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Abstract

Rigorously establishing the safety of black-box machine learning models con-
cerning critical risk measures is important for providing guarantees about model
behavior. Recently, Bates et. al. (JACM ’24) introduced the notion of a risk
controlling prediction set (RCPS) for producing prediction sets that are statisti-
cally guaranteed low risk from machine learning models. Our method extends
this notion to the sequential setting, where we provide guarantees even when the
data is collected adaptively, and ensures that the risk guarantee is anytime-valid,
i.e., simultaneously holds at all time steps. Further, we propose a framework for
constructing RCPSes for active labeling, i.e., allowing one to use a labeling policy
that chooses whether to query the true label for each received data point and ensures
that the expected proportion of data points whose labels are queried are below
a predetermined label budget. We also describe how to use predictors (i.e., the
machine learning model for which we provide risk control guarantees) to further
improve the utility of our RCPSes by estimating the expected risk conditioned on
the covariates. We characterize the optimal choices of label policy and predictor
under a fixed label budget and show a regret result that relates the estimation error
of the optimal labeling policy and predictor to the wealth process that underlies
our RCPSes. Lastly, we present practical ways of formulating label policies and
empirically show that our label policies use fewer labels to reach higher utility than
naive baseline labeling strategies on both simulations and real data.

1 Introduction

One of the core problems of modern deep learning systems is the lack of rigorous statistical guarantees
one can ensure about the performance of a model in practice. In particular, we are interested in
ensuring the safety of a deep learning system, that is, it does not incur undue risk while optimizing
for some other objective of interest. This type of guarantee arises in many applications. For example,
a deep learning based medical imaging segmentation system that detects lesions [37, 10, 30] should
guarantee that it does not miss most of the lesion tissue while remaining precise and minimizing the
total amount of tissue that is highlighted. Hence, it is crucial to provide a statistical guarantee about
the “safety” of any machine learning system to be deployed. Bates et al. [4] introduced the notion of
a risk controlling prediction set as a method to derive such guarantees on top of the outputs of a wide
range of black-box models. They consider the setting where all the calibration data are available as
a single dataset before deployment and the model only needs to be calibrated once, i.e., the batch
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setting. However, this is often unrealistic in a production setup when we have no data concerning
the performance of a model before we deploy it, and we wish to update our calibration each time a
new data point (or group of data points) arrives. Consequently, it is natural to calibrate the machine
learning model in an online fashion while receiving new data sequentially. Unfortunately, methods
for obtaining statistical guarantees in the batch setting of Bates et al. [4] do not ensure risk control
guarantees in the sequential regime. Further, the consideration of using data from production also
brings up the concern that this data is often unlabeled, and one must expend resources (either paying
experts or utilizing a more powerful model) to label these data points. Hence, we also consider an
active setting in which we see the covariate X and choose whether to query the true label Y . Consider
the following scenarios where an active and sequential method is relevant.

• Reduce query cost in medical imaging. As discussed prior, a medical imaging system that outputs
scores for for each pixel of image that determines whether there is a lesion or not would want to
utilize labels given by medical experts for unlabeled images from new patients. Since the cost of
asking experts to label these images is quite high, one would want to query experts efficiently, and
only on data that would be most helpful for reducing the number of highlighted pixels.

• Domain adaptation for behavior prediction. One reason we would want online calibration in a
production setting is that we may have much different distribution of data that we do not have
access to before deployment. For example, during a navigation task for a robot, we may want
to predict the actions of other agents and avoid colliding into them when travelling between two
points [20]. Since agents may behave differently in every environment, it makes sense to collect
the behavior data in the test environment and update the behavior prediction in an online fashion to
get accurate predictions calibrated for specifically the test environment.

• Safe outputs for large language models (LLMs). One of the goals with large language models is to
ensure their responses are not harmful in some fashion (e.g., factually wrong, toxic, etc.). One can
view this as outputting a prediction set for the binary label set of Y ∈ {harmful, not harmful}.
Many pipelines for modern LLMs include some form of a safety classifier, which scores the risk
level of an output, and determines whether it should be output to the user or not [22, 15], or a
default backup response should be used instead. One would want to label production data acquired
from user interaction with the LLM and used to calibrate cutoff for the scores that are considered
low enough for the response to be allowed through.

Example: image classification Let us assume we wish to classify an image X ∈ X , and we have
access to a probabilistic classifier s : X → ∆Y where ∆Y is the probability simplex over distributions
over all possible classes, Y . Let sy(x) denote the probability of class y in the distribution s(x).
Based on the probabilities from s(X), we can define C(X,β) to have the labels with the largest
probabilities that sum to β ∈ [0, 1] in the following fashion:

γ(X,β) := max

γ ∈ [0, 1] :
∑
y∈Y

1 {sy(X) ≥ γ} · sy(X) ≥ β

 ,

C(X,β) := {y ∈ Y : sy(X) ≥ γ(X,β)}
Now, we can define the miscoverage error of our label set C(X,β) as follows:

r(X,Y, β) := 1 {Y ̸∈ C(X,β)} . (1)

Now, assume that (X,Y ) ∼ P∗, i.e., the images and class are jointly drawn from a fixed distribution.
We want to find a choice of β such that ρ(β) := E[r(X,Y, β)] is guaranteed to be at most θ ∈ [0, 1],
i.e., the expected miscoverage over the population of images and labels is at most θ.

In the above image classification example, we do not simply wish to find any β that ensures ρ(β) ≤ θ
— setting β = 1 would trivially ensure this guarantee for any θ ∈ [0, 1]. We also want to minimize
the size of our uncertainty set C(X,β). To present this formulation in more general terms, we are
interested in solving the following problem for a fixed level of risk control θ ∈ [0, 1]:

max
β

g(β) subject to ρ(β) ≤ θ. (2)

where g is the utility of our choice. We make the following natural assumption about r, ρ, and g.
Assumption 1. g and ρ are monotonically decreasing w.r.t. β and we assume ρ(1) = 0. In addition, ρ
is right-continuous.
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Our image classification example has an expected risk and utility that satisfy the respective mono-
tonicity assumptions, and such risk measures arise in many applications such as natural language
question answering [27], image segmentation [1], and behavior control for robotics [21, 16]. As-
sumption 1 implies that maximizing g(β) is equivalent to minimizing β, as g is decreasing in β, and
the right-continuity of ρ allows us to define the notion of an optimal calibration parameter that is the
solution to (2):

β∗ := min {β ∈ [0, 1] : ρ(β) ≤ θ}.

Our goal in this paper is to derive a sequence of upper bounds on β∗ that quickly approach the true
β∗ but are “anytime safe” in the sense that they are always greater the β∗ and induce risk under
θ, i.e., β ≥ β∗ implies that ρ(β) ≤ ρ(β∗) ≤ θ. Since we are guaranteed by Assumption 1 that
ρ(1) = 0 ≤ θ, we always have a safe option of β = 1 to start with as our upper bound.

Our contributions. The primary contributions of this paper are as follows.

1. Extensions of RCPS to anytime-valid and active settings. We extend the notion of RCPS in two
ways: (1) to enable anytime-valid RCPS which allows one to refine the set as one receives more
samples in a stream while maintaining risk control throughout the entire stream, and (2) to define
an RCPS that is valid under active learning, i.e., enable us to decide whether to label each example
based on the covariates. We also define a way for incorporating risk predictions from the machine
learning model to decrease variance further and reduce the number of labels needed to estimate
β∗. We formulate this betting framework in Section 2.

2. Deriving powerful labeling policies and predictors. We show in Section 3 that our active, anytime-
valid RCPS methods are practically powerful and converge to β∗ in a label efficient manner
by also deriving formulations for the optimal labeling policy and predictors under the standard
log-optimality criterion that is used for evaluating anytime-valid methods [13, 35, 19]. We derive
explicit regret bounds w.r.t. a lower bound on the growth rate on the wealth processes that underlie
our RCPS methods. These bounds characterize how the deviation of any labeling policy and
predictor from the log-optimal policy and predictor affect the growth rate of our wealth processes
(and hence the earliest time at which a candidate β is removed from consideration as β∗). In
Section 4 we also show that machine learning model based estimators of the optimal policy and
predictors are label efficient in practice through experiments.

Related work. Most relevant to this paper is the recent work from Zrnic and Candès [38] that
provides a rigorous framework for statistical inference with active labeling policies, and leverages
machine learning predictions through prediction-powered inference [2]. However, their focus is on
M-estimation and deriving asymptotic, martingale central-limit theorem based results for a parameter.
On the other hand, we provide finite sample anytime-valid results that are also valid at adaptive
stopping times that directly utilize e-process [29] construction of sequential tests. Further, our goal is
to provide a time-uniform statistical guarantee in the RCPS framework rather than directly estimating
a parameter with adaptively collected data. We discuss additional related work in depth in Section 5.

2 Anytime-valid risk control through betting

We use (Xt)t∈I to denote a sequence that is indexed by t with index set I. If the index set or
indexing variable is apparent in context, we drop it for brevity. In our setup, we assume that our data
points arrive in a stream (X1, Y1), (X2, Y2), . . . that proceeds indefinitely. Let (Ft) be the canonical
filtration on the data, i.e., Ft := σ({(Xi, Yi)}i≤[t]) is the sigma-algebra over the first t points. Recall
that we assumed (Xt, Yt) ∼ P∗ are i.i.d. draws for each t ∈ N := {1, 2, 3, . . . }, and want to control
the risk ρ(β) = E(X,Y )∼P∗ [r(X,Y, β)] where the expectation is take only over (X,Y ). We illustrate
an overview of our methodology (which we describe in the sequel) in Figure 1.

We desire to output a sequence of calibration parameters, (β̂t), such that every βt is “safe”, i.e.,
ensures that the resulting risk of the output is provably controlled under a fixed level.

Definition 1. A sequence of calibration parameters (β̂t) is said to have (θ, α)-anytime-valid risk
control if it possesses the following property:

P(ρ(β̂t) ≤ θ for all t ∈ N) ≥ 1− α. (3)
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Figure 1: Diagram of the active labeling setup for ensuring anytime-valid risk control.

We name this as “anytime-valid” since the risk control condition (i.e., ρ(β̂t) ≤ θ) is guaranteed to
hold simultaneously at all t ∈ N. Hence, this allows for the user to process a continuous stream of
data and control the probability that a β̂t is chosen at any time t that is “unsafe”, i.e., ρ(β̂t) > θ. We
build on recent work that develops a framework for hypothesis testing and parameter estimation with
sequential data collection based on martingales and gambling with virtual wealth known as testing by
betting [31]. In this framework, the goal is to design an e-process, (Et), w.r.t. a null hypothesis H0,
which satisfies the following properties when true:
Definition 2. An e-process, (Et)t∈N0

, w.r.t. a hypothesis H0, is a nonnegative process for which
there exists another nonnegative process, (Mt)t∈N0

s.t. the following is true when H0 is true: (1)
E[M0] ≤ 1, (2) Mt ≥ Et for all t ∈ N almost surely and (3) E[Mt | Ft−1] ≤ Mt−1 for all t ∈ N,,
i.e., (Mt) is a supermartingale.

E-processes will be the main tool we use to construct (β̂t). We leverage the probabilistic bound on
e-processes provided by Ville’s inequality to prove our anytime-valid risk control guarantee.
Fact 1 (Ville’s inequality [34]). For any e-process, (Et), with initial expectation bounded by 1, i.e.,
E[E0] ≤ 1, we have that

P
(
exists t ∈ N :Mt ≥ α−1

)
≤ α for each α ∈ [0, 1].

In this paper, all our e-processes will also be nonnegative supermartingales, so we denote them as
(Mt). Now, we will specify the null hypotheses in our risk control setting. For each β ∈ [0, 1], we
test the null hypothesis Hβ

0 : ρ(β) ≥ θ for a fixed risk control level θ ∈ [0, 1]. Note that we include
equality to θ in the null hypothesis since we do not wish to reject Hβ∗

0 . Let {(Mt(β))}β∈[0,1] be a
family of e-processes where (Mt(β)) is an e-process for Hβ

0 . Then, we can derive β̂t for each t ∈ N
as follows:

β̂t := min {β ∈ [0, 1] :Mt(β
′) ≥ 1/α for all β′ > β}. (4)

Theorem 1. The sequence of estimates (β̂t) in (4) satisfies the anytime-valid risk control guarantee
(3), i.e., P(ρ(β̂t) ≤ θ for all t ∈ N) ≥ 1− α.

Proof. First, we note that

{∃t ∈ N : ρ(β̂t) > θ} ⇔ {∃t ∈ N : β̂t < β∗} ⇒ {∃t ∈ N :Mt(β
∗) ≥ 1/α}.
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Since Hβ∗

0 is always true by definition of β∗, we get that (Mt(β
∗)) is an e-process by Proposition 1.

Thus, by applying Ville’s inequality, we get that:

P(∃t ∈ N : ρ(β̂t) > θ) ≤ P (∃t ∈ N :Mt(β
∗) ≥ 1/α) ≤ α.

Now, we will present a concrete example of an e-process. Denote Rt(β) := r(Xt, Yt, β). We test
Hβ

0 using the betting e-process from Waudby-Smith and Ramdas [35]:

Mt(β) =

t∏
i=1

(1 + λi (θ −Ri(β))) , (5)

where (λt) is predictable w.r.t. (Ft), i.e., λt can be determined by Ft−1 for each t ∈ N, and
λt ∈ [0, (1− θ)−1].

Proposition 1. (Mt(β)) in (5) is an e-process for all β where Hβ
0 is true, i.e., where ρ(β) ≥ θ.

Proof. We note that (Mt(β)) is nonnegative by the support of λt being limited, i.e.,

1 + λt(θ − r(Xt, Yt, β)) ≥ 1 + λt(θ − 1) ≥ 0.

Now, we will also show that (Mt(β)) is a supermartingale when Hβ
0 is true.

E[Mt(β) | Ft−1] = E[1 + λt(θ −Rt(β)) | Ft−1] ·Mt−1(β)

= (1 + λt(θ − E[Rt(β) | Ft−1])) ·Mt−1(β) ≤Mt−1(β).

The second equality is because λt is measurable w.r.t. Ft−1 and the last inequality is by Rt(β) being
independent of Ft−1 and E[Rt(β)] ≤ θ being true under Hβ

0 . Thus, we have our desired result.

Now, we have a concrete way to derive (β̂t) that ensures the risk ρ(β̂t), is controlled at every time
step t ∈ N. However, this requires one to label every example that arrives, i.e., it requires access to
entire stream of labels (Yt). We will now derive a more label efficient way for constructing (β̂t).
Remark 1. Ramdas et al. [28] show that e-processes of the form in (5) characterize the set of
admissible e-processes (and hence anytime-valid sequential tests) for testing the mean of bounded
random variables. Hence, it is an optimal choice of e-process for our setting, and have been shown
to perform better both theoretically and empirically than other sequential tests for bounded random
variables (e.g., Hoeffding and empirical-Bernstein based tests [35]).

2.1 Active sampling for risk control

Now, we describe active learning for risk control, where an algorithm sees Xt decides whether a
label, for the current point, Yt, should be queried or not. At each step t ∈ N, the algorithm produces
a label policy qt : X → [qmin

t , 1] based on the observed data (i.e., Ft−1). It then queries the label, Yt,
with probability qt(Xt) that is lower bounded by a constant, qmin

t . Let Lt be the indicator random
variable for whether the tth label is queried, i.e., Lt ∼ Bern(qt(Xt)).

To produce a label efficient method, one would hope to label the most “impactful” data points that
result in the largest growth of Mt(β) for choices of β ∈ (0, β̂t), i.e. that are still in consideration
for the next β̂t+1. For the labeling policies we consider in this paper, we let qmin

t ∈ [0, 1] be a
lower bound on the labeling probability, i.e., qt(Xt) ≥ qmin

t almost surely. Thus, we can derive the
following e-process for any sequence of labeling policies (qt).

Mt(β) :=

t∏
i=1

(
1 + λi

(
θ − Li

qi(Xi)
·Ri(β)

))
. (6)

Proposition 2. Let (qt) be a sequence of labeling policies, and (λt) be a sequence of betting
parameters, and let both sequences be predictable w.r.t. (Ft). Then, (Mt(β)) in (6) is an e-process
for all β where Hβ

0 is true, i.e., where ρ(β) ≥ θ.

5



Proof. The proof of this is similar to that of inverse propensity-weighted e-processes derived in
Waudby-Smith et al. [36]. We know that (Mt(β)) is nonnegative by the support of λt being limited:

1 + λt

(
θ − Lt

qt(Xt)
·Rt(β)

)
≥ 1 + λt

(
θ − (qmin

t )−1
)
≥ 0,

where the first inequality is by Rt(β) ≤ 1 and qt(Xt) ≥ qmin
t , and the second inequality is by

λt ≤ ((qmin
t )−1 − θ)−1. Now, we will also show that (Mt(β)) is a supermartingale. We first show

the following upper bound:

E
[

Lt

qt(Xt)
·Rt(β) | Ft−1

]
= E

[
E[Lt | Xt,Ft−1]

qt(Xt)
Rt(β) | Ft−1

]
= E[Rt(β) | Ft−1] ≤ θ. (7)

The first equality is by further conditioning on Xt, and the second equality is since Lt is defined to
be a Bernoulli random variable with parameter qt(Xt) when conditioned on Xt and Ft−1. The last
inequality is by Hβ

0 being true. Now, we have that

E[Mt(β) | Ft−1] =

(
1 + λt

(
θ − E

[
Lt

qt(Xt)
Rt(β) | Ft−1

]))
Mt−1(β) ≤Mt−1(β),

where the inequality is by (7). Hence, we have shown that (Mt(β)) is a nonnegative supermartingale,
and hence also an e-process, under Hβ

0 .

Theorem 2. (β̂t) defined w.r.t. (6) satisfies the anytime-valid risk control guarantee (3).

This is a result of Proposition 2 and Ville’s inequality, similar to the proof of Theorem 1. Theorem 2
essentially shows that we can still design e-processes by allowing for a probabilistic label policy.

2.2 Variance reduction through prediction

Often, we also have an estimate of the risk we incur, e.g., in the example given for classification,
we have an estimated probability distribution over possible outcomes. As a result, we also have
an empirical estimate of E[r(X,Y, β) | X = x] for each β ∈ [0, 1] that we can use to reduce the
variance of our estimate. This is similar to the usage of control variates for improving Monte Carlo
estimation [3, § V.2], and of predictors in the recently formulated prediction-powered inference
framework [2]. Let r̂t : X × [0, 1] → [0, 1] be an estimator of the risk incurred by parameter β
conditional on x ∈ X for each time step t ∈ N. (r̂t) is predictable w.r.t. (Ft).

Where does r̂ come from? We note that often machine learning models have some estimate P̂ (X)
of the conditional distribution of Y | X (e.g, class probabilities, conditional diffusion models, LLMs,
etc.). Thus, for any realized covariate x, we can derive use EY∼P̂ (x)[r(X,Y, β) | X = x] from
the machine learning model as our choice of r̂(x, β). This expectation can either be calculated
analytically (as we do in or classification examples in our experiments) or derived using Monte
Carlo approximation (for generative models such as LLMs, one can sample from the conditional
distribution). In essence, we can obtain a predictor from the very model we are calibrating. Further,
we can have a sequence of (r̂t) — we may update our predictor using new (Xt, Yt) pairs we receive
for calibrating (β̂t) as well.

Now, we define our e-process that utilizes our predictor as follows:

Mt(β) :=

t∏
i=1

(
1 + λi

(
θ − r̂i(Xi, β)−

Li

qi(Xi)
· R̄i(β)

))
where R̄t(β) := Rt(β)− r̂t(Xt, β),

(8)

and we restrict λt ∈ [0, ((qmin
t )−1 − θ)−1] (or in other words, qmin

t ≥ λt/(1 + λtθ)). Note that this
e-process recovers the active e-process defined in (6) if we set r̂t(·, β) = 0 for all t ∈ N.

Proposition 3. (Mt(β)) as defined in (8) is an e-process for Hβ
0 .
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Proof. Since the restriction on (λt) ensures Mt(β) is nonnegative, to show that (Mt(β)) is an
e-process, it is sufficient to show:

E[λt(θ − r̂t(Xt, β)− Lt · qt(Xt)
−1 · R̄t(β)+) | Ft−1]

= λt(θ − E[r̂t(Xt, β) + Lt · qt(Xt)
−1 · R̄t(β) | Ft−1])

= λt(θ − E[r̂t(Xt, β) + E[Lt · qt(Xt)
−1 | Xt,Ft−1] · R̄t(β) | Ft−1])

= λt(θ − E[r̂t(Xt, β) + R̄t(β) | Ft−1]) = λt(θ − E[Rt(β) | Ft−1]) ≤ 0.

The 3rd equality is by definition of Lt, the last equality by the definition of R̄t, and the last inequality
is due to Hβ

0 being true.

The role of r̂t(Xt, β) is to accurately predict Rt(β). Bad predictions can increase the variance of
R̄r(β) and lead to slower growth of Mt(β), but do not compromise the risk control guarantee. On
the other hand, accurate predictions, which come from pretrained models, decrease variance and
improve the growth of Mt(β). We characterize the optimal predictor (Proposition 4) and relate the
accuracy of a predictor to its effect on the e-process (Theorem 3) in the next section.

3 Optimal labeling policies

Since the goal of having an active labeling policy is to label fewer data points, one reasonable way
of doing this is to maximize the growth rate of our e-process (Mt(β)) defined in (8). Define the
following function, for some β ∈ [0, 1], of a labeling policy q, predictor r̂, and betting parameter λ
where we let L ∼ Bern(q(X)) and (X,Y ) ∼ P∗:

Gβ(q, r̂, λ) := log

(
1 + λ

(
θ − r̂(X,β)− L

q(X)
R̄(β)

))
where R̄(β) := r(X,Y, β)− r̂(X,β).

Define the growth rate at the tth step of (Mt(β)) as Gβ
t := E[Gβ

t (qt, r̂t, λt)], where we let Gβ
t be

identical to Gt but with X and Y replaced with Xt and Yt, respectively. It is a standard notion
of power or sample efficiency for e-processes. Typically, our goal when designing an e-process
based test is to maximize such a metric, i.e., we want our e-process to be log-optimal [13, 35, 19].
Log-optimality is also called the Kelly criterion in finance [18] and it is known that maximizing the
growth rate of a process is equivalent to minimizing the expected time for the process to exceed a
threshold, i.e., for our sequential test to reject a value of β, in the limit as the threshold approaches
infinity [5]. Thus, in an asymptotic sense, maximizing the growth rate is equivalent to minimizing the
expected time for rejection. Our goal is to maximize the growth rate while having a constraint on the
number of labels we can produce.

Let B ∈ [0, 1] be the constraint on our labeling budget, i.e., we label, in expectation, a B fraction of
all data points that we receive. To achieve both of these goals, we wish to choose qt, r̂t, and λt that
are the solutions to the following optimization problem:

max
q,r̂,λ

EL∼q(X)[G
β(q, r̂, λ)] s.t. E[q(X)] ≤ B.

Since solving the above optimization problem is analytically difficult, one can instead maximize a
lower bound on the expected growth [33, 26, 25]:

Ĝβ(q, r̂, λ) := λ

(
θ − r̂(X,β)− L

q(X)
R̄(β)

)
− λ2

(
θ − r̂(X,β)− L

q(X)
R̄(β)

)2

≤ Gβ(q, r̂, λ), (9)

which holds when λ ∈ [0, (2(qmin)−1−2θ)−1], where qmin := infx∈X q(x). We can further simplify
We can use the lower bound in (9) to formulate the following optimization problem.

max
q,r̂,λ

E
[
Ĝβ(q, r̂, λ)

]
s.t. E[q(X)] ≤ B (10)

Let (q∗, r∗, λ∗) be the tuple that is the solution to (10). We can analytically show what r∗ is.
Proposition 4. The optimal predictor r∗ in the solution to (10) is r∗(x, β) = E[r(X,Y, β) | X = x]
for each x ∈ X .
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We defer the proof to Appendix A.1. The optimal choice of q∗ has the following formulation.
Proposition 5. If we fix r̂ and λ, the solution to the optimization problem in (10) is given by q∗β where
q∗β(x) ∝

√
E[R̄(β)2 | X = x] for each x ∈ X if such a q∗β exists.

We defer the proof to Appendix A.2. Let σβ(x) :=
√
V[r(X,Y, β) | X = x] be the conditional

standard deviation of r(X,Y, β). Now, we can argue that the solution to the optimization problem on
the growth rate lower bound in (10) has the following characterization.
Corollary 1. The optimal choice of q∗β and λ∗ that solves (10) is

q∗β(x) :=
σβ(x)

E[σβ(X)]
·B, λ∗ :=

θ − ρ(β)

2((θ − ρ(β))2 + E[σβ(X)]2 ·B−1 + V[r(X,Y, β)])
if q∗β(x) ∈ [0, 1] for all x ∈ X , and λ∗ ≤ (2(infx∈X q

∗
β(x))

−1 − 2θ)−1. The resulting growth rate
has the following lower bound:

E[Gβ
t (q

∗, r∗, λ∗)] ≥ E[Ĝβ
t (q

∗, r∗, λ∗)] =
(θ − ρ(β))2

4((θ − ρ(β))2 + E[σβ(X)]2 ·B−1 + V[r(X,Y, β)])

We can show this is true as a consequence of Proposition 4, Proposition 5, and solving the quadratic
equation that arises for the growth rate to derive the optimal choice of λ∗. Further, we note that we
can define regret of a sequence (λt) compared to λ∗ on Ĝβ

t as follows.
Definition 3. The Ĝβ-regret at the tth step of a sequence of betting parameters (λt) for a risk upper
bound θ ∈ [0, 1], and a sequence of labeling policies (qt) and predictors (r̂t) where qt(x) ≥ ε > 0
for all x ∈ X and t ∈ N almost surely is defined as follows:

Regt := max
λ∈[0,(2ε−1−2θ)−1]

t∑
i=1

E[Ĝβ
t (qt, r̂t, λ) | Ft−1]− E[Ĝβ

t (qt, r̂t, λt) | Ft−1].

Since Ĝβ
t (q, r̂, λ) is exp-concave in λ, existing online learning algorithms such as Online Newton

Step (ONS) [8] can get o(T ) regret guarantees, which means that the growth rate of (λt) averaged
over time will approach (or exceed) the optimal growth rate under λ∗. For simplicity of analysis, we
make the following assumption about the labeling probability of the optimal policy, q∗β .
Assumption 2. Let ε > 0 be a positive constant. Assume that q∗β(x) ≥ ε for each x ∈ X .

The lower bound in the above assumption is an analog of the propensity score lower bound on optimal
policies for adaptive experimentation which are needed for performing valid inference in that setting
[17, 7]. Further, do not need this to hold on every β, since we are not necessarily interested in
log-optimality w.r.t. fringe β that are quite far away from β∗ — in practice having this assumption
hold for values of β near β∗ suffices to develop an estimator β̂ that shrinks toward β∗ quickly. Now,
we describe how much the growth rates deviates based on on how well q∗ and r∗ are estimated.

Theorem 3. Let (λt) be a sequence with Ĝβ-regret (Regt) and (qt) and (r̂t) are sequences of
labeling policies and predictors that are all predictable w.r.t. (Ft). For a positive constant ε > 0, let
qt(x) ≥ ε > 0 for each t ∈ N and x ∈ X almost surely. Under Assumption 2 for the same ε, the
following bound holds:
t∑

i=1

E[Ĝβ
t (q

∗, r∗, λ∗)− Ĝβ
t (qt, r̂t, λt)] ≤ Regt +

t∑
i=1

O(E[|q(Xt)− q∗β(Xt)|] + E[(r̂t(Xt)− r∗(Xt, β))
2]).

We defer the proof to Appendix A.3. The proof idea follows a similar idea that of the regret bound
in Kato et al. [17] for deriving an estimator that is close to the optimal estimator for the average
treatment effect in an adaptive experimentation setup. Theorem 3 relates the estimation error of q∗β(x)
and r∗(x, β) to how quickly β will be deemed “safe”. Hence, if we have good estimates of those
quantities, then we can produce an estimates (β̂t) that are small and close to β∗ while remaining safe.
We will now describe some practical methods for calculating qt and r̂t.

4 Experiments

We use PyTorch to model our (qt) and (r̂t), and we use the following methods to formulate them.2

2Code at github.com/neilzxu/active-rcps
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1. Baseline labeling policies. We have baseline labeling policies of labeling all data that arrives,
and a policy that just randomly samples B proportion of samples to label — these are denoted
respectively as “all” and “oblivious”.

2. Pretrain: We derive an estimate of r∗ from a pretrained machine learning model, r̂pretr, to be our
choice of predictor for all time steps. We also derive an estimate of σ(x, β), σ̂pretr(x, β), from
the pretrained model. We also learn a sequence of normalizing constants (Ct) s.t. the budget is
satisfied. Our labeling policy in this case is qt(x) = σ̂(x, β̂t−1)/Ct, where we want to optimize
our policy for the previous best bound on β∗, β̂t−1. We denote this method as “pretrain”.

3. Estimating q∗β and r∗: We learn sequences of models (σ̂plugin
t ) and (r̂plugin

t ) using the labeled data
points. We preprocess the outputs from σ̂pretr and r̂pretr to use as the input features to these models,
respectively. Each of these sequences of models are then updated at every step. We also similarly
learn a sequence of normalization constants (Ct) for deriving the final labeling policy (qt).

We provide more details on how are methods are formulated in Appendix B. We run all our experi-
ments on a 48-core CPU on the Azure platform, after using a GPU to precompute the predictions
made by neural network models. We set θ = 0.1, α = 0.05, and B = 0.3 for all our experiments.

4.1 Numerical simulations

We have a simple data generating process of sampling Pt ∼ Uniform[0, 1] and let Yt | Xt ∼
Bern(Xt). This simulates the setting we have with our real data where we have an accurate pretrained
classifier that have a probability estimate of Yt of being 0 or 1. We let our covariates Xt = Pt. As
a result, our risk function is the false positive rate rFPR(X,Y, β) := 1 {X ≥ β, Y = 0}. We run
100 trials where each trial runs until 2500 labels are queried. We compare our methods based on
their label efficiency, i.e., how close is β̂t to β∗ = 1−

√
2α after a set number of queried labels. In

Figure 2, we plot the average β̂t reached after a given number of labels queried across trials. The
shaded areas denotes pointwise 95% confidence intervals on the uncertainty of the average estimate.
We can see that the “pretrain” and “learned” methods outperform both the “all” and “oblivious”
strategies uniformly numbers across labels queried. In Figure 2a, we show the average rate of safety
violations, i.e., the average proportion of trials that β̂t was unsafe and ρ(β̂t) > θ at any time step. We
can see that all methods control the desired safety violation rate at the predetermined level α.

(a) Average rate of safety viola-
tions β̂t.

(b) Average final value of β̂t

(lower is better).
(c) Average β̂t vs. labels queried
(lower is better).

Figure 2: Experimental results for different methods for our numerical simulation setup. We can see
that “pretrain” and “learned” perform better by getting lower average β̂t uniformly across number
of labels queried — the dotted line in Figures 2b and 2c is β∗ = 0.5578. Each method also has low
safety violation rate, i.e., is below the dotted line of α = 0.05 in Figure 2a.

4.2 Imagenet

We also evaluate our methods on the Imagenet dataset [9], and we used the pretrained neural network
classifiers from Bates et al. [4] to provide estimates of the class probabilities.

Since Imagenet is a classification task with label support on Y = [1000], our goal is to ensure that
the miscoverage rate of the true class is controlled. We follow the same setup as descibed in the
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introduction, i.e., with our risk measure r specified according to (1). For Imagenet, we reshuffle our
dataset for each trial, and run each method till we have queried 3000 labels.

(a) Average rate of safety viola-
tions β̂t.

(b) Average final value of β̂t

(lower is better).
(c) Average β̂t vs. labels queried
(lower is better).

Figure 3: Experimental results for different methods on Imagenet. Again, we see that “pretrain”
and “learned” are the best performing, and they have very similar performance and hence overlap in
Figure 3c. Here, β∗ = 0.8349, and is delineated by the dotted line in Figures 3b and 3c. Again, each
method also has low safety violation rate, i.e., is below the dotted line of α = 0.05 in Figure 3a.

In Figure 3, we plot the average β̂t across trials. Once again, we can see that the “pretrain” and
“learned” methods outperform both the “all” and “oblivious” strategies here as well. On Imagenet the
average safety violation rate is also controlled as well under the predetermined level of α = 0.05.

5 Additional related work

Casgrain et al. [6] provide anytime-valid sequential tests for identifiable functions, which result in
similar hypotheses being tested as this paper albeit with equality instead of equality. They, in addition
to other recent work [26, 25, 32], using regret bounds for betting-based e-processes to show either
derivations for the growth rate of a betting strategy w.r.t. to the optimal growth rate. However, none of
these settings incorporate the ability to perform adaptive sampling or inverse propensity weights. Prior
work in anytime-valid inference have included inverse propensity weights have been for off policy
evaluation [36], adaptive experimentation [7], or estimating the weighted mean of a finite population
[33]. However, none of these works explicitly characterize deviation in the sampling policy away
from the optimal sampling policy ultimately affects the growth rate as we do in Theorem 3.

Our analysis of power and regret for our algorithm is quite similar to methods in adaptive experimen-
tation for average treatment effect estimation [14, 17] that attempt to derive a no regret treatment
policy and outcome regressor that produces an estimator with a variance that approaches the variance
of the optimal estimator. Unlike the adaptive experimentation setting, however, we have an additional
label budget constraint on our formulation that results in a different optimal policy.

6 Conclusion, limitations, and future work

We have shown that we can extend the RCPS formulation to be anytime-valid, and retain validity and
increase label efficiency in an active learning setting. We use the theory of betting and e-processes
to develop this framework and show it is verifiably safe, and we verified this with our experimental
results. We have primarily considered the i.i.d. setting here for anytime-valid calibration, and one
key area in which one can extend this line of work is to account for distribution shift during test
time. The empirical Bernstein supermartingales in Waudby-Smith et al. [36] can likely be used to
extend our framework control risk in an average sense, but stronger guarantees could be made about
the provided risk control if more realistic assumptions are made about the nature of the distribution
(e.g., covariate shift, label shift, etc). It may also be possible extend a notion of adaptive conformal
inference (ACI) [11, 12] to anytime-valid risk control. Another limitation of this work is the bounded
label policy assumption (i.e., Assumption 2) and existence assumption in Proposition 5. We believe
that more careful analysis can get rid of these assumptions in future work.
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A Omitted proofs

Proofs that have been deferred from the main body of the paper are contained here.

A.1 Proof of Proposition 4

We can rewrite the objective in the following way:

E[Ĝ(q, r̂, λ)] = E

[
λ

(
θ − r̂(X,β)− L

q(X)
R̄(β)

)
− λ2

(
θ − r̂(X,β)− L

q(X)
R̄(β)

)2
]

= λ (θ − ρ(β))− λ2
(
(θ − ρ(β))2 + V

[
r̂(X,β) +

L

q(X)
R̄(β)

])
(11)

Maximizing (11) is the same as minimizing the following equivalent expressions:

V
[
r̂(X,β) +

L

q(X)
R̄(β)

]
= E

[
V
[
r̂(X,β) +

L

q(X)
R̄(β) | X

]]
+ V

[
E
[
r̂(X,β) +

L

q(X)
R̄(β) | X

]]
= E

[
V
[

L

q(X)
R̄(β) | X

]]
+ V[R(β)]

= E
[
E
[
R̄(β)2

q(X)
| X
]
− E[R̄(β) | X]2

]
+ V[R(β)]

=

(∫ (E
[
R̄(β)2 | X = x

]
q(x)

− E[R̄(β) | X = x]2

)
p(x) dx

)
+ V[R(β)], (12)

where we derive the 1st equality from the law of total variance, and the 2nd equality from the fact
that r̂(X,β) is fixed given X .

Since the only term that r̂ affects is the integral term in (12), we can choose each r̂(x, β) for each
x ∈ X to minimize the following:

E
[
R̄(β)2 | X = x

]
q(x)

− E[R̄(β) | X = x]2

=
E[(r(X,Y, β)− r̂(x, β))2 | X = x]

q(x)
− (E[r(X,Y, β) | X = x]− r̂(x, β))2

=
E[r(X,Y, β)2 | X = x]

q(x)
− E[r(X,Y, β) | X = x]2

−
(

1

q(x)
− 1

)
(2E[r(X,Y, β) | X = x]r̂(x, β)− r̂(x, β)2) (13)

If we remove the constants (i.e., terms unaffected by r̂(x, β)), and note that q(x)−1 − 1 > 0, we get
that minimizing (13) is equivalent to minimizing

2E[r(X,Y, β) | X = x]r̂(x, β)− r̂(x, β)2.

This is equivalent to minimizng the squared error, i.e., (E[r(X,Y, β) | X = x]− r̂(x, β))2, which
means that r∗(x, β) = E[r(X,Y, β) | X = x], which gets us our desired result.

A.2 Proof of Proposition 5

Since we have shown that maximizing (10) is equivalent to minimizing (12), we can isolate the terms
that change wiht q and see that we are looking for the solution to the following optimization problem:

min
q

∫
p(x)

q(x)
E[R̄(β)2 | X = x] dx

s.t.
∫
p(x)q(x) dx ≤ B.
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We can define φ(x) := p(x)q(x) rewrite this as

min
φ

∫
p(x)2

φ(x)
E[R̄(β)2 | Xi = x] dx

s.t.
∫
φ(x) dx ≤ B.

Assume we can define a valid q∗β where q∗β(x) ∈ [0, 1] for each x ∈ X that satisfies the following
conditions:

φ(x) ∝ p(x)
√

E
[
R̄(β)2 | X = x

]
q∗β(x) ∝

√
E
[
R̄(β)2 | X = x

]
.

Explicitly, we define q∗β as follows:

q∗β(x) =

√
E
[
R̄(β)2 | X = x

]
E
[√

E
[
R̄(β)2 | X = x

]] ·B.
One can show its optimality by considering some other labeling policy q′ where E[q′(X)] = B
(we use a similar proof technique from importance sampling Owen [24, § 9.1]). Now, let φ∗(x) :=
p(x)q∗β(x) and φ′(x) = p(x)q′(x)∫

p(x)2

φ∗(x)
E[R̄(β)2 | Xi = x] dx

= E
[√

E
[
R̄(β)2 | X = x

]] ∫ p(x)

B
·
√
E[R̄(β)2 | Xi = x] dx

= E
[√

E
[
R̄(β)2 | X = x

]]2
·B−1

=

(∫
p(x)

φ′(x)
· φ′(x) ·

√
E
[
R̄(β)2 | X = x

]
dx

)2

·B−1

= B ·
(∫

p(x)

φ′(x)
· φ

′(x)

B
·
√
E
[
R̄(β)2 | X = x

]
dx

)2

≤
∫
p(x)2

φ′(x)
E
[
R̄(β)2 | X = x

]
dx,

where the last line is by Cauchy-Schwarz, since φ′(x)/B is a valid p.d.f. Hence, we have shown our
desired result.

A.3 Proof of Theorem 3

By definition of Regt, we know that

t∑
i=1

E[Ĝβ(qi, r̂i, λ
∗)]− E[Ĝβ(qt, r̂i, λi)] ≤ Regt

by taking an expectation over Fi−1 for each term in the summation Hence, what remains to be shown
is the following:

t∑
i=1

E[Ĝβ(q∗, r∗, λ∗)]− E[Ĝβ(qt, r̂t, λ
∗)]

≤
t∑

i=1

O(E[|qt(Xt)− q∗β(Xt)|]) +O(E[(r̂t(Xt, β)− r∗(Xt, β))
2]) (14)
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Let R̄t(β) := r(X,Y, β)−r̂t(X,β) and R̄∗(β) := r(X,Y, β)−r∗(X,β). We first note the following
identity using (12):

E[Ĝβ(q∗, r∗, λ∗)]− E[Ĝβ(qt, r̂t, λ
∗)]

=(λ∗)2

(
E

[
V
[
r̂t(X,β)−

L

qt(X)
R̄t(β) | Ft−1

]
− V

[
r∗(X,β)− L

q∗β(X)
R̄∗(β)

]])

Now, we make the following derivations for the difference between the variance (V) terms:

V
[
r̂t(X,β)−

L

qt(X)
R̄t(β) | Ft−1

]
− V

[
r∗(X,β)− L

q∗β(X)
R̄∗(β)

]

=

∫ (
E[R̄t(β)

2 | X = x]

qt(x)
− E[R̄∗(β)2 | X = x]

q∗β(x)
− E[R̄t(β) | X = x]2

)
· p(x) dx

=

∫ (
(q∗β(x)− qt(x))V[r(X,Y, β) | X = x] + q∗β(x)(1− qt(x))(r̂t(x)− r∗(x, β))2

qt(x)q∗β(x)

)
· p(x) dx

≤
∫ (

(q∗β(x)− qt(x)) + (r̂t(x)− r∗(x, β))2
)
· p(x)

ε
dx

≤O(E[
∣∣q∗β(Xt)− qt(Xt)

∣∣ | Ft−1] + E[(r̂t(Xt)− r∗(Xt, β))
2 | Ft−1]). (15)

The 1st equality is by substituting in the identity from (12). The 1st inequality is a result of
V[r(X,Y, β) | X = x] ≤ 1

4 , since r(X,Y, β) ∈ [0, 1], and q∗β(x), qt(x) ∈ [ε, 1] almost surely. The
2nd inequality is by upper bounding q∗β(x)− qt(x) by its absolute value.

Now, if we plug (15) into (14), take the expectation over Ft−1, and take the summation over t, we
get our desired result.

B Experiment details

In this section, we discuss additional details about how we implement our methods described in
Section 4.

B.1 Formulation of the labeling policy

For the “pretrain” policy, we use an estimate of the conditional mean and variance derived from s.

r̂pretr(x, β) :=
∑

y ̸∈C(x,β)

sy(x),

σ̂pretr(x, β) :=
√
r̂pretr(x, β) · (1− r̂pretr(x, β)).

These estimates may not be accurate, but might still represent a reasonable partitioning of the feature
space where σ(x, β) and r∗(x, β) are similar. Hence, for σ̂plugin

t and r̂plugin
t , we model them as linear

regresssion models where inputs are a binning of r̂pretr(x, β) and σ̂pretr(x, β), respectively. We then
learn the regression model parameters on training data.

B.2 Optimization to maintain the budget constraint

For any predictor σ̂, we optimize the Lagrangian corresponding to (10), which is defined as follows
for a fixed λt.
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L(νt, qt)
= E[Ĝ(qt, r̂t, λt)]− νt(E[qt(Xt)]−B)

= E

[
λt

(
θ − Lt

qt(X)
r(X,Y, β)

)
− ψ(λt)

(
θ − Lt

qt(X)
r(X,Y, β)

)2
]
− νt(E[qt(X)]−B)

= λt(θ − ρ(β))− λ2tE

[(
θ − r̂t(X,β)−

Lt

qt(X)
R̄(β)

)2
]
− νt(E[qt(X)]−B)

Since we know the optimal form of r̂t, we optimize it separately by taking an optimization step with
the loss of squared error, (r(X,Y, β)− r̂t(X,β))

2, for each labeled example for a grid of β values.

To derive the solution, we simplify playing the minimax game with the above Lagrangian to the
following objective:

max
qt

min
νt

− E
[

1

qt(X)
· (r(X,Y, β)− r̂t(X,β))

2

]
− νt(E[qt(X)]−B)

In the case of both “pretrain” and “learned” methods, we parameterize our qt in the following fashion:

qt(x) =
σ̂t(x, β̂t−1)

exp(ct)
,

where our normalization constant Ct = exp(ct) for some value ct ∈ R to ensure it is nonnegative.

σ̂t is updated separately. For “pretrain”, it is fixed from the beginning, and for “learned”, we take
an optimization step to minimize the squared loss against the squared residual, i.e., we update to
minimize ((r(X,Y, β)− r̂t(X,β))

2 − σ̂t(X,β)
2)2.

Hence, the only thing that remains to optimize ct, which now simply means we need to solve the
following problem (where we treat β̂t−1 as fixed):

max
ct

min
νt

− ct + νt

(
1

exp(ct)
E[σ̂t(X, β̂t−1)]−B

)
The actual game payoff we play is the stochastic approximation of the Lagrangian in the following
form:

L(νt, ct) = −ct − νt

(
σ̂t(Xt, β̂t−1)

exp(ct)
−B

)
.

At each step, we take an optimization step on ct towards maximizing the above loss, and determine νt
by playing either best response or a windowed best response that takes an average of best responses
over recent rounds. We use the COCOB optimizer [23] for all of learning and optimization which
requires no hyperparameter or learning rate selection.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ”
provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist”,
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide exactly what we describe in the abstract/introduction, i.e., a method
for constructing active, anytime-valid risk controlling prediction sets along with theoretical
guarantees and experiments demonstrating its efficacy.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We elaborate on the limitations of the paper in Section 6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide proofs and assumptions for each result (clearly delineated) in the
paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the code for reproducing the experiments in a supplement.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide all code for reproducing the experiments in the paper in a supple-
ment (see above).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide experimental overview in Section 4, and we provide additional
details in both the code and the appendix (Appendix B).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We show error bars (from 95% normal CIs) for all our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specify our compute resources in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: I have reviewed the ethics guidelines and this paper conforms with it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work is statistical methodology/theory for enabling active labeling for risk
control — it may allow users of machine learning models more cost-effectively calibrate
their models to control measures of harmful risk when using them in practice, but there are
no direct societal impacts as far as we can discern.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: Our paper does not release new data/models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we properly cite the papers for which we use models, code, and data from
(e.g, Imagenet, RCPS, etc.).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide our experimental code in the supplement and provide details about
it in Appendix B.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We don’t perform human research for this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We don’t perform human research in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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