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ABSTRACT

We propose in this paper a new paradigm for facial video compression. We lever-
age the generative capacity of GANs such as StyleGAN to represent and com-
press each video frame (intra compression), as well as the successive differences
between frames (inter compression). Each frame is inverted in the latent space of
StyleGAN, where the optimal compression is learned. To do so, a diffeomorphic
latent representation is learned using a normalizing flows model, where an entropy
model can be optimized for image coding. In addition, we propose a new percep-
tual loss that is more efficient than other counterparts (LPIPS, VGG16). Finally,
an entropy model for video inter coding with residual is also learned in the pre-
viously constructed latent space. Our method (SGANC) is simple, faster to train,
and achieves better results for image and video coding compared to state-of-the-art
codecs such as VTM, AV1, and recent deep learning techniques.

1 INTRODUCTION

With the explosion of videoconferencing, the efficient transmission of facial video is a key industrial
problem. Image compression can be formulated as an optimization problem with the objective of
finding a codec which reduces the bit-stream size for a given distortion level between the recon-
structed image at the receiver side and the original one. The distortion mainly occurs due to the
quantization in the codec, because the entropy coding method (Rissanen & Langdon, 1979; Gray,
2011) requires the discrete data to create the bit-stream. The compression quality of the codec
depends on the modeling of the data distribution close to the real data distribution since the ex-
pected optimal code length is lower bounded by the entropy (Shannon, 1948). Existing compression
methods suffer from various artefacts. Especially at very low bits-per-pixel (BPP), blocks and blur
degrade the image quality, leading to a poorly photorealistic image.

Motivated by the appealing properties of the StyleGAN architecture for high quality image genera-
tion, we propose a new compression method for facial images and videos. The intuition is that the
GAN latent representation associated to any face image is somehow disentangled, and a perceptual
compression method should be easier to train using the latent, especially for inter-coding. In addi-
tion, at extremely low BPP, a compressed latent code should always lead to a photorealistic image,
hence leading to a compression technique that is perceptually more pleasant. However, we acknowl-
edge that the method relies on a strong hypothesis that a GAN inversion technique can approximate
accurately any given image. While this hypothesis is currently strong, we note that the performances
of GAN inversion and generation methods have significantly improved recently. We take the leap of
faith that the hypothesis will be valid in the near future.

For real natural images, a StyleGAN encoder (GANs inversion) (Richardson et al., 2021; Wei et al.,
2021) have been proposed to project any image onto the latent space of StyleGAN. Our objective
is to compress the latent representations. Although, retraining the encoder and the generator for
different BPP is computationally heavy and costly, especially, using a heavy perceptual distortion
losses in the image space (i.e., VGG16, LPIPS). In order to overcome the above challenges, we
propose to learn a new proxy latent space representation using a diffeomorphic mapping function.
This new latent representation is precisely learned to optimize the compression efficiency. The
approach is illustrated in Figure 1. The advantages of such a space are two-fold; (a) it makes the
approach very efficient as we can use off the shelf pretrained StyleGAN encoder and generator
without the need to retrain them for each quality level. (b) it allows to learn a space dedicated for
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Figure 1: An illustration of our proposed approach. E andG are the pretrained and fixed StyleGAN2
encoder (Richardson et al., 2021) and generator (Karras et al., 2020) respectively. Only the mapping
T and the entropy model are trained using the joint rate (R) and distortion (D) loss. On the left we
show SGANC for image compression; On the encoding side, the images are projected in the latent
space (W+) then mapped toW?

c where the quantization/compression is done. On the decoding side,
the obtained bit-stream is decompressed, then mapped to W+ before generating the reconstructed
image. On the right we show SGANC for video compression using inter coding (SGANC IC);
we quantize the consecutive latent code difference and reconstruct the current latent code from this
difference and the last reconstructed latent code.

compression in which an optimal entropy model can be learned. Finally, we extend this approach
to videos and propose a method to optimize for the inter-coding with residuals in the new latent
representation, as illustrated in Figure 2.

Our contributions can be summarized as follows:

• We propose a new paradigm for facial video compression, leveraging the generative power
of StyleGAN for artifact-free and high quality image compression.

• Without any GAN retraining, we propose to learn a proxy latent representation that
effectively fits the entropy model, while using off the shelf pretrained StyleGAN en-
coder/decoder models. We propose to learn a model for the intra image coding and the
inter video coding.

• We propose a new perceptual distortion loss that is more efficient to compute and leverages
the multiscale and semantic representation in the latent space of StyleGAN.

• We show high quality and lower perceptually-distorted reconstructed images for low BPP
compared to traditional and deep learning based methods for image compression. We show
better qualitative and quantitative results compared to the most recent state-of-the-art meth-
ods H.265 and VTM for video compression.

The rest of the paper is organised as follows: section 2 presents related works on image and video
compression. Our proposed method is detailed in section 3 and section 4 presents the experimental
results.

2 RELATED WORK

Image Compression: Traditional image codecs such as JPEG (Wallace, 1992), JPEG2000 (Rab-
bani, 2002) are carefully human-engineered to achieve very effective performance. However, they
are not data-dependent and limited to linear transformations. Recently, deep learning based codecs
(Ballé et al., 2017; 2016; Agustsson et al., 2019; Mentzer et al., 2020) have gained significant at-
traction in the community due to their superior performance and ability to learn the data dependent
non-linear transformations. These approaches learn nonlinear transformations of the input data and
an entropy model jointly with the objective of optimal trade-off between efficient compression and
reconstruction quality. Specifically, they minimize the following rate-distortion loss:

L = −E[log2Pz] + λE[d(x, x̂)], (1)
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where x, x̂ are the original and the reconstructed images, z is the corresponding latent representa-
tion, Pz(·) is the entropy model of the latent distribution and d(·, ·) is a distortion loss.

To achieve optimal rate-distortion trade-off, several methods use variational autoenconder (VAE)
type architecture (Ballé et al., 2016; Minnen et al., 2018; Cheng et al., 2020) and achieve impressive
performance at higher BPP, however they are sub-optimal at low BPP. Some papers have targeted
the entropy model: Ballé et al. (2018) propose to use a hyper prior as a source of side information
to capture the spatial dependencies. Minnen et al. (2018) follow a similar approach and augment the
hierarchical model with an autoregressive one. Cheng et al. (2020) build the previous approach with
a discretized Gaussian mixture entropy model with attention modules.

Other papers have improved the model structure and the architecture (Li et al., 2018; Cheng et al.,
2018; 2019) and some used recurrent neural networks (Toderici et al., 2017; Johnston et al., 2018).
Others, have leveraged the power of generative adversarial networks (GAN) (Goodfellow et al.,
2014) and used adversarial losses, especially for low bitrates (Rippel & Bourdev, 2017; Agustsson
et al., 2019). These approaches produce high quality and lower perceptually-distorted image recon-
structions (Santurkar et al., 2018; Mentzer et al., 2020), even for high bitrates (Tschannen et al.,
2018). These methods are computationally heavy as they require adversarial training for each qual-
ity level. We argue that this is not practical especially for data compression, where each quality level
requires to train a new model from scratch.

The choice of distortion loss is crucial for better reconstruction, traditionally PSNR or MS-SSIM
(Wang et al., 2003) are used. These metrics capture the pixel wise distortion and poorly capture the
perceptual distortion. Moreover, Blau & Michaeli (2018) shows that there is a trade-off between
pixel wise distortion and perceptual quality. This observation is seen clearly for low BPP, where
traditional codecs favor blocking artifacts and deep compression systems show blurred and other
types of artifacts.

Several works have been tried to remedy these limitations; motivated by the success of using percep-
tual losses such as LPIPS (Zhang et al., 2018) or VGG16 (Johnson et al., 2016) in other applications
(Ledig et al., 2017; Dosovitskiy & Brox, 2016; Gatys et al., 2016), some papers (Santurkar et al.,
2018; Chen et al., 2020) propose to include a perceptual distortion loss in addition to the pixel
wise ones. These perceptual distortion losses are based on computationally expensive networks
such as VGG16 or learned perceptual metrics such as LPIPS. Moreover, the backbone networks are
pretrained for an unrelated and discriminative task, and on different datasets, such as Image clas-
sification on ImageNet. To remedy this, we propose an alternative and more efficient perceptual
distortion loss in the latent space.

Video Compression: Deep Video Compression systems also minimize the rate-distortion loss equa-
tion 1. In addition to the spatial redundancy (SR), temporal redundancy (TR) is reduced by incor-
porating motion estimation modules. Traditional methods (Wiegand et al., 2003; Sullivan et al.,
2012b) rely on handcrafted and block based modules. Recently, deep learning based video compres-
sion systems proposed to replace the traditional modules by learned ones (Lu et al., 2019). Motion
estimation (Dosovitskiy et al., 2015) and compensation are often used to address TR. Several im-
provements have been made to reduce TR; Lin et al. (2020) leverage multiple frames to improve the
motion compensation, and Hu et al. (2020) use multi resolution flow maps to effectively compress
locally and globally. However, training motion estimation modules is difficult since they require
large annotated data.
Some approaches perform TR reduction in latent space (Feng et al., 2020; Djelouah et al., 2019; Hu
et al., 2021). Others propose to do frames interpolation (Djelouah et al., 2019), or an interpolation
in the latent space of GANs (Santurkar et al., 2018).

3 LEARNING PROXY REPRESENTATION FOR COMPRESSION

In this section, we describe our proposed method to learn the latent space dedicated for compres-
sion. The schematic diagram is illustrated in Figures 1 and 2. The method can be summarized as
follows: an input facial video frame is first projected in the latent space of StyleGAN W+ . Our
method consists in learning a transformation T from the original latent space W+ to a new proxy
representation denoted asW?

c . The transformation T is defined as a diffeomorphic mapping (i.e.,
normalizing flow) and is learnt so that the intra image compression and the inter video compression
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are optimal inW?
c . It is noted that learning a proxy representation inW?

c for compression is also
motivated by the fact that the rate distortion loss can not be optimized in the original space W+

without training the encoder/generator. Below, we first briefly describe some background material
(section 3.1), and then present our methods for images or intra compression (section 3.2) and for
videos or inter compression (section 3.3).

3.1 BACKGROUND

StyleGAN Generator StyleGAN (Karras et al., 2019) is the state of the art unconditional GAN
for high quality realistic image generation. It consists of a mapping function that takes a vector
sampled from a normal distribution (z ∼ N (0, I)) and maps it to an intermediate latent space W
using a fully connected network (M ) before feeding it to multiple stages (i.e., W+ space) of the
generator (G) to generate an image (x) from the distribution of the real images (x ∼ px):

x = G(w) w = M(z) z ∼ N (0, I) (2)

It is shown that the latent space of GAN is semantically rich and enjoys several properties such as
semantic interpolation (Radford et al., 2016). In addition, the latent vector encoded in W+ space
of StyleGAN captures a hierarchical representation of the projected image. In our case, we use
StyleGAN2 (Karras et al., 2020) which is an improved version.

StyleGAN Encoder The StyleGAN encoder (Richardson et al., 2021) is a deterministic function
denoted as E. Its role is to project a real image into the latent space of StyleGAN (e.g., W or
W+), in such a way that the reconstructed image by the StyleGAN generator is minimally distorted
(x̂ = G(E(x)) ≈ x). In our case, the image is projected in W+ with dimension of (18 × 512)
where each dimension controls a different convolution layer of the StyleGAN generator. Currently
the encoding based GAN inversion approaches are not ideal, which explains the difference between
the projected and the original image.

3.2 IMAGE COMPRESSION (SGANC)

We assume that we have a pretrained and fixed StyleGAN2 generator G that considers a latent code
w ∈ W+ and generates a high resolution image of size 1024× 1024, and an encoder E (pretrained
and fixed) that embeds any given image x to the latent codew inW+ such that G(E(x)) ' x. Our
objective is to learn a new latent space W?

c optimal for image compression. The W?
c is obtained

using a bijective transformation T : W+ → W?
c , which is parametrized as a normalizing flows

model (note that our work only requires the bijectivity, as such, no maximum-likelihood term is
included in the training objective). T maps a latent code w ∈ W+ into w?

c ∈ W?
c such that the

latent vectors w?
c has the minimum entropy and the sufficient information to generate the original

image with minimal distortion from the inverted latent code T−1(w?
c ) using G. The entropy model

is trained on the latent codesw?
c ∈ W?

c by minimizing the following rate loss after the quantization:

R = −E

[
D∑
i

log2 pi (Q (T (w)))

]
= −E

[
D∑
i

log2 pi (T (w) + ε)

]
(3)

For equation 3 to be differentiable, following (Ballé et al., 2017), we relax the hard quantization Q
by adding uniform noise ε to the latent vectors T (w). pi is the ith dimension of the probability
density function in W?

c , D is the latent vector dimension, w = E(x) where x is the input image
and ε is sampled from a uniform distribution U[−0.5,0.5]. The entropy model p is modeled as the
fully factorized entropy model and it is also parameterized by a neural network as in (Ballé et al.,
2018). The transformed/quantized latent codes should also have sufficient information to reconstruct
the image, and this is achieved by minimizing a distortion loss. In general the distortion loss is
computed in the image space, although, we propose a new efficient distortion loss directly in the
latent space:

D = d
(
w, T−1 (T (w) + ε)

)
, (4)

where d is any distortion loss, in this paper we use the mean squared error (MSE) loss. The equa-
tion 4 can be seen as a perceptual distortion loss, and it is motivated by the fact that the latent space
of GANs is semantically rich. We argue that this is true especially for StyleGAN, where the latent
code is extracted from several layers of the StyleGAN encoder which allows to capture multiscale
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Figure 2: An illustration of our proposed approach for Video compression using Inter Coding with
residual during test (Section 3.3). Q corresponds to quantization, compression encoding and decod-
ing. Here g = 1.

and semantic features/representations. Compared to existing perceptual losses, our loss does not re-
quires to generate the images during training or to compute heavy losses such as VGG16 or LPIPS
in the image space. The total loss used to learn our proposed latent spaceW?

c is a trade-off between
the rate (equation 3) and distortion (equation 4) as shown below

L = R+ λD (5)
Where λ is the trade-off parameter, and the transformation T and the entropy model p are jointly
optimized. Once the optimization is completed, to create the bit-stream the latent codes inW?

c are
quantized with Q using rounding operator.

3.3 VIDEO COMPRESSION (SGANC IC)

Here, we propose our approach for video compression, denoted as SGANC IC, using learned inter
coding with residuals. Video compression methods and standards rely on motion estimation and
compensation modules to leverage the temporal dependencies between frames. As our approach
is formulated in the latent space, our inter coding schema is be based on the successive latent dif-
ferences, since these differences reflect the temporal changes. We argue that this leads to efficient
compression due to the good properties of the latent space of GANs (e.g., linear interpolation).
Specifically, inter coding with the residuals is performed in the latent space (Figure 2). Given a se-
quence of frames {x1,x2, ...,xt−1,xt, ...}, a pretrained encoder E is first used to obtain the latent
representation. Then, similarly to intra coding, a transformation T is learned to map these frames
toW?

IC , leading to a sequence of latent codes {w∗
1 ,w

∗
2 , ...,w

∗
t−1,w

∗
t , ...}. The mapping T is learnt

such that the sequence of latent codes in W?
IC is optimal for inter-coding by taking the temporal

dependencies into account. Our approach can be summarized as follows (the complete description
of the algorithm can be retrieved in appendix A.2):

• The first latent code is coded using the method described in section 3.2: ŵ∗
0 (using the same

entropy model or preferably another one trained for image compression). The following
steps are repeated until the end of the video;

• The difference between two consecutive latent codes are computed and quantized to obtain
v̂t = Q(w∗

t −w∗
t−1).

• From the previous reconstructed code, an estimate of the latent code at frame t is obtained
as w̄t = ŵ∗

t−1 + v̂t.
• The residual between the estimated and the actual latent code is computed and quantized

as r̂t = Q(w∗
t − w̄∗

t ) (for all the frames or each gap (i.e., g frames).
• The quantized difference v̂t and the residual r̂t are compressed using an entropy coding

and sent to the receiver.
• On the receiver side, the current latent code is reconstructed from the residual and the

estimated latent code (or only from the estimated latent code each g frames): ŵ∗
t = w̄∗

t +r̂t.
• The latent codes inW?

IC are remapped toW+ to generate the images using the pretrained
StyleGAN2 G.

To learn the new latent spaceW?
IC for inter-coding, the transformation T and the entropy model (p)

are learned to optimize the rate-distortion loss:

LIC = d
(
wt, T

−1
(
ŵ∗

t

))
− λ

(
E

[
D∑
i

log2 pi (v̂t)

]
+ E

[
D∑
i

log2 qi (r̂t)

])
(6)

5



Under review as a conference paper at ICLR 2022

As similar to section 3.2, we replace the quantization Q by adding uniform noise, and the entropy
model is modeled as in (Ballé et al., 2018). While equation 6 has two entropy models, we show
below, that it is sufficient to learn only one entropy model on the differences v̂t, as r̂t admits the
explicit probability distribution known as Irwin-Hall distribution (the proof of the following Lemma
1 can be found in the appendix A.1).

Lemma 1 Let Q(x) = x + ε be the continuous relaxation of the quantization, where ε follows the
uniform distribution U[−0.5,0.5] . Let w∗

0 ∈ Rn,ŵ∗
0 = Q(w∗

0), and w̄∗
t = ŵ∗

t−1 + Q(w∗
t −w∗

t−1)
, t = 1, . . . , n. If r̂t = Q(w∗

t − w̄∗
t ) is the quantized residual defined for every t such that t ≡ 0

(mod g), then r̂t follows the Irwin-Hall distribution with the parameter 3 + (g−1) and the support
being shifted by −0.5 ∗ (3 + (g − 1)).

This leads to optimizing our latent space W?
IC for the rate-distortion loss only with one entropy

model for v̂t by discarding the last term in (equation 6). During test, the explicit distribution of the
residuals can be used for entropy coding.

Stage-Specific entropy models: In Karras et al. (2019), it is shown that each stage/layer of the
StyleGAN generator corresponds to a specific scale of details. To leverage this hierarchical structure,
we propose stage specific entropy models. Specifically, the first layers, which correspond to coarse
resolution (e.g., 42−82) affect mainly high level aspects of the image, such the pose and face shape,
while the last layers affect the low level aspects such as textures, colors and small micro structures.
Here, we propose to leverage this hierarchical structure and weight the distortion λ differently for
each layer of the generator (Note that, the latent code in W+ or W?

IC consists of 18 latent codes
of dimension 512 and each one corresponds to one layer in the generator, hence its dimension is
(18, 512)). For practical reasons, we split the 18 layers in three stages (1− 8, 8− 13, 13− 18), and
learn one transformation and entropy model for each group. The distortion λ is chosen to be higher
for the first layers and decreases subsequently.

4 EXPERIMENTS

4.1 DATASETS

Celeba-HQ (Karras et al., 2018), a dataset consists of 30000 high quality face images of 1024×1024
resolution.

FILMPAC, a dataset consists of 5 video clips with high resolution and the length varies between
60 and 260 frames. These videos can be found on the filmpac website1 by searching their names
(FP006734MD02, FP006940MD02, FP009971HD03, FP010363HD03, FP010263HD03).

MEAD (Wang et al., 2020), a high resolution talking face video corpus for many actors with differ-
ent emotions and poses. The training dataset for inter-coding consists of 2.5 k videos with frontal
poses. For evaluation we created MEAD-inter dataset consisting of 10 videos (selected from
MEAD) of different actors with frontal pose. We also created MEAD-intra dataset consisting of
200 frames selected from these videos with frontal pose for evaluating image compression methods.

Dataset preprocessing: All the frames are cropped and aligned using the same prepossessing
method as that of FFHQ dataset (Karras et al., 2019), on which the StyleGAN is pretrained. As we
compare the reconstructed image with the projected one for SGANC, we project all the frames (en-
code the original images and reconstruct them using StyleGAN2). All frames are of high resolution
(1024× 1024).

4.2 IMPLEMENTATION DETAILS

We used StyleGAN2 generator (G) (Karras et al., 2020) pretrained on FFHQ dataset (Karras et al.,
2019). The images are encoded in W+ using a pretrained StyleGAN2 encoder (E) (Richardson
et al., 2021). The parameters of the generator and the encoder remain fixed in all the experiments.
The latent vector dimension inW+ andW?

c is 18× 512. The mapping function T is modeled using
RealNVP architecture (Dinh et al., 2017) without batch normalization. It consists of 13 coupling lay-
ers, and each coupling layer consists of 3 fully connected (FC) layers for the translation function and

1https://filmpac.com/
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PSNR MS-SSIM LPIPS (Zhang et al., 2018) PIM (Bhardwaj et al., 2020)

Figure 3: Rate distortion curves on MEAD intra dataset: for medium and large BPP, our method
(SGANC in blue) is better in terms of LPIPS and MS-SSIM than VTM (Red), AV1 (Purple),
MeanHP (Orange) and HP (Green). For high BPP, our method is better in terms of PSNR. The
perceptual metrics LPIPS and PIM clearly show that our method outperforms existing methods per-
ceptually.

3 FC for the scale one with LeakyReLU as hidden activation and Tanh as output one (Total number
of trainable parameters=20.5 M). For the entropy model, we have used the fully factorized entropy
model (Ballé et al., 2018) based on the implementation from the CompressAI library (Bégaint et al.,
2020). For the stage specific entropy model, λ is kept constant for the first stage and then decreased
linearly to be 1e−2 smaller for the last layer. For all the experiments, we used Adam optimizer with
β1 = 0.9 and β2 = 0.999, learning rate=1e−4 and the batch size=8. Once the training is completed,
we used Range Asymmetric Numeral System coder (Duda, 2013) to obtain the bit-stream.

Training: We encoded all the images once, and the training is performed solely using the latent
codes. Thus, we do not need the generator nor the encoder during training, which makes the ap-
proach light and fast to train. For SGANC, We train on Celeba-HQ dataset. For SGANC IC, we
trained on 2.5 k videos from the MEAD dataset (Wang et al., 2020), where each batch contains video
slices of size = 9 frames. All the frames are preprocessed as in section 4.1.

4.3 RESULTS

In this section we present the experimental results of our proposed method for image and video
compression. We used the following metrics to assess the quality of the compression methods:
Peak Signal to Noise Ratio (PSNR), Multi Scale Structural Similarity (MS-SSIM) (Wang et al.,
2003), Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), and the Perceptual
Information Metric (PIM) with a mixture of 5 Gaussians (Bhardwaj et al., 2020).

LPIPS and PIM are two perceptual metrics; PIM is recently proposed and follow an information-
theoretic approach, inspired from the human perceptual system (Bhardwaj et al., 2020). The authors
of LPIPS, on the other hand, show that it is consistent with the human perception. We report the size
of the compressed images in bits per pixel (BPP), which is common in evaluating image and video
compression.

To exclude the distortion coming from the GAN inversion technique, all the frames are projected
(i.e., inverted) using the encoder. The projected frames are used for all approaches in the main
paper as a baseline to compute the distortion metrics. For the sake of completion, we also present
evaluation results with the original images in the appendix A.4.

4.3.1 IMAGE COMPRESSION

We compare our method with the most recent state-of-the-art codecs such as VTM (VTM, 2020),
AV1 (AV1, 2018) and deep compression models such as scale Hyper Prior (HP) (Ballé et al., 2018),
factorized entropy model with scale and mean hyperpriors (MeanHP) (Minnen et al., 2018) and the
anchor variant of Cheng et al. (2020). MeanHP and (Cheng et al., 2020) are trained with the MS-
SSIM objective and HP with the MSE (we found that this leads to better results) on the Celeba-HQ
dataset. All the methods are evaluated on the independent evaluation dataset: MEAD-Intra and
FILMPAC.
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Model Original Projected VTM AV1 MeanHP SGANC

BPP 0.0155 0.0156 0.0119 0.0146
PSNR 37.443 32.128 35.946 29.31
MS-SSIM 0.951 0.934 0.953 0.970
LPIPS 0.296 0.332 0.361 0.062
PIM 21.075 24.168 39.671 1.767

Figure 4: Qualitative results for image compression with comparable BPP for all methods (images
are better seen zoomed). Other methods introduce blocking artifacts and blurring. Our method
(SGANC) leads to high quality reconstruction and perceptually lower distortion. In particular, the
perceptual metrics LPIPS and PIM show a significant impact of our method.

Quantitative results: We present the rate distortion curves for different BPP on the MEAD-intra
dataset in Figure 3. As can be observed, for the perceptual metrics LPIPS and PIM, our method sig-
nificantly outperforms the state-of-the-art methods by a large margin. Deep learning based methods
are better than traditional codecs for high BPP but they are inferior for lower BPP. This observation
highlights the potential of our method to obtain reconstruction with good perceptual quality. For
classical metrics, our method is the best at medium and high BPP for MS-SSIM, and has the highest
PSNR at high BPP. It is noted that the deep learning based competitors trained with MS-SSIM ob-
jective, are still not able to outperform the traditional codecs VTM and AV1. The above observations
also holds on the evaluation of the FILMPAC dataset, please refer to figure 17 in the appendix.

Qualitative results: Next we discuss the qualitative results, shown in figure 4. The visual inspection
reveals that at a comparable BPP, AV1 introduces blocking artifacts while VTM generates blurry re-
sults. The reconstruction of MeanHP is not sharp enough and present distortion in color. Our method
delivers perfect reconstruction compared to the projected image and preserves all the details. For
example, the details of the eye brows are preserved where as the existing methods failed. Additional
images are displayed in appendix A.4.

Model Original Projected VTM H.265 SGANC IC

BPP 0.0018 0.0021 0.0017
PSNR 38.94 34.87 32.23
MSSSIM 0.978 0.953 0.985
LPIPS 0.2800 0.3267 0.0465
PIM 24.97 29.76 1.221

Figure 5: Qualitative results for video compression (images are better seen zoomed). Other methods
introduce blocking artifacts and blurring. Our method (SGANC IC) leads to high quality recon-
struction and a significantly lower perceptually distortion, as measured by the metrics LPIPS and
PIM.
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PSNR MS-SSIM LPIPS (Zhang et al., 2018) PIM (Bhardwaj et al., 2020)

Figure 6: Rate distortion curves on MEAD inter dataset. Our approach SGAN-IC leads to a signifi-
cantly lower perceptual distortion as measured by the perceptual metrics LPIPS and PIM.

4.3.2 VIDEO COMPRESSION

We compare our method (SGANC IC) with the most recent and performing two state-of-the-art
methods: Versatile Video Coding Test Model (VTM) (VTM, 2020) and H.265 standard (Sullivan
et al., 2012a). We used the official implementation for both VTM (Random access with GOP=16)
and H.265 (FFmpeg Library). Each method is evaluated on the MEAD-inter dataset.

Quantitative results: Figure 6 presents the quantitative evaluation curves on the MEAD-inter
dataset. The computed metrics are first averaged across the frames in each video, and then averaged
across all the videos. As similar to the observations in section 4.3.1, our proposed method for video
compression achieved impressive performance and significantly outperformed the state-of-the-art
methods with respect to perceptual metrics. Especially, with the perceptual distortion metric PIM,
our method is significantly better. In terms of PSNR, our method is comparable with H.265 at low
bit-rate and achieved better performance at high BPP with both methods.

Qualitative results: Figure 5 compares the reconstruction quality of all the methods with a compa-
rable BPP on a single frame extracted from the compressed video. Our method is almost artifacts
free, photorealistic and perceptually more pleasant, while VTM leads to blurry results and H.265
exhibits blocking artifacts. For more visual results please refer to the appendix A.4. Note that, de-
spite the high quality of our method, the reconstruction of StyleGAN (projected vs original) is still
not perfect. Once this factor is eliminated, the distortion coming from the quantization (projected
vs our method) is negligible which makes our method very promising taking into account of the
exponential improvement of GAN generation and inversion.

The ablation studies related to the different distortion losses, the alternative choices of transforma-
tion T and other design choices are discussed in the appendix A.3 due to the space limitation.

5 CONCLUSION

We have proposed in this paper a new paradigm for facial image and video compression based on
GANs. Our framework is efficient to train and leads to perceptually competitive results compared
to the most efficient state-of-the-art compression systems. We believe that at low bitrates, our so-
lution leads to a different and more acceptable type of distortion, since the reconstructed image is
very sharp and photorealistic. Our approach is not restricted for faces since GANs have been pro-
posed for various natural objects. For a specific category of object for which a GAN has not been
trained already, our approach could be used after training the specific GAN as well as the compres-
sion bottelneck. The main limitation of our method is the approximation of any input image using
StyleGAN. We believe that the continuous and impressive improvements of GANs inversion and
generation will limit this limitation in the near future.
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Sangnie Bhardwaj, Ian Fischer, Johannes Ballé, and Troy Chinen. An unsupervised information-
theoretic perceptual quality metric. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 13–24. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
file/00482b9bed15a272730fcb590ffebddd-Paper.pdf.

Yochai Blau and Tomer Michaeli. The perception-distortion tradeoff. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6228–6237, 2018. doi: 10.1109/CVPR.2018.
00652.

Li-Heng Chen, Christos G Bampis, Zhi Li, Andrey Norkin, and Alan C Bovik. Perceptually opti-
mizing deep image compression. arXiv preprint arXiv:2007.02711, 2020.

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Deep convolutional autoencoder-
based lossy image compression. In 2018 Picture Coding Symposium (PCS), pp. 253–257. IEEE,
2018.

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Deep residual learning for image
compression. In CVPR Workshops, pp. 0, 2019.

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned image compression with
discretized gaussian mixture likelihoods and attention modules. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7939–7948, 2020.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. ICLR
2017: International Conference on Learning Representations, 2017.

Abdelaziz Djelouah, Joaquim Campos, Simone Schaub-Meyer, and Christopher Schroers. Neu-
ral inter-frame compression for video coding. In 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 6420–6428, 2019. doi: 10.1109/ICCV.2019.00652.

Alexey Dosovitskiy and Thomas Brox. Generating images with perceptual similarity metrics based
on deep networks. Advances in neural information processing systems, 29:658–666, 2016.

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov,
Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with
convolutional networks. In Proceedings of the IEEE international conference on computer vision,
pp. 2758–2766, 2015.

Jarek Duda. Asymmetric numeral systems: entropy coding combining speed of huffman coding
with compression rate of arithmetic coding. arXiv preprint arXiv:1311.2540, 2013.

Runsen Feng, Yaojun Wu, Zongyu Guo, Zhizheng Zhang, and Zhibo Chen. Learned video com-
pression with feature-level residuals. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pp. 120–121, 2020.

10

https://aomedia.googlesource.com/aom/
https://proceedings.neurips.cc/paper/2020/file/00482b9bed15a272730fcb590ffebddd-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/00482b9bed15a272730fcb590ffebddd-Paper.pdf


Under review as a conference paper at ICLR 2022

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer using convolutional
neural networks. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2414–2423, 2016. doi: 10.1109/CVPR.2016.265.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Robert M. Gray. Entropy and Information Theory. Springer Publishing Company, Incorporated, 2nd
edition, 2011. ISBN 9781441979698.

Zhihao Hu, Zhenghao Chen, Dong Xu, Guo Lu, Wanli Ouyang, and Shuhang Gu. Improving deep
video compression by resolution-adaptive flow coding. In European Conference on Computer
Vision, pp. 193–209. Springer, 2020.

Zhihao Hu, Guo Lu, and Dong Xu. Fvc: A new framework towards deep video compression in
feature space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1502–1511, 2021.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In European conference on computer vision, pp. 694–711. Springer, 2016.

N.L. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions, Volume 2. Wi-
ley Series in Probability and Statistics. Wiley, 1995. ISBN 9780471584940. URL https:
//books.google.fr/books?id=BTANEAAAQBAJ.

Nick Johnston, Damien Vincent, David Minnen, Michele Covell, Saurabh Singh, Troy Chinen,
Sung Jin Hwang, Joel Shor, and George Toderici. Improved lossy image compression with prim-
ing and spatially adaptive bit rates for recurrent networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4385–4393, 2018.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. In International Conference on Learning Representations,
2018.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4401–4410, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8110–8119, 2020.

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro
Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi. Photo-
realistic single image super-resolution using a generative adversarial network. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 105–114, 2017. doi:
10.1109/CVPR.2017.19.

Mu Li, Wangmeng Zuo, Shuhang Gu, Debin Zhao, and David Zhang. Learning convolutional
networks for content-weighted image compression. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3214–3223, 2018.

Jianping Lin, Dong Liu, Houqiang Li, and Feng Wu. M-lvc: multiple frames prediction for learned
video compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3546–3554, 2020.

Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei Cai, and Zhiyong Gao. Dvc: An
end-to-end deep video compression framework. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11006–11015, 2019.

Fabian Mentzer, George D Toderici, Michael Tschannen, and Eirikur Agustsson. High-fidelity gen-
erative image compression. Advances in Neural Information Processing Systems, 33, 2020.

11

https://books.google.fr/books?id=BTANEAAAQBAJ
https://books.google.fr/books?id=BTANEAAAQBAJ


Under review as a conference paper at ICLR 2022
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A APPENDIX

The Appendix is organized as follows: in section A.1, we prove that the distribution of residuals
follows a known Irwing-Hall distribution, in section A.2 we detail the algorithms for training and
testing of the inter coding with residual approach. In section A.3 we detail the ablation study for
image and video compression. Finally, in section A.4 we provide more results.

A.1 EXPLICIT DISTRIBUTION OF THE RESIDUALS: PROOF OF LEMMA 1

Let Q(x) = x + ε be the continuous relaxation of the quantization, and ε follows the uniform
distribution U[−0.5,0.5]. Let the t be the frame index ranging from {0, 1, . . . ,K − 1}.

Let w∗
0 ∈ Rn and ŵ∗

0 = Q(w∗
0). Let us define the following
v̂t = Q(w∗

t −w∗
t−1) = w∗

t −w∗
t−1 + ε, (7)

w̄t = ŵ∗
t−1 + v̂t,

Similarly, we define

r̂t =

{
Q(w∗

t − w̄∗
t ), ∀ t ≡ 0 (mod g)

0 else
(8)

Now we prove that r̂t follows the Irwin-Hall or the uniform sum distribution (Johnson et al., 1995).
we have:

r̂t = Q(w∗
t − w̄∗

t ) = w∗
t − w̄∗

t + ε1

= w∗
t −

(
ŵ∗

t−1 + v̂t
)

+ ε1

= w∗
t −

(
ŵ∗

t−1 +w∗
t −w∗

t−1 + ε1
)

+ ε2

= w∗
t − ŵ∗

t−1 −w∗
t +w∗

t−1 − ε2 + ε1

= w∗
t−1 − ŵ∗

t−1 − ε2 + ε1 (9)
For t ≡ 0 (mod g), the reconstructed latent code is computed from the residual, and can be written
as:

ŵ∗
t = r̂t + w̄∗

t

= Q(w∗
t − w̄∗

t ) + w̄∗
t

= w∗
t − w̄∗

t + ε+ w̄∗
t

= w∗
t + ε (10)

Otherwise, it is the estimated latent code w̄∗
t , thus ŵ∗

t can be written as:

ŵ∗
t =

{
w∗

t + ε, ∀ t ≡ 0 (mod g)
w̄∗

t else
(11)

For g = 1, equation 9 becomes:
r̂t = w∗

t−1 − ŵ∗
t−1 − ε2 + ε1

= w∗
t−1 −w∗

t−1 + ε3 − ε2 + ε1

= ε3 − ε2 + ε1 (12)
For g > 1, Let us define the following quantity:

m̂t =

{
r̂t, ∀t ≡ 0 (mod g)
Q(w∗

t − w̄∗
t ) else

(13)

Using equation 11 and equation 13:
r̂t = w∗

t−1 − ŵ∗
t−1 − ε2 + ε1

= w∗
t−1 − w̄∗

t−1 − ε2 + ε1

= m̂t−1 − ε2
= ...

= m̂t−(g−1) −
g−1∑
i=1

εi (14)

13
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Similarly to equation 9, we can replace m̂t−(g−1):

r̂t = w∗
t−g − ŵ∗

t−g + ε1 −
g−1∑
i=1

εi (15)

As t− g ≡ 0 (mod g) (as the residual is used only each t ≡ 0 (mod g)), from equation 11, we can
replace ŵ∗

t−g by its relaxed approximation:

r̂t = w∗
t−g −

(
w∗

t−g + ε2
)

+ ε1 −
g−1∑
i=1

εi

= ε1 − ε2 + ε3 −
g−1∑
i=1

εi (16)

Which is the sum of 3 + (g − 1) independent random variables following the uniform distribution.

We showed r̂t follows the uniform sum distribution, which is the Irwin-Hall distribution IH(x;n)
with parameter n = 3 + (g− 1) and x ∈ [−n× 0.5, n× 0.5]. Since the ε is the uniform distribution
U[−0.5,0.5], in our case the support of the Irwin-Hall distribution is shifted by −n× 0.5.

A.2 INTER CODING (SGANC IC)

In this section we present the algorithms for video compression using inter coding with residual
during train and test:

Algorithm .1: SGANC IC: during test
Result: Compressed frames sequence: {x̂1, x̂2, ..., x̂t−1, x̂t, ..., x̂N}

1 Initialization: frames sequence: {x1,x2, ...,xt−1,xt, ...,xN}, N=number of frames, Encoder
(E), Generator (G), Transformation T , entropy coder (EC) and decoder (ED), quantizer (Q), g
for residual coding;

2 ŵ∗
0 = ED(EC(Q(T (E(x0)))) ; // Intra Coding of the first frame

3 t = 1;
4 while t < N do
5 w∗

t = T (E(xt)) ; // Encode the frames and map them to W?
c

6 w∗
t−1 = T (E(xt−1));

7 v̂t = ED(EC(Q(w∗
t −w∗

t−1))) ; //Quantize, Compress and Decompress (Receiver) the differences

8 w̄∗
t = ŵ∗

t−1 + v̂t ; // Compute an estimate of the latent code

9 if t%g == 0 then
10 r̂t = ED(EC(Q(w∗

t − w̄∗
t ))) ; // Quantize, Compress and Decompress (Receiver) the residual

11 ŵ∗
t = w̄∗

t + r̂t ; // Reconstruct the latent code

12 else
13 ŵ∗

t = w̄∗
t ;

14 end
15 x̂t = G(T−1(ŵ∗

t )) ; // Reconstruct the image

16 t = t+ 1;
17 end

14
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Algorithm .2: SGANC IC: during training
Result: Transformation (T ), Entropy model (p)

1 Initialization: video dataset encoded as latent codes, where each video=
{w1,w2, ...,wt−1,wt, ...}, number of frames in each batch (N ), dataset size (S), Encoder
(E), Generator (G);

2 while i < S do
3 t, L = 1, 0;
4 while t < N do
5 w∗

t , w∗
t−1 = T (wt), T (wt−1) ; // Map the latent codes to W?

c

6 v̂t = Q(w∗
t −w∗

t−1) ; // Quantize (adding noise) the differences

7 w̄∗
t = ŵ∗

t−1 + v̂t ; // Compute an estimate of the latent code

8 ŵ∗
t = w̄∗

t ;
9 L = L+ L ; // Compute the loss L (equation 17)

10 t = t+ 1;
11 end
12 Update the parameters of T and p to minimize L;
13 i = i+ 1;
14 end
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A.3 ABLATION STUDY

In this section we detail the ablation study for image and video compression.

A.3.1 IMAGE COMPRESSION (DISTORTION LOSS)

In this section we compare different choices of the distortion loss. Specifically, we compare the MSE
loss in the image space (Img. D), the MSE loss in the latent spaceW+ (Lat. D), the combination
of both (Lat.-Img. D), the LPIPS loss in the image space (LPIPS D) and the combination of the
MSE and the LPIPS losses in the image space (LPIPS-Img. D). The implementation details are the
same as in section 4.2 except for the choice of the distortion loss and we use a batch size of 4 when
training with LPIPS. We compare on both MEAD intra and FILMPAC dataset.

Results: From Figures 7, 8, we can notice that our loss (Lat. D) outperforms the the MSE and the
LPIPS distortion in the image space. Moreover, the loss in the image space produces some artifacts
and images are blurred while the loss in the latent space is almost artifacts free. There is no benefit
of using the loss in the image space in addition to ours. Note that, the training using only the latent
loss is faster than others (e.g., the training took; 5 days (LPIPS.-Img. D), 4 days (Lat.-Img. D) and 6
hours (Lat. D)) and occupies smaller space in GPU (e.g., 24 GB with batch size=4 for LPIPS.-Img.
D, 10 GB with batch size =4 for Img. D and Lat.-Img. D and less than 2 GB with batch size =8 for
Lat. D).

PSNR MS-SSIM LPIPS (Zhang et al., 2018)

Figure 7: Ablation study for the choice of the distortion loss on MEAD intra dataset. we compare
the MSE loss in the image space (SGANC Img, Orange), the MSE loss in the latent space W+

(SGANC Lat, Blue), the combination of both (SGANC Lat + Img, Green), the LPIPS loss in the
image space (SGANC LPIPS, Purple) and the combination of the MSE and the LPIPS losses as
done in other works (SGANC LPIPS + Img, Red). The loss in the latent space (SGANC Lat, ours)
outperforms the MSE and LPIPS losses in the image space. Using the MSE loss with our loss does
not seem to improve the results (SGANC Lat + Img).
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Figure 8: Ablation study for the choice of the distortion loss. We compare the effect of taking the
MSE loss in; the latent space (Lat. D, ours), in the image space (Img. D), both in the latent and
image space (Lat.-Img. D) and in the image space with the LPIPS perceptual distortion (LPIPS.-
Img. D). The loss in the image space favors some artifacts such as white patches and the images are
blurred. In addition, the LPIPS loss produce blurred images ((LPIPS.-Img. D and LPIPS. D). Our
loss produce artifacts free images. There is no benefit of using additionally the image space loss.
The bpp is the taken as the average over the 5 images in each row
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A.3.2 IMAGE COMPRESSION (TRANSFORMATION T )

In this section, we investigate the importance of using a bijective transformation (i.e., Normalizing
Flows). To this end, we replace the Real NVP model with an autoencoder (AE) and retrain it with
the entropy model on Celeba-HQ with the same implementation details as in section 4.2. The AE
consists of 7 layers with the same dimension (i.e., 512) for the encoder and 7 layers with the same
dimension for the decoder with ReLU activation functions.

Results: From Figure 9, we can notice that parametrizing the transformation T as Normalizing
Flows (i.e., Real NVP) leads to better results. For instance, some facial attributes are changed when
using an AE (such as the age and the skin color), as well as the person’s identity.

Model Original Projected SGANC AEC

BPP 0.014 0.017

Figure 9: Qualitative results for image compression: Using an AE (AEC) instead of NF leads to
high distortion and a change in the facial attributes and the identity of the person. Our method
(SGANC) leads to high quality reconstruction and perceptually lower distortion. Images are better
seen zoomed.
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A.3.3 VIDEO COMPRESSION (INTER CODING: EXPLICIT SPARSIFICATION)

Having only few dimensions that change between two consecutive latent codes is efficient for en-
tropy coding. Thus, we have investigated how to explicitly sparsify these differences and add an L1
regularization on the latent codes differences during training. The loss becomes:

LIC−L1 = LIC + λL1
|w∗

t−1 −w∗
t | (17)

Note that, as the transformation T and the entropy model are trained jointly, we expect that the
latent codes inW?

c to be transformed to fit efficiently the entropy model. In the following, we assess
whether explicit sparsification brings additional improvement (Section A.3.4).

A.3.4 VIDEO COMPRESSION (INTER CODING)

In this section we present the ablation study for SGANC IC, in which we investigate the effect of
the following parameters; parameter g for the residual coding (g), L1 regularization equation 17,
residual coding (res) vs intra coding (intra) each g, stage specific entropy model; using different
entropy models and distortion λ for the different stages of StyleGAN2 (SS). We thus compare the
following variants:

• SGANC IC intra g10: replacing the residual coding at each g = 10 by intra coding using
one of the image processing models that we train in section 3.2.

• SGANC IC res g10: doing residual coding each g = 10.
• SGANC IC res g80: doing residual coding each g = 80.
• SGANC IC res g10 L1: Adding the L1 regularization equation 17 during training and doing

residual coding each g = 10.
• SGANC res g10 SS: Using 3 entropy models and 3 T models for each stage of the Style-

GAN2 (1-7, 7-13, 13-18). In addition, training with layer specific distortion lambda;
λ = wλ (where w = 1 for the first stage and decrease from 1 to 0.01 for the second
and third stage.

• SGANC res g10 SS L1: residual coding each g = 10, stage specific entropy models and
L1 regularization.

• SGANC res g2 SS: residual coding each g = 2, stage specific entropy.
• SGANC res g1 SS L1: Same as before but doing a residual coding each frame (g = 1).

From Figure 10, we can notice the following:

• Decreasing g leads to better results, at the expense of increased BPP especially for g = 1.
• Significant improvements is obtained by performing residual coding (SGANC IC intra g10

vs SGANC IC res g10) and using stage specific entropy models (SGANC IC res g10 vs
SGANC IC res g10 SS).

• Only a marginal improvement was obtained by adding the L1 regularization during training
(SGANC res g10 vs SGANC res g10 L1). In addition, the improvement becomes negligible
when using SS entropy models (SGANC res g10 SS vs SGANC res g10 SS L1).
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PSNR MS-SSIM LPIPS (Zhang et al., 2018)

Figure 10: Ablation study for video compression using inter coding with residuals on MEAD inter
dataset. res: do residual coding each g frames, intra: do intra coding each g frames, SS: stage
specific entropy model and transformation T , L1: add L1 regularization during training (section
A.3.3), EM: entropy model
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A.4 MORE RESULTS

In this section we show more quantitative and qualitative results for image and video compression.

A.4.1 IMAGE COMPRESSION

In this section we show the results for image compression (Figures 11, 12, 15, 16, 13, 14). Contrary
to the results presented in the main paper, we here present for sake of completeness the results by
comparing to the original image (except for our method).

Model Original Projected SGANC MeanHP VTM

BPP 0.014 0.011 0.017

Figure 11: Qualitative results for image compression: Other methods introduce blocking artifacts
and blurring. Our method (SGANC) leads to high quality reconstruction and perceptually lower
distortion. Images are better seen zoomed.

Model Original Projected SGANC HP (Cheng et al., 2020)

BPP 0.014 0.031 0.013

Figure 12: Qualitative results for image compression: Other methods introduce blocking artifacts
and blurring. Our method (SGANC) leads to high quality reconstruction and perceptually lower
distortion. Cheng et al. (2020) is better than HP, but still the results are blurred. Images are better
seen zoomed.
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Model Original VTM AV1 MeanHP Projected SGANC
l=1e-5

PSNR 35.46 32.79 31.64 29.31
MS-SSIM 0.933 0.894 0.945 0.970
BPP 0.0157 0.0127 0.0129 0.0146
LPIPS 0.274 0.360 0.344 0.062

Figure 13: Qualitative results for image compression: Other methods introduce blocking artifacts
and blurring. Our method (SGANC) leads to high quality reconstruction and perceptually lower
distortion. Images are better seen zoomed.

Model Original HP (Chen et al., 2020) Projected SGANC
l=1e-4

SGANC
l=1e-5

SGANC
l=1e-6

PSNR 33.50 34.79 38.85 29.31 18.71
MS-SSIM 0.915 0.959 0.995 0.970 0.834
BPP 0.0217 0.0152 0.0280 0.0146 0.0066
LPIPS 0.320 0.281 0.010 0.062 0.250

Figure 14: Qualitative results for image compression: Other methods introduce blocking artifacts
and blurring. Our method (SGANC) leads to high quality reconstruction and perceptually lower
distortion. Images are better seen zoomed.

Model Original VTM AV1 MeanHP Projected SGANC
l=1e-5

PSNR 38.73 35.51 27.15 30.56
MS-SSIM 0.966 0.940 0.953 0.967
BPP 0.0102 0.0095 0.0098 0.0149
LPIPS 0.1758 0.2201 0.4470 0.061

Figure 15: Qualitative results: Other methods introduce blocking artifacts and blurring. Our method
(SGANC) leads to high quality reconstruction and perceptually lower distortion. Images are better
seen zoomed
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Model Original HP (Chen et al., 2020) Projected SGANC
l=1e-4

SGANC
l=1e-5

SGANC
l=1e-6

PSNR 34.98 36.89 41.43 30.56 17.97
MS-SSIM 0.938 0.978 0.995 0.967 0.716
BPP 0.0216 0.0089 0.0289 0.0149 0.0068
LPIPS 0.2498 0.1718 0.008 0.061 0.317

Figure 16: Qualitative results: Other methods introduce blocking artifacts and blurring. Our method
(SGANC) leads to high quality reconstruction and perceptually lower distortion. Images are better
seen zoomed

PSNR MS-SSIM LPIPS (Zhang et al., 2018)

Figure 17: Rate distortion curves on FILMPAC dataset: for medium and large BPP, Our method
(Blue) is better in terms of LPIPS and MS-SSIM than VTM (Green), MeanHP (Orange). For high
BPP, our method is better in terms of PSNR.
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A.4.2 VIDEO COMPRESSION

In this section, we show quantitative and qualitative results for video compression. Contrary to our
main results in the paper, we here compress the original video and compute the metrics with original
frames (except for our approach still compared to the projected frames).

From Figures 18, 20, 21, 22 and 23, we can notice that VTM and H.265 introduces blocking and
blurring artifacts which is not case for our approach SGANC IC. We can also notice similar obser-
vations in Figures 24, 25, 26 and 27.
From Figure 19, we can notice that our methods are better perceptually (LPIPS and MS-SSIM) than
VTM and H.265.

Model Original Projected SGANC IC VTM H.265

BPP 0.0017 0.0025 0.0023

Figure 18: Qualitative results for video compression: Other methods introduce blocking artifacts
and blurring. Our method (SGANC IC) leads to high quality reconstruction and perceptually lower
distortion. Images are better seen zoomed

PSNR MS-SSIM LPIPS (Zhang et al., 2018)

Figure 19: Rate distortion curves for video compression on Filmpac dataset. The perceptual metric
LPIPS clearly shows a perceptual improvement of our method.
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Figure 20: Qualitative results on MEAD inter dataset for extreme BPP, computed for three video
frames. H.265 shows blocking artifacts and blurring, VTM shows blurring especially at the edges
of the face and the hair while our method (SGANC) is almost artifacts free and with high quality
images.
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Figure 21: Qualitative results on MEAD inter dataset for extreme BPP, computed for three video
frames (columns). H.265 shows blocking artifacts and blurring, VTM shows blurring especially at
the edges of the face and the hair while our method (SGANC) is almost artifacts free and with high
quality images.
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Figure 22: Qualitative results on MEAD inter dataset for extreme BPP, computed for three video
frames. H.265 shows blocking artifacts and blurring, VTM shows blurring especially at the edges
of the face and the hair while our method (SGANC) is almost artifacts free and with high quality
images.
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Figure 23: Qualitative results on MEAD inter dataset for extreme BPP: H.265 shows blocking
artifacts and blurring, VTM shows blurring especially at the edges of the face and the hair while
our method (SGANC) is almost artifacts free and with high quality images.
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Figure 24: Qualitative results on MEAD inter dataset: H.265 shows blocking artifacts and blurring,
VTM shows blurring especially at the edges of the face and the hair while our method (SGANC) is
almost artifacts free and with high quality images.

29



Under review as a conference paper at ICLR 2022

O
ri

gi
na

l
Pr

oj
ec

te
d

SG
A

N
C

IC

B
PP

=0
.0

03
13

V
T

M

B
PP

=0
.0

03
5

H
.2

65

B
PP

=0
.0

03
6

Figure 25: Qualitative results on MEAD inter dataset: H.265 shows blocking artifacts and blurring,
VTM shows blurring especially at the edges of the face and the hair while our method (SGANC) is
almost artifacts free and with high quality images.
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Figure 26: Qualitative results on MEAD inter dataset: H.265 shows blocking artifacts and blurring,
VTM shows blurring especially at the edges of the face and the hair while our method (SGANC) is
almost artifacts free and with high quality images.
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Figure 27: Qualitative results on MEAD inter dataset: H.265 shows blocking artifacts and blurring,
VTM shows blurring especially at the edges of the face and the hair while our method (SGANC) is
almost artifacts free and with high quality images.
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