$ is the window-level representation for signal k at time t , with $\beta_{k,j,t}$ being the corresponding attention weight. We stack the outputs for all K signals to form $\bar{\mathbf{E}}_t \in \mathbb{R}^{K \times D}$, which summarizes contextual information over the temporal window for each signal. To model interactions among signals at a given temporal lag τ , we construct a summary graph \mathcal{G}_τ defined by a learnable adjacency matrix $\mathbf{W}_\tau \in \mathbb{R}^{K \times K}$, where each node represents a signal and edges encode pairwise dependencies. Graph-based message passing is then applied to propagate information across correlated signals:

$$\mathbf{H}_t = \mathbf{W}_\tau \bar{\mathbf{E}}_t \in \mathbb{R}^{K \times D}, \quad (6)$$

where \mathbf{H}_t denotes the time- t representations of all signals, updated based on historical context and relational dependencies from the graph \mathcal{G}_τ . By decoupling attention-based temporal encoding from graph propagation, this module flexibly captures short-range dynamics and inter-signal dependencies. Moreover, varying the lag τ enables adaptive, multi-scale modeling of physiological dependencies. We treat τ as a hyperparameter, with ablation results in Appendix D.2.

3.2.3 CROSS-DIMENSIONAL SEQUENTIAL ATTENTION

To construct a global representation for classification, we apply a two-stage attention cascade over the signal-wise encoding $\{\mathbf{H}_t\}_{t=\tau}^T$ produced by the message passing module. At each time step t , we first apply an attention mechanism SignalAttn over the K signals to compute attention weights and obtain a weighted aggregation:

$$\bar{\mathbf{u}}_t = \text{SignalAttn}(\mathbf{H}_t) = \sum_{k=1}^K \alpha_{k,t}^{\text{sig}} \mathbf{u}_{k,t} \quad (7)$$

$$\alpha_{k,t}^{\text{sig}} = \frac{\exp(\mathbf{q}'_t(\mathbf{k}'_{k,t})^\top / \sqrt{D})}{\sum_{j=1}^K \exp(\mathbf{q}'_t(\mathbf{k}'_{j,t})^\top / \sqrt{D})} \quad (8)$$

with $\mathbf{u}_{k,t} = \mathbf{W}'_v \mathbf{h}_{k,t}$, $\mathbf{k}'_{k,t} = \mathbf{W}'_k \mathbf{h}_{k,t}$, $\mathbf{q}'_t = \mathbf{W}'_q \bar{\mathbf{h}}_t$, and $\alpha_{k,t}^{\text{sig}}$ are the learned attention weights. $\bar{\mathbf{u}}_t$ summarizes cross-signal information at time t . To capture temporal dependencies, the sequence

216 $\{\bar{\mathbf{u}}_t\}_{t=\tau}^T$ is processed by a Gated Recurrent Unit (GRU):
 217

$$\mathbf{g}_t = \text{GRU}(\bar{\mathbf{u}}_t, \mathbf{g}_{t-1}), \quad (9)$$

219 which models local temporal continuity, reflecting gradual transitions in clinical states. To complement
 220 the GRU’s locality bias and enable direct modeling of long-range dependencies, we apply
 221 temporal self-attention over the GRU outputs, incorporating sinusoidal positional encoding $\text{PE}(t)$:
 222

$$\mathbf{Y} = \text{TemporalAttn}(\{\mathbf{g}_{t'} + \text{PE}(t')\}_{t=\tau}^T) \in \mathbb{R}^{(T-\tau+1) \times D} = \left\{ \sum_{t'=t}^T \alpha_{t',t}^{\text{time}} \mathbf{y}_{t'} \right\}_{t=\tau}^T \quad (10)$$

$$\alpha_{t',t}^{\text{time}} = \frac{\exp\left(\mathbf{q}_t''(\mathbf{k}_{t'}'')^\top / \sqrt{D}\right)}{\sum_{s=\tau}^T \exp\left(\mathbf{q}_t''(\mathbf{k}_s'')^\top / \sqrt{D}\right)} \quad (11)$$

228 with $\mathbf{y}_{t'} = \mathbf{W}_v''(\mathbf{g}_{t'} + \text{PE}(t'))$, $\mathbf{k}_{t'}'' = \mathbf{W}_k''(\mathbf{g}_{t'} + \text{PE}(t'))$, $\mathbf{q}_t'' = \mathbf{W}_q''(\mathbf{g}_t + \text{PE}(t))$ being the value,
 229 key, and query embeddings at time t' , and $\alpha_{t',t}^{\text{time}}$ is the according attention weight. Finally, we
 230 average-pool \mathbf{Y} over time and pass the result through a classification head to obtain class predictions
 231 $\hat{y} \in \mathbb{R}^C$ for all C classes. This attention-based pipeline captures both signal-level importance and
 232 temporal saliency, supporting accurate downstream classification.
 233

234 **Comparison to Prior Work.** Our design is inspired by interpretable time-series models such as
 235 RETAIN (Choi et al., 2016) and IMV-LSTM (Guo et al., 2019), which combine recurrence with
 236 attention to capture temporal dynamics and signal relevance. RETAIN applies attention at both
 237 the timestep and signal levels but aggregates signal contributions uniformly across time, limiting
 238 its ability to localize transient patterns. IMV-LSTM applies signal-level attention to the hidden
 239 states produced by per-signal LSTMs, which aggregate temporal information before computing
 240 importance, potentially obscuring instantaneous signal saliency. In contrast, GARLIC applies signal-
 241 level attention directly at each time step *before* any recurrent modeling, ensuring that the importance
 242 of fine-grained signals is preserved and explicitly captured prior to temporal fusion.
 243

3.3 INTERPRETABILITY AND ATTRIBUTION COMPUTATION

244 Interpretability quantifies how transparently a models decisions can be understood by humans (Zhang
 245 et al., 2021). GARLIC provides local interpretability by attributing each prediction directly to its
 246 input features. We compute input-level attribution scores by tracing learned importance weights
 247 backward from the model output. This backward trace mirrors the forward path through the models
 248 three core components as illustrated in Figure 1 and described in Section 3.2.
 249

250 **Attention-based saliency (Section 3.2.3).** Let $\{\alpha_{k,t}^{\text{sig}}\}_{k=1,t=\tau}^{K,T}$ denote the signal-level attention scores
 251 from Eq. equation 7, and $\{\alpha_{t,t'}^{\text{time}}\}_{t,t'=\tau}^T$ the temporal attention scores from Eq. equation 10. We define
 252 the joint saliency as the element-wise product:
 253

$$s_{k,t'} = \sum_{t=\tau}^T \alpha_{t',t}^{\text{time}} \cdot \alpha_{k,t}^{\text{sig}} \quad (12)$$

256 which yields relevance matrix $\mathbf{S} \in \mathbb{R}^{K \times (T-\tau+1)}$ capturing the importance of each signal-time pair.
 257

258 **Graph-based propagation (Section 3.2.2).** We propagate the relevance scores \mathbf{S} across signals
 259 using the transposed time-lagged graph $\mathbf{W}_\tau \in \mathbb{R}^{K \times K}$ from Eq. equation 6, and redistribute them
 260 temporally using the attention weights $\{\beta_{k,t,j}\}_{k=1,t=\tau,j=0}^{K,T}$ from Eq. equation 4. The resulting
 261 importance scores $a_{k,t}$ denoting the propagated relevance of signal k at time t are computed as:
 262

$$a_{k,t} = \sum_{j=0}^{\tau} \left[(\mathbf{W}_\tau^\top \mathbf{S})_{k,t+j} \cdot \beta_{k,t+j,\tau-j} \right]. \quad (13)$$

264 **Observation masking and redistribution (Section 3.2.1).** To isolate contributions of each obser-
 265 vation, we apply the binary mask $\mathbf{M} \in \{0,1\}^{K \times T}$. Since decay-based imputation blends multiple
 266 past inputs, attribution to unobserved entries is ill-defined. We approximate it by redistributing their
 267 contribution uniformly across observed positions of the same signal:
 268

$$a_{k,t}^{\text{final}} = a_{k,t} \cdot m_{k,t} + (1 - m_{k,t}) \frac{\sum_{t'=1}^T a_{k,t'} \cdot (1 - m_{k,t'})}{\sum_{t'=1}^T m_{k,t'} + \epsilon}, \quad (14)$$

270 where $\epsilon > 0$ ensures numerical stability. The final attribution map $\mathbf{A}^{\text{final}} \in \mathbb{R}^{K \times T}$ assigns salience to
 271 individual observations in a way that is fully consistent with the models forward computation.
 272

273 **3.4 TRAINING STRATEGY**
 274

275 **3.4.1 LOSS FUNCTION**
 276

277 During training, we make use of both an auto-encoder to learn representative features and to impute
 278 reasonable values, and the classification head to predict mortality or sepsis onset. Our training
 279 objective jointly enforces (i) accurate data reconstruction, (ii) a sparse, interpretable graph, and (iii)
 280 strong downstream classification performance, via the following components:
 281

282 **(i) Reconstruction Loss (\mathcal{L}_{rec})**. After message passing, the fused hidden states \mathbf{H} are passed through
 283 a decoder to reconstruct the input data. Let $\hat{x}_{k,t}$ denote the reconstructed values, $x_{k,t}$ the observed
 284 data, and $m_{k,t} \in \{0, 1\}$ the binary mask indicating observed entries. The reconstruction objective
 285 minimizes the masked mean squared error.
 286

287 **(ii) Graph Regularization Loss ($\mathcal{L}_{\text{graph}}$)**. To capture inter-signal dependencies, the model learns
 288 a lag- τ dependency graph \mathcal{G}_τ with adjacency matrix $\mathbf{W}_\tau \in \mathbb{R}^{K \times K}$, where each entry denotes
 289 the influence between signals. To ensure that the learned graph highlights only the most salient
 290 dependencies, we apply an ℓ_1 regularization to promote sparsity. This encourages the model to focus
 291 on a small set of essential edges, thereby improving interpretability and mitigating overfitting from
 292 spurious or redundant connections.
 293

294 **(iii) Classification Loss (\mathcal{L}_{cls})**. For prediction, we use cross-entropy between the models output
 295 $\hat{y} \in \mathbb{R}^C$ and the ground-truth label $y \in \{1, \dots, C\}$.
 296

297 **Total Loss.** We combine the above terms into a single objective:
 298

$$299 \mathcal{L} = \underbrace{\sum_{k,t} m_{k,t} (x_{k,t} - \hat{x}_{k,t})^2}_{\mathcal{L}_{\text{rec}}} + \lambda_g \underbrace{\|\mathbf{W}_\tau\|_1}_{\mathcal{L}_{\text{graph}}} + \lambda_c \underbrace{\left(-\sum_{c=1}^C y_c \log \hat{y}_c \right)}_{\mathcal{L}_{\text{cls}}}, \quad (15)$$

300 where λ_g and λ_c balance the regularization and supervision terms. This multi-objective formulation
 301 enables the model to exploit structural priors and label supervision jointly, improving both
 302 reconstruction fidelity and predictive performance.
 303

304 **3.4.2 ALTERNATING DECOUPLED OPTIMIZATION**
 305

306 Joint optimization of reconstruction and classification often
 307 leads to gradient interference due to their differing objectives—
 308 reconstruction seeks faithful input recovery, while classification
 309 prioritizes discriminative features. To mitigate this conflict, we
 310 adopt an *alternating decoupled optimization* strategy, inspired by
 311 DeFCN (Qiao et al., 2021), to isolate learning dynamics between
 312 modules.
 313

314 As illustrated in Fig. 2, our model consists of three components
 315 with parameters θ_a , θ_b , and θ_c corresponding to: (a) Latent Feature
 316 Modeling (Sec. 3.2.1), (b) Time-Lagged Graph Message Passing
 317 (Sec. 3.2.2), and (c) a Cross-Dimensional Sequential Attention
 318 classifier (Sec. 3.2.3). In **Stage 1**, we update shared modules ($\theta_{a,b}$)
 319 using a composite loss of reconstruction, graph regularization, and
 320 classification, while fixing the classifier (θ_c):
 321

$$322 \theta_{a,b} \leftarrow \theta_{a,b} - \eta \nabla_{\theta_{a,b}} (\mathcal{L}_{\text{rec}} + \lambda_g \mathcal{L}_{\text{graph}} + \lambda_c \mathcal{L}_{\text{cls}}). \quad (16)$$

323 In **Stage 2**, we freeze $\theta_{a,b}$ and update θ_c using the classification loss:
 324

$$325 \theta_c \leftarrow \theta_c - \eta \nabla_{\theta_c} \mathcal{L}_{\text{cls}}. \quad (17)$$

326 This decoupling reduces representational interference, stabilizes training, and improves classification
 327 performance. Full details and reasoning are provided in Appendix A.3.
 328

329 **Figure 2: Alternating decoupled optimization training strategy.**
 330

324

4 EXPERIMENTS

325

4.1 EXPERIMENTAL SETUP

326 **Datasets.** We evaluate our method on three widely used clinical time series benchmarks: MIMIC-III
 327 (Johnson et al., 2016), PhysioNet Challenge 2012 (P12) (Silva et al., 2012), and PhysioNet Challenge
 328 2019 (P19) (Reyna et al., 2019). These datasets feature diverse patient populations, varying recording
 329 frequencies, and significant missingness, reflecting the challenges of real-world ICU records. All
 330 tasks are framed as binary classifications: in-hospital mortality for MIMIC-III and P12, and sepsis
 331 onset for P19. Detailed preprocessing procedures and statistics are provided in Appendix B.
 332

333 **Baselines.** We compare our method against strong baselines across two categories. Irregularity-
 334 aware models encompass: variants of RNNs (RNN-Mean, RNN-Decay, and RNN- Δ_t ; details in
 335 Appendix C.1), GRU-D (Che et al., 2018), ODE-RNN (Rubanova et al., 2019), L-ODE-RNN (Chen
 336 et al., 2018), L-ODE-ODE (Chen et al., 2018), mTAND (Shukla & Marlin, 2021), Warpformer (Zhang
 337 et al., 2023), and MTSFormer (Zheng et al., 2024), which explicitly model missing values, irregular
 338 sampling, or continuous-time dynamics. This category also includes MTGNN (Wu et al., 2020) and
 339 Raindrop (Zhang et al., 2022), which further incorporate inter-signal dependencies through learned
 340 or predefined graphs. Interpretable models are: RETAIN (Choi et al., 2016), IMV-LSTM (Guo et al.,
 341 2019), and DARNN (Qin et al., 2017), which aim to provide signal- and temporal-level interpretability.
 342 Implementation details and hyperparameter settings for all baselines are in Appendix C.1.
 343

344 **Implementation Details.** Each dataset is split into training, validation, and test sets in an 8:1:1
 345 ratio, with stratified sampling on both outcome labels and key patient characteristics (*e.g.*, gender,
 346 ICU type) to preserve class balance. Hyperparameters are chosen via grid search on the validation
 347 split, and for baselines, we mirror the tuning ranges and protocols of their sources to ensure a fair
 348 comparison; detailed settings are provided in Appendix C.1. Models are trained for up to 100 epochs
 349 with Adam optimizer (learning rate tuned per dataset), employing early stopping with a patience of
 350 10 epochs based on the validation loss. We report both AUROC and AUPRC to account for class
 351 imbalance, and all results are averaged over five trials with distinct random seeds. [All experiments
 352 were conducted on a server with an Intel Xeon Silver 4314 processor \(16 cores, 2.40GHz\), 256GB
 353 RAM, and dual NVIDIA GeForce RTX 3090 GPUs \(24GB VRAM each\). All training experiments
 354 utilize a single GPU configuration.](#)

355
 356 **Table 1:** Model performance in terms of AUROC and AUPRC. For both metrics, we report mean
 357 \pm std in % over five random seeds. The first block lists strong baselines designed for irregular time
 358 series, the second block includes interpretable models, and the final block shows results for our
 359 proposed method. We highlight the **best** and the second-best results per column.

360 361 Models	362 P12		363 P19		364 MIMIC-III	
	365 AUROC	366 AUPRC	367 AUROC	368 AUPRC	369 AUROC	370 AUPRC
RNN- Δ_t	82.46 \pm 1.57	47.29 \pm 4.33	89.21 \pm 0.63	51.20 \pm 2.50	82.98 \pm 2.27	50.31 \pm 4.22
RNN-Mean	82.38 \pm 2.11	47.80 \pm 3.98	88.08 \pm 0.88	45.80 \pm 2.10	84.18 \pm 1.70	50.06 \pm 5.17
RNN-Decay	84.26 \pm 1.10	49.81 \pm 3.31	89.15 \pm 1.15	49.73 \pm 3.46	87.63 \pm 0.79	56.29 \pm 3.29
GRU-D	84.45 \pm 1.90	50.74 \pm 4.96	88.73 \pm 0.86	47.81 \pm 3.37	86.36 \pm 1.68	56.14 \pm 1.87
ODE-RNN	83.02 \pm 1.72	48.64 \pm 2.68	89.97 \pm 0.86	54.29 \pm 2.76	88.07 \pm 0.77	61.03 \pm 2.00
L-ODE-RNN	80.59 \pm 2.06	41.40 \pm 4.15	89.63 \pm 1.31	51.02 \pm 3.77	86.98 \pm 0.58	56.88 \pm 2.20
L-ODE-ODE	83.93 \pm 1.14	49.55 \pm 1.43	90.01 \pm 2.04	53.54 \pm 6.12	87.36 \pm 0.94	59.09 \pm 1.93
MTGNN	80.95 \pm 1.71	43.61 \pm 4.93	86.94 \pm 1.65	40.97 \pm 5.26	86.24 \pm 0.67	51.74 \pm 0.92
mTAND	84.30 \pm 1.69	50.05 \pm 3.96	81.73 \pm 1.53	37.27 \pm 3.93	88.00 \pm 0.31	57.73 \pm 2.21
RAINDROP	83.03 \pm 1.37	45.91 \pm 3.55	87.41 \pm 1.13	46.33 \pm 3.09	87.18 \pm 1.51	57.06 \pm 6.01
Warpformer	84.88 \pm 0.48	50.62 \pm 1.25	89.95 \pm 0.57	54.10 \pm 2.38	89.17 \pm 0.57	61.52 \pm 1.93
MTSFormer	83.65 \pm 1.70	50.31 \pm 4.30	87.88 \pm 0.61	48.80 \pm 2.97	88.14 \pm 0.50	61.09 \pm 0.95
IMV-LSTM	84.02 \pm 1.30	49.08 \pm 3.28	84.80 \pm 2.76	42.87 \pm 8.27	86.85 \pm 1.33	54.96 \pm 3.61
DARNN	79.84 \pm 1.36	42.70 \pm 2.09	74.36 \pm 3.50	20.89 \pm 2.73	82.56 \pm 1.25	46.33 \pm 4.08
RETAIN	83.08 \pm 1.11	49.27 \pm 3.01	78.09 \pm 2.22	26.04 \pm 1.35	82.40 \pm 0.94	46.55 \pm 1.96
GARLIC	86.40\pm0.86	56.89\pm1.75	90.96\pm0.84	55.29\pm2.45	90.09\pm0.45	64.85\pm1.68

378
379

4.2 MAIN RESULTS

380
381
382
383
384
385
386
387
388
389
390
391

Table 1 reports the AUROC and AUPRC of all methods on three benchmark datasets. GARLIC consistently achieves the highest scores, setting the new state-of-the-art performance. The improvement is especially notable on the P12 dataset, which contains substantial missingness (statistics in Appendix B), demonstrating the models robustness to sparse and irregular multivariate time series. Compared to other self-interpretable models with attention mechanisms—such as RETAIN, DARNN, and IMV-LSTM—GARLIC achieves substantially higher predictive accuracy while preserving interpretability. Compared to irregularity-aware models that primarily address temporal gaps and graph-based models like MTGNN and Raindrop that rely on static graphs without temporal modeling, GARLIC achieves consistently better performance by dynamically capturing time-lagged dependencies across signals. Apart from ICU outcome prediction, we also assessed GARLIC’s capability in data imputation and human activity recognition, showcasing its generalizability and applicability to broader tasks and datasets. More details can be found in Appendix E.

392
393
394

Ablation Study. To assess the contribution of each component in GARLIC, we perform a series of ablations on P12 and P19 benchmarks, with results summarized in Appendix D.1. These results demonstrate that each module substantially contributes to GARLIC’s overall superiority.

395
396
397
398
399
400

Model Efficiency. To evaluate the efficiency of GARLIC, we measure its training time and memory footprint on the P12, P19 and MIMIC III datasets, comparing against 15 baseline models, each configured with optimal hyperparameters and trained using the same batch size for fairness (more details including these quantitative comparative results and theoretical analysis are provided in Appendix A.2). As an example shown in Figure 3, GARLIC achieves the best performance while maintaining a comparable computational cost on P12 classification task.

401

402
403

4.3 INTERPRETABILITY EVALUATION

404

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

To quantitatively evaluate the reliability of our models attribution scores, we adopt a perturbation-based evaluation strategy inspired by the ROAR (Remove and Retrain) framework (Hooker et al., 2019; Guo et al., 2019; Meng et al., 2022). Specifically, we compare model performance under three masking conditions against the original full-input setting: **(i) Top 50%:** For each sample, we retain the top 50% most important signal-time pairs as determined by attribution scores, masking the remaining inputs. If performance remains close to that of the full-input model, it suggests that the retained inputs capture the primary predictive signal. **(ii) Bottom 50%:** In this condition, we mask the top 50% most important inputs, retaining only the least important half. A marked drop in performance would indicate that the attribution scores correctly identify the most predictive features. **(iii) Random 50%:** As a control, we randomly mask 50% of the inputs, independent of attribution scores. This baseline allows us to disentangle the effect of informed attribution-based masking from random perturbations. In all settings, models are retrained from scratch on the perturbed datasets.

422
423
424
425
426
427
428
429
430
431

In Table 2, we report AUROC and AUPRC (mean \pm std over five seeds) as evaluation metrics. To assess statistical significance, we employ two complementary tests. First, we use the Two One-Sided Tests (TOST) procedure (Schuirmann, 1987) to test whether the performance under the top-50% retention condition is statistically equivalent to the full-input model, with equivalence margins of $\pm 5\%$ for AUROC and $\pm 10\%$ for AUPRC. Secondly, we apply Pages L test (Page, 1963) to examine whether performance follows the expected monotonic ranking: Full $>$ Top-50% $>$ Random-50% $>$ Bottom-50%. Together, these tests quantify both the sufficiency of top-ranked features and the consistency of performance degradation under progressively less informative input subsets. Technical details of both statistical procedures are provided in Appendix G. Across both datasets and metrics, our model passes all eight statistical tests, with all Pages L p-values below 0.005, indicating robust and consistent interpretability. In contrast, three baseline models pass only four, five, and five tests, respectively, showing weaker or less consistent attribution quality under identical conditions.

Figure 3: COMPARISON OF AUROC VERSUS TRAINING TIME FOR VARIOUS METHODS ON THE P12 DATASET.

432 Table 2: Interpretability assessment via input removal. AUROC and AUPRC (%, mean \pm std over
 433 five seeds) are reported for models trained on the full input and three 50% subsets of the data (top,
 434 random, bottom). Two One-Sided Tests (TOST) p-values evaluate equivalence between full and Top
 435 50% models (margins $\pm 5\%$ AUROC, $\pm 10\%$ AUPRC). Pages L test p-values assess the monotonic
 436 ordering (All $>$ Top 50% $>$ Random 50% $>$ Bottom 50%). * $p < .05$; ** $p < .005$.

437

	Models	P12		P19	
		AUROC	AUPRC	AUROC	AUPRC
IMV-LSTM	All	84.02 \pm 1.30	49.08 \pm 3.28	84.80 \pm 2.76	42.87 \pm 8.27
	Top 50%	76.23 \pm 0.32	34.46 \pm 1.78	82.07 \pm 1.67	36.05 \pm 2.91
	Bottom 50%	70.12 \pm 3.12	26.83 \pm 2.14	79.61 \pm 0.88	28.59 \pm 1.75
	Random 50%	75.23 \pm 5.19	37.03 \pm 8.91	76.28 \pm 3.73	23.31 \pm 3.22
	Equivalence (TOST p)	0.9944	0.9766	0.1024	0.0928
	Monotone (Page's L Test p)	0.0011 **	0.0084 *	0.0032 **	0.0019 **
DARNN	All	79.84 \pm 1.36	42.70 \pm 2.09	74.36 \pm 3.50	20.89 \pm 2.73
	Top 50%	73.92 \pm 10.30	35.38 \pm 9.83	72.17 \pm 4.27	17.14 \pm 3.45
	Bottom 50%	67.17 \pm 8.38	27.05 \pm 6.94	70.34 \pm 6.15	15.40 \pm 3.38
	Random 50%	65.37 \pm 13.23	27.25 \pm 11.03	69.86 \pm 4.49	17.52 \pm 4.21
	Equivalence (TOST p)	0.5661	0.3099	0.1697	0.0004 **
	Monotone (Page's L Test p)	0.0301 *	0.0132 *	0.0440 *	0.0132 *
RETAIN	All	83.08 \pm 1.11	49.27 \pm 3.01	78.09 \pm 2.22	26.04 \pm 1.35
	Top 50%	77.04 \pm 1.08	37.18 \pm 3.15	74.74 \pm 1.64	20.17 \pm 1.84
	Bottom 50%	76.23 \pm 1.20	36.30 \pm 3.68	73.28 \pm 0.51	18.60 \pm 2.36
	Random 50%	72.89 \pm 5.51	34.11 \pm 7.87	69.08 \pm 5.27	17.17 \pm 3.09
	Equivalence (TOST p)	0.8814	0.8172	0.1346	0.0039 **
	Monotone (Page's L Test p)	0.0132 *	0.0132 *	0.0032 **	0.0053 *
GARLIC	All	86.40 \pm 0.86	56.89 \pm 1.75	90.96 \pm 0.84	55.29 \pm 2.45
	Top 50%	85.60 \pm 1.48	52.99 \pm 3.25	87.97 \pm 1.24	48.24 \pm 1.44
	Bottom 50%	71.09 \pm 1.17	33.52 \pm 3.42	82.52 \pm 1.27	33.39 \pm 2.47
	Random 50%	74.73 \pm 6.05	35.51 \pm 7.04	84.73 \pm 2.46	40.77 \pm 6.11
	Equivalence (TOST p)	0.0011 **	0.0079 *	0.0156 *	0.0399 *
	Monotone (Page's L Test p)	0.0002 **	0.0004 **	0.0002 **	0.0002 **

462

463

464 4.4 CASE STUDY

465

466 To illustrate how GARLIC behaves on real ICU trajectories, we present two case studies from the P12
 467 and P19 datasets. Because these datasets contain a mix of vital signs and laboratory measurements,
 468 we first briefly describe the variables shown in the figure. Heart rate (HR) reflects cardiovascular
 469 stress; mean arterial pressure (MAP) indicates how well organs are perfused: MAP < 65 mmHg is
 470 associated with organ dysfunction (Singer et al., 2016); systolic (SysABP) and diastolic (DiasABP)
 471 blood pressures describe hemodynamic stability; white blood cell count (WBC) signals immune
 472 activation and its abnormalities mark infection (Singer et al., 2016); creatinine and blood urea nitrogen
 473 (BUN) reflect kidney function; and bicarbonate (HCO_3) is a marker of metabolic acidosis. All of
 474 these variables are standard features in the P12 and P19 datasets (see Appendix H.1 for full variable
 475 lists).

476

477 The patient shown in Figure 4a did not survive hospitalization. In the early portion of the episode,
 478 GARLIC assigns moderate importance to several transient increases in heart rate, suggesting sensi-
 479 tivity to short-lived episodes of cardiovascular stress. Later in the stay, multiple blood-pressure
 480 channels, including MAP, systolic, and diastolic measurements, begin to oscillate more widely. These
 481 fluctuations coincide with a steady rise in predicted mortality risk. The model highlights these periods
 482 as influential because simultaneous instability in several hemodynamic variables is a known indicator
 483 of clinical deterioration (Silva et al., 2012; Singer et al., 2016). GARLIC's attribution patterns,
 484 therefore, align with clinically intuitive warning signs.

485

486 The patient in Figure 4b eventually develops sepsis. Early variations in vital signs generate only
 487 mild attributions and minimal movement in predicted risk, reflecting that isolated fluctuations are
 488 common in ICU data. After approximately hour 12, several variables begin to shift in ways associated
 489 with sepsis onset: MAP decreases, HR rises, WBC trends downward, and both creatinine and BUN

Figure 4: Case Study Visualizations. a A non-survivor: heart rate (HR), mean arterial pressure (NIMAP), diastolic pressure (NIDiasABP), and systolic pressure (NISysABP) time series with corresponding normalized attributions and the predicted mortality probability **over time upon available measurements**. b A sepsis patient: leukocyte count (WBC), creatinine, bicarbonate (HCO_3), blood urea nitrogen (BUN), mean arterial pressure (MAP), and HR time series with their attributions and the predicted sepsis probability **over time upon available measurements**. Importance scores are normalized within each signal to highlight temporal dynamics.

increase, indicating possible kidney dysfunction (Singer et al., 2016; Reyna et al., 2019). Bicarbonate levels fall, consistent with metabolic acidosis. During this interval, GARLIC assigns sharp attribution peaks exactly where these changes occur, and the predicted sepsis probability increases accordingly. These patterns mirror standard diagnostic criteria for evolving sepsis and demonstrate the model’s ability to focus on clinically meaningful events as deterioration unfolds.

Across both case studies, GARLIC highlights time points where multiple physiologic abnormalities co-occur, producing interpretable and clinically plausible attribution maps. Additional case studies and detailed discussions are provided in Appendix H.

5 CONCLUSION

We introduced GARLIC, a unified framework for ICU time series that integrates (1) exponential-decay imputation encoding, (2) time-lagged graph message passing, and (3) cross-dimensional sequential attention, trained via alternating decoupled optimization to jointly reconstruct inputs and predict outcomes. On PhysioNet 2012 & 2019 and MIMIC-III, GARLIC achieves the state-of-the-art AUROC and AUPRC. Interpretability evaluation and case study analyses demonstrate that the model produces clinically meaningful and interpretable attributions. This work advances disease risk prediction by combining high accuracy with transparent, clinicianfriendly explanations, empowering healthcare teams to make more informed decisions and fostering trust in AI-driven insights.

Limitations and Future Work. While GARLIC excels at binary outcome prediction with built-in explanations, several limitations remain that restrict its broader applicability. First, the model has not yet been evaluated in imputation or forecasting tasks, which are important for many cases of clinical use. Next, the reliance on fixed-size sliding windows and discrete time lags may limit its flexibility in modeling irregular or continuous-time signals; we plan to explore adaptive, window-free variants and event-driven formulations. In addition, GARLIC currently excludes static patient features (*e.g.*, demographics, comorbidities), and does not address severe outcome imbalance. We aim to incorporate such features and adopt strategies such as focal losses or resampling. Finally, GARLIC does not yet support streaming or arbitrarily long ICU stays, and its real-world utility hinges on integration with clinician feedback for iterative refinement.

540 REPRODUCIBILITY STATEMENT
541542 To facilitate reproducibility, we provide data description and implementation details in Section 4.1,
543 including choice of model hyperparameters in Appendix C.2. Code will be released upon acceptance.
544545 REFERENCES
546547 Talal AA Abdullah, Mohd Soperi Mohd Zahid, Waleed Ali, and Shahab Ul Hassan. B-lime: An
548 improvement of lime for interpretable deep learning classification of cardiac arrhythmia from ecg
549 signals. *Processes*, 2023.550 Oren Barkan, Edan Hauon, Avi Caciularu, Ori Katz, Itzik Malkiel, Omri Armstrong, and Noam
551 Koenigstein. Grad-sam: Explaining transformers via gradient self-attention maps. In *Proceedings*
552 of the 30th ACM International Conference on Information & Knowledge Management, pp.
553 28822887. ACM, October 2021. doi: 10.1145/3459637.3482126. URL <http://dx.doi.org/10.1145/3459637.3482126>.555 Zhe Che, Sanjay Purushotham, Kyunghyun Cho, et al. Recurrent neural networks for multivariate time
556 series with missing values. *Scientific Reports*, 8(1):6085, 2018. doi: 10.1038/s41598-018-24271-9.
557 URL <https://doi.org/10.1038/s41598-018-24271-9>.559 Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
560 differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
561 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran Asso-
562 ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf.564 Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. Contiformer:
565 continuous-time transformer for irregular time series modeling. In *Proceedings of the 37th*
566 *International Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY,
567 USA, 2023. Curran Associates Inc.568 Edward Choi, Mohammad Taha Bahadori, Joshua A. Kulas, Andy Schuetz, Walter F. Stewart,
569 and Jimeng Sun. Retain: an interpretable predictive model for healthcare using reverse time
570 attention mechanism. In *Proceedings of the 30th International Conference on Neural Information*
571 *Processing Systems*, NIPS'16, pp. 35123520, Red Hook, NY, USA, 2016. Curran Associates Inc.
572 ISBN 9781510838819.573 Spencer Compton, Kristjan Greenewald, Dmitriy A Katz, and Murat Kocaoglu. Entropic causal
574 inference: Graph identifiability. In *International Conference on Machine Learning*, pp. 4311–4343.
575 PMLR, 2022.577 J. Duell, X. Fan, H. Fu, and M. Seisenberger. Batch integrated gradients: Explanations for temporal
578 electronic health records. In *International Conference on Artificial Intelligence in Medicine*, pp.
579 120–124. Springer, 2023.580 Tian Guo, Tao Lin, and Nino Antulov-Fantulin. Exploring interpretable LSTM neural networks over
581 multi-variable data. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings*
582 of the 36th International Conference on Machine Learning, volume 97 of *Proceedings of Machine*
583 *Learning Research*, pp. 2494–2504. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/guo19b.html>.585 Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for interpretability
586 methods in deep neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
587 E. Fox, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Cur-
588 ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/fe4b8556000d0f0cae99daa5c5c5a410-Paper.pdf.591 Max Horn, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. Set functions
592 for time series. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International*
593 *Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp.
4353–4363. PMLR, 13–18 Jul 2020.

594 Jianxuan Huang, Baoyao Yang, Kejing Yin, and Jingwen Xu. Dna-t: Deformable neighborhood
 595 attention transformer for irregular medical time series. *IEEE Journal of Biomedical and Health
 596 Informatics*, 28(7):4224–4237, 2024. doi: 10.1109/JBHI.2024.3395446.

597

598 Ming Jin, Yu Zheng, Yuan-Fang Li, Siheng Chen, Bin Yang, and Shirui Pan. Multivariate time
 599 series forecasting with dynamic graph neural odes. *IEEE Transactions on Knowledge and Data
 600 Engineering*, 35(9):91689180, September 2023. ISSN 2326-3865. doi: 10.1109/TKDE.2022.
 601 3221989. URL <http://dx.doi.org/10.1109/TKDE.2022.3221989>.

602 Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-Wei H Lehman, Mengling Feng, Mohammad
 603 Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a
 604 freely accessible critical care database. *Scientific data*, 3:1–9, 2016.

605

606 K. Kashiparekh, J. Narwariya, P. Malhotra, L. Vig, and G. Shroff. ConvtimeNet: A pre-trained deep
 607 convolutional neural network for time series classification. *CoRR*, abs/1904.12546, 2019.

608 Saebom Leem and Hyunseok Seo. Attention guided cam: Visual explanations of vision transformer
 609 guided by self-attention, 2024. URL <https://arxiv.org/abs/2402.04563>.

610

611 G. Li, B. Choi, J. Xu, S. S. Bhowmick, K.-P. Chun, and G. L. H. Wong. Shapenet: A shapelet-neural
 612 network approach for multivariate time series classification. In *Proceedings of the AAAI Conference
 613 on Artificial Intelligence*, volume 35, pp. 8375–8383, 2021.

614 Zekun Li, Shiyang Li, and Xifeng Yan. Time series as images: Vision transformer for irregularly
 615 sampled time series. In *NeurIPS*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/9a17c1eb808cf012065e9db47b7ca80d-Abstract-Conference.html.

616

617 S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In *Advances in
 618 Neural Information Processing Systems*, volume 30, 2017.

619

620 Liantao Ma, Junyi Gao, Yasha Wang, Chaohe Zhang, Jiangtao Wang, Wenjie Ruan, Wen Tang,
 621 Xin Gao, and Xinyu Ma. Adacare: Explainable clinical health status representation learning via
 622 scale-adaptive feature extraction and recalibration. In *Proceedings of the AAAI Conference on
 623 Artificial Intelligence*, volume 34, pp. 830–837. AAAI Press, 2020a.

624

625 Q. Ma, W. Zhuang, S. Li, D. Huang, and G. Cottrell. Adversarial dynamic shapelet networks. In
 626 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pp. 5069–5076, 2020b.

627

628 C. Meng, L. Trinh, N. Xu, and et al. Interpretability and fairness evaluation of deep learning models
 629 on mimic-iv dataset. *Scientific Reports*, 12:7166, 2022. doi: 10.1038/s41598-022-11012-2.
 630 URL <https://doi.org/10.1038/s41598-022-11012-2>. Received: 07 April 2021;
 631 Accepted: 09 February 2022; Published: 03 May 2022.

632

633 I. Neves, D. Folgado, S. Santos, M. Barandas, A. Campagner, L. Ronzio, F. Cabitza, and H. Gamboa.
 634 Interpretable heartbeat classification using local model-agnostic explanations on ecgs. *Computers
 635 in Biology and Medicine*, 2021.

636

637 Ellis Batten Page. Ordered hypotheses for multiple treatments: a significance test for linear ranks.
Journal of the American Statistical Association, 58(301):216–230, 1963.

638

639 Byoungwoo Park, Hyungi Lee, and Juho Lee. Amortized control of continuous state space feynman-
 640 kac model for irregular time series. In *The Thirteenth International Conference on Learning
 641 Representations*, 2025. URL <https://openreview.net/forum?id=8zJR0n6k5v>.

642

643 Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and Alan L. Yuille. Defrcn: Decoupled faster
 644 r-cnn for few-shot object detection. In *Proceedings of the IEEE/CVF International Conference on
 Computer Vision (ICCV)*, pp. 8681–8690, 2021.

645

646 Yao Qin, Dongjin Song, Haifeng Cheng, Wei Cheng, Guofei Jiang, and Garrison W. Cottrell. A
 647 dual-stage attention-based recurrent neural network for time series prediction. In *Proceedings of
 the 26th International Joint Conference on Artificial Intelligence, IJCAI’17*, pp. 26272633. AAAI
 Press, 2017. ISBN 9780999241103.

648 Eric Qu, Yansen Wang, Xufang Luo, Wenqiang He, Kan Ren, and Dongsheng Li. Cnn kernels
 649 can be the best shapelets. In *Proceedings of the Twelfth International Conference on Learning*
 650 *Representations (ICLR)*, 2024.

651

652 Matthew A. Reyna, Chris Josef, Salman Seyed, Russell Jeter, Supreeth P. Shashikumar, M. Brandon
 653 Westover, Ashish Sharma, Shamim Nemati, and Gari D. Clifford. Early prediction of sepsis
 654 from clinical data: the physionet/computing in cardiology challenge 2019. In *2019 Computing in*
 655 *Cardiology (CinC)*, pp. 1–4. IEEE, 2019.

656

657 M. T. Ribeiro, S. Singh, and C. Guestrin. why should i trust you? explaining the predictions of any
 658 classifier. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge*
 659 *Discovery and Data Mining*, pp. 1135–1144, 2016.

660

661 Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations
 662 for irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
 663 E. Fox, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Cur-
 664 ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf.

665

666 Donald J Schuirmann. A comparison of the two one-sided tests procedure and the power approach
 667 for assessing the equivalence of average bioavailability. *Journal of pharmacokinetics and biophar-*
 668 *maceutics*, 15:657–680, 1987.

669

670 Satya Narayan Shukla and Benjamin Marlin. Interpolation-prediction networks for irregularly
 671 sampled time series. In *International Conference on Learning Representations*, 2019. URL
 672 <https://openreview.net/forum?id=r1efr3C9Ym>.

673

674 Satya Narayan Shukla and Benjamin Marlin. Multi-time attention networks for irregularly sampled
 675 time series. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=4c0J61wQ4_.

676

677 Ikaro Silva, George Moody, Daniel J. Scott, Leo A. Celi, and Roger G. Mark. Predicting in-
 678 hospital mortality of icu patients: The physionet/computing in cardiology challenge 2012. In *2012*
 679 *Computing in Cardiology*, pp. 245–248. IEEE, 2012.

680

681 Mervyn Singer, Clifford S. Deutschman, Christopher W. Seymour, Manu Shankar-Hari, Djillali
 682 Annane, Michael Bauer, Rinaldo Bellomo, Gordon R. Bernard, Jean-Daniel Chiche, Craig M.
 683 Coopersmith, Richard S. Hotchkiss, Mitchell M. Levy, John C. Marshall, Greg S. Martin, Steven M.
 684 Opal, Gordon D. Rubenfeld, Tom van der Poll, Jean-Louis Vincent, and Derek C. Angus. The
 685 third international consensus definitions for sepsis and septic shock (sepsis-3). *JAMA*, 315(8):
 686 801–810, 2016. doi: 10.1001/jama.2016.0287. URL <https://doi.org/10.1001/jama.2016.0287>.

687

688 Francesco Spinnato and Cristiano Landi. Pyrregular: A unified framework for irregular time series,
 689 with classification benchmarks. *arXiv preprint arXiv:2505.06047*, 2025.

690

691 Sindhu Tipirneni and Chandan K. Reddy. Self-supervised transformer for sparse and irregularly
 692 sampled multivariate clinical time-series. *ACM Transactions on Knowledge Discovery from Data*
 (TKDD), 16(6):105:1–105:17, July 2022.

693

694 Qinfen Wang, Geng Chen, Xuting Jin, Siyuan Ren, Gang Wang, Longbing Cao, and Yong Xia.
 695 Bit-mac: Mortality prediction by bidirectional time and multi-feature attention coupled network
 696 on multivariate irregular time series. *Comput. Biol. Med.*, 155(C), March 2023. ISSN 0010-
 697 4825. doi: 10.1016/j.combiomed.2023.106586. URL <https://doi.org/10.1016/j.combiomed.2023.106586>.

698

699 Yunshi Wen, Tengfei Ma, Ronny Luss, Debarun Bhattacharjya, Achille Fokoue, and Anak Agung
 700 Julius. Shedding light on time series classification using interpretability gated networks. In
 701 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=n34taxF0TC>.

702 Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Connecting
 703 the dots: Multivariate time series forecasting with graph neural networks. In *Proceedings of the 26th*
 704 *ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, KDD '20, pp.
 705 753763, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450379984.
 706 doi: 10.1145/3394486.3403118. URL <https://doi.org/10.1145/3394486.3403118>.

707 Raneen Younis, Abdul Hakmeh, and Zahra Ahmadi. Mts2graph: Interpretable multivariate time
 708 series classification with temporal evolving graphs. *Pattern Recognition*, 152:110486, 2024.
 709 ISSN 0031-3203. doi: <https://doi.org/10.1016/j.patcog.2024.110486>. URL <https://www.sciencedirect.com/science/article/pii/S0031320324002371>.

712 Yue Yu, Jie Chen, Tian Gao, and Mo Yu. Dag-gnn: Dag structure learning with graph neural networks.
 713 In *International conference on machine learning*, pp. 7154–7163. PMLR, 2019.

714 Jiawen Zhang, Shun Zheng, Wei Cao, Jiang Bian, and Jia Li. Warpformer: A multi-scale modeling
 715 approach for irregular clinical time series. In *Proceedings of the 29th ACM SIGKDD Conference*
 716 *on Knowledge Discovery and Data Mining*, KDD '23, pp. 32733285. ACM, August 2023. doi:
 717 10.1145/3580305.3599543. URL <http://dx.doi.org/10.1145/3580305.3599543>.

718 Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, and Marinka Zitnik. Graph-guided net-
 719 work for irregularly sampled multivariate time series. In *International Conference on Learning*
 720 *Representations*, 2022. URL <https://openreview.net/forum?id=Kwm8I7dU-15>.

722 Yu Zhang, Peter Tiňo, Aleš Leonardis, and Ke Tang. A survey on neural network interpretability.
 723 *IEEE Transactions on Emerging Topics in Computational Intelligence*, 5(5):726–742, 2021.

724 Ziqi Zhao, Yucheng Shi, Shushan Wu, Fan Yang, Wenzhan Song, and Ninghao Liu. Interpretation of
 725 time-series deep models: A survey, 2023. URL <https://arxiv.org/abs/2305.14582>.

727 Liangwei Nathan Zheng, Zhengyang Li, Chang George Dong, Wei Emma Zhang, Lin Yue, Miao Xu,
 728 Olaf Maennel, and Weitong Chen. Irregularity-informed time series analysis: Adaptive modelling
 729 of spatial and temporal dynamics. In *Proceedings of the 33rd ACM International Conference on*
 730 *Information and Knowledge Management*, CIKM '24, pp. 34053414, New York, NY, USA, 2024.
 731 Association for Computing Machinery. ISBN 9798400704369. doi: 10.1145/3627673.3679716.
 732 URL <https://doi.org/10.1145/3627673.3679716>.

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A ADDITIONAL DETAILS OF THE PROPOSED METHOD
757758 A.1 ARCHITECTURE DETAILS
759760 A.1.1 LATENT FEATURE MODELING
761762 **Time-aware imputation.** The imputation module uses an exponential decay mechanism with
763 per-variable parameters w_k and b_k , initialized to 0.1 and 0, respectively.764 **Signal-specific encoders.** Each input variable is processed by a dedicated multilayer perceptron
765 (MLP), implemented independently for each dimension. Each MLP has two fully connected layers
766 with ReLU activation, both with output dimension D_f , which is a shared tunable hyperparameter.
767768 A.1.2 TIME-LAGGED GRAPH MESSAGE PASSING
769770 **Temporal context encoding.** For each variable, we extract a window of size $\tau + 1$ and apply sinusoidal
771 positional encodings before computing attention across the window. This yields a temporally
772 contextualized embedding per variable.773 **Graph-based signal interaction.** A time-lagged graph \mathcal{G}_τ is defined by a learnable adjacency matrix
774 $\mathbf{W}_\tau \in \mathbb{R}^{K \times K}$, initialized as the sum of an identity matrix and a fully connected matrix scaled by a
775 small positive constant. This stabilizes training and introduces a weak prior toward dense connectivity.
776 Message passing is performed via matrix multiplication with \mathbf{W}_τ .777 **Lag configuration.** A single lag parameter τ is shared across variables. Future work may explore
778 variable-specific lags for more flexible modeling.
779780 A.1.3 CROSS-DIMENSIONAL SEQUENTIAL ATTENTION
781782 **Temporal modeling and fusion.** Signal-level summaries are passed through a GRU with hidden
783 size D_h , followed by temporal self-attention over the GRU outputs. Positional encodings are added
784 before attention, and the attended sequence is mean-pooled to obtain a global representation.
785786 **Classifier.** The pooled vector is processed by a two-layer MLP with ReLU activation and hidden
787 dimension D_h , producing the final prediction logits.
788

789 A.1.4 TRAINING STRATEGY

790 **Loss function.** To guide representation learning, the fused representations \mathbf{H} are decoded back to the
791 input space through a two-layer MLP with ReLU activation and hidden size D_f . Reconstruction is
792 supervised using masked mean squared error over observed entries. An ℓ_1 penalty on \mathbf{W}_τ encourages
793 sparse graph structure, and binary cross-entropy is used for classification. The total loss is a weighted
794 sum of reconstruction loss, graph sparsity regularization, and classification loss, where the latter two
795 are scaled by coefficients λ_g and λ_c , respectively.796 **Alternating decoupled optimization.** Parameters are divided into a shared backbone (imputation,
797 encoding, time-lagged attention, message passing) and a prediction head (signal-level attention, GRU,
798 temporal attention, classifier). Each epoch updates only one group while freezing the other. The two
799 groups use separate learning rates and weight decay. Phase transitions are triggered by early stopping
800 with patience, and each phase resumes from the best checkpoint of the previous one.
801802 A.2 MODEL EFFICIENCY
803804 A.2.1 THEORETICAL ANALYSIS
805806 We analyze the computational and memory complexity of our model with respect to the sequence
807 length T and the number of variables K . The model employs a sliding-window mechanism, where
808 each window spans $\tau + 1$ time steps, yielding $L = T - \tau$ valid windows per sequence. Let D_f denote
809 the input feature dimension and D_h the hidden state size. Positional encodings are implemented via
table lookups and incur negligible computational overhead.

810
811 Table 3: Training time (s/iter) and memory footprint (MB) of baseline models across datasets (batch
812 sizes: P12=64, P19=64, MIMIC-III=16).

Method	P12 Time	P12 Mem	P19 Time	P19 Mem	MIMIC-III Time	MIMIC-III Mem
GRU-D	0.946	152	0.132	28	1.948	187
RNN-mean	0.581	120	0.078	25	1.198	88
RNN-decay	0.475	140	0.159	27	0.600	87
RNN-deltaT	0.469	120	0.050	24	0.980	76
ODE-RNN	1.717	184	0.246	32	2.737	114
L-ODE-RNN	0.599	218	0.087	37	0.650	126
L-ODE-ODE	1.846	220	0.318	38	3.873	136
mTAND	0.072	2856	0.063	1007	0.205	6273
MTSFormer	0.148	2798	0.131	1653	0.107	1176
MTGNN	0.256	3864	0.185	2574	0.290	2151
Raindrop	0.242	1806	0.163	313	0.128	2431
WarpFormer	0.361	8566	0.164	3981	OOM	OOM
RETAIN	0.225	430	0.035	59	0.353	213
DARNN	0.597	2034	0.135	133	0.601	612
IMV-LSTM	0.998	4550	0.213	1977	5.284	7509
GARLIC	0.581	3322	0.184	1250	0.619	1128

829
830 Table 4: Lightweight GARLIC configurations on P19: varying time lag (feature_dim=32, hid-
831 den_size=512)

Feature Dim	Hidden Size	Time Lag	AUROC (%)	Time (s/iter)	Memory (MB)
32	512	8	90.96	0.184	1250
32	512	7	90.07	0.164	1060
32	512	6	89.51	0.153	1098
32	512	5	89.47	0.152	960
32	512	4	88.97	0.155	832
32	512	3	89.30	0.137	694
32	512	2	88.52	0.143	662
32	512	1	88.99	0.128	660

821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
The per-layer computational complexity is detailed as follows: the signal-wise encoders require $\mathcal{O}(TKD_f^2)$; the signal-wise time-lagged attention operates at $\mathcal{O}(TKD_f)$ under the assumption that τ is a small constant; message passing and signal-level attention introduce $\mathcal{O}(TK^2D_f)$ complexity due to all-pairs interactions among variables; the GRU contributes $\mathcal{O}(TD_h^2)$; the temporal attention layer incurs $\mathcal{O}(T^2D_h)$; and the final classification head adds $\mathcal{O}(D_h^2)$.

848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
Aggregating the above components, the overall computational complexity of the model is: $\mathcal{O}(TKD_f^2) + \mathcal{O}(TK^2D_f) + \mathcal{O}(TD_h^2) + \mathcal{O}(T^2D_h) + \mathcal{O}(D_h^2)$. Neglecting the feature and hidden dimensions, the model exhibits an overall complexity of $\mathcal{O}(TK + TK^2 + T + T^2)$.

A.2.2 EMPIRICAL RESULTS

854
855
856
857
858
859
860
861
862
863
We benchmark the computational efficiency of GARLIC against fifteen baseline models in terms of training time and memory usage. All models are trained under identical batch sizes with their best hyperparameters to ensure fairness. The results, summarized in Table 3, show that GARLIC achieves comparable efficiency while maintaining strong predictive performance.

A.2.3 PERFORMANCE-EFFICIENCY TRADE-OFF ANALYSIS

864
865
866
867
868
869
870
871
872
873
We evaluate the impact of model configurations on computational efficiency, focusing on the time lag (τ), feature dimension, and hidden size. The results, presented in Tables 4, 5, 6, 7, 8, and 9, show that reducing these parameters leads to a noticeable decrease in training time and memory usage, although some minor drop in AUROC scores is observed. Smaller configurations, achieved through shorter time lags or reduced feature and hidden dimensions, lower per-iteration runtime and memory

864 **Table 5:** Lightweight GARLIC configurations on P19: varying hidden size (feature_dim=32,
 865 time_lag=8)

867	Feature Dim	Hidden Size	Time Lag	AUROC (%)	Time (s/iter)	Memory (MB)
868	32	512	8	90.96	0.184	1250
869	32	256	8	90.47	0.135	1186
870	32	128	8	90.52	0.134	1080
871	32	64	8	89.62	0.133	1150
872	32	32	8	88.53	0.133	1140

874 **Table 6:** Lightweight GARLIC configurations on P19: varying feature dimension (hidden_size=512,
 875 time_lag=8)

877	Feature Dim	Hidden Size	Time Lag	AUROC (%)	Time (s/iter)	Memory (MB)
878	32	512	8	90.96	0.184	1250
879	16	512	8	90.46	0.136	710
880	8	512	8	89.98	0.126	566

884 footprint while incurring only a small reduction in predictive performance. These experiments
 885 indicate that GARLIC offers flexible trade-offs between efficiency and accuracy, achieving practical
 886 computational costs across a wide range of configurations.

888 A.3 DECOUPLED OPTIMIZATION RATIONALE

890 We partition model parameters into three groups for decoupled optimization. The first group, θ_a ,
 891 includes the time-aware imputation parameters (w_k , b_k) and the signal-specific MLP encoders,
 892 corresponding to the *Latent Feature Modeling* module. The second group, θ_b , comprises the time-
 893 lagged attention module with positional encoding and the message passing layer with the learnable
 894 adjacency matrix, forming the *Time-Lagged Graph Message Passing* module. The third group, θ_c ,
 895 consists of the signal-level attention, GRU, temporal self-attention, and the final two-layer MLP
 896 classifier, which together compose the *Cross-Dimensional Sequential Attention* module.

897 Although reconstruction is introduced as an auxiliary objective to improve representation quality
 898 by fully leveraging partially observed data, it is not fully aligned with the final classification task.
 899 The reconstruction components, *i.e.*, (a) *Latent Feature Modeling* and (b) *Time-Lagged Graph*
 900 *Message Passing* are designed to faithfully recover the input signals, preserving temporal continuity
 901 and inter-signal structure. These modules prioritize fidelity to the observed data, independent
 902 of its discriminative utility. In contrast, the classification module, *i.e.*, (c) *Cross-Dimensional*
 903 *Sequential Attention* focuses on extracting task-relevant features that effectively differentiate clinical
 904 trajectories associated with distinct outcome classes. As a result, it may intentionally discard
 905 input patterns that are non-predictive or noisy. This divergence in learning objectives introduces
 906 *representational interference* when the system is trained end-to-end, causing unstable updates and
 907 suboptimal generalization.

908 To resolve this issue, we adopt an *alternating decoupled optimization* strategy, an approach generally
 909 applicable to multi-objective learning when components serve partially conflicting purposes. Al-
 910 though our overall task is classification, a strong auxiliary reconstruction loss introduces competing
 911 gradient signals that, if not properly managed, can impair model performance.

912 Our strategy alternates between two decoupled stages of optimization. In the first stage, we fix
 913 the classifier θ_c and update the shared modules $\theta_{a,b}$ by minimizing a composite loss that combines
 914 reconstruction, graph regularization, and classification objectives:

$$915 \theta_{a,b} \leftarrow \theta_{a,b} - \eta \nabla_{\theta_{a,b}} (\mathcal{L}_{\text{rec}} + \lambda_g \mathcal{L}_{\text{graph}} + \lambda_c \mathcal{L}_{\text{cls}}), \quad \text{with } \theta_c \text{ fixed.}$$

916 In this step, although θ_c remains static, classification gradients are allowed to flow back through $\theta_{a,b}$
 917 to encourage task-relevant feature extraction during representation learning.

918
919
920
Table 7: Lightweight GARLIC configurations on P12: varying window size (feature_dim=16,
hidden_size=128).
921
922
923
924

Feature Dim	Hidden Size	Time Lag	AUROC (%)	Time (s/iter)	Memory (MB)
16	128	2	86.40	0.581	3322
16	128	1	85.18	0.221	953

925
926
927
Table 8: Lightweight GARLIC configurations on P12: varying hidden size (feature_dim=16,
time_lag=2).
928
929
930
931
932

Feature Dim	Hidden Size	Time Lag	AUROC (%)	Time (s/iter)	Memory (MB)
16	128	2	86.40	0.581	3322
16	64	2	86.18	0.279	1004
16	32	2	84.37	0.282	988

933
934
935
In the second stage, we freeze $\theta_{a,b}$ and update the classification module θ_c based solely on classification performance:

936
$$\theta_c \leftarrow \theta_c - \eta \nabla_{\theta_c} \mathcal{L}_{\text{cls}}, \quad \text{with } \theta_{a,b} \text{ fixed.}$$

937
938
939
940
By alternating these two steps until convergence, each module is allowed to specialize on its respective objective while still benefiting from shared latent features. This decoupling mitigates conflicting learning dynamics, enhances training stability, and improves overall classification performance.941
942
943
944
945
Our design is inspired by DeFRCN (Qiao et al., 2021), which decouples localization and classification heads in few-shot object detection to avoid multi-task interference. While their setting addresses conflict between distinct tasks, our scenario involves misalignment among sub-objectives within a single classification task due to auxiliary reconstruction. Nevertheless, the underlying principle remains consistent: isolating incompatible optimization signals improves convergence and modular performance.
946947
948

B DATA DETAILS

949
950

B.1 DATASET DESCRIPTION

951
952
953
954
955
956
957
958
959
MIMIC-III. We use the Medical Information Mart for Intensive Care III (MIMIC-III) dataset, a large, publicly available database comprising deidentified health-related data from over 40,000 critical care patients admitted to the Beth Israel Deaconess Medical Center between 2001 and 2012 (Johnson et al., 2016). The dataset contains high-resolution clinical information, including demographics, vital signs, laboratory test results, medications, procedures, caregiver notes, imaging reports, and in-hospital as well as post-discharge mortality outcomes. MIMIC-III supports a wide range of research applications in clinical prediction modeling, epidemiology, and decision support, and is notable for its large and diverse ICU population, high temporal granularity, and unrestricted availability to researchers worldwide.960
961
962
963
964
965
966
967
968
PhysioNet Challenge 2012 (P12). The P12 dataset is derived from the PhysioNet/Computing in Cardiology Challenge 2012 (Silva et al., 2012). It comprises clinical records from 12,000 adult ICU stays spanning various unit types, including medical, surgical, trauma, and cardiac ICUs. All patients were admitted for diverse clinical conditions, and ICU stays shorter than 48 hours were excluded. Up to 42 signals are recorded per patient, including 6 admission-level descriptors and 36 time-varying physiological signals (e.g., vital signs and laboratory results). Due to signal sampling frequencies and clinical heterogeneity, the actual number of available signals varies across patients. Each observation is time-stamped with its offset from ICU admission, providing fine-grained temporal resolution for modeling.969
970
971
PhysioNet Challenge 2019 (P19). The P19 dataset is derived from the PhysioNet/Computing in Cardiology Challenge 2019 (Reyna et al., 2019), which focuses on the early prediction of sepsis in ICU settings. It comprises multivariate clinical time series from 40,331 ICU stays, collected across three distinct hospital systems. Each patient record is formatted as an hourly sampled time series with

972 Table 9: Lightweight GARLIC configurations on P12: varying feature dimension (hidden_size=128,
 973 time_lag=2).

975	Feature Dim	Hidden Size	Time Lag	AUROC (%)	Time (s/iter)	Memory (MB)
976	16	128	2	86.40	0.581	3322
977	8	128	2	86.26	0.198	742

979 Table 10: DATASET STATISTICS.
 980

981	Dataset	Samples	Sensors	Negative:Positive Labels	Missing Ratio (%)	Task
983	MIMIC III	49380	103	43633:5747	98.08±1.10	Mortality Prediction
	P12	11988	36	10281:1707	94.80±1.51	Mortality Prediction
	P19	40331	34	37400:2931	85.83±6.13	Sepsis Prediction

987 34 clinical signals, including vital signs, laboratory test results, and demographic attributes. Sepsis
 988 annotations follow the Sepsis-3 definition (Singer et al., 2016), requiring both a two-point increase in
 989 the Sequential Organ Failure Assessment (SOFA) score and evidence of infection.

991 B.2 DATA PREPROCESSING AND STATISTICS

993 This section details the preprocessing procedures for each dataset and presents the corresponding
 994 statistics in Table 10 after preprocessing.

995 **MIMIC-III.** We use the preprocessed version of MIMIC-III (Johnson et al., 2016), following the
 996 preprocessing protocol adopted in Warpformer (Zhang et al., 2023). This version contains 103 clinical
 997 signals, comprising 61 biomarkers (e.g., vital signs and lab tests) and 42 intervention-related features
 998 (e.g., medications and procedures), extracted from 53,423 ICU admissions. Consistent with prior
 999 work, we restrict our analysis to adult ICU stays and exclude neonatal cases. For the in-hospital
 1000 mortality prediction task, we utilize all available time series data collected during the ICU stay, and
 1001 discard admissions with a length of stay shorter than 24 hours to ensure sufficient temporal context.

1002 **P12.** We follow the official PhysioNet 2012 Challenge structure (Silva et al., 2012) and retain 36
 1003 physiological signals after removing static admission descriptors. For each patient, we extract all
 1004 available timestamped observations from the first 48 hours of ICU stay. Categorical static features
 1005 (e.g., gender, ICU type) are one-hot encoded. In-hospital mortality outcomes are derived from the
 1006 provided labels, and corrupted or blacklisted records are excluded during filtering.

1007 **P19.** We follow the official PhysioNet 2019 Challenge setup (Reyna et al., 2019). Each patient record
 1008 is parsed to extract hourly measurements of 34 clinical signals, excluding static descriptors (e.g.,
 1009 age, gender, unit type) and meta fields (e.g., ICU length of stay) from the time series inputs. Static
 1010 features are processed separately, with categorical variables (e.g., gender) one-hot encoded into an
 1011 extended static vector. Patients without any valid observations within the first 48 hours are excluded.
 1012 Sepsis labels are assigned according to the official annotation, indicating whether any time point
 1013 during the ICU stay is labeled as septic.

1015 C EXPERIMENT DETAILS

1017 C.1 BASELINES AND HYPERPARAMETERS

1019 We evaluate our method against a wide range of baseline models, covering classical RNN variants,
 1020 latent variable models, and recent graph- and transformer-based time series architectures. All baseline
 1021 models are trained on the same data splits and evaluated using identical metrics to ensure a fair
 1022 comparison.

1023 For each model, we prioritize using the best-reported hyperparameter settings from original publica-
 1024 tions or official implementations. **Only when such configurations are unavailable or not directly**
 1025 **transferable to our datasets**, we perform hyperparameter tuning within commonly used ranges.
 Specifically, the learning rate is selected from $\{1e^{-4}, 5e^{-4}, 1e^{-3}, 5e^{-3}, 1e^{-2}\}$, weight decay from

1026 { $1e^{-5}$, $5e^{-5}$, $1e^{-4}$, $5e^{-4}$, $1e^{-3}$ }, and batch size from {64, 128, 256, 512, 1024} for PhysioNet (P12
 1027 and P19), and {8, 16, 32, 64, 128} for MIMIC-III. **The following model-specific hyperparameter
 1028 ranges are applied only in the absence of recommended configurations.**

1029 **RNN-Mean:** RNN model where missing observations are imputed with global mean values (Che
 1030 et al., 2018). Model-specific hyperparameters include the number of GRU hidden units selected from
 1031 {32, 50, 64, 100} and the latent dimension from {10, 20, 32, 64}.

1032 **RNN-Decay:** RNN model that combines imputation of missing observations using an input decay
 1033 mechanism (Che et al., 2018). Model-specific hyperparameters include the number of GRU hidden
 1034 units selected from {32, 50, 64, 100} and the latent dimension from {10, 20, 32, 64}.

1035 **RNN- Δ_t :** RNN model with input concatenated with the observation mask and sampling inter-
 1036 vals. Model-specific hyperparameters include the number of GRU hidden units selected from
 1037 {32, 50, 64, 100} and the latent dimension from {10, 20, 32, 64}.

1038 **GRU-D:** GRU model that applies a decaying mechanism in both input and hidden states (Che et al.,
 1039 2018). Model-specific hyperparameters include the number of GRU hidden units selected from
 1040 {32, 50, 64, 100} and the latent dimension from {10, 20, 32, 64}.

1041 **ODE-RNN:** RNN model that incorporates neural ODEs to model hidden states (Rubanova et al.,
 1042 2019). Model-specific hyperparameters include the number of GRU hidden units from {50, 64, 100},
 1043 latent dimension from {20, 32, 64}, and set the number of layers in the ODE function network to
 1044 {1, 2, 3}.

1045 **L-ODE-RNN:** Latent ODE model with an RNN as the encoder (Chen et al., 2018). Model-specific
 1046 hyperparameters include the latent dimension from {20, 32, 64}, encoder GRU hidden units from
 1047 {50, 64, 100}, number of layers in the generative ODE function (gen-layers) from {1, 2, 3}.

1048 **L-ODE-ODE:** Latent ODE model with ODE-RNN as the encoder (Rubanova et al., 2019). Model-
 1049 specific hyperparameters include the encoder GRU hidden units from {50, 64, 100}, latent dimension
 1050 from {20, 32, 64}, number of layers in both recognition (rec-layers) and generative (gen-
 1051 layers) ODE functions from {1, 2, 3}.

1052 **MTGNN:** Graph-based model for forecasting that jointly combines graph learning, graph convolution,
 1053 and temporal convolution (Wu et al., 2020). Model-specific hyperparameters include the number of
 1054 convolutional layers selected from {2, 3} and the number of hidden channels from {32, 64, 128}.

1055 **mTAND:** Utilizes an attention mechanism for continuous-time representations (Shukla & Marlin,
 1056 2021). Model-specific hyperparameters include the number of attention heads H selected from
 1057 {1, 2, 4} and the GRU encoder hidden size from {20, 32, 64, 128}.

1058 **Raindrop:** Graph-based model that handles irregular observations using a graph neural network
 1059 (Zhang et al., 2022).

1060 **Warpformer:** Learns time series at different scales with multiple warping and attention modules
 1061 (Zhang et al., 2023). Model-specific hyperparameters include the dimensionality of hidden states D
 1062 selected from {32, 64} and the number of attention layers J selected from {2, 3}.

1063 **MTSFormer:** Transformer-based model that utilizes time series data from four perspectives: Locality,
 1064 Time, Spatio, and Irregularity (Zheng et al., 2024). Model-specific hyperparameters include the
 1065 number of Transformer encoder layers selected from {2, 3, 4} and the number of attention heads
 1066 from {1, 2, 4}.

1067 **RETAIN:** A reverse-time attention model originally designed for healthcare applications, which
 1068 utilizes two-level attention mechanisms over input sequences (Choi et al., 2016). Model-specific
 1069 hyperparameters include the hidden layer size p selected from {64, 128, 256} and embedding size m
 1070 selected from {64, 128, 256}.

1071 **IMV-LSTM:** A model that captures temporal patterns and variable importance via a dual-stage
 1072 attention mechanism within LSTM structures (Guo et al., 2019). Model-specific hyperparameters
 1073 include the hidden layer size selected from {64, 128}.

1074 **DA-RNN:** Dual-stage attention-based recurrent neural network that models both input features and
 1075 temporal dependencies adaptively (Qin et al., 2017). Model-specific hyperparameters include the
 1076 hidden layer size selected from {32, 64, 128}.

1080
1081

C.2 GARLIC HYPERPARAMETERS

1082
1083
1084

We organize the hyperparameters of our proposed model into two categories: model architecture and training configuration. The following parameters are tuned during experimentation only when no recommended configuration is available.

1085
1086
1087
1088

For model architecture, the window size is selected from $\{2, 3, \dots, 11\}$, which corresponds to time lags $\{1, 2, \dots, 10\}$ used in the local temporal context, where the effective time lag $\tau = \text{window size} - 1$. The input feature dimension D_f is chosen from $\{16, 32\}$, and the hidden state size D_h for both encoder and decoder is selected from $\{128, 256, 512\}$.

1089
1090
1091
1092
1093

For training, we tune the classification learning rate over $\{1e^{-5}, 5e^{-5}, 1e^{-4}\}$, classification weight decay from $\{1e^{-4}, 5e^{-4}, 1e^{-3}\}$, reconstruction learning rate from $\{1e^{-4}, 5e^{-4}, 1e^{-3}\}$, and reconstruction weight decay from $\{1e^{-5}, 5e^{-5}, 1e^{-4}, 5e^{-4}, 1e^{-3}\}$. The classification loss weight λ_c is selected from $\{0.1, 1, 5, 10\}$, the graph regularization loss weight λ_g is fixed at 0.01, and the batch size is chosen from $\{64, 128, 256\}$.

1094

D ABLATION STUDIES AND SENSITIVITY ANALYSIS

1095
1096
1097

D.1 COMPONENT ABLATION

1098
1099
1100

Table 11: Ablation study.

Models	P12		P19	
	AUROC	AUPRC	AUROC	AUPRC
GARLIC	86.40 \pm 0.86	56.89 \pm 1.75	90.96 \pm 0.84	55.29 \pm 2.45
w/o Missingness Indicator	84.87 \pm 0.85	52.79 \pm 1.55	82.22 \pm 1.89	33.56 \pm 2.42
w/o Decay Mechanism	82.20 \pm 2.16	45.04 \pm 5.81	89.50 \pm 0.34	52.69 \pm 1.57
w/o Signal-wise Encoder	85.00 \pm 1.68	48.92 \pm 4.77	89.78 \pm 0.83	52.80 \pm 1.04
w/o Signal-wise Attention	74.67 \pm 4.88	36.70 \pm 2.92	89.30 \pm 0.83	51.98 \pm 1.84
w/o Graph Message Passing	84.67 \pm 0.77	49.45 \pm 2.63	88.39 \pm 0.78	51.66 \pm 2.62
w/o GRU	76.90 \pm 0.93	40.85 \pm 1.80	75.26 \pm 3.73	28.41 \pm 5.27
w/o Alternating Decoupled Optimization	85.32 \pm 1.81	54.95 \pm 3.79	90.08 \pm 0.58	54.36 \pm 1.44

1114
1115
1116

To better interpret the ablation results in Table 11, we clarify the correspondence between each ablated variant and its associated module in GARLIC:

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

- **w/o Missingness Indicator:** Removes the missingness flag $m_{k,t}$ in the augmented input vector, as defined in Eq. equation 2. This prevents the model from distinguishing observed from imputed values.
- **w/o Decay Mechanism:** Disables the exponential decay-based imputation defined in Eq. equation 1, replacing time-aware estimation with static global means.
- **w/o Signal-wise Encoder:** Replaces the signal-specific encoders MLP_k in Eq. equation 3 with a shared encoder, thus ignoring the signal-specific heterogeneity in feature distributions.
- **w/o Signal-wise Attention:** Removes the cross-signal attention mechanism used at each timestep, as formulated in Eq. equation 7, thus aggregating signals uniformly.
- **w/o Graph Message Passing:** Eliminates the inter-signal message passing step in Eq. equation 6, disabling explicit modeling of relational dependencies among clinical variables.
- **w/o GRU:** Removes the GRU recurrence layer in Eq. equation 9, thereby discarding local temporal continuity modeling prior to temporal self-attention.
- **w/o Alternating Decoupled Optimization:** Trains the model jointly on reconstruction and classification objectives, rather than using the alternating optimization strategy described in Section 3.4.

1134
1135
1136 Table 12: Dataset statistics for the Human Activity dataset.
1137
1138
1139
1140

Samples	Sensors	Class Distribution	Labels	Missing Ratio (%)	Task
6442	12	Walking: 1271, Falling: 1160, Lying: 896, Sitting: 2908, Standing up: 621, On all fours: 477, Sitting on the ground: 207	7	74.99 \pm 0.06	Posture Classification

1141
1142
1143 Table 11 quantifies the impact of disabling each core component of GARLIC on P12 and P19.
1144 Removing the missingness indicator reduces AUROC/AUPRC by 1.5/4.1 pts on P12 and 8.7/21.7
1145 pts on P19, showing that flagging observed vs. imputed entries is critical under high missingness.
1146 Disabling the exponentialdecay mechanism costs 4.2/11.8 pts on P12 and 1.5/3.2 pts on P19, un-
1147 derscoring its role in capturing variablespecific dynamics. Replacing the persignal encoder with a
1148 uniform encoder/attention incurs moderate losses (1.4/7.9 pts on P12, 1.2/2.5 pts on P19), confirming
1149 the importance of modeling heterogeneity across clinical signals. Ablating signalwise attention
1150 causes a dramatic 11.7/20.2 pt drop on P12 (but minimal change on P19), reflecting datasetdependent
1151 sensitivity to local temporal encoding. Disabling graph message passing degrades performance by
1152 1.7/7.4 pts on P12 and 2.6/6.6 pts on P19, confirming the benefit of modeling intersignal relations.
1153 Omitting the GRU yields the largest penalty (9.5/16.0 pts on P12, 15.7/26.9 pts on P19), highlighting
1154 its necessity for temporal continuity. Finally, reverting to joint endtoend training (no alternating opti-
1155 mization) leads to a modest 1.1/1.9 pt drop on P12 and 0.9/0.9 pt on P19, validating that decoupling
1156 reconstruction and classification stabilizes learning.

1157
1158 D.2 HYPERPARAMETER SENSITIVITY FOR TIME LAG

1159 Among the tunable hyperparameters, we focus our sensitivity analysis on the time lag τ , which
1160 determines the length of the local temporal window used in both the attention and graph message
1161 passing modules. Unlike standard training hyperparameters (e.g., learning rate or batch size), τ
1162 is tightly coupled with the model’s architectural design and directly affects how local temporal
1163 dependencies are captured. As such, it represents a model-specific architectural choice rather than a
1164 general training hyperparameter, and therefore warrants focused analysis.

1165 Figure 5 shows the AUROC achieved on P12 and P19 for
1166 varying values of τ . We observe that performance on P12
1167 remains relatively stable across different τ values, while P19
1168 exhibits a clearer performance peak at $\tau = 8$. This contrast
1169 highlights the dataset-dependent role of τ : in longer sequences
1170 (P12), variations in τ affect a smaller part of the temporal con-
1171 text, resulting in a milder impact on performance. In shorter
1172 sequences (P19), the same variation significantly alters the
1173 model’s view of input, leading to more noticeable performance
1174 differences.

1175 Despite the general robustness of the model, the sensitivity
1176 patterns suggest that τ plays a non-negligible role in shap-
1177 ing temporal representations, especially in settings with lim-
1178 ited context length. These findings justify treating τ as an
1179 architecture-level design choice that should be adapted to the
1180 characteristics of the dataset.

1181
1182 E APPLICABILITY TO BROADER TASKS
1183
1184 Although many clinically relevant prediction problems—such as clinical deterioration prediction—are
1185 naturally framed as binary classification, we believe that assessing the model’s performance on a
1186 broader set of tasks is crucial to fully demonstrate its versatility.
1187

To this end, we extended our evaluation to two additional directions: multi-class classification and
imputation. These experiments highlight GARLICs flexibility and generalization capability.

Table 13: Performance comparison on the Human Activity dataset.

Model	Accuracy (%)	AUPRC (%)
GRU-D	87.41 ± 1.21	81.29 ± 2.83
ODE-RNN	86.91 ± 0.66	77.11 ± 1.88
L-ODE-ODE	86.16 ± 0.83	74.63 ± 3.74
L-ODE-RNN	85.71 ± 1.22	71.04 ± 1.53
mTAND	88.72 ± 1.46	72.77 ± 4.02
MTSFormer	89.24 ± 0.53	79.14 ± 1.46
WarpFormer	89.28 ± 0.87	80.60 ± 1.79
GARLIC	91.21 ± 1.03	84.70 ± 1.92

E.1 HUMAN ACTIVITY CLASSIFICATION

To evaluate GARLIC’s performance on multi-class classification under irregular sampling, we conducted experiments on the Human Activity dataset—a widely used non-clinical benchmark for motion recognition. The dataset comprises multivariate time series collected from wearable sensors, encompassing 7 activity classes (see Table 12). The task is a 7-class classification problem aimed at identifying the subjects activity from sensor readings over time. Following previous works (Rubanova et al., 2019; Shukla & Marlin, 2021), we applied standard preprocessing including normalization, sliding-window segmentation, and label alignment.

E.2 BENCHMARKING ON PYRREGULAR

We also conducted additional experiments using the PYRREGULAR benchmark (Spinnato & Landi, 2025) and compared GARLIC with ROCKET under the same experimental settings. The results are summarized in Table 14.

For the benchmark results, GARLIC demonstrates superior performance on the three healthcare datasets (P12, P19, MI3), confirming its strong suitability for the medical domain. For the Human Activity Recognition and sensor domains, GARLIC still achieves better performance on datasets such as LPA, CT, DD, DG, and DW, highlighting its broader applicability when signals exhibit meaningful interactions.

However, in the mobility domain (AN, AOC, GS, MP, SE, TA, VE), where the input signals are primarily GPS or accelerometer measurements, the signals do not possess strong interdependencies. As a result, GARLICs capability to leverage relationships among multiple signals cannot be fully utilized, leading to suboptimal performance. A similar limitation is observed on single-signal datasets (GM, GP, GX, GY, GZ, PGZ, SGZ, PL). Additionally, datasets like IW, which consist of frequency-domain data with minimal temporal correlations, are not well-suited for a model designed to capture temporal interactions across signals.

These results further highlight that GARLIC is particularly effective in scenarios where multiple signals are strongly correlated and exhibit rich temporal dependencies, as is typical in ICU medical data. This aligns with the motivation of our study: the medical domain presents uniquely challenging irregular multivariate time series, where capturing interactions among signals is crucial for accurate prediction. While GARLIC may be less advantageous in domains with weak or independent signals, its design and performance are well-suited to healthcare applications, justifying our focus on this domain.

E.3 IMPUTATION

GARLICs modular architecture allows straightforward adaptation to tasks beyond classification. Specifically, the imputation task can be performed by disabling the third module—the *Cross-Dimensional Sequential Attention*—and using only the first two components: the *Latent Feature Modeling* module and the *Time-Lagged Graph Message Passing* module. No further architectural changes are necessary.

Table 14: Comparison between ROCKET and GARLIC across datasets.

Dataset	ROCKET	GARLIC	Sign
ABF	0.17 ± 0.00	0.32 ± 0.02	1
AN	0.90 ± 0.04	0.86 ± 0.01	2
AOC	0.80 ± 0.01	0.64 ± 0.05	3
APT	0.96 ± 0.00	0.76 ± 0.04	3
ARC	0.99 ± 0.01	0.33 ± 0.00	3
CT	0.98 ± 0.00	0.98 ± 0.00	3
DD	0.54 ± 0.03	0.56 ± 0.04	1
DG	0.34 ± 0.00	0.75 ± 0.02	1
DW	0.42 ± 0.00	0.95 ± 0.02	1
GM1	0.66 ± 0.02	0.49 ± 0.05	1
GM2	0.57 ± 0.05	0.28 ± 0.04	1
GM3	0.48 ± 0.03	0.22 ± 0.09	1
GP1	0.89 ± 0.02	0.71 ± 0.04	1
GP2	0.85 ± 0.05	0.65 ± 0.05	1
GS	0.31 ± 0.15	—	2
GX	0.70 ± 0.01	0.49 ± 0.02	1
GY	0.70 ± 0.02	0.46 ± 0.02	1
GZ	0.69 ± 0.10	0.36 ± 0.04	1
IW	0.53 ± 0.00	0.02 ± 0.00	200
JV	0.94 ± 0.01	0.97 ± 0.00	12
LPA	0.02 ± 0.01	0.49 ± 0.05	12
MI3	0.35 ± 0.00	0.61 ± 0.07	17
MP	0.94 ± 0.00	0.92 ± 0.01	1
P12	0.47 ± 0.01	0.68 ± 0.01	37
P19	0.71 ± 0.01	0.77 ± 0.02	34
PAM	0.66 ± 0.10	—	52
PGE	0.40 ± 0.00	0.78 ± 0.00	9
PGZ	0.73 ± 0.00	0.70 ± 0.04	1
PL	0.85 ± 0.01	0.24 ± 0.00	1
SAD	0.98 ± 0.00	0.94 ± 0.02	13
SE	0.80 ± 0.04	0.69 ± 0.12	4
SGZ	0.88 ± 0.02	0.69 ± 0.06	1
TA	0.57 ± 0.01	0.77 ± 0.01	2
VE	0.94 ± 0.02	0.94 ± 0.03	2

To assess this capability, we carried out an imputation experiment on the P12 dataset, in which a fraction of the observations was randomly masked and used as ground truth. The model was trained to reconstruct missing values using mean squared error (MSE) as the loss function. We compared against several representative baselines supporting time series imputation, including L-ODE-RNN, L-ODE-ODE, and mTAND. The results are presented in Table 15.

F LEARNED TIME-LAGGED SUMMARY GRAPH

To better understand how our model captures inter-signal dependencies for local reconstruction, we analyze the learned time-lagged summary graph \mathcal{G}_τ encoded by the adjacency matrix \mathbf{W}_τ . While the primary goal of our model is outcome prediction, the graph module plays a crucial auxiliary role by modeling short-range temporal and cross-signal structure. Investigating the properties of the learned graph can thus shed light on the nature of the dependencies it captures.

We observe that the learned adjacency matrix \mathbf{W}_τ varies across different random seeds. This variability arises from the redundancy inherent in physiological signal dependencies and non-identifiable graph learning coupled with message passing (Yu et al., 2019; Compton et al., 2022). Since our model employs ℓ_1 regularization (Lasso) to promote sparsity, it tends to select minimal subsets of edges sufficient for local reconstruction. Given the multitude of potential interactions among variables,

1296 Table 15: Imputation performance on the P12 dataset under varying missing rates. Models were
 1297 trained using MSE loss.

1298

1299	Missing Rate	Model	MSE	MAE
1300	0.50	L-ODE-RNN	29.0073 \pm 0.4153	21.3054 \pm 0.1788
1301		L-ODE-ODE	27.0088 \pm 0.1868	20.8137 \pm 0.1605
1302		mTAND	12.3396 \pm 0.1397	10.2598 \pm 0.0677
1303		GARLIC	12.6943 \pm 0.4066	10.6809 \pm 0.0992
1304	0.40	L-ODE-RNN	23.2620 \pm 0.5398	17.0901 \pm 0.1745
1305		L-ODE-ODE	21.5457 \pm 0.3561	16.6419 \pm 0.1461
1306		mTAND	9.3711 \pm 0.1347	8.0737 \pm 0.0720
1307		GARLIC	9.5636 \pm 0.1841	8.1145 \pm 0.0940
1308	0.30	L-ODE-RNN	17.3302 \pm 0.5478	12.8183 \pm 0.1454
1309		L-ODE-ODE	16.0021 \pm 0.1276	12.4869 \pm 0.0917
1310		mTAND	6.9898 \pm 0.1088	5.9852 \pm 0.0531
1311		GARLIC	6.6576 \pm 0.1494	5.8061 \pm 0.0797
1312	0.20	L-ODE-RNN	11.6055 \pm 0.2748	8.5410 \pm 0.1130
1313		L-ODE-ODE	10.7941 \pm 0.1971	8.3196 \pm 0.0511
1314		mTAND	4.5238 \pm 0.0718	3.9589 \pm 0.0276
1315		GARLIC	4.3584 \pm 0.2372	3.7085 \pm 0.0525
1316	0.10	L-ODE-RNN	5.7913 \pm 0.1942	4.3054 \pm 0.0448
1317		L-ODE-ODE	5.3364 \pm 0.0626	4.1734 \pm 0.0353
1318		mTAND	2.2459 \pm 0.1128	1.9778 \pm 0.0161
1319		GARLIC	1.9737 \pm 0.1376	1.7834 \pm 0.0312

1319

1320

1321

1322

1323

1324

1325

1326

1327 multiple sparse solutions can achieve comparable reconstruction performance. Consequently, each
 1328 training run may converge to a different sparse instantiation from a set of approximately equivalent
 1329 solutions. Importantly, we note that the learned graph \mathcal{G}_τ should be interpreted not as a recovery of
 1330 the full physiological dependency network, but rather as a task-specific subgraph sufficient for local
 1331 reconstruction. The graph is not supervised – it is not directly optimized using ground-truth labels, but
 1332 instead emerges as an intermediate construct through the auxiliary reconstruction objective. As such,
 1333 it acts as a functional tool to enhance representation learning, rather than a target of inference itself.
 1334 The variability in learned edges across seeds thus reflects the presence of multiple valid subgraphs
 1335 that support the same functional goal, rather than instability in model behavior.

1336 To extract a more stable representation of inter-signal relationships, we compute the element-wise
 1337 average of the learned adjacency matrices across five random seeds. Visualizations of this averaged
 1338 graph are provided in Figure 7, where the edge thickness reflects the mean weight learned. The
 1339 resulting structure highlights consistent dependencies among physiological signals, capturing both
 1340 intrinsic correlations and patterns indicative of external interventions. These observations suggest that
 1341 our model effectively represents both endogenous signal dynamics and exogenous clinical actions
 1342 that influence patient state.

1343 To further assess the plausibility of the time-lagged summary graph, we conducted a post-hoc
 1344 evaluation using five large language models (LLMs) as proxies for expert judgment, leveraging
 1345 their encoded medical knowledge. Each edge was evaluated via a standardized prompt to ensure
 1346 consistency (see Box F). While not a substitute for clinical validation, this provides a structured
 1347 plausibility check.

1348 Results indicate that four out of five LLMs judged over 80% of edges as reasonable. Notably, 9 edges
 1349 were endorsed by all models and 3 edges by four models, demonstrating strong consistency. These
 findings align with established medical knowledge and support the plausibility of the learned graph.

1350 Table 16: LLM-based post-hoc plausibility assessment of edges in the time-lagged summary graph.
 1351 Each edge is categorized as Reasonable, Unclear, or Unreasonable.

1353 Model	1354 Reasonable	1355 Unclear	1356 Unreasonable
Claude Opus 4	11	5	0
Gemini 2.5 Pro	14	2	0
Grok 3	13	3	0
ChatGPT O3 (Web Search)	13	2	1
DeepSeek (DeepThink R1, Search)	13	2	1

1360
 1361 Prompt for LLM-based Plausibility Assessment
 1362

1363 You are a clinical expert with deep knowledge in human physiology, critical care, and
 1364 multimodal patient monitoring. We are analyzing a time-lagged summary graph derived
 1365 from ICU monitoring data over a 9-hour window. Each directed edge represents a potential
 1366 influence – whether physiological, systemic, or intervention-based – between two variables.
 1367 These influences may be direct or indirect, including multi-step pathways, systemic feedback,
 1368 compensatory mechanisms, or clinical decisions. A variable does not need to be the sole or
 1369 primary cause for its effect to be valid – edges may reflect partial, synergistic, or contributing
 1370 influences within complex ICU dynamics.

1371 Your task is to assess the plausibility of each edge as a causal or contributory effect, explicitly
 1372 considering: - Direct physiological mechanisms - Indirect or multi-factorial pathways -
 1373 Feedback loops and compensatory responses - Cascading effects of interventions and systemic
 1374 derangements

1375 For each edge, respond with: - **Reasonable** if plausible via any direct, indirect, partial, or
 1376 synergistic mechanism - **Unclear** if the pathway is highly uncertain or not supported by
 1377 known mechanisms - **Unreasonable** if it contradicts established physiological or clinical
 1378 understanding

1379 Provide a brief explanation (12 sentences), highlighting plausible direct or indirect routes,
 1380 systemic interactions, or clinical reasoning.

1381 **Edges to evaluate:** Resp → HR, Resp → FiO₂, HR → FiO₂, HR → MAP, FiO₂ → MAP,
 1382 MAP → Lactate, SBP → HR, SBP → FiO₂, SBP → Temp, SBP → BUN, SBP → PaCO₂,
 1383 HCO₃⁻ → Temp, HCO₃⁻ → BUN, Temp → BUN, Temp → FiO₂, BUN → FiO₂

1396 Figure 6: Visualization of learned graph after edge gating
 1397

1398 Figure 7: Learned Summary Graph Visualization. Summary graph learned on dataset P19, averaged
 1399 over 5 random seeds with a time lag of 8 hours.

1400 **Future Work for Graph Learning:** To address non-identifiability inherent in sparse graph discovery,
 1401 lightweight physiological priors such as known organ system linkages or treatment intervention
 1402 markers can be incorporated to bias graph learning towards clinically plausible edges, and to explore
 1403 consensus-based aggregation for more stable subgraphs. Extending \mathcal{G}_r to a dynamic, window-free

1404 setting can allow the adjacency weights to evolve continuously over time rather than be tied to fixed
 1405 lags. Finally, static patient variables and multiscale time lags can also be integrated into a unified
 1406 graph framework, so that both enduring patient traits and fast-changing physiological interactions
 1407 can be captured in a single, interpretable structure.
 1408

1409 G STATISTICAL TEST DETAILS

1410
 1411 We employ two complementary statistical procedures to evaluate the interpretability of attribution
 1412 scores under perturbation-based masking.
 1413

1414 G.1 PAGES L TEST FOR ORDERED ALTERNATIVES

1415 Suppose we have n repeated runs (blocks) and k ordered conditions (here $k = 4$ for scenarios (c, d,
 1416 b, a)). To test the strict ordering $c < d < b < a$, proceed as follows:
 1417

- 1419 1. For each run $j = 1, \dots, n$, rank the performance scores k so that the smallest score receives
 1420 rank 1 and the largest rank k . Denote the rank of condition i in run j by r_{ij} .
- 1421 2. Compute the rank sums for each condition:

$$1422 R_i = \sum_{j=1}^n r_{ij}, \quad i = 1, \dots, k.$$

- 1426 3. Assign weights $w_i = i$ corresponding to the hypothesized order $(c, d, b, a) \mapsto (1, 2, 3, 4)$.
- 1427 4. Compute the Page statistic

$$1428 L = \sum_{i=1}^k w_i R_i.$$

- 1431 5. Under the null hypothesis of no ordering, L can be compared to tabulated critical values (Page, 1963), or approximated by a normal distribution with

$$1434 \mathbb{E}[L] = \frac{n k (k+1)^2}{4}, \quad \text{Var}(L) \approx \frac{n k (k+1)(2k+1)}{24} \frac{(k+1)(2k+1)}{5},$$

1436 yielding $Z = \frac{L - \mathbb{E}[L]}{\sqrt{\text{Var}(L)}} \approx \mathcal{N}(0, 1)$.

- 1438 6. Reject the null (and conclude a significant increasing trend $c < d < b < a$) if L exceeds the
 1439 critical value or if $Z > z_{1-\alpha}$.

1440 G.2 TWO ONESIDED TESTS (TOST) FOR EQUIVALENCE

1441 To test whether two paired conditions (e.g. full vs. top50%) are practically equivalent within margin
 1442 $\delta > 0$, we perform two onesided t -tests:
 1443

- 1445 1. Compute the paired differences $d_j = a_j - b_j$ for $j = 1, \dots, n$, their mean \bar{d} and standard
 1446 error $SE = s_d / \sqrt{n}$.
- 1447 2. Test $H_{01}: \Delta \leq -\delta$ versus $H_{A1}: \Delta > -\delta$ by

$$1449 t_1 = \frac{\bar{d} + \delta}{SE} \quad \text{with } n-1 \text{ degrees of freedom,}$$

1451 obtaining onesided $p_1 = 1 - F_{t_{n-1}}(t_1)$.

- 1453 3. Test $H_{02}: \Delta \geq +\delta$ versus $H_{A2}: \Delta < +\delta$ by

$$1454 t_2 = \frac{\bar{d} - \delta}{SE}, \quad p_2 = F_{t_{n-1}}(t_2).$$

- 1456 4. The TOST p -value is $\max(p_1, p_2)$. We declare equivalence (i.e. reject the union null) if both
 1457 $p_1 < \alpha$ and $p_2 < \alpha$.

1458 **H ADDITIONAL CASE STUDIES**
 1459

1460 **H.1 SUPPLEMENTAL CASE STUDIES**
 1461

1462 To qualitatively assess the interpretability of our model, we select one correctly classified positive
 1463 sample and one correctly classified negative sample from each of the P12 and P19 datasets. This
 1464 yields four representative cases that allow us to examine the models attribution behavior under both
 1465 high-risk and low-risk scenarios.

1466 For each sample, we visualize the following components:
 1467

- 1468 • **Importance Map of Observations (Raw):** This visualization displays the raw attribution
 1469 scores assigned to each observed value. Observation values are normalized within each
 1470 signal to enable consistent visual comparison across features. **The size of each marker**
 1471 **reflects its corresponding importance score.**
- 1472 • **Predicted Mortality Probability over Time:** We plot the model’s predicted risk trajectory
 1473 by feeding truncated input sequences of increasing length during inference, thereby revealing
 1474 how prediction confidence evolves over time.
- 1475 • **Importance per Signal:** We compute the aggregated importance scores for each signal by
 1476 summing over all its observed time points, providing a global view of signal-level attribution.
- 1477 • **Normalized Per-Signal Importance Map:** To reveal fine-grained temporal patterns, we
 1478 normalize attribution scores within each signal channel. At this stage, we intentionally skip
 1479 the redistribution step described in Equation 14 and directly apply the attribution mask.
 1480 This is because redistribution is only used to evenly reassign the importance originally
 1481 attributed to imputed values back to the observed data within the same signal. Since our
 1482 goal here is to examine the temporal structure of observed inputs, omitting redistribution
 1483 helps avoid diluting the attribution signal and provides a clearer view of temporal dynamics.
 1484 **In the resulting visualization, color intensity represents importance: red indicates high**
 1485 **attribution, while blue denotes relatively low importance.**

1486 All visualizations include only signals with observed values; signals with no observations are omitted
 1487 for clarity.

1488 **P12 Dataset Signals.** Albumin (g/dL), ALP (IU/L), ALT (IU/L), AST (IU/L), Bilirubin (mg/dL),
 1489 BUN (mg/dL), Cholesterol (mg/dL), Creatinine (mg/dL), DiasABP (mmHg), FiO₂ (0–1), GCS
 1490 (score), Glucose (mg/dL), HCO₃ (mmol/L), HCT (%), HR (bpm), K (mEq/L), Lactate (mmol/L), Mg
 1491 (mmol/L), MAP (mmHg), MechVent (0/1), Na (mEq/L), NIDiasABP (mmHg), NIMAP (mmHg),
 1492 NISysABP (mmHg), PaCO₂ (mmHg), PaO₂ (mmHg), pH (0–14), Platelets (cells/nL), RespRate
 1493 (bpm), SaO₂ (%), SysABP (mmHg), Temp (°C), TropI (μ g/L), TropT (μ g/L), Urine (mL), WBC
 1494 (cells/nL).

1495 **P19 Dataset Signals.** HR (bpm), O2Sat (%), Temp (°C), SBP (mmHg), MAP (mmHg), DBP
 1496 (mmHg), Resp (breaths/min), EtCO₂ (mmHg), BaseExcess (mmol/L), HCO₃ (mmol/L), FiO₂ (%),
 1497 pH, PaCO₂ (mmHg), SaO₂ (%), AST (IU/L), BUN (mg/dL), Alkalinephos (IU/L), Calcium (mg/dL),
 1498 Chloride (mmol/L), Creatinine (mg/dL), Bilirubin_direct (mg/dL), Glucose (mg/dL), Lactate (mg/dL),
 1499 Magnesium (mmol/dL), Phosphate (mg/dL), Potassium (mmol/L), Bilirubin_total (mg/dL), TroponinI
 1500 (ng/mL), Hct (%), Hgb (g/dL), PTT (s), WBC ($10^3/\mu$ L), Fibrinogen (mg/dL), Platelets ($10^3/\mu$ L).

1501 **H.2 DISCUSSION**
 1502

1503 Our case study reveals nuanced insights into how the model assigns and utilizes feature importance
 1504 across different granularity levels, offering a faithful interpretation of its decision-making process in
 1505 clinical time-series data.

1506 **Global-Level (Raw) Importance Attribution.** We observe that signals with fewer observations
 1507 tend to receive disproportionately higher per-observation importance scores. This reflects a natural
 1508 behavior: when a channel is sparsely sampled, each observation contributes a larger fraction of the
 1509 total available information for that signal, prompting the model to rely more heavily on these sparse
 1510 events. In positive samples (Sample02 and Sample04), these sparse observations frequently coincide
 1511 with sharp increases in prediction probability, indicating their critical role in outcome prediction.

Figure 8: Sample 01: Surviving patient from P12.

Figure 9: Sample 01: Normalized per-signal importance map.

1559 Conversely, in negative samples (Sample01 and Sample03), similar observations occur during stable, 1560 low-risk phases and do not cause prediction spikes—highlighting their role in characterizing patient 1561 stability. These patterns suggest the model is not merely reactive to anomalies, but rather context-aware 1562 in distinguishing between deterioration and normalcy.

1563 **Signal-Level Importance Distribution.** When aggregating importance scores across each signal, we 1564 find relatively small variance (within 5%—10%), indicating that the model does not rely excessively 1565 on a few dominant signals. Instead, it integrates information across multiple signals in a synergistic 1566 manner. This likely reflects two key modeling traits: (1) a preference for global pattern recognition

(a) Importance Map of Observations (Raw) / Predicted Mortality Probability (b) Importance per Signal

Figure 10: Sample 02: Non-surviving patient from P12.

Figure 11: Sample 02: Normalized per-signal importance map.

rather than localized feature triggers; and (2) limited granularity in distinguishing signal-specific importance, possibly due to a generalization bias to avoid overfitting to any single input source. Such behavior is desirable in complex clinical settings, where predictive stability is favored over fragile saliency.

1636 (a) Importance Map of Observations (Raw) / Predicted Sepsis Probability (b) Importance per Signal
1637
1638 Figure 12: Sample 03: Non-sepsis patient from P19.
1639

1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673 Figure 13: Sample 03: Normalized per-signal importance map.

Temporal-Level Sensitivity (Normalized Importance). After normalizing importance at the signal level, we find the model exhibits strong temporal sensitivity to two specific types of patterns. First, it reacts strongly to high-variation events—abrupt changes often corresponding to acute physiological deterioration. For instance, in Sample02, the model highlights spikes in HR, MAP, and DiasABP, as well as increasing fluctuations in NISysABP, NIDiasABP, and NIMAP. Second, the model emphasizes abnormal value onsets, such as $HR > 90$, $temperature > 38^{\circ}\text{C}$, and $WBC < 4$ in Sample04—markers that are clinically associated with onset of sepsis. These behaviors indicate the model is sensitive to early signs of clinical instability, validating its prioritization from a physiological standpoint.

Temporal Alignment with Clinical Semantics. Interestingly, we find that the temporal distribution of feature importance naturally aligns with the models prediction direction, revealing contrasting attribution patterns for different outcomes. For example, in the GCS channel, the model assigns greater importance to rising trends and values above 8 in Sample01 (predicted as a survivor), whereas

1689 (a) Importance Map of Observations (Raw) / Predicted Sepsis Probability (b) Importance per Signal

1690 Figure 14: Sample 04: Sepsis patient from P19.

1716 Figure 15: Sample 04: Normalized per-signal importance map.

1719 it highlights declining trends and values below 8 in Sample02 (predicted as a non-survivor). This
 1720 indicates that the model does not simply react to specific values or patterns in isolation, but rather
 1721 emphasizes temporal segments that are most indicative of the predicted class. Similar patterns
 1722 are observed in Sample01 for FiO_2 and temperature, where segments following a transition into
 1723 normal ranges receive higher importance compared to those in abnormal ranges—suggesting that the
 1724 model focuses on evidence of physiological recovery when predicting survival. These attribution
 1725 behaviors also align well with the dynamics of predicted probabilities, as periods of high attribution
 1726 typically coincide with sharp probability shifts, particularly in positive cases. Collectively, these
 1727 observations demonstrate that the model assigns importance in a way that is both temporally grounded
 1728 and semantically consistent with its outcome predictions.

1728
 1729 **Limitations and Potential Improvements of Interpretability.** While many of GARLICs attributions
 1730 align with clinical intuition, there are instances where high importance is assigned to physiologically
 1731 stable measurements, raising questions about interpretability. Specifically, this may occur due to noise
 1732 or instability in the attribution process, or because GARLIC captures statistically correlated patterns
 1733 that lack clear clinical meaning, often serving as indirect proxies for latent-space reconstruction or
 1734 temporal encoding rather than directly predicting outcomes.

1735 However, this behavior is mainly observed in true-negative (healthy) samples, such as Sample 03 in
 1736 Figure 13, where highlighting stable values is physiologically reasonable. For example, GARLIC
 1737 emphasizes measurements around hour 21 in HR, SBP, MAP, O2Sat, and Resp. Although it is unclear
 1738 why these particular timepoints are highlighted over similar stable points, stable physiological values
 1739 in non-sepsis cases provide evidence against clinical deterioration, suggesting that such attributions
 1740 are both reasonable and clinically meaningful.

1741 To improve the clinical consistency of GARLICs interpretations, we propose three complementary
 1742 strategies: **Clinical Priors Integration:** Incorporate expert-defined physiological ranges (e.g., normal
 1743 MAP or WBC intervals) via an attribution-regularization loss, which penalizes high importance
 1744 assigned to normal values and emphasizes clinically significant anomalies. *Applicability:* When
 1745 robust clinical priors are available. *Limitation:* Effectiveness depends on prior quality and may
 1746 miss rare pathological events or complex interactions outside standard ranges. **Stability-Aware**
 1747 **Attribution Filtering:** Apply temporal smoothness constraints to attention weights to reduce isolated
 1748 spikes and emphasize coherent trends. *Applicability:* When signals are densely sampled and temporal
 1749 continuity is important. *Limitation:* May obscure brief but clinically relevant deviations; not suitable
 1750 for sparse data. **Gradient-Based Attention Exploration:** Augment attention with gradient-based
 1751 saliency methods (e.g., Grad-CAM-style) to capture fine-grained dependencies (Leem & Seo, 2024;
 1752 Barkan et al., 2021). *Applicability:* When detailed feature interactions are critical and sufficient
 1753 computational resources are available. *Limitation:* Sensitive to noise in high-dimensional data and
 1754 introduces additional computational overhead.

1755 In summary, GARLIC provides a foundational attribution mechanism for clinical time series, capable
 1756 of capturing both risk-elevating and stabilizing patterns across signals and time. Our case studies
 1757 show that the model attends to clinically meaningful events, differentiates attribution behaviors across
 1758 predicted outcomes, and distributes importance in a way that largely aligns with clinical intuition. To
 1759 further enhance interpretability and reliability, we propose three complementary extensionsclinical
 1760 priors integration, stability-aware filtering, and gradient-based saliencywhich offer flexible paths to
 1761 adapt the attributions based on signal characteristics and computational constraints. While some
 1762 attribution inconsistencies remain, these analyses demonstrate the potential of structured temporal
 1763 attributions to provide actionable insights and reinforce trust in clinical decision-making systems.

1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781