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Abstract

We prove a Bernstein inequality for vector-valued self-normalized martingales. We first
give an alternative perspective of the corresponding sub-Gaussian bound due to Abbasi-
Yadkori et al. (2011) via a PAC-Bayesian argument with Gaussian priors. By instantiating
this argument to priors drawn uniformly over well-chosen ellipsoids, we obtain a Bernstein
bound.

1 Tail Bounds for Self-Normalized Martingales

Deviation inequalities for self-normalized martingales play a key role in obtaining guarantees for linear
regression in interactive and sequential decision-making tasks, such as learning an autoregression or regret
minimization in linear bandits. The most prevalent version of such an inequality currently in use is due to
Abbasi-Yadkori et al. (2011) and rests on the method of pseudo-maximization popularized by Peña et al.
(2009), dating back to Robbins & Siegmund (1970). Comparing their result to the central limit theorem,
their bound is nearly optimal but depends on the sub-Gaussian variance proxy instead of the actual variance.
In this note, we overcome this issue by casting the pseudo-maximization technique through the lens of the
PAC-Bayesian inequality. The present approach simplifies classical pseudo-maximization by relegating the
complexity of evaluating exponential integrals against the smoothing distribution to the computation of a
generic Kullback-Liebler divergence term. This allows us to generalize the argument of Abbasi-Yadkori et al.
(2011) but without access to globally defined moment generating function bounds.

Let us now proceed by describing the setting of our result and that of Abbasi-Yadkori et al. (2011). Fix a
filtration F0:∞ and two square-integrable processes: X1:∞, taking values in Rd, and W1:∞, taking values in
R. For each T ∈ N, let X1:T be adapted to F0:T −1 and W1:T to F1:T with E[Wk|Fk−1] = 0 for every k ∈ N.
For t ∈ N, we define:

St ≜
t∑

k=1
WkXk and Vt ≜

t∑
k=1

XkXT
k (1)

and are interested in bounds on the random walk ST in the random Mahalanobis norm ∥ST ∥2
(VT +Γ)−1 =

ST
T (VT +Γ)−1ST for some fixed positive semidefinite matrix Γ ⪰ 0. This is called a self-normalized martingale.

Under the assumption that Wk is Fk−1-conditionally σ2
subG-sub-Gaussian for each k ∈ N,1 Abbasi-Yadkori

et al. (2011) show that for every stopping time τ (∈ F0:∞) and with probability 1 − δ:

∥Sτ ∥2
(Vτ +Γ)−1 ≤ σ2

subG ×
[
log
(

det(Vτ + Γ)
det(Γ)

)
+ 2 log(1/δ)

]
. (2)

Their approach rests on an elegant application of the pseudo-maximization technique developed by Peña
et al. (2009), dating back to Robbins & Siegmund (1970). While elegant, the result of Abbasi-Yadkori et al.
(2011) has one shortcoming as compared to classical asymptotics: the linear dependence on the conditional
variance proxy σ2

subG as opposed to the conditional variance, σ2
var ≜ sup{E[W 2

k |Fk−1]| a.s., k ∈ T}. The

1E
[
exp (λWk)

∣∣Fk−1
]

≤ exp
(

λ2σ2
subG
2

)
, ∀k ∈ N.
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traditional fix to this in the literature on concentration inequalities is to invoke a Bernstein-type bound on the
moment generating function (MGF) of the Wk instead of a Hoeffding type of bound (see e.g. Freedman, 1975;
de la Pena, 1999). Unfortunately, directly combining a Bernstein MGF bound with the pseudo-maximization
technique does not lead to analytically tractable upper bounds as it requires the evaluation of an exponential
integral over a bounded domain (an ellipsoid). Moreover, previous attempts at establishing Bernstein bounds
(via methods orthogonal to pseudo-maximization) for vector-valued self-normalized martingales suffer from
extraneous logarithmic dependencies and have significantly looser constants (see e.g. Zhao et al., 2023).

In this note, we provide an alternative perspective on the proof of (2), where, instead of computing the
exponential integral directly, we invoke the variational characterization of Kullback-Liebler divergence via
the PAC-Bayesian lemma (Shawe-Taylor & Williamson, 1997; McAllester, 1998) to relegate this difficulty to
the calculation of said divergence. Beyond Gaussian priors, this turns out to be significantly simpler than the
evaluation of an exponential integral. It allows us to modularize the proof strategy of Abbasi-Yadkori et al.
(2011) and replace their Gaussian prior with uniform ellipsoidal priors that are suitable in combination with
exponential inequalities that only hold for a restricted domain (contrast this with Hoeffding MGF bounds
being valid for all λ).

The rest of this note is organized as follows. We state our main result immediately below and then proceed
to discuss its consequences. Its proof is given in Section 3.2. Preliminaries relating to our application of the
PAC-Bayesian lemma are given in Section 3 where we also provide a proof of (2) as a warm-up. Auxiliary
lemmata, including the PAC-Bayesian lemma, are proven in Section 4.

2 The Result

To apply a Bernstein MGF bound, we will require some additional boundedness assumptions. Namely, we
posit that:

|Wk| ≤ BW and XkXT
k ⪯ B2

X , ∀k ∈ N (3)

for a positive scalar BW and a positive definite matrix BX . Our main result can now be stated:
Theorem 1. Fix δ, ε, ν ∈ (0, 1), a stopping time τ with respect to F0:∞, a positive semidefinite matrix Γ ⪰ 0,
a positive definite matrix V ≻ 0 and assume that (3) holds. Define

α ≜

(√
e(1 + ν)∥Sτ ∥(Vτ +Γ)−1V (Vτ +Γ)−1

ν
√

d + 2
− 1
)

∨ 0.

Then as long as Vτ + Γ ⪰ e(1 + ν)2V ⪰ (1 + ν)2ε−1(d + 2)B2
W B2

X we have that with probability at least 1 − δ:

∥Sτ ∥2
(Vτ +Γ)−1 ≤

(
(1 + α)2

1 + 2α
× 1

1 − ε

)
× σ2

var ×
[
log
(

det(Vτ + Γ)
det(V )

)
+ 2 log(1/δ)

]
. (4)

Remarks on Theorem 1:

1. The bound gives a refined confidence ellipsoid for least squares estimation with martingale difference
noise in the model Yk = ⟨θ⋆, Xk⟩ + Wk up to a stopping time τ . An advantage over the result of Abbasi-
Yadkori et al. (2011) is that the term σ2

var is always smaller than σ2
subG appearing in (2). Moreover, even

though both bounds assume oracle access to the variance (proxy), a second order statistic such as σ2
var is

more amenable to be directly estimated from data.

2. When Γ = 0, requiring α = 0 in Theorem 1 can be thought of as a burn-in requirement, restricting the
Bernstein inequality to cases in which the corresponding least squares error is sufficiently small. Typically,
α = 0 once the sample size is large enough as ∥Sτ ∥2

V −2
τ

is the norm-squared error of the least squares
estimator in the model Yk = ⟨θ⋆, Xk⟩ + Wk up to time τ . When Sτ is not too large, the variance proxy
σ2

subG in (2) can thus be replaced by the variance term σ2
var with just a little overhead in ε.

3. For Γ ⪰ ε−1e−1(d + 2)B2
W B2

X (corresponding instead to ridge regression) one may choose V = Γ and use
(2) to control α at the cost of an inflated failure probability (δ to 2δ).
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4. Together, ε and ν control the sharpness of the multiplicative constants of the bound. In the large sample
regime, when ∥Sτ ∥2

V −2
τ

is small, these can often both be allowed to tend to 0.

5. The bound can be put in a more convenient form by making use of either of the two numerical inequalities
(1 + 2α)−1(1 + α)2 ≤ (1 + α2) ∧ (1 + 1

2 α).

6. Using Theorem 1 instead of the result in Abbasi-Yadkori et al. (2011) sharpens existing bounds for least
squares estimators with martingale difference noise, allowing one to achieve optimal dependence in σ2

var.
See e.g. the proof structure laid out in Ziemann et al. (2023, Section 1.2).

7. These improvements also potentially extend to refining linear bandit analyses, previously motivating the
results in Abbasi-Yadkori et al. (2011) and Zhao et al. (2023).

3 PAC-Bayesian Bounds

Let ρ and π be two probability measures supported on a set Λ ⊂ Rd. Recall that dKL(ρ, π) ≜
∫

Λ log
(

dρ
dπ

)
dρ ∈

[0, +∞] is the Kullback-Leibler divergence between ρ and π. Our analysis in the sequel rests on the well-
known PAC-Bayesian lemma, stated below.

Lemma 1 (PAC-Bayesian deviation bound). Let Λ be a subset of Rd, and Z(λ), λ ∈ Λ, be a family of real-
valued random variables. Assume that E[exp Z(λ)] ≤ 1 for every λ ∈ Λ. Let π be a probability distribution
on Λ. Then for all u ∈ [0, ∞) :

P
(

∀ρ :
∫

Λ
Z(λ)dρ(λ) ≤ dKL(ρ, π) + u

)
≥ 1 − e−u, (5)

where ρ spans all probability measures on Λ.

We will instantiate the PAC-Bayesian lemma with Z(λ) as the quadratic form (and with t = τ)

Z(λ) = ⟨λ, St⟩ − 1
2∥λ∥2

Vt
= 1

2∥St∥2
V −1

t

− 1
2∥λ − V −1

t St∥2
Vt

. (6)

To account for the fact that the Mahalanobis norm appearing in (2) includes an additive factor Γ, let us also
take note of the following identity, which can be obtained by completing the square in (6):

∥St∥2
V −1

t

− ∥λ − V −1
t St∥2

Vt
= ∥St∥2

(Vt+Γ)−1 − ∥λ − (Vt + Γ)−1St∥2
Vt+Γ + ∥λ∥2

Γ. (7)

In particular, we seek to bound the RHS of (6) (or (7)) but will use the LHS to establish an exponential
inequality. In the two sections that follow we first show how to recover the results of Abbasi-Yadkori et al.
(2011) featuring the variance proxy σ2

subG and then proceed to generalize these to variance sensitive Bernstein
bounds depending on σ2

var in the leading order.

3.1 Warm-up: Sub-Gaussian Deviation Bounds

Before we prove our main result, let us explain how a version of the result of Abbasi-Yadkori et al. (2011)
can be established via Lemma 1. This will inform the proof strategy of our result by essentially replacing
Gaussians with a certain covariance ellipsoid with uniform distributions over the same ellipsoid. We prove
the result for σ2

subG = 1 and note that the general case follows by rescaling.

By making use of the identity (6), it is easy to see that the right hand side of (7) satisfies the expo-
nential inequality required for Lemma 1. Namely, the tower rule and the conditional sub-Gaussianity of
{Wk, k ≥ 1} implies that E exp

(
⟨λ, ST ⟩ − 1

2 ∥λ∥2
VT

)
≤ 1 for all λ ∈ Rd and T ∈ N. Hence, we may pick
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ρ = N
(
(VT + Γ)−1ST , Σρ

)
in Lemma 1. We have:

1
2

∫ [
∥ST ∥2

(VT +Γ)−1 − ∥λ − (VT + Γ)−1ST ∥2
VT +Γ + ∥λ∥2

Γ

]
dρ(λ)

= 1
2

[
∥ST ∥2

(VT +Γ)−1 − tr((VT + Γ)Σρ) + tr
(
ΓΣρ + Γ(VT + Γ)−1ST ST

T (VT + Γ)−1)]
= 1

2

[
∥ST ∥2

(VT +Γ)−1 − tr(VT Σρ) + ∥ST ∥2
(VT +Γ)−1Γ(VT +Γ)−1

]
(8)

Moreover, if we now set π = N(0, Σπ) we have that:

dKL(ρ, π) = 1
2

[
tr(Σ−1

π Σρ − I) + ∥ST ∥2
(VT +Γ)−1Σ−1

π (VT +Γ)−1 + log det Σπ

det Σρ

]
(9)

We point out that there is an asymmetry between Σρ and Σπ at this point. The first is allowed to depend on
the processes ST , VT but the latter is not. Applying Lemma 1 to the process (6) yields that with probability
at least 1 − e−u:

1
2

[
∥ST ∥2

(VT +Γ)−1 − tr(VT Σρ) + ∥ST ∥2
(VT +Γ)−1Γ(VT +Γ)−1

]
≤ 1

2

[
tr(Σ−1

π Σρ − I) + ∥ST ∥2
(VT +Γ)−1Σ−1

π (VT +Γ)−1 + log det Σπ

det Σρ

]
+ u. (10)

Equivalently:

∥ST ∥2
(VT +Γ)−1 + ∥ST ∥2

(VT +Γ)−1Γ(VT +Γ)−1 − ∥ST ∥2
(VT +Γ)−1Σ−1

π (VT +Γ)−1

≤ tr(Σ−1
π Σρ + VT Σρ − I) + log det Σπ

det Σρ
+ 2u. (11)

Hence it makes sense to choose Σρ = (VT + Γ)−1 and Σπ = Γ−1 giving:

∥ST ∥2
(VT +Γ)−1 ≤ log det(VT + Γ)

det(Γ) + 2u (12)

which is identical to the result of Abbasi-Yadkori et al. (2011) (modulo the stopping time, which can easily
be addressed—see below).
Remark 3.1. By directly applying this proof strategy to (6) one may also obtain the following deviation
bound with probability at least 1 − e−u:

∥ST ∥2
V −1

T

− ∥ST ∥2
V −1

T
ΓV −1

T

≤ log det(VT )
det(Γ) + 2u. (13)

3.2 Variance Sensitive Deviation Bounds: Proof of Theorem 1

The use of Gaussian distributions in the self-normalized martingale bound is very convenient as it admits
closed form KL expressions. However, their use hinges on the fact that an exponential inequality holds
throughout Rd. We now show how to obtain a similar bound using distributions with compact support. In
the sequel, we assume that σ2

var,ε ≜ (1 − ε)−1σ2
var = 1 and note that the general result can be recovered by

rescaling Sτ .

Let us now consider two ellipsoidal distributions. We construct them as follows. Fix two positive definite
matrices Σπ and Σρ to be determined momentarily and a measurable weight factor α ∈ [0, ∞). First, let π
be uniform over the ellipsoid centered at zero and with shape Σπ, i.e., uniform over {x ∈ Rd : xTΣ−1

π x ≤ 1}.
Second, let ρ be uniform over the ellipsoid with center 1

1+α (Vτ + Γ)−1Sτ and shape Σρ. Note that we must
choose α such that 1

1+α (Vτ + Γ)−1Sτ + {x ∈ Rd : xTΣ−1
ρ x ≤ 1} ⊂ {x ∈ Rd : xTΣ−1

π x ≤ 1}. Momentarily
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leaving this point aside, it is easy to see that on the event that the second ellipsoid is contained in the first,
the KL divergence between these two distributions is the logarithmic volume ratio (Lemma 4):

ρ − Ellipsoid ⊂ π − Ellipsoid =⇒ dKL(ρ, π) = 1
2 log det Σπ

det Σρ
. (14)

Moreover, using Lemma 3, on the same event we have that

1
2

∫ [
∥Sτ ∥2

(Vτ +Γ)−1 − ∥λ − (Vτ + Γ)−1Sτ ∥2
Vτ +Γ + ∥λ∥2

Γ

]
dρ(λ)

= 1
2

[
1 + 2α

(1 + α)2 ∥Sτ ∥2
(Vτ +Γ)−1 − 1

d + 2 tr(Vτ Σρ) + 1
(1 + α)2 ∥Sτ ∥2

(Vτ +Γ)−1Γ(Vτ +Γ)−1

]
(15)

In other words, combined with ∥Sτ ∥(Vτ +Γ)−1Γ(Vτ +Γ)−1 ≥ 0, the PAC-Bayesian bound in Lemma 1, justified
by the exponential inequality in Lemma 2, yields that with probability 1 − e−u:

1 + 2α

(1 + α)2 ∥Sτ ∥2
(Vτ +Γ)−1 ≤ 2u + 1

d + 2 tr(Vτ Σρ) + log det Σπ

det Σρ
. (16)

In particular, we may choose Σρ = (d + 2)(Vτ + Γ)−1 and Σπ = e−1(d + 2)V −1 to obtain:

1 + 2α

(1 + α)2 ∥Sτ ∥2
(Vτ +Γ)−1 ≤ 2u + log det(Vτ + Γ)

det(V ) . (17)

We note that (16)-(17) only hold when the event {ρ − Ellipsoid ⊂ π − Ellipsoid} occurs, which in itself is
contingent on our choice of α. First, note that with our choice of priors, the use of Lemma 2 requires the
additional constraint V ⪰ ε−1e−1(d + 2)B2

W B2
X . To conclude the proof it remains to verify that a good

choice of α can be made. The required event occurs precisely when

1
1 + α

(Vτ + Γ)−1Sτ + {x ∈ Rd : xT(Vτ + Γ)x ≤ d + 2} ⊂ {x ∈ Rd : xTV x ≤ e−1(d + 2)}. (18)

If Vτ + Γ ⪰ (1 + ν)2eV it suffices(√
d + 2

1 + ν
+ 1

1 + α
∥Sτ ∥(Vτ +Γ)−1V (Vτ +Γ)−1

)2

≤ e−1(d + 2). (19)

To see this, let y = 1
1+α (Vτ + Γ)−1Sτ and note that we must show that (y + x)TV (y + x) ≤ e−1(d + 2) for

every x ∈ Rd satisfying xT(Vτ + Γ)x ≤ d + 2. Now we have that for every µ > 0, using Young’s inequality
and optimizing the weight µ below:

(y + x)TV (y + x) ≤ (1 + µ)xTV x + (1 + µ−1)yTV y

≤ (1 + µ)(d + 2)
e(1 + ν)2 + (1 + µ−1)yTV y (V ⪯ e−1(1 + ν)−2(Vτ + Γ))

=
( √

d + 2√
e(1 + ν)

+
√

yTV y

)2
µ =

√
e(1 + ν)2yTV y

d + 2

 .

(20)

Moreover, one can verify that the above inequality holds with α =
(√

e(1 + ν)∥Sτ ∥(Vτ +Γ)−1V (Vτ +Γ)−1

ν
√

d + 2
− 1
)

∨

0, so that our priors are indeed well defined for this choice. Hence, under the imposed constraints on V, ε
and ν we have thus obtained that

1 + 2α

(1 + α)2 ∥Sτ ∥2
(Vτ +Γ)−1 ≤ 2u + log det(Vτ + Γ)

det(V ) . (21)

This finishes the proof. ■
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4 Auxiliary Results

Lemma 2. Impose (3), fix a stopping time τ with respect to F0:∞ and ε ∈ (0, 1). We have that

E exp
(

⟨λ, Sτ ⟩ −
σ2

var,ε∥λ∥2
Vτ

2

)
≤ 1 (22)

for every λ ∈ Rd satisfying ∥λ∥2
B2

X
B2

W
≤ ε2 and where σ2

var,ε ≜ (1 − ε)−1σ2
var.

Proof. Applying Bernstein’s moment inequality conditionally on Fk−1 yields that

Ek−1[e⟨λ,kt⟩Wk ] ≤ exp
( ∥λ∥2

XkXT
k

σ2
var

2(1 − |⟨λ, Xk⟩|BW )

)
(23)

as long as λTXkXT
k λ = |⟨λ, Xk⟩|2 < B−2

W . Since XkXT
k ⪯ B2

X , this holds deterministically as long as
∥λ∥2

B2
W

B2
X

< 1. In particular, if we fix ε ∈ (0, 1) and impose ∥λ∥2
B2

X
B2

W
≤ ε2 we find that

Ek−1[e⟨λ,Xk⟩Wk ] ≤ exp
(∥λ∥2

XkXT
k

σ2
var

2(1 − ε)

)
(24)

Applying the tower property repeatedly, it thus follows that with σ2
var,ε = (1 − ε)−1σ2

var we have that

E exp
(

⟨λ, St⟩ −
σ2

var,ε∥λ∥2
Vt

2

)
≤ 1 (25)

for every t and for every λ satisfying ∥λ∥2
B2

X
B2

W
≤ ε2.

To prove the result for τ a stopping time, define the (by the calculations above) nonnegative supermartin-

gale Mt ≜ exp
(

⟨λ, St⟩ − σ2
var,ε∥λ∥2

Vt

2

)
. It follows by standard optional stopping arguments and Fatou’s

Lemma that Mτ = lim infT →∞ Mτ∧T also is a nonnegative supermartingale. In particular EMτ ≤ 1 as per
requirement. ■

Lemma 3. Fix Σ ∈ Rd×d, Σ ≻ 0 and let U be uniformly distributed over {x ∈ Rd|xTΣ−1x ≤ 1}. Then
EUUT = 1

d+2 Σ.

Proof. Since U =
√

ΣY where Y is uniform over xTx ≤ 1 it suffices to prove the result for Y . By symmetry
we must have EY Y T = αId for some α > 0. Moreover, it is easy to see that tr EY Y T = d

d+2 . Hence
α = (d + 2)−1 and the result is established. ■

Lemma 4. Fix Σπ, Σρ ∈ Rd×d with Σπ, Σρ ≻ 0. Let π and ρ be uniform distributions over Eπ ≜ {x ∈
Rd|xTΣ−1

π x ≤ 1} and Eρ ≜ {x ∈ Rd|xTΣ−1
ρ x ≤ 1} respectively. If Eρ ⊆ Eπ we have that dKL(ρ, π) =

1
2 log det Σπ

det Σρ
.

Proof. We have that

dKL(ρ, π) =
∫

Eρ

log ρ(x)
π(x)dρ(x)

=
∫

Eρ

log det
√

Σπ

det
√

Σρ

dρ(x) (volume ratio)

= log det
√

Σπ

det
√

Σρ

∫
Eρ

dρ(x) = log det
√

Σπ

det
√

Σρ

(∫
Eρ

dρ(x) = 1
) (26)

as per requirement. ■
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Proof of Lemma 1. By integrating the inequality E[exp Z(λ)] ≤ 1 with respect to π and Fubini:

E
[∫

Λ
exp Z(λ)dπ(λ)

]
≤ 1. (27)

We now change measure using the variational characterization of the relative relative entropy functional
(Donsker & Varadhan, 1975), which reads:

log
∫

Λ
exp(Z(λ))dπ(λ) = sup

ρ

{∫
Λ

Z(λ)dρ(λ) − dKL(ρ, π)
}

, (28)

where the supremum spans over all probability measures ρ over Λ. Hence

E
[
exp sup

ρ

{∫
Λ

Z(λ)dρ(λ) − dKL(ρ, π)
}]

≤ 1. (29)

The result follows by a Chernoff bound applied to
{

supρ

{∫
Λ Z(λ)dρ(λ) − dKL(ρ, π)

}
> u

}
. ■
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