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Abstract

Accurate prediction of the year of total knee replacement (TKR) is challenging due to
the complex interplay of factors influencing the surgical decision. Current deep learning
models often rely on single-modality data, limiting their predictive power. Multimodal
approaches integrating imaging and patient data offer the potential to improve predictions
and support clinical decisions. This study presents an end-to-end trained, transformer-
based multimodal model that integrates MR imaging with tabular data, including clinical
variables and image readings, to predict the year of TKR for each subject. Our model lever-
ages cross-modal attention to fuse features from an image encoder with a self-supervised
pretrained tabular encoder, achieving the highest accuracy of 63.4% among tested mod-
els. We evaluated its performance against three unimodal models and four multimodal
fusion strategies, including simple concatenation, DAFT, and multimodal interaction. The
results demonstrate that our model’s cross-modal interaction approach with pretrained
TabNet not only outperformed all unimodal models but also showed improvements over
other multimodal fusion techniques, highlighting the effectiveness of cross-modal attention
fusion for integrating complex data modalities in TKR year prediction tasks. Source code
is available at https://github.com/denizlab/2025_MIDL_time2TKR.

Keywords: Multimodal Learning, Year of TKR Prediction, Deep Learning, Knee Os-
teoarthritis

1. Introduction

Osteoarthritis (OA), a prevalent joint disorder, often leads to physical disability and affects
global health (Kellgren and Lawrence, 1957). Knee osteoarthritis (KOA), the most common
form, impacts millions worldwide, causing pain and mobility issues (Kellgren and Lawrence,
1957). It affects about 10% of men and 13% of women over 60. While there is no cure for
reversing the course of KOA, total knee replacement (TKR) surgery becomes necessary
in the advanced stages. Estimating the year of TKR is crucial for identifying high-risk
patients and informing timely treatment decisions. However, predicting the year of TKR
is complex, influenced not only by disease progression but also by individual factors like
patient preferences, financial constraints, comorbidities, and overall health (Cigdem and
Deniz, 2023). This variability makes accurate prediction challenging, underscoring the need
for advanced predictive tools.
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2. Related Work

In recent years, deep learning (DL) models have advanced KOA severity assessment across
various imaging modalities (Rajamohan et al., 2023; Hirvasniemi et al., 2023; Tolpadi et al.,
2020; Panfilov et al., 2022; Mahmoud et al., 2023). MR imaging, for example, effectively
detects key structural features of knee degeneration like cartilage defects, osteophytes, joint
effusion, and bone marrow edema (Rajamohan et al., 2023; Cigdem and Deniz, 2023). Most
studies in the literature focus on predicting OA progression (Rajamohan et al., 2023; Pan-
filov et al., 2022; Leung et al., 2020; Panfilov et al., 2023), which is typically formulated
as a binary classification task. Others aim to estimate OA severity (Tolpadi et al., 2020;
Felfeliyan et al., 2024), KL grades (Leung et al., 2020), or symptomatic radiographic KOA
(Hirvasniemi et al., 2023). These models primarily rely on imaging alone or incorporate a
limited set of clinical variables, such as age, sex, BMI, and pain scores. However, only a few
studies have investigated predicting the specific year of TKR, making this a relatively unex-
plored yet clinically important area (Mahmoud et al., 2023; Jamshidi et al., 2021; Heisinger
et al., 2020; Liu et al., 2022). Previous studies using the Osteoarthritis Initiative (OAI)
dataset—a 10-year observational study—have employed survival analysis methods and re-
lied on clinical variables and image readings to estimate the year of TKR (Mahmoud et al.,
2023; Jamshidi et al., 2021; Heisinger et al., 2020). However, these studies have typically
focused on timeframes of no more than five years. While many approaches have demon-
strated success in OA progression prediction (Rajamohan et al., 2023; Tolpadi et al., 2022;
Hirvasniemi et al., 2023), existing DL models are predominantly unimodal, focusing only
on imaging data without incorporating tabular data such as patient demographics, clinical
assessments, or image readings (Rajamohan et al., 2023; Tolpadi et al., 2020; Panfilov et al.,
2022). As physicians rely on both imaging and clinical data for accurate diagnosis, there is
a growing need for automated multimodal AI systems that integrate medical images with
clinical patient data to enhance consistency and precision in OA management strategies.

As tabular data gains prominence in multimodal learning, its integration becomes crucial
for enhancing diverse applications (Kita et al., 2023; Felfeliyan et al., 2024; Du et al.,
2024). In (Kita et al., 2023), TabNet (Arik and Pfister, 2019) and a DL model were
combined for spinal cord tumor diagnosis through concatenated outputs. (Felfeliyan et al.,
2024) employed a CLIP-style vision-language model to predict OA severity by merging knee
radiographs with tabular OA scores. Meanwhile, (Du et al., 2024) introduced a transformer-
based multimodal framework using 2D short-axis cardiac MR images and tabular data,
leveraging self-supervised learning to manage missing data in cardiac disease classification.

Unlike previous studies that primarily focus on predicting KOA progression (Rajamohan
et al., 2023; Panfilov et al., 2022; Leung et al., 2020; Panfilov et al., 2023), KL grade (Leung
et al., 2020), or KOA severity (Hirvasniemi et al., 2023), this study specifically aims to
predict the year of TKR. To this end, we developed an end-to-end, transformer-based mul-
timodal model that integrates MR scans with clinical and image reading data. As a result,
this study should not be directly compared to research focused on OA progression or sever-
ity prediction, as it addresses a distinct clinical outcome. Compared to our previous study
(Cigdem et al., 2024a), where we performed survival analysis using a two-stage prediction
model, this study employs end-to-end training by integrating MR scans with clinical and
image reading data. Additionally, we implemented 5-fold cross-validation (CV) to obtain
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a more reliable estimate of the model’s generalization performance. We processed tabular
data with TabNet, which is then combined with image features using cross-modal attention
to predict the year of TKR for each subject. The model using the OAI dataset outputs a pre-
dicted year within a 0 to 9-year timeframe, representing the estimated year of TKR surgery.
The 10-year timeframe was selected based on the OAI study design (Lester, 2008). Tabular
data was encoded using TabNet (Arik and Pfister, 2019), a transformer-based model that
employs sequential attention to identify key features, enhancing interpretability. TabNet
also leverages unsupervised pre-training to predict masked features.

Our contributions are as follows: (1) Introducing an end-to-end trained multimodal ap-
proach that combines MR data with tabular data (clinical variables and image readings) to
predict the year of TKR within 9 years. (2) Implementing a transformer-based multimodal
architecture, utilizing unsupervised representation learning through masked self-supervised
learning for tabular data. (3) Demonstrating that integrating image data with pretrained
TabNet-processed tabular data through a multimodal interaction module based on cross-
modal attention improves the accuracy of predicting the year of TKR surgery.

3. Method

A multimodal model is proposed to predict the year of TKR using both image and tabular
data. Assume (Xi ∈ RH×W×S×1, Xt = [x1t , . . . , x

N
t ] ∈ RN ) be an image-tabular pair,

where N is the number of selected tabular variables. When Na is the number of categorical
variables, [x1t , . . . , x

Na
t ], then (N −Na) is that of continuous variables, [x

Na+1
t , . . . , xNt ]. The

continuous variables were standardized using the z-score normalization (Du et al., 2024).
As shown in Figure 1, the model includes a CNN-based image encoder ϕi, a tabular encoder
ϕt, and a multimodal interaction module ψ.

3.1. Image Encoder, ϕi

A 3D Resnet18 model (Tran et al., 2017) was used with the sagittal fat-suppressed three-
dimensional dual-echo in steady state (DESS) MR images in OAI study cohort. To improve
model generalizability, we applied random cropping during training and center cropping
during validation. The resulting input image sizes were set to 300x300x160. Features were
extracted from the output of the last pooling layer. The image encoder produced the image
representation I ∈ RH′×W ′×S′×C , where C is its corresponding channel dimension. An
ablation study for ResNet18 selection as the image encoder is provided in the Ablation
study section of the Supplementary Document.

3.2. Tabular Encoder, ϕt

Out of 1224 baseline clinical variables in the OAI (Lester, 2008) database, 245 were available
for over 90% of the subjects. All available image assessment measurements were utilized.
A least absolute shrinkage and selection operator (Lasso) method (Tibshirani, 1996) is
applied to identify the most relevant features. The regularization strength (α) is optimized
using the Optuna framework (Akiba et al., 2019) to maximize explained variance while
promoting sparsity. The optimal α is used to finalize the selection of 31 features. Let
(Xt = [XcXr] = [x1t , . . . , x

A
t ] ∈ RA,where Xc,Xr ∈ RA) be the concatenation of clinical
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Figure 1: The architecture of the proposed model, including its image encoder, unsupervised
pre-trained tabular encoder, and multimodal interaction module. DESS: sagittal
fat-suppressed three-dimensional dual-echo in steady state.

variables and image readings, where A is the number of all tabular variables available
in OAI dataset. After applying Lasso feature selection, the (Xt′ = [x1t , . . . , x

N
t ] ∈ RN ) is

obtained. The masked self-supervised pretraining of the tabular encoder incorporates a task
for predicting missing feature columns from the existing ones. The N -dimensional selected
tabular features (f ∈ RB×N ) is passed to each decision step, where B is the batch size.
Consider a binary mask (M ∈ {0, 1}B×N ). The encoder inputs (1−M · f̂), and the decoder
outputs the reconstructed features, (M · f̂). The prior scale term, denoting how much a
particular feature has been used previously, is initialized as P[0] = (1−M) in the encoder so
that the model emphasizes only the known features while the decoder’s final fully-connected
layer is multiplied by (M) to output the unknown features. The reconstruction loss during
the self-supervised phase is:

B∑
b=1

D∑
j=1

∣∣∣∣∣∣∣∣
(f̂b,j − fb,j) · Sb,j(∑B

b=1

(
fb,j − 1

B

∑B
b=1 fb,j

)2
)
∣∣∣∣∣∣∣∣
2

. (1)

After pretraining, TabNet leverages the learned weights and sequential attention to focus on
the most relevant features at each decision step. The tabular encoder produced the tabular
representation T ∈ RN×D, where D is its corresponding channel dimensions.
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3.3. Multimodal Interaction Module, ψ

A cross-attention mechanism is used to effectively capture relationships across modalities
(Vaswani et al., 2017). The I is projected via linear layer into Î ∈ R(H′W ′S′)×D to have
the same embedding size as T. The interaction module is composed of Lm layers, each
integrating self-attention, cross-modal attention, an MLP feed-forward layer, and layer nor-
malization. F captures a joint representation of an image-tabular pair. The cross-modal
attention in the l-th layer can be formulated as described in (Vaswani et al., 2017; Du et al.,
2024):

CrossAttention(Q,K,V ) = softmax

(
QKT

√
dk

)
V , (2)

where Q = Fl−1Wl
Q, K = ÎWl

K , V = ÎWl
V , and F0 = T.

4. Experiments

4.1. Study cohort

The study utilized knee data from the publicly accessible OAI database. The OAI database
contains clinical variables, MRI exams, and MRI quantitative and semi-quantitative image
assessment measurements for 4,796 subjects aged 45 to 79 with or at risk for KOA, evaluated
at baseline and follow-ups at 12, 18, 24, 30, 36, 48, 60, 72, and 96 months. The OAI received
ethical approval from the Internal Review Boards at the University of California at San
Francisco. All participants provided written informed consent. The study cohort in the
OAI was evaluated with longitudinal DESS MRI exams from 3.0T MRI scanner. Out of
4796 subjects in the OAI, 547 subjects underwent TKR during the 9-year follow-up period.
Each subject may have undergone TKR in either one or both knees (163 with only the left
knee, 168 with only the right knee, and 108 with both knees). In this study, we utilized all
available data from the OAI dataset that included MR scans, image readings, and clinical
data, resulting in 850 knee MRIs, as detailed in Figure 2. The baseline gender and age
of study cohorts were provided in Table 1. For data augmentation, each knee was treated
as an independent data point. Follow-up time point data for each patient were treated as
independent, separate entries rather than part of a longitudinal study, with each follow-up
time considered as year 0 for estimating the year of TKR.

4.2. Multimodal Model Designs

We compared the performance of our proposed model against three unimodal models, an
MR image-only model, a TabNet-based tabular-only model, and a pretrained TabNet-based
tabular-only model, as well as several multimodal models that integrate image and tabular
data in four different ways as: 1. Basic Concatenation: Combines image features with all
tabular data via concatenation in the penultimate layer, 2. Dynamic Affine Feature Map
Transform (DAFT): Adjusts image feature maps based on tabular data, enabling images
to be interpreted in the context of tabular data (Wolf et al., 2022), 3. TabNet-Processed
Models: Tabular data is processed with TabNet, then combined with image features using
basic concatenation and DAFT, and 4. Self-Attention Tabular Encoder with Multimodal
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Figure 2: Flowchart for study cohort generation. After reviewing MRI data along with
clinical, quantitative, and semi-quantitative image assessment measurements, 850
knee data from 547 subjects who underwent TKR within a 9-year follow-up period
in the OAI database were identified. Knees: Knee images.

Dataset OAI

Number of Knees 850

Imaging Type
(Train/Validation/Test)

DESS
(604/82/164)

SEX Male: 490, Female: 360

AGE Mean±SD (Range)
Male 64.2±8.3 (45-83)
Female 65.7±8.5 (45-82)

BMI Male: 29.7±5.3, Female: 29.9±4.2

RACE Non-White: 17, White: 731, Black: 78, Asian: 24

KL Grade 0: 16, 1: 32, 2: 162, 3: 317, 4: 323

PAIN (WOMAC Score) 0: 95, 1-5: 369, 6-10: 294, 11-15: 88, 16-20: 4

OARSI Grade None: 676, Small: 43, Medium: 64, Large: 67

BML Subregions 0: 121, 1-3: 287, 4-6: 390, 7-9: 52, 10-12: 0

BML: bone marrow lesions, DESS: sagittal fat-suppressed three-dimensional dual-echo in steady state,
OAI: osteoarthritis initiative, std: standard deviation. There are fifteen BML subregions, covering the
femoral, tibial, and patellar areas. A subregion is classified as damaged if the grade is greater than 0.

Table 1: Demographic and key clinical and imaging assessment variables of subjects in the
OAI study cohort.

Interaction Fusion: Tabular data is processed with a self-attention transformer before being
combined with encoded image data using cross-modal attention (Du et al., 2024). This
comprehensive comparison allowed us to identify the most effective model for predicting the
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year of TKR within a 0 to 9-year timeframe by evaluating how different fusion strategies
impact predictive performance.

4.3. Experiment Design

We used 604, 82, and 164 image-tabular data pairs for the training, validation, and test
splits, respectively. The splits were made at the subject level to ensure that all follow-up
data for the same subject was included within a single split. 5-fold CV was used to validate
the model performance. The Kullback–Leibler divergence loss and label discretization are
used for end-to-end training (Cigdem et al., 2024b). Predictions were calculated based on
the area under the predicted distribution. The optimal value of the Lasso regularization
parameter α obtained through hyperparameter tuning was 0.097. The Adam optimizer is
used for all training. For self-supervised pretraining, we set the maximum epochs to 200,
batch size B = 16, virtual batch size BV = 4, masking ratio to 0.5, and a learning rate
(LR) scheduler, with a starting LR of 10−2. The end-to-end model was trained with an
LR of 10−5 and a weight decay of 10−4, running for 150 epochs with a batch size of 4. For
TabNet, we set a categorical embedding dimension of eight, Nd = Na = 64, Nsteps = 4,
γ = 1.3, and momentum mB = 0.02. The optimal LR of 0.025, weight decay of 0.0014, nine
independent layers, and seven shared layers were selected through hyperparameter tuning.
Both our transformer-based tabular encoder and multimodal interaction module consist of
four transformer layers, each featuring eight attention heads and a hidden dimension of
64. We used an MLP with hidden sizes of 512 for image data and 64 for tabular data,
both producing outputs of size 64. The best model was selected based on the highest
validation accuracy. To mitigate the risk of overfitting, we monitored validation loss and
selected the model with the best validation accuracy, ensuring optimal performance. The
image encoder is computationally intensive due to 3D convolutions on MRI data, while
the tabular encoder remains lightweight with embeddings. The fusion module integrates
both via cross-attention, reducing spatial dimensions to enhance efficiency and scalability
for clinical use. The accuracy, MAE, and macro-AUC metrics were used for evaluating the
models. Details of the metrics are provided in Model prediction evaluation metrics section
of the Supplementary Document.

5. Results and Discussion

We evaluated the performance of two imputation methods, mean imputation for continuous
variables with median imputation for categorical variables and a more advanced Random
Forest-based imputation (Stekhoven and Bühlmann, 2012), alongside the impact of feature
selection on model accuracy in predicting the year of TKR. Models included TabNet regres-
sor with and without self-supervised pretraining, and the Lasso feature selection method was
applied prior to encoding. As shown in Table 2, the highest accuracy of 61.0% was achieved
by combining Random Forest imputation, Lasso feature selection, and the pretrained Tab-
Net model. This configuration consistently outperformed other setups, suggesting that
leveraging a feature selection and pretraining enhances model performance. Additionally,
TabNet pretraining consistently improved accuracy across all settings, highlighting the ben-
efit of self-supervised pretraining in tabular data encoding. Since we used TabNet regression
to predict the time to TKR, macro-AUC could not be calculated for these models. Table 3
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Imputation Method
Feature
Selection

Model
ACC
(%)

MAE

Mean(Cont.)+Median(Cat.) - TabNet 59.2 1.58

Mean(Cont.)+Median(Cat.) - TabNetPretrained 60.4 1.55

Mean(Cont.)+Median(Cat.) Lasso TabNet 55.5 1.57

Mean(Cont.)+Median(Cat.) Lasso TabNetPretrained 57.3 1.62

Random Forest - TabNet 54.3 1.65

Random Forest - TabNetPretrained 59.8 1.59

Random Forest Lasso TabNet 57.3 1.74

Random Forest Lasso TabNetPretrained 61.0 1.55

Table 2: Performance comparison of two imputation methods, feature selection strategies,
and models in predicting the year of TKR.

compares the performance of our proposed model with various multimodal and unimodal
models for predicting the year of TKR within a 9-year timeframe. Among the unimodal
models, the pretrained TabNet-based tabular-only model and the MR image-only model
achieved similar accuracies of 61.0% and 60.7%, respectively. These results indicate that
each modality alone offers competitive performance, with the pretrained TabNet partic-
ularly effective at handling tabular data independently. The proposed model combining
an image encoder with a pretrained TabNet as the tabular encoder using a multimodal
cross-modal attention fusion approach achieved the highest accuracy of 63.4% across all
models. In comparison, basic concatenation of image data with raw tabular data and with
pretrained TabNet-processed tabular data reached accuracies of 54.6% and 57.9%, respec-
tively. DAFT showed improved performance over concatenation, achieving accuracies of
58.5% when applied to MR images with raw tabular data and 60.4% when applied to MR
images with pretrained TabNet-processed data. Additionally, the multimodal model using
a self-attention transformer-based tabular encoder and a cross-modal attention fusion pro-
vided an accuracy of 59.2%. As we used both knees from the same patient as independent
samples, this could introduce correlation biases, potentially affecting the statistical robust-
ness of the results. To assess this, we investigated whether training the model using only
a single knee per patient would impact accuracy. This approach reduced the dataset size,
leading to lower accuracy (57.7% vs. 63.4%), higher MAE (1.56 vs. 1.33), and a decrease
in AUC (0.615 ± 0.040 vs. 0.665 ± 0.029). These findings reinforce the importance of
leveraging both knees as independent samples to enhance model robustness and predictive
accuracy.

The results underscore the advantages of our proposed model’s cross-modal attention fu-
sion approach, which outperforms other fusion methods. The highest performance achieved
by our model highlights the importance of both pretraining and cross-modal attention fusion
when combining tabular and image data for the year of TKR prediction over a 9-year time-
frame. The proposed model is effective in capturing nuanced relationships across modalities,
leading to improvements over conventional fusion techniques in multimodal learning.
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TKR surgery decisions are mostly influenced by clinical symptoms, particularly pain and
functional limitations, rather than radiographic OA severity alone. For instance, a patient
with advanced OA (KL grade 4) may avoid surgery if they experience minimal pain, while
another with mild OA (KL grade 1) may undergo TKR due to severe pain. Therefore, we use
tabular data as the query vector in cross-modal attention fusion instead of imaging features.
To provide a quantitative comparison, we conducted an additional experiment using image
features as the query while keeping the rest of the model unchanged. This resulted in a
decline in performance compared to our proposed approach, which uses tabular features as
the query. Specifically, accuracy decreased from 63.4% to 57.3% MAE increased from 1.33
to 1.51 and macro-AUC dropped from 0.665 ± 0.029 to 0.620 ± 0.073.

Data Model Fusion ACC MAE macro-AUC ± std

Tabular-only TabNetPretrained - 61.0 1.55 -

Image-only DL - 60.7 1.46 0.615 ± 0.047

Image+Tabular DL+Raw Tabular Concatenation 54.6 1.68 0.539 ± 0.058

Image+Tabular DL+Raw Tabular DAFT 58.5 1.56 0.608 ± 0.013

Image+Tabular DL+TabNetPretrained Concatenation 57.9 1.54 0.597 ± 0.040

Image+Tabular DL+TabNetPretrained DAFT 60.4 1.47 0.644 ± 0.024

Image+Tabular DL+TransformerSelf-Attention Multimodal Interaction 59.2 1.48 0.559 ± 0.071

Image+Tabular DL+TabNetPretrained Multimodal Interaction 63.4 1.33 0.665 ± 0.029

Table 3: Performance comparison of the proposed model against various multimodal and
unimodal models for predicting the year of TKR within a 9-year timeframe.

Our study has limitations. We included only subjects who underwent TKR within a
9-year follow-up period, requiring the pre-classification of subjects into TKR and non-TKR
groups. In future work, censored data will be incorporated, and survival analysis will be
conducted for the control group. Additionally, we used both knees from the same patient,
which may introduce correlation; however, treating them as separate data points increases
the sample size, enhances statistical power, and captures individual knee variability. While
some clinical data, such as general health indicators, apply to both knees, each knee has
distinct measurements and images. Since their condition and progression can vary, we
treated them independently in our model. The generalizability of our model to external
datasets is also limited due to differences in available clinical variables, image readings, and
the absence of DESS MRI data in other cohorts, preventing direct validation. Furthermore,
the OAI dataset primarily consists of older, overweight, and Caucasian subjects. As a result,
the model’s generalizability to populations with greater diversity in age, body mass index,
race, and ethnicity requires further investigation.

6. Conclusion

Our study demonstrates that an end-to-end transformer-based multimodal model, integrat-
ing MR imaging and tabular data with pretrained TabNet encoder, improves the year of
TKR prediction accuracy compared to unimodal and other multimodal approaches. The
proposed approach can also be applied to other biomedical applications involving multi-
modal data integration and time-to-event analysis.
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S.1. Model Training

An AI model combining Resnet18 and TabNet with multi-modal cross-attention fusion was
trained to predict the year of TKR surgery within a 9-year timeframe. We used data split
as: 70% for training, 10% for validation, and 20% for testing. Horizontal flipping and
random crop were used for data augmentation. To improve model generalizability, random
cropping of input image size to 300x300x160 was implemented for DESS MR scans. Adam
optimizer was used with a learning rate and a weight decay of 10-4. The model with the
best validation accuracy was selected as the best model. The second last layer of Resnet18
DL model, the output of global max pooling layer before fully connected one provided 512
features for each image modality.

S.2. Model prediction evaluation metrics

Accuracy and macro-AUC were used as estimation evaluation metrics. Accuracy was cal-
culated as:

ACC = 100× N correct

N total
(3)

where:

• ACC: the accuracy of the TKR time prediction model

• Ncorrect: the number of patients whose predicted TKR time falls within ±1 year of
the actual TKR time (|y − ŷ| ≤ 1),

• Ntotal: the total number of patients in the study.

We compute the macro-AUC for a 10-class classification task, where each class represents
one year to TKR (0–9 years). Since our model originally predicts 30 bins, each corresponding
to 4-month intervals, we aggregate every 3 consecutive bins to obtain probabilities for 10
yearly bins before computing the macro-AUC using a One-vs-Rest (OvR) strategy. The
output of our model M ∈ RB×30, where B is the batch size and 30 bins correspond to 4-
month intervals. Since the model outputs log-probabilities, we apply the softmax function
to obtain probabilities, P = exp(M), where P represents the probability distribution across
30 bins. To convert 30 bins (4-months each) into 10 bins (1-year each), we sum every 3
consecutive bins:

P
(year)
j =

3∑
k=1

P(3j+k) (4)

for j = 0, 1, ..., 9. This gives us a new probability matrix, P (year) ∈ RB×10 where each
column represents a 1-year probability. Let the true labels be y, where each ground truth
yi (for the ith sample) represents the true time to TKR in years. The labels are discrete
values, y ∈ {0, 1, . . . , 9} where each class corresponds to a yearly bin. The macro-AUC is
computed using a One-vs-Rest (OvR) strategy, which involves computing AUC for each
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class k (treating it as a binary classification problem: Class k vs. all others) and averaging
the AUC scores across all 10 classes. The macro-AUC is given by:

Macro-AUC =
1

10

9∑
k=0

AUC(P
(year)
k , yk) (5)

where:

• P
(year)
k represents the predicted probability of class k,

• yk is the true label transformed into a binary format for the One-vs-Rest approach,

• AUC is the area under the receiver operating characteristic (ROC) curve.

S.3. Ablation study

To justify image encoder choice in our end-to-end trained multi-modal model, we evaluated
ResNet18, ResNet34, ResNet50, and Med3D using MRI-only data. ResNet18 provided the
best prediction accuracy for our DESS MRI data from the OAI dataset, as provided in
Table 4.

Model ACC (%)

ResNet18 57.9

ResNet34 53.1

ResNet50 53.3

Med3D 55.8

Table 4: Performance comparison of AI models in predicting the year of TKR.

We compared the performance of our end-to-end trained model with commonly used tra-
ditional machine learning (ML) models for TKR prediction. Specifically, we extracted fea-
tures from the image encoder and concatenated them with the selected tabular data, then
evaluated the performance of a random forest (RF) model, XGBoost, and a multi-layer
perceptron (MLP) using the combined dataset. Table 5 demonstrate that the end-to-end
trained model outperformed these traditional ML models, highlighting the advantage of
joint feature extraction and optimization in a unified framework.

Model ACC (%) MAE

RF 59.0 1.56

XGBoost 52.9 1.69

MLP 52.2 1.83

Our Model 63.4 1.33

Table 5: Performance comparison of ML models and our proposed end-to-end trained mul-
timodal model in predicting the year of TKR.
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