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ABSTRACT

ICU (Intensive Care Unit) records comprise heterogeneous multivariate time series
sampled at irregular intervals with pervasive missingness, yet clinical applications
demand predictive models that are both accurate and interpretable. We present
our Graph Attention-based Relational Learning for Intensive Care (GARLIC)
model, a novel neural network architecture that imputes missing data through a
learnable exponential-decay encoder, captures inter-sensor dependencies through
time-lagged summary graphs, and fuses global patterns with cross-dimensional
sequential attention. All attention weights and graph edges are learned end-to-
end to serve as built-in observation-, signal-, and edge-level explanations. To
reconcile auxiliary reconstruction and primary classification objectives, we develop
an alternating decoupled optimization scheme that stabilizes training. On three
ICU benchmarks (PhysioNet 2012 & 2019, MIMIC-III) for outcome prediction,
GARLIC sets the new state of the art, significantly improving AUROC and AUPRC
over best-performing baselines at comparable computational cost. Ablation studies
confirm each modules contribution, and feature-removal trials validate importance
attribution fidelity through a monotonic performance drop (full > top 50% > random
50% > bottom 50%). Finally, real-time case studies demonstrate actionable risk
warnings with transparent explanations, marking a significant advancement toward
accurate, explainable deep learning for irregularly sampled ICU time series data.

1 INTRODUCTION

Continuous monitoring of critically ill patients in Intensive Care Units (ICU) generates vast streams
of multivariate time series data, vital signs, laboratory results, and therapeutic interventions, which
are irregularly sampled and rife with missing values. Effective analysis of this data promises timely
detection of deterioration and personalized treatment, yet two challenges impede progress. First, the
inherent irregularity and heterogeneity of clinical measurements render standard sequence models
(e. g., RNNs, Transformers) suboptimal: naïve imputation biases downstream tasks, while specialized
approaches (e. g., GRU-D Che et al. (2018), Latent-ODEs Chen et al. (2018), mTAND Shukla &
Marlin (2021)) often ignore inter-sensor dependencies. Second, interpretability is paramount in
healthcare, but prevalent post-hoc methods (e. g., Integrated Gradients Duell et al. (2023), SHAP
Lundberg & Lee (2017)) demand extra computation and can yield inconsistent explanations, and
even inherently interpretable architectures (e. g., RETAIN Choi et al. (2016), shapelet models Li et al.
(2021); Wen et al. (2025)) either sacrifice performance or struggle with irregular sampling.

In this work, we introduce GARLIC, a unified framework displayed in Figure 1 that simultaneously
addresses irregular sampling, missingness, and the need for transparent decision-making. GARLIC
models each signals dynamics via a decay-based latent feature encoder, constructs time-lagged
summary graphs to capture inter-signal relationships on signal horizons, and refines representations
through a cross-dimensional sequential attention module. Critically, all attention weights and graph
structures are learned end-to-end, yielding built-in explanations at the level of individual time steps,
particular sensors, and their interactions, without degrading classification accuracy or efficiency.

Our key contributions are threefold: Methodologically, we propose a multistage graph-attention
architecture that integrates (i) decay-based imputation for irregular missingness, (ii) self-attentive,
time-lagged graph learning to exploit spatial dependencies, and (iii) cross-dimensional attention
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to fuse signal embeddings over time. Our method also achieves integrated interpretability. By
compressing learned attention matrices and sparsifying summary graphs via L1 regularization,
GARLIC provides concise, quantitative importance scores for each observation, signal, and edge
in the sensor graph, enabling correct contribution estimations for practitioner-friendly explanations
without an external explainer. Empirically, GARLIC sets a new state of the art, while maintaining
computational cost on par with leading baselines on benchmark ICU datasets.

2 RELATED WORK

Irregular Multivariate Time Series Classification. To handle irregularly sampled multivariate
time series, recent methods can be broadly categorized based on how they handle missingness and
model temporal structure. Some approaches replace standard imputation with learnable interpola-
tion mechanisms, such as exponential decay or decomposition-based interpolation, allowing more
expressive modeling of temporal trends (Che et al., 2018; Chen et al., 2018; Shukla & Marlin, 2019).
Others forgo explicit imputation by modeling continuous-time latent dynamics using neural ODEs or
stochastic processes, sometimes integrating them with attention mechanisms (Rubanova et al., 2019;
Chen et al., 2018; Jin et al., 2023; Chen et al., 2023; Park et al., 2025). Attention-based architectures
further exploit temporal information via time-aware encoding, adaptive aggregation over observed
values, or learnable gating schemes tailored to irregular inputs (Horn et al., 2020; Tipirneni & Reddy,
2022; Shukla & Marlin, 2021; Huang et al., 2024; Wang et al., 2023; Zheng et al., 2024; Zhang
et al., 2023). Some methods transform time series into alternative structures, such as images or
graphs, to leverage architectures like vision transformers or message-passing networks (Li et al.,
2023; Zhang et al., 2022). Inter-signal dependencies, though commonly used during classification,
are rarely exploited during missingness modeling. For example, RAINDROP (Zhang et al., 2022)
claims to learn such dependencies, yet both our results and the prior analysis (Zheng et al., 2024)
show that its best performance comes from fixed graphs, indicating a limited benefit from graph
learning. In contrast, GARLIC explicitly leverages both temporal and inter-signal dependencies
during missingness modeling, leading to more effective handling of irregular time series.

Explainable Models for Time Series. Explainable methods in time series analysis are broadly catego-
rized into post-hoc explainers and self-interpretable models (Zhao et al., 2023). Post-hoc approaches–
such as gradient-based attribution methods (Guo et al., 2019; Duell et al., 2023), perturbation-based
techniques (Kashiparekh et al., 2019), and surrogate modeling via LIME or SHAP (Ribeiro et al.,
2016; Lundberg & Lee, 2017)–aim to generate explanations after model training, often through back-
propagation or input masking. Although these methods are model-agnostic and widely applicable,
they require additional computation and may yield inconsistent attributions across similar inputs.
Self-interpretable models aim to embed transparency directly into the training and inference process.
Shapelet-based approaches (Li et al., 2021; Ma et al., 2020b; Younis et al., 2024; Qu et al., 2024; Wen
et al., 2025) learn prototypical subsequences that act as human-readable components for classification.
Despite offering intuitive visualization, these methods are primarily validated on regularly sampled
physiological data such as EEG or ECG (Wen et al., 2025; Abdullah et al., 2023; Neves et al., 2021),
and their interpretability remains hard to quantify objectively. Attention-based models provide more
flexible explanations by interpreting learned attention weights or recalibration mechanisms (Choi
et al., 2016; Guo et al., 2019; Qin et al., 2017; Ma et al., 2020a). However, most existing methods
assume regular sampling and fully observed inputs, limiting their reliability on irregularly sampled
medical data, where unmodeled temporal gaps can introduce explanation bias. These limitations mo-
tivate the need for interpretability methods that remain robust under real-world conditions. GARLIC
addresses this need by incorporating interpretable modeling into the missingness-handling process,
enabling faithful explanations in the presence of irregularity and missingness.

3 PROPOSED METHOD

3.1 PROBLEM DEFINITION

We consider the task of predicting clinical outcomes from irregularly sampled multivariate time
series in intensive care settings. Formally, let D =

{
(Sn, yn)

}N

n=1
be a labeled dataset of N patient

episodes, where yn ∈ {1, . . . , C} is the outcome label for episode Sn. Each episode Sn consists of
asynchronous observations from K clinical signals (e.g., vital signs, laboratory tests), aligned to a
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timeline of up to T discrete time steps. We represent each episode as an input matrix X ∈ RK×T ,
where xk,t stores the value of signal k at time t, and a corresponding binary mask M ∈ {0, 1}K×T

indicating whether the value is observed. These signals exhibit heterogeneous statistical properties
and are sampled at irregular intervals, leading to misaligned time axes and pervasive missingness.
Our objective is to learn a model that (i) accurately predicts each yn from the irregular multivariate
time series Sn and (ii) provides transparent, observation-level attributions to foster clinical trust.

3.2 GARLIC

We propose GARLIC, a modular framework for clinical outcome prediction that combines local
reconstruction with global reasoning. Specifically, graph-based message passing reconstructs missing
features from local temporal and inter-signal context, while cross-dimensional sequential attention
captures global dependencies across time and signals for accurate prediction. To align the auxiliary
reconstruction task with the primary prediction objective and stabilize the training, we employ an
alternating decoupled optimization strategy that explicitly decouples these two tasks.

3.2.1 LATENT FEATURE MODELING

Clinical time series are sparse, irregular, and heterogeneous, so naïve imputation (e. g., mean or zero
fill) can distort signal-specific dynamics. We therefore introduce a latent feature modeling stage
that combines time-aware imputation with per-signal encoding. We adopt an exponential-decay
mechanism (Che et al., 2018) to model the diminishing relevance of past observations. Given the
elapsed time ∆t since the last observation, the decay factor γt and imputed value x̂k,t at time t are
defined as:

x̂k,t = γtxk,t′ + (1− γt)x̄k with γt = exp {−max(0, wk∆t + bk)} (1)

where wk, bk are learnable parameters, xk,t′ is the most recent observed value, and x̄k is the empirical
mean. We then construct an augmented input at each time step to retain both the observed or imputed
value and the missingness indicator mk,t ∈ {0, 1}:

x̃k,t = [xk,t ·mk,t + x̂k,t · (1−mk,t), mk,t]. (2)

Given the heterogeneity of clinical signals, we apply a dedicated two-layer MLP to each augmented
input x̃k,t, yielding latent embeddings zk,t ∈ RD:

zk,t = MLPk

(
x̃k,t

)
. (3)

This signal-specific encoding enables the model to capture the distinct statistical scale, dynamics, and
semantics of each clinical signal, which would be obscured under a shared encoder.

3.2.2 TIME-LAGGED GRAPH MESSAGE PASSING

To reconstruct missing values in clinical time series, we introduce a local graph-based module
that exploits the inherent locality of physiological signals, where each signal’s value is strongly
influenced by its recent temporal history and interactions with related signals. This temporal and
inter-signal locality motivates a design that restricts inference to a short-range window, in contrast
to the global modeling used later for classification. Specifically, given latent embeddings zk,t, we
extract a temporal window of length τ + 1 for each signal, where τ controls the size of the local
context, add sinusoidal positional embeddings PE(j), and apply signal-wise lag attention:

ēk,t = LagAttnk
(
{zk,j + PE(j)}tj=t−τ

)
=

∑t

j=t−τ
βk,j,tek,j (4)

with ek,j being the value-embedding of zk,j + PE(j), βk,j,t their attention weight, and ēk,t the
window-level representation for signal k. We stack the outputs for all K signals to form Ēt ∈ RK×D,
which summarizes contextual information over the temporal window for each signal. To model
interactions among signals at a given temporal lag τ , we construct a summary graph Gτ defined by a
learnable adjacency matrix Wτ ∈ RK×K , where each node represents a signal and edges encode
pairwise dependencies. Graph-based message passing is then applied to propagate information across
correlated signals:

Ht = Wτ Ēt ∈ RK×D, (5)
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Figure 1: Overview of GARLIC. In the first stage, irregularly-sampled inputs are imputed into a
signal-specific latent space. Then, inter-signal dependencies are modeled through a learnable graph-
based message passing system, enabling the reconstruction of the original observations. Attention
through time and signals enables a GRU model to learn dependencies on a medium time scale, to
provide interpretable predictions.

where Ht denotes the time-t representations of all signals, updated based on historical context and
relational dependencies from the graph Gτ . By decoupling attention-based temporal encoding from
graph propagation, this module flexibly captures short-range dynamics and inter-signal dependencies.
Moreover, varying the lag τ enables adaptive, multi-scale modeling of physiological dependencies.
We treat τ as a hyperparameter, with ablation results in Appendix D.2.

3.2.3 CROSS-DIMENSIONAL SEQUENTIAL ATTENTION

To construct a global representation for classification, we apply a two-stage attention cascade over
the signal-wise encoding {Ht}Tt=τ produced by the message passing module. At each time step t, we
first apply an attention mechanism SignalAttn over the K signals to compute attention weights and
obtain a weighted aggregation:

ūt = SignalAttn(Ht) ∈ RD =
∑K

k=1
αsig
k,tuk,t (6)

where uk,t are the value-embeddings in the attention process, and αsig
k,t are the learned attention

weights. ūt summarizes cross-signal information at time t. To capture temporal dependencies, the
sequence {ūt}Tt=τ is processed by a Gated Recurrent Unit (GRU):

gt = GRU(ūt, gt−1), (7)

which models local temporal continuity, reflecting gradual transitions in clinical states. To com-
plement the GRU’s locality bias and enable direct modeling of long-range dependencies, we apply
temporal self-attention over the GRU outputs, incorporating sinusoidal positional encoding PE(t):

Y = TemporalAttn
(
{gt′ + PE(t′)}Tt′=τ

)
∈ R(T−τ+1)×D =

{∑T

t′=τ
αtime
t′,t yt′

}T

t=τ
(8)

where yt′ is the value-embedding of gt′ + PE(t′), and αtime
t′,t is the according attention weight.

Finally, we average-pool Y over time and pass the result through a classification head to obtain
class predictions ŷ ∈ RC for all C classes. This attention-based pipeline captures both signal-level
importance and temporal saliency, supporting accurate downstream classification.

Comparison to Prior Work. Our design is inspired by interpretable time-series models such as
RETAIN (Choi et al., 2016) and IMV-LSTM (Guo et al., 2019), which combine recurrence with
attention to capture temporal dynamics and signal relevance. RETAIN applies attention at both
the timestep and signal levels but aggregates signal contributions uniformly across time, limiting
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its ability to localize transient patterns. IMV-LSTM applies signal-level attention to the hidden
states produced by per-signal LSTMs, which aggregate temporal information before computing
importance, potentially obscuring instantaneous signal saliency. In contrast, GARLIC applies signal-
level attention directly at each time step before any recurrent modeling, ensuring that the importance
of fine-grained signals is preserved and explicitly captured prior to temporal fusion.

3.3 INTERPRETABILITY AND ATTRIBUTION COMPUTATION

Interpretability quantifies how transparently a models decisions can be understood by humans (Zhang
et al., 2021). GARLIC provides local interpretability by attributing each prediction directly to its
input features. We compute input-level attribution scores by tracing learned importance weights
backward from the model output. This backward trace mirrors the forward path through the models
three core components as illustrated in Figure 1 and described in Section 3.2.

Attention-based saliency (Section 3.2.3). Let {αsig
k,t}Kk=1,

T
t=τ denote the signal-level attention scores

from Eq. equation 6, and {αtime
t,t′ }Tt,t′=τ the temporal attention scores from Eq. equation 8. We define

the joint saliency as the element-wise product:

sk,t′ = αtime
t′,t · α

sig
k,t (9)

which yields relevance matrix S ∈ RK×(T−τ+1) capturing the importance of each signal-time pair.

Graph-based propagation (Section 3.2.2). We propagate the relevance scores S across signals
using the transposed time-lagged graph Wτ ∈ RK×K from Eq. equation 5, and redistribute them
temporally using the attention weights {βk,t,j}Kk=1,

T
t=τ ,

τ
j=0 from Eq. equation 4. The resulting

importance scores ak,t denoting the propagated relevance of signal k at time t are computed as:

ak,t =
∑τ

j=0

[(
W>

τ S
)
k,t+j

· βk,t+j,τ−j

]
. (10)

Observation masking and redistribution (Section 3.2.1). To isolate contributions of each obser-
vation, we apply the binary mask M ∈ {0, 1}K×T . Since decay-based imputation blends multiple
past inputs, attribution to unobserved entries is ill-defined. We approximate it by redistributing their
contribution uniformly across observed positions of the same signal:

afinal
k,t = ak,t ·mk,t + (1−mk,t)

∑T
t′=1 ak,t′ · (1−mk,t′)∑T

t′=1 mk,t′ + ε
, (11)

where ε > 0 ensures numerical stability. The final attribution map Afinal ∈ RK×T assigns salience to
individual observations in a way that is fully consistent with the models forward computation.

3.4 TRAINING STRATEGY

3.4.1 LOSS FUNCTION

During training, we make use of both an auto-encoder to learn representative features and to impute
reasonable values, and the classification head to predict mortality or sepsis onset. Our training
objective jointly enforces (i) accurate data reconstruction, (ii) a sparse, interpretable graph, and (iii)
strong downstream classification performance, via the following components:

(i) Reconstruction Loss (Lrec). After message passing, the fused hidden states H are passed through
a decoder to reconstruct the input data. Let x̂k,t denote the reconstructed values, xk,t the observed
data, and mk,t ∈ {0, 1} the binary mask indicating observed entries. The reconstruction objective
minimizes the masked mean squared error.

(ii) Graph Regularization Loss (Lgraph). To capture inter-signal dependencies, the model learns
a lag-τ dependency graph Gτ with adjacency matrix Wτ ∈ RK×K , where each entry denotes
the influence between signals. To ensure that the learned graph highlights only the most salient
dependencies, we apply an `1 regularization to promote sparsity. This encourages the model to focus

5
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on a small set of essential edges, thereby improving interpretability and mitigating overfitting from
spurious or redundant connections.

(iii) Classification Loss (Lcls). For prediction, we use cross-entropy between the models output
ŷ ∈ RC and the ground-truth label y ∈ {1, . . . , C}.
Total Loss. We combine the above terms into a single objective:

L =
∑

k,t
mk,t(xk,t − x̂k,t)

2︸ ︷︷ ︸
Lrec

+λg ‖Wτ‖1︸ ︷︷ ︸
Lgraph

+λc

(
−
∑C

c=1
yc log ŷc

)
︸ ︷︷ ︸

Lcls

, (12)

where λg and λc balance the regularization and supervision terms. This multi-objective formula-
tion enables the model to exploit structural priors and label supervision jointly, improving both
reconstruction fidelity and predictive performance.

3.4.2 ALTERNATING DECOUPLED OPTIMIZATION

x

(1) Reconstruction Stage

x

(2) Classification Stage

Forward Flow

Gradient Flow

Frozen Component

Trainable Component

Figure 2: Alternating decou-
pled optimization training strat-
egy.

Joint optimization of reconstruction and classification often
leads to gradient interference due to their differing objectives—
reconstruction seeks faithful input recovery, while classification
prioritizes discriminative features. To mitigate this conflict, we
adopt an alternating decoupled optimization strategy, inspired by
DeFRCN (Qiao et al., 2021), to isolate learning dynamics between
modules.

As illustrated in Fig. 2, our model consists of three components
with parameters θa, θb, and θc corresponding to: (a) Latent Feature
Modeling (Sec. 3.2.1), (b) Time-Lagged Graph Message Passing
(Sec. 3.2.2), and (c) a Cross-Dimensional Sequential Attention
classifier (Sec. 3.2.3). In Stage 1, we update shared modules (θa,b)
using a composite loss of reconstruction, graph regularization, and
classification, while fixing the classifier (θc):

θa,b ← θa,b − η∇θa,b
(Lrec + λgLgraph + λcLcls) . (13)

In Stage 2, we freeze θa,b and update θc using the classification loss:

θc ← θc − η∇θcLcls. (14)

This decoupling reduces representational interference, stabilizes training, and improves classification
performance. Full details and reasoning are provided in Appendix A.3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method on three widely used clinical time series benchmarks: MIMIC-III
(Johnson et al., 2016), PhysioNet Challenge 2012 (P12) (Silva et al., 2012), and PhysioNet Challenge
2019 (P19) (Reyna et al., 2019). These datasets feature diverse patient populations, varying recording
frequencies, and significant missingness, reflecting the challenges of real-world ICU records. All
tasks are framed as binary classifications: in-hospital mortality for MIMIC-III and P12, and sepsis
onset for P19. Detailed preprocessing procedures and statistics are provided in Appendix B.

Baselines. We compare our method against strong baselines across two categories. Irregularity-
aware models encompass: variants of RNNs (RNN-Mean, RNN-Decay, and RNN-∆t; details in
Appendix C.1), GRU-D (Che et al., 2018), ODE-RNN (Rubanova et al., 2019), L-ODE-RNN (Chen
et al., 2018), L-ODE-ODE (Chen et al., 2018), mTAND (Shukla & Marlin, 2021), Warpformer (Zhang
et al., 2023), and MTSFormer (Zheng et al., 2024), which explicitly model missing values, irregular
sampling, or continuous-time dynamics. This category also includes MTGNN (Wu et al., 2020) and
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Raindrop (Zhang et al., 2022), which further incorporate inter-signal dependencies through learned
or predefined graphs. Interpretable models are: RETAIN (Choi et al., 2016), IMV-LSTM (Guo et al.,
2019), and DARNN (Qin et al., 2017), which aim to provide signal- and temporal-level interpretability.
Implementation details and hyperparameter settings for all baselines are in Appendix C.1.

Implementation Details. Each dataset is split into training, validation, and test sets in an 8:1:1
ratio, with stratified sampling on both outcome labels and key patient characteristics (e. g., gender,
ICU type) to preserve class balance. Hyperparameters are chosen via grid search on the validation
split, and for baselines, we mirror the tuning ranges and protocols of their sources to ensure a fair
comparison; detailed settings are provided in Appendix C.1. Models are trained for up to 100 epochs
with Adam optimizer (learning rate tuned per dataset), employing early stopping with a patience of
10 epochs based on the validation loss. We report both AUROC and AUPRC to account for class
imbalance, and all results are averaged over five trials with distinct random seeds.

Table 1: Model performance in terms of AUROC and AUPRC. For both metrics, we report mean
± std in % over five random seeds. The first block lists strong baselines designed for irregular time
series, the second block includes interpretable models, and the final block shows results for our
proposed method. We highlight the best and the second-best results per column.

Models P12 P19 MIMIC-III
AUROC AUPRC AUROC AUPRC AUROC AUPRC

RNN-∆t 82.46±1.57 47.29±4.33 89.21±0.63 51.20±2.50 82.98±2.27 50.31±4.22
RNN-Mean 82.38±2.11 47.80±3.98 88.08±0.88 45.80±2.10 84.18±1.70 50.06±5.17
RNN-Decay 84.26±1.10 49.81±3.31 89.15±1.15 49.73±3.46 87.63±0.79 56.29±3.29

GRU-D 84.45±1.90 50.74±4.96 88.73±0.86 47.81±3.37 86.36±1.68 56.14±1.87
ODE-RNN 83.02±1.72 48.64±2.68 89.97±0.86 54.29±2.76 88.07±0.77 61.03±2.00

L-ODE-RNN 80.59±2.06 41.40±4.15 89.63±1.31 51.02±3.77 86.98±0.58 56.88±2.20
L-ODE-ODE 83.93±1.14 49.55±1.43 90.01±2.04 53.54±6.12 87.36±0.94 59.09±1.93

MTGNN 80.95±1.71 43.61±4.93 86.94±1.65 40.97±5.26 86.24±0.67 51.74±0.92
mTAND 84.30±1.69 50.05±3.96 81.73±1.53 37.27±3.93 88.00±0.31 57.73±2.21

RAINDROP 83.03±1.37 45.91±3.55 87.41±1.13 46.33±3.09 87.18±1.51 57.06±6.01
Warpformer 84.88±0.48 50.62±1.25 89.95±0.57 54.10±2.38 89.17±0.57 61.52±1.93
MTSFormer 83.65±1.70 50.31±4.30 87.88±0.61 48.80±2.97 88.14±0.50 61.09±0.95

IMV-LSTM 84.02±1.30 49.08±3.28 84.80±2.76 42.87±8.27 86.85±1.33 54.96±3.61
DARNN 79.84±1.36 42.70±2.09 74.36±3.50 20.89±2.73 82.56±1.25 46.33±4.08
RETAIN 83.08±1.11 49.27±3.01 78.09±2.22 26.04±1.35 82.40±0.94 46.55±1.96

GARLIC 86.40±0.86 56.89±1.75 90.96±0.84 55.29±2.45 90.09±0.45 64.85±1.68

4.2 MAIN RESULTS

Table 1 reports the AUROC and AUPRC of all methods on three benchmark datasets. GARLIC
consistently achieves the highest scores, setting the new state-of-the-art performance. The improve-
ment is especially notable on the P12 dataset, which contains substantial missingness (statistics in
Appendix B), demonstrating the models robustness to sparse and irregular multivariate time series.
Compared to other self-interpretable models with attention mechanisms—such as RETAIN, DARNN,
and IMV-LSTM—GARLIC achieves substantially higher predictive accuracy while preserving
interpretability. Compared to irregularity-aware models that primarily address temporal gaps and
graph-based models like MTGNN and Raindrop that rely on static graphs without temporal modeling,
GARLIC achieves consistently better performance by dynamically capturing time-lagged dependen-
cies across signals. Additional results, including efficiency experiments and ablation studies, can be
found in the Appendix A.2 and D.1. Apart from ICU outcome prediction, we also assessed GAR-
LIC’s capability in data imputation and human activity recognition, showcasing its generalizability
and applicability to broader tasks and datasets. More details can be found in Appendix E.

4.3 INTERPRETABILITY EVALUATION

To quantitatively evaluate the reliability of our models attribution scores, we adopt a perturbation-
based evaluation strategy inspired by the ROAR (Remove and Retrain) framework (Hooker et al.,
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2019; Guo et al., 2019; Meng et al., 2022). Specifically, we compare model performance under
three masking conditions against the original full-input setting: (i) Top 50%: For each sample, we
retain the top 50% most important signal-time pairs as determined by attribution scores, masking
the remaining inputs. If performance remains close to that of the full-input model, it suggests that
the retained inputs capture the primary predictive signal. (ii) Bottom 50%: In this condition, we
mask the top 50% most important inputs, retaining only the least important half. A marked drop in
performance would indicate that the attribution scores correctly identify the most predictive features.
(iii) Random 50%: As a control, we randomly mask 50% of the inputs, independent of attribution
scores. This baseline allows us to disentangle the effect of informed attribution-based masking from
random perturbations. In all settings, models are retrained from scratch on the perturbed datasets.

Table 2: Interpretability assessment via input removal. AUROC and AUPRC (%, mean ś std over
five seeds) are reported for models trained on the full input and three 50% subsets of the data (top,
random, bottom). Two One-Sided Tests (TOST) p-values evaluate equivalence between full and Top
50% models (margins ±5% AUROC, ±10% AUPRC). Pages L test p-values assess the monotonic
ordering (All > Top 50% > Random 50% > Bottom 50%). *p <.05; **p <.005.

Models P12 P19
AUROC AUPRC AUROC AUPRC

IM
V

-L
ST

M

All 84.02±1.30 49.08±3.28 84.80±2.76 42.87±8.27
Top 50% 76.23±0.32 34.46±1.78 82.07±1.67 36.05±2.91

Bottom 50% 70.12±3.12 26.83±2.14 79.61±0.88 28.59±1.75
Random 50% 75.23±5.19 37.03±8.91 76.28±3.73 23.31±3.22

Equivalence (TOST p) 0.9944 0.9766 0.1024 0.0928
Monotone (Page’s L Test p) 0.0011 ** 0.0084 * 0.0032 ** 0.0019 **

D
A

R
N

N

All 79.84±1.36 42.70±2.09 74.36±3.50 20.89±2.73
Top 50% 73.92±10.30 35.38±9.83 72.17±4.27 17.14±3.45

Bottom 50% 67.17±8.38 27.05±6.94 70.34±6.15 15.40±3.38
Random 50% 65.37±13.23 27.25±11.03 69.86±4.49 17.52±4.21

Equivalence (TOST p) 0.5661 0.3099 0.1697 0.0004 **
Monotone (Page’s L Test p) 0.0301 * 0.0132 * 0.0440 * 0.0132 *

R
E

TA
IN

All 83.08±1.11 49.27±3.01 78.09±2.22 26.04±1.35
Top 50% 77.04±1.08 37.18±3.15 74.74±1.64 20.17±1.84

Bottom 50% 76.23±1.20 36.30±3.68 73.28±0.51 18.60±2.36
Random 50% 72.89±5.51 34.11±7.87 69.08±5.27 17.17±3.09

Equivalence (TOST p) 0.8814 0.8172 0.1346 0.0039 **
Monotone (Page’s L Test p) 0.0132 * 0.0132 * 0.0032 ** 0.0053 *

G
A

R
L

IC

All 86.40±0.86 56.89±1.75 90.96±0.84 55.29±2.45
Top 50% 85.60±1.48 52.99±3.25 87.97±1.24 48.24±1.44

Bottom 50% 71.09±1.17 33.52±3.42 82.52±1.27 33.39±2.47
Random 50% 74.73±6.05 35.51±7.04 84.73±2.46 40.77±6.11

Equivalence (TOST p) 0.0011 ** 0.0079 * 0.0156 * 0.0399 *
Monotone (Page’s L Test p) 0.0002 ** 0.0004 ** 0.0002 ** 0.0002 **

In Table 2, we report AUROC and AUPRC (mean ± std over five seeds) as evaluation metrics. To
assess statistical significance, we employ two complementary tests. First, we use the Two One-Sided
Tests (TOST) procedure (Schuirmann, 1987) to test whether the performance under the top-50%
retention condition is statistically equivalent to the full-input model, with equivalence margins of
±5% for AUROC and ±10% for AUPRC. Secondly, we apply Pages L test (Page, 1963) to examine
whether performance follows the expected monotonic ranking: Full > Top-50% > Random-50%
> Bottom-50%. Together, these tests quantify both the sufficiency of top-ranked features and the
consistency of performance degradation under progressively less informative input subsets. Technical
details of both statistical procedures are provided in Appendix G. Across both datasets and metrics,
our model passes all eight statistical tests, with all Pages L p-values below 0.005, indicating robust
and consistent interpretability. In contrast, three baseline models pass only four, five, and five tests,
respectively, showing weaker or less consistent attribution quality under identical conditions.
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4.4 CASE STUDY

Figure 3a illustrates a non-surviving patient in P12: Transient heart rate spikes align with attribution
peaks, and later oscillations in all three blood-pressure signals coincide with rising mortality risk,
showing that GALIC jointly highlights covarying hemodynamic disturbances. Figure 3b depicts
a sepsis patient in P19: early vital-sign fluctuations elicit only modest attributions and risk shifts,
whereas after hour 12, MAP drops, persistent tachycardia, falling WBC, and rising creatinine/BUN
and low HCO3 trigger sharp attribution spikes and a steady increase in predicted sepsis probability,
underscoring the models focus on clinically critical events as deterioration unfolds. Additional case
studies and detailed discussions are provided in Appendix H.
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NIMAP (mmHg)

NIDiasABP (mmHg)

NISysABP (mmHg)

Va
lu

e

Time (minutes)

Predicted Mortality Probability  

Im
po

rta
nc

e

(a) Case study for P12
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(b) Case study for P19

Figure 3: Case Study Visualizations. a A non-survivor: heart rate (HR), mean arterial pressure
(NIMAP), diastolic pressure (NIDiasABP), and systolic pressure (NISysABP) time series with
corresponding normalized attributions and the predicted mortality probability. b A sepsis patient:
leukocyte count (WBC), creatinine, bicarbonate (HCO3), blood urea nitrogen (BUN), mean arterial
pressure (MAP), and HR time series with their attributions and the predicted sepsis probability.
Importance scores are normalized within each signal to highlight temporal dynamics.

5 CONCLUSION

We introduced GARLIC, a unified framework for ICU time series that integrates (1) exponential-
decay imputation encoding, (2) time-lagged graph message passing, and (3) cross-dimensional
sequential attention, trained via alternating decoupled optimization to jointly reconstruct inputs and
predict outcomes. On PhysioNet 2012 & 2019 and MIMIC-III, GARLIC achieves the state-of-the-
art AUROC and AUPRC. Interpretability evaluation and case study analyses demonstrate that the
model produces clinically meaningful and interpretable attributions. This work advances diseaserisk
prediction by combining high accuracy with transparent, clinicianfriendly explanations, empowering
healthcare teams to make more informed decisions and fostering trust in AI-driven insights.

Limitations and Future Work. While GARLIC excels at binary outcome prediction with built-in
explanations, several limitations remain that restrict its broader applicability. First, the model has not
yet been evaluated in imputation or forecasting tasks, which are important for many cases of clinical
use. Next, the reliance on fixed-size sliding windows and discrete time lags may limit its flexibility in
modeling irregular or continuous-time signals; we plan to explore adaptive, window-free variants
and event-driven formulations. In addition, GARLIC currently excludes static patient features
(e. g., demographics, comorbidities), and does not address severe outcome imbalance. We aim to
incorporate such features and adopt strategies such as focal losses or resampling. Finally, GARLIC
does not yet support streaming or arbitrarily long ICU stays, and its real-world utility hinges on
integration with clinician feedback for iterative refinement.
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REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide data description and implementation details in Section 4.1,
including choice of model hyperparameters in Appendix C.2. Code will be released upon acceptance.
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Yu Zhang, Peter Tiňo, Aleš Leonardis, and Ke Tang. A survey on neural network interpretability.
IEEE Transactions on Emerging Topics in Computational Intelligence, 5(5):726–742, 2021.

Ziqi Zhao, Yucheng Shi, Shushan Wu, Fan Yang, Wenzhan Song, and Ninghao Liu. Interpretation of
time-series deep models: A survey, 2023. URL https://arxiv.org/abs/2305.14582.

Liangwei Nathan Zheng, Zhengyang Li, Chang George Dong, Wei Emma Zhang, Lin Yue, Miao Xu,
Olaf Maennel, and Weitong Chen. Irregularity-informed time series analysis: Adaptive modelling
of spatial and temporal dynamics. In Proceedings of the 33rd ACM International Conference on
Information and Knowledge Management, CIKM ’24, pp. 34053414, New York, NY, USA, 2024.
Association for Computing Machinery. ISBN 9798400704369. doi: 10.1145/3627673.3679716.
URL https://doi.org/10.1145/3627673.3679716.

13

https://www.sciencedirect.com/science/article/pii/S0031320324002371
https://www.sciencedirect.com/science/article/pii/S0031320324002371
http://dx.doi.org/10.1145/3580305.3599543
https://openreview.net/forum?id=Kwm8I7dU-l5
https://arxiv.org/abs/2305.14582
https://doi.org/10.1145/3627673.3679716


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ADDITIONAL DETAILS OF THE PROPOSED METHOD

A.1 ARCHITECTURE DETAILS

A.1.1 LATENT FEATURE MODELING

Time-aware imputation. The imputation module uses an exponential decay mechanism with
per-variable parameters wk and bk, initialized to 0.1 and 0, respectively.

Signal-specific encoders. Each input variable is processed by a dedicated multilayer perceptron
(MLP), implemented independently for each dimension. Each MLP has two fully connected layers
with ReLU activation, both with output dimension Df , which is a shared tunable hyperparameter.

A.1.2 TIME-LAGGED GRAPH MESSAGE PASSING

Temporal context encoding. For each variable, we extract a window of size τ+1 and apply sinusoidal
positional encodings before computing attention across the window. This yields a temporally
contextualized embedding per variable.

Graph-based signal interaction. A time-lagged graph Gτ is defined by a learnable adjacency matrix
Wτ ∈ RK×K , initialized as the sum of an identity matrix and a fully connected matrix scaled by a
small positive constant. This stabilizes training and introduces a weak prior toward dense connectivity.
Message passing is performed via matrix multiplication with Wτ .

Lag configuration. A single lag parameter τ is shared across variables. Future work may explore
variable-specific lags for more flexible modeling.

A.1.3 CROSS-DIMENSIONAL SEQUENTIAL ATTENTION

Temporal modeling and fusion. Signal-level summaries are passed through a GRU with hidden
size Dh, followed by temporal self-attention over the GRU outputs. Positional encodings are added
before attention, and the attended sequence is mean-pooled to obtain a global representation.

Classifier. The pooled vector is processed by a two-layer MLP with ReLU activation and hidden
dimension Dh, producing the final prediction logits.

A.1.4 TRAINING STRATEGY

Loss function. To guide representation learning, the fused representations H are decoded back to the
input space through a two-layer MLP with ReLU activation and hidden size Df . Reconstruction is
supervised using masked mean squared error over observed entries. An `1 penalty on Wτ encourages
sparse graph structure, and binary cross-entropy is used for classification. The total loss is a weighted
sum of reconstruction loss, graph sparsity regularization, and classification loss, where the latter two
are scaled by coefficients λg and λc, respectively.

Alternating decoupled optimization. Parameters are divided into a shared backbone (imputation,
encoding, time-lagged attention, message passing) and a prediction head (signal-level attention, GRU,
temporal attention, classifier). Each epoch updates only one group while freezing the other. The two
groups use separate learning rates and weight decay. Phase transitions are triggered by early stopping
with patience, and each phase resumes from the best checkpoint of the previous one.

A.2 MODEL EFFICIENCY

A.2.1 THEORETICAL ANALYSIS

We analyze the computational and memory complexity of our model with respect to the sequence
length T and the number of variables K. The model employs a sliding-window mechanism, where
each window spans τ +1 time steps, yielding L = T − τ valid windows per sequence. Let Df denote
the input feature dimension and Dh the hidden state size. Positional encodings are implemented via
table lookups and incur negligible computational overhead.
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Table 3: Training time (s/iter) and memory footprint (MB) of baseline models across datasets (batch
sizes: P12=64, P19=64, MIMIC-III=16).

Method P12 Time P12 Mem P19 Time P19 Mem MIMIC-III Time MIMIC-III Mem

GRU-D 0.946 152 0.132 28 1.948 187
RNN-mean 0.581 120 0.078 25 1.198 88
RNN-decay 0.475 140 0.159 27 0.600 87
RNN-delT 0.469 120 0.050 24 0.980 76
ODE-RNN 1.717 184 0.246 32 2.737 114
L-ODE-RNN 0.599 218 0.087 37 0.650 126
L-ODE-ODE 1.846 220 0.318 38 3.873 136
mTAND 0.072 2856 0.063 1007 0.205 6273
MTSFormer 0.148 2798 0.131 1653 0.107 1176
MTGNN 0.256 3864 0.185 2574 0.290 2151
Raindrop 0.242 1806 0.163 313 0.128 2431
WarpFormer 0.361 8566 0.164 3981 OOM OOM
RETAIN 0.225 430 0.035 59 0.353 213
DARNN 0.597 2034 0.135 133 0.601 612
IMV-LSTM 0.998 4550 0.213 1977 5.284 7509
GARLIC 0.581 3322 0.752 3408 0.619 1128

Table 4: Performance-efficiency trade-off on P19 dataset by varying time lag.

Time Lag AUROC (%) Time (s/iter) Memory (MB)

1 88.99 0.266 1710
2 88.52 0.346 1941
3 89.30 0.430 2169
4 88.97 0.528 2406
5 89.47 0.588 2611
6 89.51 0.626 2819
7 90.07 0.687 3070
8 90.96 0.752 3407

The per-layer computational complexity is detailed as follows: the signal-wise encoders require
O(TKD2

f ); the signal-wise time-lagged attention operates at O(TKDf ) under the assumption that
τ is a small constant; message passing and signal-level attention introduce O(TK2Df ) complexity
due to all-pairs interactions among variables; the GRU contributes O(TD2

h); the temporal attention
layer incurs O(T 2Dh); and the final classification head adds O(D2

h).

Aggregating the above components, the overall computational complexity of the model is:
O(TKD2

f ) +O(TK2Df ) +O(TD2
h) +O(T 2Dh) +O(D2

h). Neglecting the feature and hidden
dimensions, the model exhibits an overall complexity of O(TK + TK2 + T + T 2).

A.2.2 EMPIRICAL RESULTS

We benchmark the computational efficiency of GARLIC against fifteen baseline models in terms
of training time and memory usage. All models are trained under identical batch sizes with their
best hyperparameters to ensure fairness. The results, summarized in Table 3, show that GARLIC
achieves comparable efficiency while maintaining strong predictive performance.

A.2.3 PERFORMANCE-EFFICIENCY TRADE-OFF ANALYSIS

We evaluate the impact of model configurations on computational efficiency, focusing on the time
lag (τ ), feature dimension, and hidden size. The results, presented in Tables 4, 5, 6, and 7, show
that reducing these parameters leads to a noticeable decrease in training time and memory usage,
although some minor drop in AUROC scores is observed. Smaller configurations, achieved through
shorter time lags or reduced feature and hidden dimensions, lower per-iteration runtime and memory
footprint while incurring only a small reduction in predictive performance. These experiments
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Table 5: Lightweight GARLIC configurations on P12: varying window size (feature_dim=16,
hidden=128).

Feature Dim Hidden Size Time Lag AUROC (%) Time (s/iter) Memory (MB)

16 128 2 86.40 0.581 3322
16 128 1 85.18 0.221 953

Table 6: Lightweight GARLIC configurations on P12: varying hidden size (feature_dim=16, win-
dow=3).

Feature Dim Hidden Size Time Lag AUROC (%) Time (s/iter) Memory (MB)

16 128 2 86.40 0.581 3322
16 64 2 86.18 0.279 1004
16 32 2 84.37 0.282 988

indicate that GARLIC offers flexible trade-offs between efficiency and accuracy, achieving practical
computational costs across a wide range of configurations.

A.3 DECOUPLED OPTIMIZATION RATIONALE

We partition model parameters into three groups for decoupled optimization. The first group, θa,
includes the time-aware imputation parameters (wk, bk) and the signal-specific MLP encoders,
corresponding to the Latent Feature Modeling module. The second group, θb, comprises the time-
lagged attention module with positional encoding and the message passing layer with the learnable
adjacency matrix, forming the Time-Lagged Graph Message Passing module. The third group, θc,
consists of the signal-level attention, GRU, temporal self-attention, and the final two-layer MLP
classifier, which together compose the Cross-Dimensional Sequential Attention module.

Although reconstruction is introduced as an auxiliary objective to improve representation quality
by fully leveraging partially observed data, it is not fully aligned with the final classification task.
The reconstruction components, i. e., (a) Latent Feature Modeling and (b) Time-Lagged Graph
Message Passing are designed to faithfully recover the input signals, preserving temporal continuity
and inter-signal structure. These modules prioritize fidelity to the observed data, independent
of its discriminative utility. In contrast, the classification module, i. e., (c) Cross-Dimensional
Sequential Attention focuses on extracting task-relevant features that effectively differentiate clinical
trajectories associated with distinct outcome classes. As a result, it may intentionally discard
input patterns that are non-predictive or noisy. This divergence in learning objectives introduces
representational interference when the system is trained end-to-end, causing unstable updates and
suboptimal generalization.

To resolve this issue, we adopt an alternating decoupled optimization strategy, an approach generally
applicable to multi-objective learning when components serve partially conflicting purposes. Al-
though our overall task is classification, a strong auxiliary reconstruction loss introduces competing
gradient signals that, if not properly managed, can impair model performance.

Our strategy alternates between two decoupled stages of optimization. In the first stage, we fix
the classifier θc and update the shared modules θa,b by minimizing a composite loss that combines
reconstruction, graph regularization, and classification objectives:

θa,b ← θa,b − η∇θa,b
(Lrec + λgLgraph + λcLcls) , with θc fixed.

In this step, although θc remains static, classification gradients are allowed to flow back through θa,b
to encourage task-relevant feature extraction during representation learning.

In the second stage, we freeze θa,b and update the classification module θc based solely on classifica-
tion performance:

θc ← θc − η∇θcLcls, with θa,b fixed.
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Table 7: Lightweight GARLIC configurations on P12: varying feature dimension (hidden=128,
window=3).

Feature Dim Hidden Size Time Lag AUROC (%) Time (s/iter) Memory (MB)

16 128 2 86.40 0.581 3322
8 128 2 86.26 0.198 742

By alternating these two steps until convergence, each module is allowed to specialize on its respective
objective while still benefiting from shared latent features. This decoupling mitigates conflicting
learning dynamics, enhances training stability, and improves overall classification performance.

Our design is inspired by DeFRCN (Qiao et al., 2021), which decouples localization and classification
heads in few-shot object detection to avoid multi-task interference. While their setting addresses
conflict between distinct tasks, our scenario involves misalignment among sub-objectives within
a single classification task due to auxiliary reconstruction. Nevertheless, the underlying principle
remains consistent: isolating incompatible optimization signals improves convergence and modular
performance.

B DATA DETAILS

B.1 DATASET DESCRIPTION

MIMIC-III. We use the Medical Information Mart for Intensive Care III (MIMIC-III) dataset, a large,
publicly available database comprising deidentified health-related data from over 40,000 critical care
patients admitted to the Beth Israel Deaconess Medical Center between 2001 and 2012 (Johnson et al.,
2016). The dataset contains high-resolution clinical information, including demographics, vital signs,
laboratory test results, medications, procedures, caregiver notes, imaging reports, and in-hospital as
well as post-discharge mortality outcomes. MIMIC-III supports a wide range of research applications
in clinical prediction modeling, epidemiology, and decision support, and is notable for its large
and diverse ICU population, high temporal granularity, and unrestricted availability to researchers
worldwide.

PhysioNet Challenge 2012 (P12). The P12 dataset is derived from the PhysioNet/Computing in
Cardiology Challenge 2012 (Silva et al., 2012). It comprises clinical records from 12,000 adult ICU
stays spanning various unit types, including medical, surgical, trauma, and cardiac ICUs. All patients
were admitted for diverse clinical conditions, and ICU stays shorter than 48 hours were excluded. Up
to 42 signals are recorded per patient, including 6 admission-level descriptors and 36 time-varying
physiological signals (e. g., vital signs and laboratory results). Due to signal sampling frequencies and
clinical heterogeneity, the actual number of available signals varies across patients. Each observation
is time-stamped with its offset from ICU admission, providing fine-grained temporal resolution for
modeling.

PhysioNet Challenge 2019 (P19). The P19 dataset is derived from the PhysioNet/Computing in
Cardiology Challenge 2019 (Reyna et al., 2019), which focuses on the early prediction of sepsis in
ICU settings. It comprises multivariate clinical time series from 40,331 ICU stays, collected across
three distinct hospital systems. Each patient record is formatted as an hourly sampled time series with
34 clinical signals, including vital signs, laboratory test results, and demographic attributes. Sepsis
annotations follow the Sepsis-3 definition (Singer et al., 2016), requiring both a two-point increase in
the Sequential Organ Failure Assessment (SOFA) score and evidence of infection.

B.2 DATA PREPROCESSING AND STATISTICS

This section details the preprocessing procedures for each dataset and presents the corresponding
statistics in Table 8 after preprocessing.

MIMIC-III. We use the preprocessed version of MIMIC-III (Johnson et al., 2016), following the
preprocessing protocol adopted in Warpformer (Zhang et al., 2023). This version contains 103 clinical
signals, comprising 61 biomarkers (e. g., vital signs and lab tests) and 42 intervention-related features

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: DATASET STATISTICS.

Dataset Samples Sensors Negative:Positive Labels Missing Ratio (%) Task

MIMIC III 49380 103 43633:5747 98.08±1.10 Mortality Prediction
P12 11988 36 10281:1707 94.80±1.51 Mortality Prediction
P19 40331 34 37400:2931 85.83±6.13 Sepsis Prediction

(e. g., medications and procedures), extracted from 53,423 ICU admissions. Consistent with prior
work, we restrict our analysis to adult ICU stays and exclude neonatal cases. For the in-hospital
mortality prediction task, we utilize all available time series data collected during the ICU stay, and
discard admissions with a length of stay shorter than 24 hours to ensure sufficient temporal context.

P12. We follow the official PhysioNet 2012 Challenge structure (Silva et al., 2012) and retain 36
physiological signals after removing static admission descriptors. For each patient, we extract all
available timestamped observations from the first 48 hours of ICU stay. Categorical static features
(e. g., gender, ICU type) are one-hot encoded. In-hospital mortality outcomes are derived from the
provided labels, and corrupted or blacklisted records are excluded during filtering.

P19. We follow the official PhysioNet 2019 Challenge setup (Reyna et al., 2019). Each patient record
is parsed to extract hourly measurements of 34 clinical signals, excluding static descriptors (e. g.,
age, gender, unit type) and meta fields (e. g., ICU length of stay) from the time series inputs. Static
features are processed separately, with categorical variables (e. g., gender) one-hot encoded into an
extended static vector. Patients without any valid observations within the first 48 hours are excluded.
Sepsis labels are assigned according to the official annotation, indicating whether any time point
during the ICU stay is labeled as septic.

C EXPERIMENT DETAILS

C.1 BASELINES AND HYPERPARAMETERS

We evaluate our method against a wide range of baseline models, covering classical RNN variants,
latent variable models, and recent graph- and transformer-based time series architectures. All baseline
models are trained on the same data splits and evaluated using identical metrics to ensure a fair
comparison.

For each model, we prioritize using the best-reported hyperparameter settings from original publica-
tions or official implementations. Only when such configurations are unavailable or not directly
transferable to our datasets, we perform hyperparameter tuning within commonly used ranges.
Specifically, the learning rate is selected from {1e−4, 5e−4, 1e−3, 5e−3, 1e−2}, weight decay from
{1e−5, 5e−5, 1e−4, 5e−4, 1e−3}, and batch size from {64, 128, 256, 512, 1024} for PhysioNet (P12
and P19), and {8, 16, 32, 64, 128} for MIMIC-III. The following model-specific hyperparameter
ranges are applied only in the absence of recommended configurations.

RNN-Mean: RNN model where missing observations are imputed with global mean values (Che
et al., 2018). Model-specific hyperparameters include the number of GRU hidden units selected from
{32, 50, 64, 100} and the latent dimension from {10, 20, 32, 64}.
RNN-Decay: RNN model that combines imputation of missing observations using an input decay
mechanism (Che et al., 2018). Model-specific hyperparameters include the number of GRU hidden
units selected from {32, 50, 64, 100} and the latent dimension from {10, 20, 32, 64}.
RNN-∆t: RNN model with input concatenated with the observation mask and sampling inter-
vals. Model-specific hyperparameters include the number of GRU hidden units selected from
{32, 50, 64, 100} and the latent dimension from {10, 20, 32, 64}.
GRU-D: GRU model that applies a decaying mechanism in both input and hidden states (Che et al.,
2018). Model-specific hyperparameters include the number of GRU hidden units selected from
{32, 50, 64, 100} and the latent dimension from {10, 20, 32, 64}.
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ODE-RNN: RNN model that incorporates neural ODEs to model hidden states (Rubanova et al.,
2019). Model-specific hyperparameters include the number of GRU hidden units from {50, 64, 100},
latent dimension from {20, 32, 64}, and set the number of layers in the ODE function network to
{1, 2, 3}.
L-ODE-RNN: Latent ODE model with an RNN as the encoder (Chen et al., 2018). Model-specific
hyperparameters include the latent dimension from {20, 32, 64}, encoder GRU hidden units from
{50, 64, 100}, number of layers in the generative ODE function (gen-layers) from {1, 2, 3}.
L-ODE-ODE: Latent ODE model with ODE-RNN as the encoder (Rubanova et al., 2019). Model-
specific hyperparameters include the encoder GRU hidden units from {50, 64, 100}, latent dimension
from {20, 32, 64}, number of layers in both recognition (rec-layers) and generative (gen-
layers) ODE functions from {1, 2, 3}.
MTGNN: Graph-based model for forecasting that jointly combines graph learning, graph convolution,
and temporal convolution (Wu et al., 2020). Model-specific hyperparameters include the number of
convolutional layers selected from {2, 3} and the number of hidden channels from {32, 64, 128}.
mTAND: Utilizes an attention mechanism for continuous-time representations (Shukla & Marlin,
2021). Model-specific hyperparameters include the number of attention heads H selected from
{1, 2, 4} and the GRU encoder hidden size from {20, 32, 64, 128}.
Raindrop: Graph-based model that handles irregular observations using a graph neural network
(Zhang et al., 2022).

Warpformer: Learns time series at different scales with multiple warping and attention modules
(Zhang et al., 2023). Model-specific hyperparameters include the dimensionality of hidden states D
selected from {32, 64} and the number of attention layers J selected from {2, 3}.
MTSFormer: Transformer-based model that utilizes time series data from four perspectives: Locality,
Time, Spatio, and Irregularity (Zheng et al., 2024). Model-specific hyperparameters include the
number of Transformer encoder layers selected from {2, 3, 4} and the number of attention heads
from {1, 2, 4}.
RETAIN: A reverse-time attention model originally designed for healthcare applications, which
utilizes two-level attention mechanisms over input sequences (Choi et al., 2016). Model-specific
hyperparameters include the hidden layer size p selected from {64, 128, 256} and embedding size m
selected from {64, 128, 256}.
IMV-LSTM: A model that captures temporal patterns and variable importance via a dual-stage
attention mechanism within LSTM structures (Guo et al., 2019). Model-specific hyperparameters
include the hidden layer size selected from {64, 128}.
DA-RNN: Dual-stage attention-based recurrent neural network that models both input features and
temporal dependencies adaptively (Qin et al., 2017). Model-specific hyperparameters include the
hidden layer size selected from {32, 64, 128}.

C.2 GARLIC HYPERPARAMETERS

We organize the hyperparameters of our proposed model into two categories: model architecture and
training configuration. The following parameters are tuned during experimentation only when no
recommended configuration is available.

For model architecture, the window size is selected from {2, 3, . . . , 11}, which corresponds to time
lags {1, 2, . . . , 10} used in the local temporal context, where the effective time lag τ = window size−
1. The input feature dimension Df is chosen from {16, 32}, and the hidden state size Dh for both
encoder and decoder is selected from {128, 256, 512}.
For training, we tune the classification learning rate over {1e−5, 5e−5, 1e−4}, classification weight
decay from {1e−4, 5e−4, 1e−3}, reconstruction learning rate from {1e−4, 5e−4, 1e−3}, and recon-
struction weight decay from {1e−5, 5e−5, 1e−4, 5e−4, 1e−3}. The classification loss weight λc is
selected from {0.1, 1, 5, 10}, the graph regularization loss weight λg is fixed at 0.01, and the batch
size is chosen from {64, 128, 256}.
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D ABLATION STUDIES AND SENSITIVITY ANALYSIS

D.1 COMPONENT ABLATION

Table 9: Ablation study.

Models P12 P19
AUROC AUPRC AUROC AUPRC

GARLIC 86.40±0.86 56.89±1.75 90.96±0.84 55.29±2.45

w/o Missingness Indicator 84.87±0.85 52.79±1.55 82.22±1.89 33.56±2.42
w/o Decay Mechanism 82.20±2.16 45.04±5.81 89.50±0.34 52.69±1.57
w/o Signal-wise Encoder 85.00±1.68 48.92±4.77 89.78±0.83 52.80±1.04

w/o Signal-wise Attention 74.67±4.88 36.70±2.92 89.30±0.83 51.98±1.84
w/o Graph Message Passing 84.67±0.77 49.45±2.63 88.39±0.78 51.66±2.62

w/o GRU 76.90±0.93 40.85±1.80 75.26±3.73 28.41±5.27

w/o Alternating Decoupled Optimization 85.32±1.81 54.95±3.79 90.08±0.58 54.36±1.44

To better interpret the ablation results in Table 9, we clarify the correspondence between each ablated
variant and its associated module in GARLIC:

• w/o Missingness Indicator: Removes the missingness flag mk,t in the augmented input
vector, as defined in Eq. equation 2. This prevents the model from distinguishing observed
from imputed values.

• w/o Decay Mechanism: Disables the exponential decay-based imputation defined in
Eq. equation 1, replacing time-aware estimation with static global means.

• w/o Signal-wise Encoder: Replaces the signal-specific encoders MLPk in Eq. equation 3
with a shared encoder, thus ignoring the signal-specific heterogeneity in feature distributions.

• w/o Signal-wise Attention: Removes the cross-signal attention mechanism used at each
timestep, as formulated in Eq. equation 6, thus aggregating signals uniformly.

• w/o Graph Message Passing: Eliminates the inter-signal message passing step in Eq. equa-
tion 5, disabling explicit modeling of relational dependencies among clinical variables.

• w/o GRU: Removes the GRU recurrence layer in Eq. equation 7, thereby discarding local
temporal continuity modeling prior to temporal self-attention.

• w/o Alternating Decoupled Optimization: Trains the model jointly on reconstruction and
classification objectives, rather than using the alternating optimization strategy described in
Section 3.4.

Table 9 quantifies the impact of disabling each core component of GARLIC on P12 and P19. Remov-
ing the missingness indicator reduces AUROC/AUPRC by 1.5/4.1 pts on P12 and 8.7/21.7 pts on P19,
showing that flagging observed vs. imputed entries is critical under high missingness. Disabling the
exponentialdecay mechanism costs 4.2/11.8 pts on P12 and 1.5/3.2 pts on P19, underscoring its role
in capturing variablespecific dynamics. Replacing the persignal encoder with a uniform encoder/at-
tention incurs moderate losses (1.4/7.9 pts on P12, 1.2/2.5 pts on P19), confirming the importance
of modeling heterogeneity across clinical signals. Ablating signalwise attention causes a dramatic
11.7/20.2 pt drop on P12 (but minimal change on P19), reflecting datasetdependent sensitivity to local
temporal encoding. Disabling graph message passing degrades performance by 1.7/7.4 pts on P12
and 2.6/6.6 pts on P19, confirming the benefit of modeling intersignal relations. Omitting the GRU
yields the largest penalty (9.5/16.0 pts on P12, 15.7/26.9 pts on P19), highlighting its necessity for
temporal continuity. Finally, reverting to joint endtoend training (no alternating optimization) leads
to a modest 1.1/1.9 pt drop on P12 and 0.9/0.9 pt on P19, validating that decoupling reconstruction
and classification stabilizes learning.
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Table 10: Dataset statistics for the Human Activity dataset.

Samples Sensors Class Distribution Labels Missing Ratio (%) Task

6442 12

Walking: 1271, Falling: 1160,
Lying: 896, Sitting: 2908,

Standing up: 621, On all fours: 477,
Sitting on the ground: 207

7 74.99± 0.06 Posture Classification

Table 11: Performance comparison on the Human Activity dataset.

Model Accuracy (%) AUPRC (%)

GRU-D 87.41± 1.21 81.29± 2.83
ODE-RNN 86.91± 0.66 77.11± 1.88
L-ODE-ODE 86.16± 0.83 74.63± 3.74
L-ODE-RNN 85.71± 1.22 71.04± 1.53
mTAND 88.72± 1.46 72.77± 4.02
MTSFormer 89.24± 0.53 79.14± 1.46
WarpFormer 89.28± 0.87 80.60± 1.79
GARLIC 91.21± 1.03 84.70± 1.92

D.2 HYPERPARAMETER SENSITIVITY FOR TIME LAG

Among the tunable hyperparameters, we focus our sensitivity analysis on the time lag τ , which
determines the length of the local temporal window used in both the attention and graph message
passing modules. Unlike standard training hyperparameters (e.g., learning rate or batch size), τ
is tightly coupled with the model’s architectural design and directly affects how local temporal
dependencies are captured. As such, it represents a model-specific architectural choice rather than a
general training hyperparameter, and therefore warrants focused analysis.

Figure 4: AUROC Sensitivity to
Time Lag τ .

Figure 4 shows the AUROC achieved on P12 and P19 for
varying values of τ . We observe that performance on P12
remains relatively stable across different τ values, while P19
exhibits a clearer performance peak at τ = 8. This contrast
highlights the dataset-dependent role of τ : in longer sequences
(P12), variations in τ affect a smaller part of the temporal con-
text, resulting in a milder impact on performance. In shorter
sequences (P19), the same variation significantly alters the
model’s view of input, leading to more noticeable performance
differences.

Despite the general robustness of the model, the sensitivity
patterns suggest that τ plays a non-negligible role in shap-
ing temporal representations, especially in settings with lim-
ited context length. These findings justify treating τ as an
architecture-level design choice that should be adapted to the
characteristics of the dataset.

E APPLICABILITY TO BROADER TASKS

Although many clinically relevant prediction problems–such as clinical deterioration prediction–are
naturally framed as binary classification, we believe that assessing the model’s performance on a
broader set of tasks is crucial to fully demonstrate its versatility.

To this end, we extended our evaluation to two additional directions: multi-class classification and
imputation. These experiments highlight GARLICs flexibility and generalization capability.
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E.1 MULTI-CLASS CLASSIFICATION

To evaluate GARLICs performance on multi-class classification under irregular sampling, we con-
ducted experiments on the Human Activity dataset–a widely used non-clinical benchmark for motion
recognition. The dataset comprises multivariate time series collected from wearable sensors, en-
compassing 7 activity classes (see Table 10). The task is a 7-class classification problem aimed at
identifying the subjects activity from sensor readings over time. Following previous works (Rubanova
et al., 2019; Shukla & Marlin, 2021), we applied standard preprocessing including normalization,
sliding-window segmentation, and label alignment.

E.2 IMPUTATION

GARLICs modular architecture allows straightforward adaptation to tasks beyond classification.
Specifically, the imputation task can be performed by disabling the third modulethe Cross-
Dimensional Sequential Attention–and using only the first two components: the Latent Feature
Modeling module and the Time-Lagged Graph Message Passing module. No further architectural
changes are necessary.

To assess this capability, we carried out an imputation experiment on the P12 dataset, in which a
fraction of the observations was randomly masked and used as ground truth. The model was trained
to reconstruct missing values using mean squared error (MSE) as the loss function. We compared
against several representative baselines supporting time series imputation, including L-ODE-RNN,
L-ODE-ODE, and mTAND. The results are presented in Table 12.

Table 12: Imputation performance on the P12 dataset under varying missing rates. Models were
trained using MSE loss.

Missing Rate Model MSE MAE

0.50

L-ODE-RNN 29.0073± 0.4153 21.3054± 0.1788
L-ODE-ODE 27.0088± 0.1868 20.8137± 0.1605

mTAND 12.3396± 0.1397 10.2598± 0.0677
GARLIC 12.6943± 0.4066 10.6809± 0.0992

0.40

L-ODE-RNN 23.2620± 0.5398 17.0901± 0.1745
L-ODE-ODE 21.5457± 0.3561 16.6419± 0.1461

mTAND 9.3711± 0.1347 8.0737± 0.0720
GARLIC 9.5636± 0.1841 8.1145± 0.0940

0.30

L-ODE-RNN 17.3302± 0.5478 12.8183± 0.1454
L-ODE-ODE 16.0021± 0.1276 12.4869± 0.0917

mTAND 6.9898± 0.1088 5.9852± 0.0531
GARLIC 6.6576± 0.1494 5.8061± 0.0797

0.20

L-ODE-RNN 11.6055± 0.2748 8.5410± 0.1130
L-ODE-ODE 10.7941± 0.1971 8.3196± 0.0511

mTAND 4.5238± 0.0718 3.9589± 0.0276
GARLIC 4.3584± 0.2372 3.7085± 0.0525

0.10

L-ODE-RNN 5.7913± 0.1942 4.3054± 0.0448
L-ODE-ODE 5.3364± 0.0626 4.1734± 0.0353

mTAND 2.2459± 0.1128 1.9778± 0.0161
GARLIC 1.9737± 0.1376 1.7834± 0.0312

F LEARNED TIME-LAGGED SUMMARY GRAPH

To better understand how our model captures inter-signal dependencies for local reconstruction, we
analyze the learned time-lagged summary graph Gτ encoded by the adjacency matrix Wτ . While the
primary goal of our model is outcome prediction, the graph module plays a crucial auxiliary role by
modeling short-range temporal and cross-signal structure. Investigating the properties of the learned
graph can thus shed light on the nature of the dependencies it captures.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

We observe that the learned adjacency matrix Wτ varies across different random seeds. This variabil-
ity arises from the redundancy inherent in physiological signal dependencies and non-identifiable
graph learning coupled with message passing (Yu et al., 2019; Compton et al., 2022). Since our model
employs `1 regularization (Lasso) to promote sparsity, it tends to select minimal subsets of edges
sufficient for local reconstruction. Given the multitude of potential interactions among variables,
multiple sparse solutions can achieve comparable reconstruction performance. Consequently, each
training run may converge to a different sparse instantiation from a set of approximately equivalent
solutions. Importantly, we note that the learned graph Gτ should be interpreted not as a recovery of
the full physiological dependency network, but rather as a task-specific subgraph sufficient for local
reconstruction. The graph is not supervised – it is not directly optimized using ground-truth labels, but
instead emerges as an intermediate construct through the auxiliary reconstruction objective. As such,
it acts as a functional tool to enhance representation learning, rather than a target of inference itself.
The variability in learned edges across seeds thus reflects the presence of multiple valid subgraphs
that support the same functional goal, rather than instability in model behavior.

To extract a more stable representation of inter-signal relationships, we compute the element-wise
average of the learned adjacency matrices across five random seeds. Visualizations of this averaged
graph are provided in Figure 6, where the edge thickness reflects the mean weight learned. The
resulting structure highlights consistent dependencies among physiological signals, capturing both
intrinsic correlations and patterns indicative of external interventions. These observations suggest that
our model effectively represents both endogenous signal dynamics and exogenous clinical actions
that influence patient state.

To further assess the plausibility of the time-lagged summary graph, we conducted a post-hoc
evaluation using five large language models (LLMs) as proxies for expert judgment, leveraging
their encoded medical knowledge. Each edge was evaluated via a standardized prompt to ensure
consistency (see Box F). While not a substitute for clinical validation, this provides a structured
plausibility check.

Table 13: LLM-based post-hoc plausibility assessment of edges in the time-lagged summary graph.
Each edge is categorized as Reasonable, Unclear, or Unreasonable.

Model Reasonable Unclear Unreasonable

Claude Opus 4 11 5 0
Gemini 2.5 Pro 14 2 0
Grok 3 13 3 0
ChatGPT O3 (Web Search) 13 2 1
DeepSeek (DeepThink R1, Search) 13 2 1

Results indicate that four out of five LLMs judged over 80% of edges as reasonable. Notably, 9 edges
were endorsed by all models and 3 edges by four models, demonstrating strong consistency. These
findings align with established medical knowledge and support the plausibility of the learned graph.
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Prompt for LLM-based Plausibility Assessment

You are a clinical expert with deep knowledge in human physiology, critical care, and
multimodal patient monitoring. We are analyzing a time-lagged summary graph derived
from ICU monitoring data over a 9-hour window. Each directed edge represents a potential
influence – whether physiological, systemic, or intervention-based – between two variables.
These influences may be direct or indirect, including multi-step pathways, systemic feedback,
compensatory mechanisms, or clinical decisions. A variable does not need to be the sole or
primary cause for its effect to be valid – edges may reflect partial, synergistic, or contributing
influences within complex ICU dynamics.
Your task is to assess the plausibility of each edge as a causal or contributory effect, explicitly
considering: - Direct physiological mechanisms - Indirect or multi-factorial pathways -
Feedback loops and compensatory responses - Cascading effects of interventions and systemic
derangements
For each edge, respond with: - Reasonable if plausible via any direct, indirect, partial, or
synergistic mechanism - Unclear if the pathway is highly uncertain or not supported by
known mechanisms - Unreasonable if it contradicts established physiological or clinical
understanding
Provide a brief explanation (12 sentences), highlighting plausible direct or indirect routes,
systemic interactions, or clinical reasoning.

Edges to evaluate: Resp→ HR, Resp→ FiO2, HR→ FiO2, HR→MAP, FiO2 →MAP,
MAP→ Lactate, SBP→ HR, SBP→ FiO2, SBP→ Temp, SBP→ BUN, SBP→ PaCO2,
HCO−

3 → Temp, HCO−
3 → BUN, Temp→ BUN, Temp→ FiO2, BUN→ FiO2

Figure 5: Visualization of learned graph after edge gating

Figure 6: Learned Summary Graph Visualization. Summary graph learned on dataset P19, averaged
over 5 random seeds with a time lag of 8 hours.

Future Work for Graph Learning: To address non-identifiability inherent in sparse graph discovery,
lightweight physiological priors such as known organ system linkages or treatment intervention
markers can be incorporated to bias graph learning towards clinically plausible edges, and to explore
consensus-based aggregation for more stable subgraphs. Extending Gτ to a dynamic, window-free
setting can allow the adjacency weights to evolve continuously over time rather than be tied to fixed
lags. Finally, static patient variables and multiscale time lags can also be integrated into a unified
graph framework, so that both enduring patient traits and fast-changing physiological interactions
can be captured in a single, interpretable structure.

G STATISTICAL TEST DETAILS

We employ two complementary statistical procedures to evaluate the interpretability of attribution
scores under perturbation-based masking.
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G.1 PAGES L TEST FOR ORDERED ALTERNATIVES

Suppose we have n repeated runs (blocks) and k ordered conditions (here k = 4 for scenarios (c, d,
b, a)). To test the strict ordering c < d < b < a, proceed as follows:

1. For each run j = 1, . . . , n, rank the performance scores k so that the smallest score receives
rank 1 and the largest rank k. Denote the rank of condition i in run j by rij .

2. Compute the rank sums for each condition:

Ri =

n∑
j=1

rij , i = 1, . . . , k.

3. Assign weights wi = i corresponding to the hypothesized order (c, d, b, a) 7→ (1, 2, 3, 4).
4. Compute the Page statistic

L =

k∑
i=1

wi Ri.

5. Under the null hypothesis of no ordering, L can be compared to tabulated critical val-
ues (Page, 1963), or approximated by a normal distribution with

E[L] =
nk (k + 1)2

4
, Var(L) ≈ nk (k + 1)(2k + 1)

24

(k + 1)(2k + 1)

5
,

yielding Z = L−E[L]√
Var(L)

≈ N (0, 1).

6. Reject the null (and conclude a significant increasing trend c < d < b < a) if L exceeds the
critical value or if Z > z1−α.

G.2 TWO ONESIDED TESTS (TOST) FOR EQUIVALENCE

To test whether two paired conditions (e. g. full vs. top50%) are practically equivalent within margin
δ > 0, we perform two onesided t-tests:

1. Compute the paired differences dj = aj − bj for j = 1, . . . , n, their mean d̄ and standard
error SE = sd/

√
n.

2. Test H01 : ∆ ≤ −δ versus HA1 : ∆ > −δ by

t1 =
d̄+ δ

SE
with n− 1 degrees of freedom,

obtaining onesided p1 = 1− Ftn−1
(t1).

3. Test H02 : ∆ ≥ +δ versus HA2 : ∆ < +δ by

t2 =
d̄− δ

SE
, p2 = Ftn−1

(t2).

4. The TOST pvalue is max(p1, p2). We declare equivalence (i.e. reject the union null) if both
p1 < α and p2 < α.

H ADDITIONAL CASE STUDIES

H.1 SUPPLEMENTAL CASE STUDIES

To qualitatively assess the interpretability of our model, we select one correctly classified positive
sample and one correctly classified negative sample from each of the P12 and P19 datasets. This
yields four representative cases that allow us to examine the models attribution behavior under both
high-risk and low-risk scenarios.

For each sample, we visualize the following components:
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• Importance Map of Observations (Raw): This visualization displays the raw attribution
scores assigned to each observed value. Observation values are normalized within each
signal to enable consistent visual comparison across features. The size of each marker
reflects its corresponding importance score.

• Predicted Mortality Probability over Time: We plot the model’s predicted risk trajectory
by feeding truncated input sequences of increasing length during inference, thereby revealing
how prediction confidence evolves over time.

• Importance per Signal: We compute the aggregated importance scores for each signal by
summing over all its observed time points, providing a global view of signal-level attribution.

• Normalized Per-Signal Importance Map: To reveal fine-grained temporal patterns, we
normalize attribution scores within each signal channel. At this stage, we intentionally skip
the redistribution step described in Equation 11 and directly apply the attribution mask.
This is because redistribution is only used to evenly reassign the importance originally
attributed to imputed values back to the observed data within the same signal. Since our
goal here is to examine the temporal structure of observed inputs, omitting redistribution
helps avoid diluting the attribution signal and provides a clearer view of temporal dynamics.
In the resulting visualization, color intensity represents importance: red indicates high
attribution, while blue denotes relatively low importance.

All visualizations include only signals with observed values; signals with no observations are omitted
for clarity.

P12 Dataset Signals. Albumin (g/dL), ALP (IU/L), ALT (IU/L), AST (IU/L), Bilirubin (mg/dL),
BUN (mg/dL), Cholesterol (mg/dL), Creatinine (mg/dL), DiasABP (mmHg), FiO2 (0–1), GCS
(score), Glucose (mg/dL), HCO3 (mmol/L), HCT (%), HR (bpm), K (mEq/L), Lactate (mmol/L), Mg
(mmol/L), MAP (mmHg), MechVent (0/1), Na (mEq/L), NIDiasABP (mmHg), NIMAP (mmHg),
NISysABP (mmHg), PaCO2 (mmHg), PaO2 (mmHg), pH (0–14), Platelets (cells/nL), RespRate
(bpm), SaO2 (%), SysABP (mmHg), Temp (◦C), TropI (µg/L), TropT (µg/L), Urine (mL), WBC
(cells/nL).

P19 Dataset Signals. HR (bpm), O2Sat (%), Temp (◦C), SBP (mmHg), MAP (mmHg), DBP
(mmHg), Resp (breaths/min), EtCO2 (mmHg), BaseExcess (mmol/L), HCO3 (mmol/L), FiO2 (%),
pH, PaCO2 (mmHg), SaO2 (%), AST (IU/L), BUN (mg/dL), Alkalinephos (IU/L), Calcium (mg/dL),
Chloride (mmol/L), Creatinine (mg/dL), Bilirubin_direct (mg/dL), Glucose (mg/dL), Lactate (mg/dL),
Magnesium (mmol/dL), Phosphate (mg/dL), Potassium (mmol/L), Bilirubin_total (mg/dL), TroponinI
(ng/mL), Hct (%), Hgb (g/dL), PTT (s), WBC (103/µL), Fibrinogen (mg/dL), Platelets (103/µL).
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Figure 7: Sample 01: Surviving patient from P12.
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Figure 8: Sample 01: Normalized per-signal importance map.
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Figure 9: Sample 02: Non-surviving patient from P12.

H.2 DISCUSSION

Our case study reveals nuanced insights into how the model assigns and utilizes feature importance
across different granularity levels, offering a faithful interpretation of its decision-making process in
clinical time-series data.

Global-Level (Raw) Importance Attribution. We observe that signals with fewer observations
tend to receive disproportionately higher per-observation importance scores. This reflects a natural
behavior: when a channel is sparsely sampled, each observation contributes a larger fraction of the
total available information for that signal, prompting the model to rely more heavily on these sparse
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Figure 10: Sample 02: Normalized per-signal importance map.
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Figure 11: Sample 03: Non-sepsis patient from P19.

events. In positive samples (Sample02 and Sample04), these sparse observations frequently coincide
with sharp increases in prediction probability, indicating their critical role in outcome prediction.
Conversely, in negative samples (Sample01 and Sample03), similar observations occur during stable,
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Figure 12: Sample 03: Normalized per-signal importance map.
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Figure 13: Sample 04: Sepsis patient from P19.

low-risk phases and do not cause prediction spikes—highlighting their role in characterizing patient
stability. These patterns suggest the model is not merely reactive to anomalies, but rather context-
aware in distinguishing between deterioration and normalcy.

Signal-Level Importance Distribution. When aggregating importance scores across each signal, we
find relatively small variance (within 5%—10%), indicating that the model does not rely excessively
on a few dominant signals. Instead, it integrates information across multiple signals in a synergistic
manner. This likely reflects two key modeling traits: (1) a preference for global pattern recognition
rather than localized feature triggers; and (2) limited granularity in distinguishing signal-specific
importance, possibly due to a generalization bias to avoid overfitting to any single input source. Such
behavior is desirable in complex clinical settings, where predictive stability is favored over fragile
saliency.

Temporal-Level Sensitivity (Normalized Importance). After normalizing importance at the signal
level, we find the model exhibits strong temporal sensitivity to two specific types of patterns. First, it
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Figure 14: Sample 04: Normalized per-signal importance map.

reacts strongly to high-variation events—abrupt changes often corresponding to acute physiological
deterioration. For instance, in Sample02, the model highlights spikes in HR, MAP, and DiasABP, as
well as increasing fluctuations in NISysABP, NIDiasABP, and NIMAP. Second, the model emphasizes
abnormal value onsets, such as HR > 90, temperature > 38◦C, and WBC < 4 in Sample04—markers
that are clinically associated with onset of sepsis. These behaviors indicate the model is sensitive to
early signs of clinical instability, validating its prioritization from a physiological standpoint.

Temporal Alignment with Clinical Semantics. Interestingly, we find that the temporal distribution
of feature importance naturally aligns with the models prediction direction, revealing contrasting
attribution patterns for different outcomes. For example, in the GCS channel, the model assigns
greater importance to rising trends and values above 8 in Sample01 (predicted as a survivor), whereas
it highlights declining trends and values below 8 in Sample02 (predicted as a non-survivor). This
indicates that the model does not simply react to specific values or patterns in isolation, but rather
emphasizes temporal segments that are most indicative of the predicted class. Similar patterns
are observed in Sample01 for FiO2 and temperature, where segments following a transition into
normal ranges receive higher importance compared to those in abnormal ranges—suggesting that the
model focuses on evidence of physiological recovery when predicting survival. These attribution
behaviors also align well with the dynamics of predicted probabilities, as periods of high attribution
typically coincide with sharp probability shifts, particularly in positive cases. Collectively, these
observations demonstrate that the model assigns importance in a way that is both temporally grounded
and semantically consistent with its outcome predictions.

Limitations and Potential Improvements of Interpretability. While many of GARLICs attributions
align with clinical intuition, there are instances where high importance is assigned to physiologically
stable measurements, raising questions about interpretability. Specifically, this may occur due to noise
or instability in the attribution process, or because GARLIC captures statistically correlated patterns
that lack clear clinical meaning, often serving as indirect proxies for latent-space reconstruction or
temporal encoding rather than directly predicting outcomes.

However, this behavior is mainly observed in true-negative (healthy) samples, such as Sample 03 in
Figure 12, where highlighting stable values is physiologically reasonable. For example, GARLIC
emphasizes measurements around hour 21 in HR, SBP, MAP, O2Sat, and Resp. Although it is unclear
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why these particular timepoints are highlighted over similar stable points, stable physiological values
in non-sepsis cases provide evidence against clinical deterioration, suggesting that such attributions
are both reasonable and clinically meaningful.

To improve the clinical consistency of GARLICs interpretations, we propose three complementary
strategies: Clinical Priors Integration: Incorporate expert-defined physiological ranges (e.g., normal
MAP or WBC intervals) via an attribution-regularization loss, which penalizes high importance
assigned to normal values and emphasizes clinically significant anomalies. Applicability: When
robust clinical priors are available. Limitation: Effectiveness depends on prior quality and may
miss rare pathological events or complex interactions outside standard ranges. Stability-Aware
Attribution Filtering: Apply temporal smoothness constraints to attention weights to reduce isolated
spikes and emphasize coherent trends. Applicability: When signals are densely sampled and temporal
continuity is important. Limitation: May obscure brief but clinically relevant deviations; not suitable
for sparse data. Gradient-Based Attention Exploration: Augment attention with gradient-based
saliency methods (e.g., Grad-CAM-style) to capture fine-grained dependencies (Leem & Seo, 2024;
Barkan et al., 2021). Applicability: When detailed feature interactions are critical and sufficient
computational resources are available. Limitation: Sensitive to noise in high-dimensional data and
introduces additional computational overhead.

In summary, GARLIC provides a foundational attribution mechanism for clinical time series, capable
of capturing both risk-elevating and stabilizing patterns across signals and time. Our case studies
show that the model attends to clinically meaningful events, differentiates attribution behaviors across
predicted outcomes, and distributes importance in a way that largely aligns with clinical intuition. To
further enhance interpretability and reliability, we propose three complementary extensionsclinical
priors integration, stability-aware filtering, and gradient-based saliencywhich offer flexible paths to
adapt the attributions based on signal characteristics and computational constraints. While some
attribution inconsistencies remain, these analyses demonstrate the potential of structured temporal
attributions to provide actionable insights and reinforce trust in clinical decision-making systems.
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