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Abstract

We consider a Latent Bandit problem where the latent state keeps changing in time according
to an underlying Markov chain, and every state is represented by a specific Bandit instance.
At each step, the agent chooses an arm and observes a random reward but is unaware of
which MAB he is currently pulling. As typical in Latent Bandits, we assume to know the
reward distribution of the arms of all the Bandit instances. Within this setting, our goal is
to learn the transition matrix determined by the Markov process. We propose a technique
to tackle this estimation problem that results in solving a least-square problem obtained by
exploiting the knowledge of the reward distributions and the properties of Markov chains.
We prove the consistency of the estimation procedure, and we make a theoretical comparison
with standard Spectral Decomposition techniques. We then discuss the dependency of the
problem on the number of arms and present an offline method that chooses the best subset
of possible arms that can be used for the estimation of the transition model. We ultimately
introduce the SL-EC algorithm based on an Explore then Commit strategy that uses the
proposed approach to estimate the transition model during the exploration phase. This
algorithm achieves a regret of the order Õ(T 2/3) when compared against an oracle that builds
a belief representation of the current state using the knowledge of both the observation and
transition model and optimizes the expected instantaneous reward at each step. Finally, we
illustrate the effectiveness of the approach and compare it with state-of-the-art algorithms
for non-stationary bandits and with a modified technique based on spectral decomposition.

1 Introduction

The Multi-Armed Bandit (MAB) (Lattimore & Szepesvári, 2020) framework is a well-known model used
for sequential decision-making with little or no information. This framework has been successfully applied
in a large number of fields, such as recommender systems, advertising, and networking. In the general
MAB formulation, a learner sequentially selects an action among a finite set of different ones. The choice
over the arm to select is made by properly balancing the exploration-exploitation trade-off with the goal
of maximizing the expected total reward over a horizon T and guaranteeing the no-regret property, thus
meaning that the loss incurred by not knowing the best arm is increasing sublinearly over time. Standard
MAB literature requires the payoff of the available actions to be stationary (i.e., rewards come from a fixed
distribution) in order to design efficient no-regret algorithms.

However, in many real-life applications, the stationarity assumption may not necessarily hold as data may be
subjected to changes over time. In some applications, it is also possible to identify different data distributions,
each one corresponding to a specific working regime that can be modeled as a MAB. In cases of large
availability of historical data appearing in the form of past user interactions, it is possible to learn offline the
observation models associated with the different arms for each working regime. Exploiting the knowledge
of observation models leads to many advantages over the fully online exploration setting where no prior
information is available at the beginning, and a massive number of interactions is required to learn the
observation models associated with each working regime. It is often the case that the underlying working
regime (state) cannot be directly observed and the non-stationarity of the process leads to regime changes
over time. By knowing how these regimes are characterized, it may be possible to learn the dynamics of the
changes by repeatedly interacting with the evolving environment. Inferring the underlying state accelerates
the adaptation of the agent to the environment, thus leading to improved performances over time.
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Learning observation models independently and before transition models may be a possible choice when
there is little availability of computational resources. Indeed, we will show in the following that spectral
decomposition (SD) techniques (Anandkumar et al., 2014), which are used to learn jointly the observation
and the transition model, typically require a large number of samples and involve computationally intensive
operations. Other scenarios where we can assume that the observation models are already known are those
where the models are learned offline from samples generated by simulators. Once these models are deployed
in a environment that is characterized by changes, the dynamics can be learned by interacting with the
environment. We can consider, for example, the problem of resource allocation such as the electricity
allocation in a specific residential area. This problem can be modeled as a Bandit where each arm represents
a specific allocation configuration, while the rewards represent the extent to which the allocation has been
optimal. Obviously, the optimality of the allocation depends on the state of the system, which may be
conditioned by several factors such as environmental conditions, community trends, and seasonality.

Another possible scenario that suits our setting is the one of Transfer Learning, where partial knowledge of
the system (in our case, the observation model) can be used in a context with different dynamics (and a
new transition model needs to be learned). In the scenario previously mentioned, we can consider using the
same observation models in a new residential area, with a structure analog to the first one (thus justifying
the use of the same observation model) but located in a different place, with potentially different weather
conditions and inhabitants having different behaviors.

Assuming the existence of a finite set of discrete latent states is a relevant choice when approaching the
modeling of complex real-life problems characterized by different and recurrent working regimes. These
regimes can be typically observed in domains such as the financial market and online advertising, typically
marked by high volatility and specific seasonality patterns (M. et al., 2022; Heston & Sadka, 2008; Guo
et al., 2021).

Considering the financial market example, it usually exhibits different patterns or "regimes". These regimes
might include bull markets (characterized by rising prices), bear markets (characterized by falling prices),
and periods of high or low volatility. The actual regime at any given time is not directly observable (hidden
state), but we can infer it from observable data. In this example, the different actions available are the
decisions whether to sell or buy different amounts of stocks and the observations can be the different returns,
trading volumes, or stock prices.

Concerning the online advertising example, the hidden states can be represented by the interests of users,
which are not directly observable. The interests may vary according to seasonal patterns, new trends, or
exogenous variables that modify the market, and we can model it as a Markov chain. The actions are the
different types of content that can be displayed to the users, while the observations may be represented by
factors such as conversions or interactions with the ads (metrics such as the click-through rate could be
considered).

Past works focused on this state identification problem under the assumption of knowing the conditional
observation models (Maillard & Mannor, 2014; Zhou & Brunskill, 2016) and defined theoretically optimal
UCB algorithms. Follow-up work by Hong et al. (2020a) provided more practical Thompson Sampling
algorithms, also considering the problem of model misspecification and came up with an analysis on the
Bayes regret.

The works cited above assume that the latent state does not change during the interaction process: once
the real state is identified, the agent can act optimally. Differently, we embrace a more realistic scenario and
assume that the latent state can change through time. In accordance with the latent bandits setting, we
assume that the learning agent is aware of the observation models of the arms conditioned on each latent
state. A setting similar to ours has been considered also in Hong et al. (2020b), the key difference is that
they assume to have either full or partial knowledge of both the observation model and the transition model.
We instead focus on the problem of learning the transition model given the knowledge of the observation
models and maximizing the cumulative reward over T interaction steps.

More specifically, our problem is modeled by assuming the existence of a finite set S of different MABs all
sharing the same set of finite arms I, each generating rewards (observations) in a finite set V. Each state
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s ∈ S represents a different instance of a MAB. At each time step t, there is a transition from latent state
st−1 to the new latent state st according to the transition matrix governing the process. The action at

selected in t will thus generate a reward conditioned on the latent state st.

Contributions and Outline We introduce the Related Works in Section 2 and the Preliminaries in
Section 3. After that, we define the formulation of the problem that considers known Bandit instances
that switch through time according to an underlying Markov process. The information about the reward
distributions of the bandit instances is encoded into a suitable observation matrix, while the transition
model of the chain needs to be estimated. The learning objective of the agent is to maximize at each instant
the expected instantaneous reward given the estimated belief over the current Bandit. After this part, we
introduce the main assumptions that hold in our setting, motivate the reasons behind them, and show how
they can be relaxed for the estimation of the transition model.

Section 5.1 presents the estimation procedure of the transition model that uses samples collected using a
round-robin procedure for selecting arms. Then, we propose an offline arm selection strategy that chooses
a subset of the available arms for the estimation approach, with the objective of promoting diversity be-
tween observation distributions induced by the arms in order to enhance the identifiability capabilities. In
Section 5.2, we detail the SL-EC algorithm that employs an Explore then Commit approach and uses the
proposed estimation procedure for learning the transition model during the exploration phase.

Finally, Section 7 shows numerical simulations on synthetic and semi-synthetic data. We provide additional
experiments that highlight the difference in performance between our estimation procedure and a technique
based on SD approaches. We complement the numerical simulation with further experiments in Appendix A
while we present a comparison with SD approaches on the theoretical side in Appendix D.

2 Related Works

Non-stationary Bandits Non-stationary behaviors are closer to real-world scenarios, and this has induced
a vast interest in the scientific community leading to the formulation of different methods that consider either
abruptly changing environments (Garivier & Moulines, 2011), smoothly changing environments (Trovò et al.,
2020), or settings with a bounded variation of the rewards (Besbes et al., 2014). It is known that when
rewards may arbitrarily change over time, the problem of Non-Stationary Bandits is intractable, meaning
that only trivial bounds can be derived on the dynamic pseudo-regret. That is the main reason why in the
literature, there is a large focus on non-stationary settings enjoying some specific structure in order to design
algorithms with better guarantees. Non-stationary MAB approaches typically include both passive methods
in which arm selection is mainly driven by the most recent feedback (Auer et al., 2019; Besbes et al., 2014;
Trovò et al., 2020) and active methods where a change detection layer is used to actively perceive a drift in
the rewards and to discard old information (Liu et al., 2017; Cao et al., 2018). Works such as Garivier &
Moulines (2011) provide a O(

√
T ) regret guarantee under the assumption of knowing the number of abrupt

changes. Other works, such as Besbes et al. (2014), employ a fixed budget to bound the total variation of
expected rewards over the time horizon. They are able to provide a near-optimal frequentist algorithm with
pseudo-regret O(T 2/3) and a distribution-independent lower bound. All the above methods are not suited
for environments that switch between different regimes as they do not keep in memory past interactions but
rather tend to forget or discard the past.

A particular type of non-stationary Bandit problem related to our work includes the restless Markov set-
ting (Ortner et al., 2014; Slivkins & Upfal, 2008) where each arm is associated with a different Markov
process and the state of each arm evolves independently of the learner’s actions. Differently, Fiez et al.
(2018) investigate MAB problems with rewards determined by an unobserved Markov chain where the tran-
sition to the next state depends on the action selected at each time step, while Zhou et al. (2021) focus on
MAB problems where the state transition dynamics evolves independently of the chosen action. This last
work has many similarities with our setting. The main difference lies in the fact that they do not assume
to know the conditional reward models and learn them jointly with the transition matrix. They make use
of SD techniques (Anandkumar et al., 2014) and use this tool in a regret minimization algorithm achieving
a O(T 2/3) regret bound. Their setting is more complex than ours but involves additional assumptions, like
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the invertibility of the transition matrix that defines the chain. Furthermore, spectral methods need a vast
amount of samples in order to provide reasonable estimation errors and can hardly be used in large problems.
A detailed discussion on the differences between the estimation procedure used in Zhou et al. (2021) and
ours is presented in Appendix D.

Latent Bandits More similar lines of work are related to bandit studies where latent variables determine
the distribution of rewards (Maillard & Mannor, 2014; Zhou & Brunskill, 2016). In these works, the unob-
served state is fixed across different rounds, and the conditional rewards depend on the latent state. Maillard
& Mannor (2014) developed UCB algorithms without context, considering the two different cases in which
the conditional rewards are either known or need to be estimated. This line of work has been extended
to the contextual bandit case in Zhou & Brunskill (2016) where there is an offline procedure to learn the
policies and a selection strategy to use them online. Hong et al. (2020a) proposed a TS procedure in the
contextual case that updates a prior probability over the set of states in order to give a higher probability to
the real latent state. A non-stationary variant of this setting is proposed in Hong et al. (2020b) where the
latent states are assumed to change according to an underlying Markov chain. They develop TS algorithms
under different cases when both the reward and transition models are completely known and when partial
information about them is available. For the partial information case, they provide an algorithm based
on particle filters, which will be used for comparison in the experimental section. Differently from Hong
et al. (2020b), we do not assume any prior information about the transition matrix, and we learn it through
interactions with the environment using the information about the reward models.

Another interesting work associated with latent bandits is the one from Kwon et al. (2022) where, differently
from previously cited works, they assume an episodic setting with a fixed horizon H. At the beginning of
each episode, a specific MAB instance is sampled from a fixed mixing distribution, and the agent interacts
with the sampled MAB until the end of the episode without being aware of the MAB she is interacting with.
The goal is to learn both the mixture weights and the reward distributions associated with each MAB. The
relevant difference with our work is that they consider an episodic setting, while we consider a continuous
one. Another main difference is that they provide results in terms of sample complexity needed in order to
learn a near-optimal policy, not taking into account the suffered regret.

In Appendix C, we provide further discussion comparing our setting with related works and we report a
table summarizing the differences with respect to the most related ones.

3 Preliminaries

In the following, we will present the main elements that are useful to understand what will follow. We will
denote with ∆(X) the simplex of a finite space X, and we will use the bold symbol P to denote the transition
matrix and the probabilities associated with a Markov chain (see Section 3.2).

3.1 Multi-Armed Bandits

A I-armed stochastic bandit (Lattimore & Szepesvári, 2020) is a collection of distributions ν = (Pr(·|a) ∈
∆(V) : a ∈ I) where I is the set of available actions with cardinality I and V is a finite set with cardinality V
of possible rewards. A learning agent sequentially interacts with the environment over T rounds. For each
round t ∈ {1, . . . , T}, the learner chooses an action at ∈ I and the environment gives as output a reward
rt ∈ V. The goal of the learner is to maximize the sum of cumulative rewards

∑T
t=1 rt, which is a random

quantity that depends on the stochasticity of both the environment and the choice of the agent’s actions.
The behavior of an agent interacting with an environment is defined by a policy θ : H → ∆(A) that maps
the observed history1 to actions. In general, the performance of a bandit algorithm is measured using the
notion of regret, which is defined as the deficit suffered by the learning agent with respect to the optimal

1We define a history h := (aj , rj)t
j=0 ∈ Ht with Ht being the space of histories of length t and we denote instead with H

the space of the histories of arbitrary length.
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policy. The regret of a policy θ on a bandit instance is defined as:

RT (θ) = Tµ∗ − E

[
T∑

t=1
rt

]
(1)

where µ∗ defines the maximum expected reward among the available arms, while the expectation is taken
with respect to the policy θ and the stochasticity of the environment.

3.2 Markov Chains

A Markov Chain (MC) (Feller, 1968) is defined by a tuple M := (S, P , ν), where S is a finite state space
(|S| = S), P : S→ ∆(S) is the transition model, such that P (s, s′) denotes the probability of reaching state
s′ ∈ S when being in state s ∈ S, and ν is the initial state distribution. We will denote with P the stochastic
matrix of size S × S representing the transition model.

A Markov chain is said to be ergodic if its associated transition matrix consists of a single recurrent class
containing all states (Puterman, 1994). Ergodic Markov chains satisfy the properties of being irreducibile,
thus meaning that it is possible to reach any state from any other state with positive probability in a finite
number of steps and aperiodic, meaning that the chain does not follow a regular, repeating pattern in its
transitions.

We state the following result for ergodic Markov chains.
Proposition 3.1. Let P be the transition matrix of an ergodic Markov Chain and ν an arbitrary probability
vector. Then:

lim
n→∞

νP n = π,

where P n represents the transition kernel induced after n steps, π is the unique stationary distribution of the
chain, and the components of the vector π are all strictly positive. By definition, this distribution satisfies
the equation πP = π.

Since the stationary distribution of the Markov chain is unique, it follows that there is only one eigenvalue
with unitary value (λmax = 1). Let’s define the set of ordered moduli of the eigenvalues of transition matrix
P as (|λi|)S

i=1. By denoting |λmax| = |λ1|, we have the following relation:

|λ1| = 1 > |λ2| ≥ · · · ≥ |λS |,

where the inequality between |λ1| and |λ2| is strict for ergodic chains. The quantity 1−|λ2| is defined as the
spectral gap of the Markov chain and controls the rate of convergence of the chain towards its stationary
distribution (Krishnamurthy, 2016). In what will follow, we will use the symbol λ to denote the modulus of
the second largest eigenvalue, such that λ = |λ2|.

4 Switching Latent Bandits

We consider to have a finite set S := {s1, . . . , sS} of S = |S| different MAB instances. Each MAB is
characterized by the same set of discrete arms I := {a1, . . . , aI} with cardinality I = |I| and the same set of
finite rewards V = {r1, . . . , rV } with cardinality V = |V|. Whenever an arm a ∈ I is pulled, a corresponding
reward r ∈ V is generated by the environment. We consider each reward r ∈ V bounded for simplicity
in the range [0, 1]. The distribution of rewards Pr(·|s, a) conditioned on MAB instance s and action a is
categorical2. In particular, we assume to know the parameters characterizing these distributions and to store
this information into matrix O ∈ RIV ×S , which we call action observation matrix. Each row of this matrix
encodes a specific action-reward pair (a, r) ∈ I × V. Then, for any pair (a, r) ∈ I × V and any state s ∈ S,
we have:

O
(
(a, r), s

)
= Pr(r|s, a), (2)

2In Section 6, we will see how this formulation can be extended to continuous distributions.
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where Pr(r|s, a) represents the probability value of observing reward r while pulling action a from MAB s.
At each step t, only one MAB st ∈ S is active, and it determines the reward rt that is received when the
agent pulls action at. The choice over the active MAB is determined by an underlying Markov chain with
transition matrix P ∈ RS×S . More precisely, the probability over the next active MAB st+1 is determined
by the distribution P (st, ·) ∈ ∆(S) and is thus independent of the chosen action at. The setting we consider
assumes that the agent is not able to observe the active MAB at each step, and the objective is to learn the
transition matrix P characterizing the underlying process while knowing the observation model O.

Learning objective As already seen, the agent does not observe the sequence of MAB instances, but by
deriving an estimate of the transition matrix P , a belief representation over the current active MAB s ∈ S
can be defined. In the following, we will report the update rule of the belief vector bt ∈ ∆(S) under the
knowledge of the observation model O and the transition model P . The update of the belief derives from
the typical correction and update step of the Bayes rule, where the correction step adjusts the current belief
bt using the reward rt obtained by pulling arm at and the prediction step computes the new belief bt+1
simulating a transition step of the chain. More formally, for each element bt+1(s) of the belief vector bt+1,
the update step is as follows:

bt+1(s) =
∑

s′∈S bt(s′)O
(
(at, rt), s′)P (s′, s)∑

s′′∈S bt(s′′)O
(
(at, rt), s′′

) . (3)

After having defined the update rule of the belief vector bt, we introduce, for each action a ∈ I, vector
µ(a) ∈ RS where element µ(a, s) referred to state s ∈ S contains the expected reward obtained when pulling
arm a while being in state s. More formally:

µ(a, s) =
∑
r∈V

rO
(
(a, r), s

)
. (4)

Given the belief bt over the states, the objective of the agent is to pull the action that maximizes the
instantaneous expected reward such that:

at = arg max
a∈I

∑
s∈S

µ(a, s)bt(s) = arg max
a∈I

⟨µ(a), bt⟩, (5)

where ⟨·, ·⟩ denotes the scalar product between the two vectors.
From the considerations reported above, we are now ready to formulate the notion of regret we try to
minimize:

RT =
T∑

t=1
max
a∈I
⟨µ(a), bt⟩ −max

a∈I
⟨µ(a), b̂t⟩ (6)

where bt and b̂t denote the belief vectors updated using the real transition matrix P and the estimated
one P̂ respectively. Here, we used symbol R to characterize the regret defined in Equation 6, in order to
discriminate from the standard notion of regret R introduced in Section 3.1.

4.1 Assumptions

We need now to introduce some assumptions that should hold in our setting:
Assumption 4.1. The smallest element of the transition matrix defining the Markov chain is ϵ :=
mins,s′∈S P (s, s′) > 0.

This assumption ensures a non-null probability of transitioning from any state to any other in one step.
It is possible to show that under this assumption, the induced Markov chain is ergodic, thus guaranteeing
the presence of a unique stationary distribution, as shown in Proposition 3.1. Under the ergodic condition,
the chain is able to reach its stationary distribution π geometrically fast, regardless of its initial distribu-
tion Krishnamurthy (2016). Our assumption on the minimum entry is not a necessary condition for the
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two aforementioned motivations but a sufficient one. However, we require this condition to bound the error
between the belief computed using the real transition matrix and an estimated one. This result is presented
in Proposition E.6 and builds on the original result present in De Castro et al. (2017). This one-step reach-
ability assumption is always present in works dealing with partial observability that show results in terms of
regret in non-episodic scenarios. Notably, it has been used in similar works such as Zhou et al. (2021); Jiang
et al. (2023); Mattila et al. (2020) and also employed in the more complex POMDP setting (Xiong et al.,
2022). Works not using this assumption either do not need it since they use a less powerful class of policies
such as memoryless ones3 (Azizzadenesheli et al., 2016) or they directly impose an error of the estimated
belief that adequately decreases with the number of collected samples (Jafarnia Jahromi et al., 2022).
Assumption 4.2. The action observation matrix O ∈ RIV ×S is full column rank.

This second assumption, instead, is related to the identifiability of the parameters of the problem and has
been largely used in works using spectral decomposition techniques (Zhou et al., 2021; Azizzadenesheli et al.,
2016; Hsu et al., 2012). A robust version of this assumption, called weakly-revealing4 is also present in other
works involving learning parameters in POMDPs (Liu et al., 2022; Jin et al., 2020). In the following, we
will see that this is a necessary condition in order to recover matrix P . Indeed, we will see that the error of
the estimation procedure has an inverse dependency on the minimum singular value σmin(O) of the action
observation matrix O and through Assumption 4.2, we implicitly require that σmin(O) > 0.

5 Proposed Approach

As clarified in the previous section, our goal is to minimize the regret formulated in Equation 6. To reach
this objective, we need to define a good estimate P̂ of the transition matrix that in turn results in a more
accurate update of the belief vector b̂t. We will now show how the transition model can be learned by
exploiting the knowledge of the observation model O (Section 5.1) and we will present the SL-EC algorithm
that makes use of the presented estimation approach in order to minimize the regret (Section 5.2).

5.1 Transition Model Estimation

The Markov chain estimation procedure presented in this section holds under weaker assumptions than those
presented in Section 4.1. In particular, we relax the one-step reachability assumption (Assumption 4.1) and
we only require the ergodicity of the transition matrix P .

Stationary Distribution of Consecutive States We start with a consideration about the transition
matrix that defines the chain. Building on Proposition 3.1, an ergodic chain admits a unique stationary
distribution π.
From the uniqueness of this distribution, it can be easily shown that there exists as well a unique stationary
distribution on consecutive states that we represent with a matrix W ∈ ∆(S2) having dimension S × S.
Its elements are obtained as W (s, s′) = π(s)P (s, s′). By defining with Π = diag(π) the diagonal matrix of
size S×S having values of the stationary distribution π along its diagonal, we can express matrix W of the
stationary distribution of consecutive states as follows:

W = ΠP ,

which is obtained by multiplying each row of the transition matrix P by the associated probability value of
the stationary distribution. The reverse procedure that allows retrieving matrix P from W is defined by
the following equation:

P (s, s′) = W (s, s′)∑
s′′∈S W (s, s′′) , (7)

3A memoryless policy defines the action to choose only based on the last observation seen. For this reason, it does not
require a notion of belief over the states.

4The α-weakly revealing assumption defines a lower bound α to the minimum singular value of the observation matrix O,
such that σmin(O) ≥ α.

7



Under review as submission to TMLR

which shows that the rows of matrix P are obtained by normalizing the rows of matrix W such that they
sum to 1, as required for stochastic matrices.
The next paragraph shows how the matrix W of stationary distribution of consecutive states relates to the
stationary distribution of consecutive rewards.

Stationary Observation-State Relation Let’s choose an arm a ∈ I: we will denote with da(·) ∈ ∆(V)
the stationary distribution of rewards conditioned on pulling action a when the chain has mixed5. Vector
da has dimension V and its elements are characterized as follows:

da(r) =
∑
s∈S

O
(
(a, r), s

)
π(s), ∀ r ∈ V, (8)

where we recall that π(s) represents the probability of state s taken from the stationary distribution of the
chain and O

(
(a, r), s

)
represents the probability of observing reward r while pulling action a and being in

state s. A similar rationale can be extended to consecutive rewards (r, r′) ∈ V2 conditioned on pulling a
couple of consecutive actions (a, a′) ∈ I2. We denote with da,a′(·) ∈ ∆(V2) the distribution over consecutive
rewards conditioned on pulling the pair of arms (a, a′). We represent it with a vector of size V 2 and define
it as follows:

da,a′((r, r′)) =
∑

s,s′∈S2

O
(
(a, r), s

)
O
(
(a′, r′), s′)W (s, s′), ∀ (r, r′) ∈ V2, (9)

where we recall that matrix W ∈ ∆(S2) represents the stationary distribution of consecutive states.
By considering the different vectors of type da,a′ , we define vector:

d =
(

da,a′

)
(a,a′)∈I2

(10)

where the term on the right denotes a concatenation of vectors da,a′ for all (a, a′) ∈ I2 and the resulting
vector d has size I2V 2.
We define now a new matrix A ∈ RI2V 2×S2 to which we will refer as reference matrix. It extends the
information contained in the action observation matrix O considering consecutive pairs of elements and it
is characterized as follows:

A = O ⊗O, (11)

where symbol ⊗ refers to the Kronecker product (Loan, 2000). Since we assume knowledge of the observation
model O, we can directly compute the reference matrix by applying the Kronecker operator.
As a last step before presenting the main result, we transform matrix W and vectorized6 it to obtain vector
w ∈ ∆(S2) having dimension S2. By using the quantities just defined, we can finally reformulate Equation 9
so that it can be extended to all pairs of actions. Using vector notation, we have:

d = Aw. (12)

Basically, this equation relates the stationary probability distribution of consecutive observations with the
stationary probability distribution of consecutive latent states. The next paragraph shows how to obtain an
estimate d̂ of vector d, from which, by using Equation 12, it can then be computed an estimate ŵ of the
stationary distribution of consecutive states.

Transition Model Estimation We will now see how to concretely compute an estimate of w using Equa-
tion 12. Going back to vectors da,a′ , we can build an estimate d̂a,a′ for each pair of actions (a, a′) ∈ I2. For
this purpose, let’s take a pair of action (a, a′) and repeatedly pull it. We can count the number of occurrences
of each pair of observed rewards (r, r′) ∈ V2 and store this information in a suitable count vector na,a′ of
size V 2. We can easily derive an estimate of vector da,a′ as follows:

d̂a,a′ = na,a′

N
, (13)

5The distribution of states in a mixed chain corresponds by definition to its stationary distribution π.
6The vectorization operation used here creates a new vector w by concatenating each row of matrix W .
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Algorithm 1: Estimation Procedure
Input: Action Observation matrix O, number of rounds N

1 Build Reference matrix A using Equation 11
2 Initialize vector of counts na,a′ with zeroes for all (a, a′) ∈ I2

3 k = 0
4 while k < N do
5 t = k ∗ I2

6 foreach (a, a′) ∈ I2 do
7 Pull arm at = a
8 Observe reward rt = r
9 Pull arm at+1 = a′

10 Observe reward rt+1 = r′

11 na,a′(r, r′) = na,a′(r, r′) + 1
12 t = t + 2

13 Compute d̂a,a′ for all (a, a′) ∈ I2 using Equation 13
14 Obtain d̂ by concatenating all the different d̂a,a′ (as done in 10)
15 Estimate ŵ from Equation 14
16 Reshape vector ŵ to obtain matrix Ŵ

17 Compute P̂ using Equation 7

where N represents the number of times the pair of consecutive arms (a, a′) has been pulled.
We propose an estimation procedure that pulls each pair of arms (a, a′) ∈ I2 in a round-robin fashion and
stores the observed pairs of rewards in the corresponding vector count na,a′ . The choice of a round-robin
approach allows for showing some interesting properties in the theoretical analysis, as will be shown later in
Section 6. By executing N different rounds, thus meaning that each pair of arms is pulled exactly N times
and by exploiting the knowledge of the reference matrix A, we can derive:

ŵ = A†d̂ = A† n

N
(14)

where A† is the Moore–Penrose inverse of reference matrix A, while vectors d̂ and n are obtained by concate-
nating the different vectors d̂a,a′ and na,a′ analogously to what done in Equation 10. The second equality
is derived from extending Equation 13 to the concatenated vectors. The stated equation shows that the es-
timation procedure involves solving a simple least-square problem, which can be done in a computationally
efficient way.
Once an estimate ŵ is computed, the corresponding matrix Ŵ can be obtained by reverting the vectoriza-
tion operation and eventually an estimate P̂ of the transition model is computed using Equation 7.
The pseudocode of the presented estimation procedure is detailed in Algorithm 1.

We acknowledge that other approaches can be devised for choosing the action policy used during estimation.
Some approaches have been devised for the Latent Bandit setting such as the one in Kinyanjui et al. (2023)
which face a pure exploration problem. However, their method is tailored for the stationary setting and
they update their policy as new information is acquired. Instead, in our scenario, it is necessary to select
a prior an action policy and keep it constant during the interaction with the environment: approaches that
work in this direction and that could be potentially used in our setting are those based on Experimental
Design (Kiefer & Wolfowitz, 1960).

5.1.1 Arm Selection Strategy

In Algorithm 1, we propose a simple approach for choosing the arms to pull. Each pair of arms is indeed
pulled the same number of times during the exploration phase by using a deterministic approach. However,
it can be shown that the estimation procedure proposed in Section 5.1 can be extended to a more flexible
arm selection policy. We may randomize the arm choice by assigning non-uniform probabilities to each pair

9
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Algorithm 2: SL-EC Algorithm
Input: Observation model O, Exploration horizon T0, Total horizon T

1 Define number of rounds N = T0/2I2

2 P̂ = EstimationProcedure(O, N) (Algorithm 1)
3 b0 = Uniform()
4 Compute b̂T0 using samples collected during Algorithm 1
5 t← T0
6 while t ≤ T do
7 at = arg maxa∈I⟨µ(a), b̂t⟩
8 Observe reward rt

9 b̂t+1 = UpdateBelief(b̂t, at, rt) (Equation 3)
10 t = t + 1

of arms. In principle, this aspect allows exploiting the knowledge of the known reward distribution of each
arm, for example, giving at the beginning a higher probability to the pairs of arms that are more rewarding.
For example, this arm selection policy may be beneficial if we plug our estimation approach into an iterative
two-phase exploration and exploitation algorithm, as the one used in Zhou et al. (2021).

Offline arm selection In problems with a large number of available arms, a round-robin approach among
all possible pairs of arms may be detrimental as it considers all arms equivalently. There may be cases
where some actions are less useful for state identification. The extreme case is an action that induces the
same observation distribution for all the Bandit instances. Indeed, pulling that action will not provide
any additional information on the current MAB and the effect will only be to slow down the estimation
procedure. In general, actions that induce similar observation distributions for all the MABs will provide
less information with respect to actions that induce highly different distributions for all the MABs.

A more convenient approach, in this case, would be to select a subset of different arms to be used during
the exploration phase. Intuitively, the arm selection procedure tends to promote diversity among arms
conditioned on the latent states, with the objective of increasing the identifiability capabilities deriving from
the actions. It turns out that we are able to get an understanding of the information loss we suffer by
selecting specific arms, given the knowledge of the action observation matrix O. In particular, in Section 6
devoted to the theoretical analysis, we will see that the quality of the estimation highly depends on the
minimum singular value σmin(O) of the action observation matrix O. We can thus use this value to drive
the choice of the best subset of arms to use.

In particular, by fixing a number J < I of arms to use among those available, the choice over the best subset
of size J can be done as follows. We consider all the possible subsets of arms of size J , and for each of these
subsets, we derive a reduced action observation matrix G of size JV ×S that is obtained by simply removing
from the original matrix O all the rows associated to the actions not belonging to the considered subset of
arms. Having defined a new action observation matrix for each generated subset, a good candidate subset of
arms is the one yielding the reduced action observation matrix G with the highest σmin(G). Understandably,
this approach implies that the reduced action observation matrix G derived from the subset of selected arms
should be full-column rank, thus satisfying Assumption 4.2.

5.2 SL-EC Algorithm

Having established an estimation procedure for the transition matrix P̂ , we will now provide an algorithm
that makes use of this approach in a regret minimization framework.

We consider a finite horizon T for our problem. We propose an algorithm called Switching Latent Explore
then Commit (SL-EC) that proceeds using an EC approach where the exploration phase is devoted to
finding the best estimation of the transition matrix P̂ , while during the exploitation phase, we maximize
the instantaneous expected reward following the formulation provided in Equation 5. The exploration phase

10
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lasts for T0 episodes, where T0 is optimized w.r.t. the total horizon T , as will be seen in Section 6. The
pseudocode of the SL-EC Algorithm is presented in Algorithm 2.

Basically, the exploration phase pulls each pair of arms in a round-robin fashion and uses the estimation
procedure presented in Algorithm 1. When the exploration phase is over, an estimation of the transition
matrix P̂ is computed. After that, a belief vector b0 is initialized by assigning a uniform probability to
all the states (Line 3), and it is updated using Equation 3 and the estimated P̂ , considering the history of
samples collected from the beginning up to T0 (Line 4). Finally, the exploitation phase starts, as described
in the pseudocode of the algorithm.

6 Theoretical Analysis

Having defined the estimation procedure of the transition model in Section 5.1 and having introduced the
SL-EC algorithm, we will now provide theoretical guarantees for them.

6.1 Analysis of Estimation Procedure in Algorithm 1

We start with a concentration bound on the transition matrix P̂ computed from the estimation procedure
in Algorithm 1. As already highlighted, this estimation procedure only requires the ergodicity of the chain,
thus relaxing Assumption 4.1.
Lemma 6.1. Suppose Assumption 4.2 holds and suppose that the Markov chain with transition matrix P
is ergodic, such that πmin := mins∈S π(s) > 0 with π ∈ ∆(S) being the stationary distribution of the chain.
By assuming that the chain starts from an arbitrary distribution ν ∈ ∆(S) and by pulling each pair of arms
in a round-robin fashion for N rounds and using the estimation procedure reported in Algorithm 1, we have
that with probability at least 1− δ the estimation error of the transition matrix P will be:

∥P − P̂ ∥F ≤
2I

σ2
min(O)πmin

√
2S(C + log(CI2/δ))

(1− λ2I2)N , (15)

where ∥·∥F represents the Frobenius norm (Golub & Van Loan, 1996), σmin(O) represents the minimum
singular value of the action observation matrix O, constant C is defined as C := ∥ ν

π∥∞ where ν
π represents

the vector of the element-wise ratio between the two probability distributions, while λ represents the modulus
of the second highest eigenvalue of matrix P . As reported in the statement of the Lemma, N denotes the
number of times each pair of arms is pulled, thus meaning that the stated error guarantee holds when
interacting with the environment for a total number of 2I2N steps, where the I2 term arises from the total
number of pairs of arms while the constant value 2 accounts for considering pairs of arms.
As a last remark, we note the Lemma 6.1 assumes that the chain starts from an arbitrary distribution.
This fact leads to the further C constant in the bound. Indeed when the chain starts from the stationary
distribution, we have C = 1. This result comes from Proposition E.4 that uses a concentration result derived
from Fan et al. (2021).

Here, we will provide a sketch of the proof of the presented Lemma. A more detailed version of this proof is
reported in Appendix B.

Sketch of the proof. The proof of Lemma 6.1 builds on two principal results. The former comprises a
relation that links the estimation error of the matrix P with the estimation error of matrix W , while the
latter is a concentration bound on the estimated Ŵ from the true one W . Concerning the first result, we
can say that:

∥P − P̂ ∥F ≤
2
√

S∥W − Ŵ ∥F

πmin
. (P.1)

This result follows from a sequence of algebraic manipulations and makes use of Lemma E.1 appearing in
Appendix E.

11
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We now need to define a bound on ∥W −Ŵ ∥F . In order to bound this quantity, we resort to the vectorized
versions w and ŵ of the two matrices and use the result ∥W − Ŵ ∥F = ∥w − ŵ∥2. We proceed as follows:

∥w − ŵT0∥2 =
∥∥∥A†(d− d̂)

∥∥∥
2

≤∥A†∥2∥d− d̂∥2

= 1
σmin(A)∥d− d̂∥2 = 1

σ2
min(O)∥d− d̂∥2, (P.2)

where the first equality follows from Equation 14. In the inequality instead, we used the consistency property
for the spectral norm of matrix A†, while in the last equality we used a property of the Kronecker product
for which it holds that:

σmin(A) = σmin(O)σmin(O) = σ2
min(O).

Let’s now consider the estimation error of each vector da,a′ that represents the stationary distribution over
consecutive rewards conditioned on pulling the pair of arms (a, a′). From Equation 10, we know that by
concatenating each of these vectors, we obtain the quantity d. Thus, by definition, we have:

∥d− d̂∥2 =
√ ∑

(a,a′)∈I2

∥da,a′ − d̂a,a′∥2
2. (P.3)

The estimation error of each da,a′ can be bounded by using a result shown in Proposition E.4 and inspired by
the work of Hsu et al. (2012). It bounds the estimation error of categorical distributions when the observed
samples derive from a Markov chain. With probability at least 1− δ/I2 we have that:

∥da,a′ − d̂a,a′∥2 ≤

√(1 + λ2I2

1− λ2I2

)C + log(CI2/δ)
N

.

The exponential term 2I2 that appears to the modulus of the second highest eigenvalue λ has been introduced
thanks to the adoption of the round-robin procedure for the choice of combinations of arms. Notably, each
pair of arms is pulled every 2I2 steps of the Markov Process, thus resulting in a faster mixing of the chain.
For more details, please refer to Appendix B.

By combining the last obtained bound with P.2 and P.3 and using a union bound for the estimation error of
all vectors of type da,a′ , we have that with probability at least 1− δ:

∥w − ŵ∥2 ≤
1

σ2
min(O)

√(1 + λ2I2

1− λ2I2

)I2(C + log(CI2/δ))
N

≤ I

σ2
min(O)

√
2
(
C + log(CI2/δ)

)
(1− λ2I2)N .

Ultimately, by putting together the bound in P.1 with the one just obtained, we are able to obtain the final
result stated in the Lemma.

Dependency on the Problem Parameters Lemma 6.1 shows convenient dependencies on the problem
parameters. The estimation error scales almost linearly with the number of arms I. This may seem con-
cerning when dealing with problems involving a high number of arms. However, we have already observed
in Section 5.1.1 that when the number of arms is large, it is possible to reduce this dependency by using the
arm selection strategy detailed in Section 5.1.1. We further have a dependency on the minimum value of the
induced stationary distribution πmin, which is common in the partially observable setting.
Concerning instead the dependency on the minimum singular value σmin(O), it is related to Assumption 4.2.
It defines the amount of identifiability of different states given the information provided by the observations.

12
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This dependency characterizes the class of weakly-revealing POMDPs and is unavoidable in order to have a
tractable problem (Chen et al., 2023).
The dependency on the modulus of the second largest eigenvalue λ derives from the fact that observed sam-
ples are not independent but come from a Markov chain. The dependency on this term is thus unavoidable
and we believe it to be tight for the considered setting. It derives from recent results from the work of Fan
et al. (2021) which improves over the existing concentration results of samples coming from Markov Chains.
For a thorough comparison of our estimation approach with standard Spectral Decomposition techniques,
we refer to Appendix D.

Continuous Reward Distributions The presented setting tackles the case of discrete observations. It
appears that handling continuous reward distributions within this framework is not feasible and this is true
if we apply our approach as is. However, we can discretize the observation distributions and consider the
discretized distribution as a categorical one. The process of discretization involves dividing the continuous
observation distributions into a predetermined number U of distinct consecutive intervals. Each interval is
assigned a probability value that represents the likelihood of a sample drawn from the continuous distribution
and belonging to that interval. Throughout this discretization procedure, we can define an action observation
matrix of dimension IU × S and then apply Algorithm 1. More details on this aspect can be found in
Appendix F.

6.2 Analysis of the SL-EC Algorithm

Having established the results on the estimation matrix P , we can now provide regret guarantees for Algo-
rithm 2. We recall that the oracle we use is aware of both the observation model O and the transition model
P but does not observe the hidden state. As shown in the definition of the regret in Equation 6, it builds a
belief over the states, using the formulation defined in Equation 3 and selects the arm that maximizes the
expected instantaneous reward. The derived regret upper bound is provided in the following:
Theorem 6.1. Suppose Assumptions 4.1 and 4.2 hold and suppose that the Markov chain with transition
matrix P has stationary stationary distribution π ∈ ∆(S). By assuming that the chain starts from an
arbitrary distribution ν ∈ ∆(S) and by considering a finite horizon T , there exists a constant T0, with
T > T0, such that with probability at least 1− δ, the regret of the SL-EC Algorithm satisfies:

R(T ) ≤ 2
(

2LI2

σ2
min(O)πmin

√
S(C + log(CI2/δ))

(1− λ2I2) · T

)2/3

, (16)

where L = 4S(1−ϵ)2

ϵ3 +
√

S is a constant that is used to bound the error in the estimated belief (more details
in Proposition E.6 in Appendix E). The presented regret has an order of O(T 2/3) w.r.t. the horizon T , as
common when using an Explore then Commit algorithm. A detailed proof of this theorem can be found in
Appendix B. The presented bound on the regret can be achieved by appropriately choosing the exploration
horizon T0. More specifically, we set it as follows:

T0 =
(

2LTI2

σ2
min(O)πmin

√
S(C + log(CI2/δ))

(1− λ2I2)

)2/3

. (17)

To compute T0, we need to have information about the minimum value of the stationary distribution πmin
and about the modulus of the second highest eigenvalue λ. If they are not available, a slightly different
version of the bound can be derived so that T0 can be optimized by only requiring the knowledge of ϵ from
Assumption 4.1. More details are reported in Section B.3 of Appendix B.

Choice of Explore then Commit The choice of an Explore then Commit type of algorithm is mainly
due to the simplicity of this approach. We believe that this scaling of the regret with respect to time cannot
be further improved within the considered class of problems and this is mainly due to the identifiability
condition reported in Assumption 4.2. Indeed this class of problems includes worst-case instances where we
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Figure 1: (a) Difference between the estimated and real transition matrix with an increasing number of
samples. The metric used is ∥·∥F (10 runs, 95% c.i.), (b) Difference between real and estimated transition
matrix using two different subsets of arms of size J = 3 arms from the 8 available on a problem with 5 states.
The metric used is ∥·∥F (10 runs, 95% c.i.).

are guaranteed to acquire information only by pulling all the available arms, thus a forced exploration phase
is always required. A similar approach has been used in Zhou et al. (2021): they devise the SEEU algorithm
which alternates between full exploration and full exploitation phases reaching a Õ(T )2/3 regret guarantee.
Instead of the phased algorithm, we opted for an EC approach.

7 Numerical Simulations

In this section, we provide numerical simulations on synthetic and semi-synthetic data based on the Movie-
Lens 1M (Harper & Konstan, 2015) dataset, demonstrating the effectiveness of the proposed Markov chain
estimation procedure. Specifically, we show the efficiency of the offline arm selection procedure described in
Section 5.1.1 and conduct a comparison between our SL-EC Algorithm and several baselines in non-stationary
settings. In Section 7.3, we provide additional experiments that highlight the performance difference be-
tween our approach and a modified technique based on Spectral Decomposition. Finally, in Appendix A
we provide different sets of experiments showing the regret comparison under different exploration horizons
(Appendix A.2) and we provide some numerical simulations showing the estimation error incurred when the
provided observation model is misspecified (Appendix A.3).

7.1 Estimation Error of Transition Matrix

The first set of experiments is devoted to showing the error incurred by the estimation procedure of the
transition matrix in relation to the number of samples considered and the set of actions used for estimation.
The left side of Figure 1 illustrates the estimation error of the transition matrix given different instances of
Switching Bandits with an increasing number of states. In particular, we fix the number of total actions
I = 10 and number of observations V = 10 and consider three instances with S = 5, S = 10 and S = 15
number of states. As expected, we can see that as the number of states increases, the problem becomes more
complex, and more samples are needed to improve the estimation. Figure 1 reports the Frobenius norm
∥·∥F of the error between the true and the estimated transition matrix. We can notice that the estimation
procedure is particularly efficient leading to low error values even with a limited number of samples, as can
be observed from the steep error drop appearing in the first part of the plot.

The right plot in Figure 1, instead, shows the estimation error obtained by using a different subset of
arms. As mentioned in previous sections, it is not always beneficial to use all the available actions during
the estimation procedure, but selecting a subset of actions may be preferable. Furthermore, we show that
by selecting specific subsets of arms, we can improve the estimation w.r.t using other subsets. For this
experiment, we consider J = 3 arms among the I = 8 available for a Switching MAB instance with S = 5
states. We then identify the optimal subset of arms of size J and initiate the estimation process using the
selected subset. In order to find the best one, we generate all matrices of type G, as described in Section 5.1.1
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Figure 2: Plots of regret comparing the SL-EC Algorithm with some non-stationary bandit algorithms using:
(a) synthetic data with parameters S = 3 states, I = 4 actions and V = 5 observations (5 runs, 95% c.i.);
(b) data from MovieLens assuming S = 5 states, I = 18 actions and V = 5 observations. (5 runs, 95% c.i.).

and choose the matrix with the highest σmin(G). The subset of arms generating that matrix will be used for
estimation. The estimation error of the best subset of arms is represented in the plot with the red line, while
we represent in green the estimation error of the subset having the lowest σmin(G). The figure clearly exhibits
the performance difference between the two choices, thereby validating our claims. Additional details about
the characteristics of the matrices used in the experiments are provided in Appendix A.1.

7.2 Algorithms Comparisons

In this second set of experiments, we compare the regret suffered by our SL-EC approach with other algo-
rithms specifically designed for non-stationary environments. Following the recent work of Zhou et al. (2021),
we consider the subsequent baseline algorithms: the simple ϵ-greedy heuristics, a sliding-window algorithm
such as SW-UCB (Garivier & Moulines, 2011) that is generally able to deal with non-stationary settings
and the Exp3.S (Auer et al., 2002) algorithm. The parameters for all the baseline algorithms have been
properly tuned according to the settings considered. For the specific experiments considered, we adopted
scaled values for the exploration horizon T0 w.r.t. the result derived from the theory.7
It is worth noting that, unlike our SL-EC algorithm, the baselines do not assume knowledge of the obser-
vation model or the underlying Markov chain. In contrast, our approach utilizes the observation model to
estimate the transition matrix and to update the belief over the current state. Additionally, we compare
our approach with a particle filter algorithm proposed in Hong et al. (2020b) about non-stationary Latent
Bandits. They consider two settings: one with complete knowledge of both the observation and transition
models and another that incorporates priors on the parameters of the models to account for uncertainty. We
compare against a mixture of these two settings by providing their algorithm with full information about
the observation model (as it is for our case) and an informative prior about the true transition model. The
comparison is made in terms of the empirical cumulative regret R̂(t) averaged over multiple independent
runs.

7.2.1 Synthetic Experiments

These experiments have been conducted on various problem configurations with different numbers of states
S, actions I, and observations V . The regret results for one configuration are shown in Figure 2(a). From
the figure, it is clear that most of the baseline algorithms display a linear time dependence for the regret.
This is expected since these algorithms do not take into account the underlying Markov chain that governs
the process. The particle filter algorithm, despite being given a good initial prior on the transition model,
does not achieve the same performance of SL-EC in the long run. Conversely, we can notice a quite different

7We used the value suggested by Equation 17 divided by (10L)2/3. Scaling the values obtained by theory is common in
the scientific literature and mostly translates into bigger multiplicative constants in the final regret bound or in similar bounds
but holding with smaller probability. For our case, under the reduced exploration value, the regret presented in Theorem 6.1
increases by a multiplicative factor of (10L)1/3.

15



Under review as submission to TMLR

Table 1: Comparison with Nearly Deterministic Models

2 States 3K samples 6K samples 9K samples 15K samples
SD O 0.0493 (0.0097) 0.0379 (0.0103) 0.0335 (0.0097) 0.0259 (0.0081)
SD T 0.0342 (0.0185) 0.0189 (0.0097) 0.0149 (0.0032) 0.0101 (0.007)
Alg. 1 0.0234 (0.015) 0.02 (0.0203) 0.0119 (0.009) 0.008 (0.0032)
3 States 150K samples 300K samples 600K samples 900K samples
SD O 0.0165 (0.0044) 0.0113 (0.0036) 0.0097 (0.0033) 0.0085 (0.0018)
SD T 0.1547 (0.0517) 0.154 (0.0532) 0.1544 (0.0534) 0.1541 (0.0532)
Alg. 1 0.0066 (0.0026) 0.0046 (0.0012) 0.0037 (0.0018) 0.0031 (0.0008)
5 States 150K samples 300K samples 600K samples 900K samples
SD O 0.0681 (0.0178) 0.0513 (0.0111) 0.0354 (0.0127) 0.0283 (0.0082)
SD T 0.2409 (0.0633) 0.2484 (0.0584) 0.243 (0.0603) 0.2407 (0.0601)
Alg. 1 0.0283 (0.0054) 0.0195 (0.0036) 0.0137 (0.0033) 0.0115 (0.0034)

behavior for our algorithm that, in line with an Explore then Commit approach, initially accumulates a large
regret and then experiences a drastic slope change when the exploitation phase begins. The regret shown in
each plot is the average over all the runs. For further information regarding the generation of the transition
and observation models, as well as the hyperparameters used for the baseline algorithms, we refer the reader
to Appendix A.1.

As a remark, our algorithm outperforms the others when the absolute spectral gap 1 − λ of the chain has
values closer to 1. Indeed, if this is not the case, simple exploration heuristics such as ϵ-greedy would lead
to comparable performance. A clear example is when the transition matrix P defining the chain assigns
equal probability to all transitions. In this scenario, all states can be considered independent and identically
distributed, and we get no advantage from the knowledge of the matrix P over the use of an algorithm such
as ϵ-greedy.

7.2.2 MovieLens Experiments

We also perform some experiments on semi-synthetic data based on MovieLens 1M (Harper & Konstan,
2015), a well-known collaborative filtering dataset where users rate different movies each belonging to a
specific set of genres. We adopt a procedure similar to the one used in Hong et al. (2020b). The dataset is
initially filtered to include only users who rated at least 100 movies and the movies that have been rated by
at least 100 users. After that, we combine the available information in order to obtain a table where each
row contains the mean of the ratings for each observed genre for each user (user-genre-rating table). If the
user didn’t observe any movie belonging to a specific genre, the cell is empty. From the obtained matrix, we
select 70% of all ratings as a training dataset and use the remaining 30% as a test set. The sparse matrices
so obtained are completed using least-squares matrix completion (Mnih & Salakhutdinov, 2007) using rank
10 and leading to a low prediction error.

Having defined the appropriate rank, we use the predictions on the empty cells of the original user-genre
rating matrix to fill the entire table. We define a switching bandit instance by using the notion of a superuser
inspired by Hong et al. (2020b). We use k-means to cluster users using the rows of the user-genre-rating
matrix. The users belonging to the same cluster define a superuser that embeds a set of users with similar
tastes. The information about the users belonging to the same clusters is then combined and used to generate
categorical distributions on the rating, given each superuser and each possible genre (our actions). We choose
k = 5 for the number of superusers as it is the one that yields clusters with more similar dimensions, and we
use I = 18 for the actions since it represents the number of identified genres. The number of observations
V = 5 corresponds to the 5 possible ratings that a movie can get. The transition matrix that governs the
dynamics with which superusers alternate is defined by giving higher probabilities to transitions to similar
states and also giving higher weights to self-loops in order to avoid too frequent changes. The interaction
goes as follows. At each step, a new superuser st is sampled based on st−1 and the transition model. The
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Table 2: Comparison with Higher Model Stochasticity

2 States 150K samples 210K samples 270K samples
SD O 0.1500 (0.2639) 0.1411 (0.2741) 0.1455 (0.2665)
SD T 0.1488 (0.1536) 0.1699 (0.1742) 0.1576 (0.1702)
Alg. 1 0.0145 (0.0175) 0.0145 (0.0134) 0.0125 (0.0103)
3 States 300K samples 600K samples 900K samples
SD O 0.2987 (0.2128) 0.3078 (0.2177) 0.2594 (0.2309)
SD T 0.3916 (0.2804) 0.4425 (0.2637) 0.4187 (0.2728)
Alg. 1 0.0077 (0.003) 0.0063 (0.0023) 0.0052 (0.002)

agent chooses an action at corresponding to a genre to propose and gets a rating that is sampled from the
categorical distribution defined by vector O

(
(at, ·), st

)
.

As for the synthetic case, our algorithm is compared to other baselines. From Figure 2(b), we can see that
our SL-EC still outperforms the other baselines in the considered horizon. However, we highlight that our
goal is not to beat the baselines since the comparison is not fair as most of them do not take into account
the underlying Markov process, but we aim to show the difference w.r.t. other algorithms belonging to state
of the art. More details about the experiments on Movielens are reported in Appendix A.

7.3 Numerical Comparisons with a Modified Spectral Decomposition Technique

The focus of this last set of experiments is to show the difference between a modified Spectral Decomposition
(SD) technique and our estimation approach detailed in Algorithm 1. Among the various applications, SD
techniques are typically used for learning with Hidden Markov Models (HMM) where no information about
the observation and transition model is provided. Zhou et al. (2021) make use of these techniques to get an
estimation of both the observation and the transition model. It is important to highlight that SD methods
are hardly used in practice because of their computational and sample complexity. Indeed, both the related
works of Zhou et al. (2021) and Azizzadenesheli et al. (2016) include only proof-of-concept experiments with
2 hidden states and 2 possible actions.

To make the comparison fairer, we consider a modified SD technique that is provided with information about
the observation model in order to help the estimation process, as will be briefly explained. The original SD
technique to which we refer follows the procedures highlighted in Anandkumar et al. (2014) for HMM and
makes use of the Robust Tensor Power (RTP) method for orthogonal tensor decomposition. In typical SD
techniques, data is collected by sampling an action at each time step and updating the computed statistics
with the observed realization. With the presented modified SD technique, at each step, we do not simply
update the statistics with the observation obtained when pulling the arm, but we give information about the
observation distribution for all the available arms, with this information being conditioned on the underlying
current state. In this way, it is like pulling all the arms at each step and receiving full information about
their associated reward distributions, given the underlying state.

We perform various experiments by fixing the number of arms (I = 20) and the number of possible rewards
(V = 5) for each arm and by changing the number of states. Each experiment is performed over 10 different
runs, where for each run a transition and observation model are generated. For each experiment, our
estimation procedure uses 3 arms among the 20 available, which are selected using the offline arms selection
strategy. The transition and observation matrices are created in two different ways: the former focuses
on nearly-deterministic matrices (Table 1), while the latter considers more stochasticity for both of them
(Table 2).

The results of the experiments are structured in the following way. Each of the two Tables contains mini-
tables representing sets of experiments characterized by different number of states. By fixing the number of
states for the experiments, each mini-table shows three rows: the first one (indicated with SD O) contains the
Frobenius norm of the estimation error of the observation matrix with the modified SD technique, the second
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row (indicated with SD T ) represents the Frobenius norm of the estimation error of the transition matrix
with the modified SD technique, while the third row represents the Frobenius norm of the estimation error
of the transition matrix computed with Algorithm 1. For each experiment, we report the mean error over
the 10 runs and one standard deviation between parenthesis. The modified SD technique clearly enhances
the accuracy of estimating the observation model compared to standard SD approaches: this aspect is
evident from the relatively low estimation errors observed in the SD O rows. We present this information to
illustrate that the comparison between our estimation procedure and SD approaches is now more fair due to
the modified SD technique employed. Having clarified this aspect, we focus on the estimation error of the
transition model between the two different methods: this information is indeed separated from SD O by a
dashed line. We show the experiments with lower estimation errors in bold.

The results of this first set of experiments are reported in Table 1. As already anticipated, both the obser-
vation and transition matrices are almost deterministic, hence having high probability on a specific observa-
tion/state and low probabilities for all the others. For transition matrices, the highest probability is assigned
to the probability of staying in the same state. Near-determinism is defined to simplify the problem by
making states more distinguishable. By inspecting the results, it is clear that Algorithm 1 outperforms the
modified SD technique in almost all the scenarios. Comparable results are only achieved in the experiment
with 2 states.

Table 2 reports instead the experimental results obtained using both transition and observation matrices
with less peaked distributions, thus higher stochasticity. The discrepancy between our approach and the
modified SD technique is more evident in this scenario. This aspect can be justified by the theoretical
comparison reported in Appendix D, where it can be observed that, compared to our estimation approach,
SD techniques have a dependency of higher order on the minimum singular values of both the observation
and the transition models. Thus, when the observation matrix is more stochastic, its σmin(O) typically
decreases, and this aspect results in a higher estimation error. Indeed, it can be noticed that the estimation
error is significant and the number of samples required to perform this set of experiments is much higher
than that used for the nearly-deterministic case. Experiments involving a higher number of states instead
were not able to reach convergence with a number of samples of the order 105 and, by trying to increase this
quantity, there were memory space problems with the used hardware (Intel i7-11th and 16G RAM).

Again, we would like to emphasize that SD techniques are explicitly meant to work in a different setting,
intrinsically more complex, where no information about either the transition or the observation model is
provided. However, with this set of experiments, we wanted to show that if, instead, we have knowledge about
the observation model, directly using this information in the SD techniques does not lead to performances
comparable to our approach.

8 Discussion and Conclusions

This paper studies a Latent Bandit problem with latent states changing in time according to an underlying
unknown Markov chain. Each state is represented by a different Bandit instance that is unobserved by the
agent. As common in the latent Bandit literature, we assumed to know the observation model relating each
MAB to the reward distribution of its actions, and by using some mild assumptions, we presented a novel
estimation technique using the information derived from consecutive pulls of pairs of arms. As far as we
know, we are the first to present an estimation procedure of this type aiming at directly estimating the
stationary distribution w of consecutive states. The approach is easy to use and does not require specific
hyperparameters to be set. We provided an offline arm selection that selects the best subsets of arms to speed
up the estimation process. We analyzed the dependence of the parameters on the complexity of the problem,
and we showed how our estimation approach can be extended to handle models with continuous observation
distributions. We used the presented technique in our SL-EC algorithm that uses an Explore then Commit
approach and for which we proved a O(T 2/3) regret bound. The experimental evaluation confirmed our
theoretical findings showing advantages over some baseline algorithms designed for non-stationary MABs and
showing good estimation performances even in scenarios with larger problems. Furthermore, we compared
our approach both empirically and theoretically (Appendix D) with SD techniques, taking into account the
differences between the two procedures.
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We identify different future research directions for the presented work, such as designing new algorithms that
are able to exploit the flexibility in the exploration policy determined by the defined procedure, allegedly in
an optimistic way. It may also be interesting to deepen the understanding of this problem when dealing with
continuous reward models, trying to design optimal ways to discretize them in order to reach faster estimation
performances. We could also consider the extension to the continuous state space setting (e.g., linearMDPs):
among the main challenges in this scenario, we consider the adoption of a different representation for the
reference matrix that would otherwise not be computable with infinite states and the redefinition of the
stationary distribution over consecutive states. In such a case, it might be beneficial to estimate the feature
functions directly by means of which the linear MDP is defined. Finally, it might be worth considering a
contextual version of the proposed setting. According to the assumptions made, for example, whether the
context is discrete or continuous or whether it is related or not to the latent state, this aspect may bring
another dimension to the observation space. Redefining the reference matrix by taking this feature into
account will likely lead to more informative components and help with the estimation process.
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