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ABSTRACT

Large language models (LLMs) are typically deployed under diverse memory and
compute constraints. Existing approaches build model families by training each
size independently, which is prohibitively expensive and provides only coarse-
grained size options. In this work, we identify a novel phenomenon that we call
boomerang distillation: starting from a large base model (the teacher), one first
distills down to a small student and then progressively reconstructs intermediate-
sized models by re-incorporating blocks of teacher layers into the student—
without any additional training. This process produces zero-shot interpolated
models of many intermediate sizes whose performance scales smoothly between
the student and teacher, often matching or surpassing pretrained or distilled mod-
els of the same size. We further analyze when this type of interpolation succeeds,
showing that alignment between teacher and student through pruning and distilla-
tion is essential. Boomerang distillation thus provides a simple and efficient way
to generate fine-grained model families, dramatically reducing training cost while
enabling flexible adaptation across deployment environments.

1 INTRODUCTION

As large language models (LLMs) become integral to various applications, the challenge of
adapting them efficiently to diverse hardware and deployment constraints is increasingly pressing.
These models are now used in a wide variety of settings, ranging from edge devices (Narayan et al.,
2025) to large-scale clusters (Comanici et al., 2025). Real-world deployment requires balancing
multiple constraints, such as compute resources, energy consumption, and the trade-off between
accuracy and latency (Huyen, 2022; Wu et al., 2022; Khandelwal et al., 2025). To address these
diverse requirements, model developers increasingly release families of LLMs spanning different
parameter scales (Team et al., 2024; Grattafiori et al., 2024; Yang et al., 2025). However, producing
such model families remains highly resource-intensive. Conventional pretraining pipelines require
enormous compute, making it impractical to train many variants from scratch. As a result, existing
families typically include only a small set of coarse-grained model sizes, leaving significant gaps
in the trade-off space between efficiency and capability. In this work, we investigate cost-efficient
methods to construct pretrained LLM families with fine-grained size increments, enabling smoother
adaptation to heterogeneous deployment constraints.

Knowledge distillation has become the standard approach for producing LLM families of different
sizes (Muralidharan et al., 2024). Rather than pretraining each model from scratch, practitioners
often distill a pretrained teacher model into smaller student models (Hinton et al., 2015). Student
models may be initialized either randomly or using parameter reduction techniques such as layer
dropping (Men et al., 2024; Chen et al., 2025) or neuron pruning (Ma et al., 2023). They are then
trained on large text corpora with distillation objectives, often combined with additional alignment
losses such as cosine similarity or L2 distance. This paradigm is significantly more compute-
efficient than independent training, reducing both FLOPs and the number of training tokens
required (Muralidharan et al., 2024). However, its key limitation is that each student still requires
a full training run. As a result, scaling to fine-grained model sizes remains prohibitively expensive.

In this work, we identify a surprising phenomenon we call boomerang distillation (Figure 1): start-
ing from a large teacher model, one can first distill down to a small student and then progressively re-
construct larger models by re-incorporating subsets of teacher layers into the student. This procedure
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Figure 1: Overview of boomerang distillation. ➀ In this example, the student model is initialized by
dropping layers from the pretrained teacher model. ➁ The teacher model is distilled into the student
model with cross-entropy loss, knowledge distillation loss, and cosine distance loss (Equation 1).
➂ After training the student model, a block of teacher layers corresponding to a student layer is
inserted back into the model to get the zero-shot interpolated model.

yields a spectrum of intermediate model sizes without any additional training. Remarkably, these
hybrids consistently achieve performance that interpolates smoothly between the student and teacher
across downstream tasks (Figure 2). Unlike existing pruning-based approaches, which only use in-
formation from the teacher, boomerang distillation leverages both student and teacher information
to form true interpolations between them. As a result, it consistently yields models that substantially
outperform naive layer dropping and more advanced pruning techniques. In short, boomerang dis-
tillation reveals that zero-shot model size interpolation is not only possible, but also highly effective.

We conduct extensive experiments and ablations to characterize this phenomenon. First, we show
that boomerang distillation only emerges when the student model is initialized from teacher weights
and trained with a distillation objective plus an alignment loss such as cosine distance (§3.1). The
resulting interpolated models match or exceed the performance of tailored distilled models of the
same—or even larger—size (§3.2), with the alignment loss playing a critical role in the stability of
boomerang distillation (§3.3). We further show that boomerang distillation generalizes to existing
distilled models such as DistilBERT (Sanh et al., 2019) when combined with BERT (Devlin
et al., 2019) (§3.4). Finally, we demonstrate that boomerang distillation-based models consistently
outperform pruning methods across a variety of settings (Men et al., 2024; Yang et al., 2024) (§3.5)
and provide extensive ablations aimed at understanding the impact of training data budgets and
layer selection strategies (§3.6).

Our work makes the following contributions:

• We introduce boomerang distillation, a general phenomenon in model distillation that enables the
creation of a family of models spanning student and teacher sizes without any additional training
by patching the student with blocks of teacher layers (§2). These models smoothly interpolate size
and performance between the student and teacher (§3.1). To our knowledge, this is the first study
to identify and analyze this phenomenon and its zero-shot interpolation capabilities.

• We show that these interpolated models achieve performance on par with, and in some cases
surpass, standard distilled models of the same size (§3.2). We also demonstrate the phenomenon
across open-source models such as DistilBERT and BERT, highlighting its generality (§3.4).

• We perform thorough experiments to understand the conditions under which boomerang distilla-
tion arises (§3.3, Appendices E, F, G, H, I, and J) and demonstrate its consistent advantages over
existing pruning-based approaches (§3.5). For example, we show that alignment loss, such as
cosine distance loss, enables us to create boomerang distilled models with stable performance.

2 BOOMERANG DISTILLATION: KNOWLEDGE DISTILLATION WITH
STUDENT PATCHING

We now describe the procedure underlying boomerang distillation. It consists of three key stages:
(1) student initialization, (2) knowledge distillation, and (3) student patching (Figure 1).

Preliminaries. We consider the problem of distilling a pretrained transformer-based language
model (teacher) into a smaller student model. Let the teacher LLM T have N transformer
layers, and the student model from the same family S have M < N layers. We denote the
parameters of the teacher and student models, respectively, as θT = (θE

T ,θ
(1)
T , . . . ,θ

(N)
T ,θD

T ) and
θS = (θE

S ,θ
(1)
S , . . . ,θ

(M)
S ,θD

S ), where θ(i) represents the i-th transformer block, and θE and θD
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denote the embedding layer and LM head, respectively. All student and teacher layers produce
hidden states of the same dimension. We assume access to corpus X to train the student model
using a knowledge distillation objective; but do not assume access to the teacher’s pretraining data,
consistent with realistic settings (Yang et al., 2025). Our goal is to learn θS such that after training,
for any nonnegative K with M + K < N , we can deterministically construct an intermediate
model θI with M +K layers from (θS ,θT ).

2.1 STUDENT INITIALIZATION

To initialize the student model, we partition the teacher’s N transformer layers into M contiguous
blocks B = (b(1) . . .b(M)), where the i-th block b(i) consists of the layers (θ(ℓi)

T , . . . ,θ
(ℓi+1−1)
T )

for some indices 1 = ℓ1 < · · · < ℓM ≤ N (with b(M) ≜ (θ
(ℓM )
T , . . . ,θ

(N)
T )). Following prior work

(Chen et al., 2025), we initialize the student as θ(i)
S = θ

(ℓi)
T , i = 1, ...,M , θE

S = θE
T , and θD

S = θD
T .

2.2 KNOWLEDGE DISTILLATION

The initialized student model is then trained via distillation to recover performance while remaining
aligned to the teacher model, which will enable subsequent interpolation by patching the student
model (Section 2.3).

Given a training sequence x = (x1, . . . , xL) ∼ X of L tokens, let zT
j = T (x<j) and zS

j = S(x<j)
be the logits of the teacher and student model for the j-th token. Following standard knowledge
distillation approaches (Hinton et al., 2015; Muralidharan et al., 2024), in addition to the cross
entropy loss LCE(xj | x<j ;θS), we add a KL divergence loss:

LKL(x<j ;θS) = τ2 ·KL
(
softmax

(
zT
j /τ

)
∥ softmax

(
zS
j /τ

))

where τ is a temperature parameter. To further align representations, we introduce a cosine distance
loss (Sanh et al., 2019), which encourages the hidden states of the student across all layers to remain
close to those of the teacher model. We refer to this as the alignment loss.

:::
The

:::
key

::::
idea

::
is

::
to

:::::
ensure

::
the

:::::::
student

::::
layer

:::::::::::
approximates

:::
the

:::::::
teacher

::::::
block’s

::::::
output,

::
so

:::
we

:::
can

:::::
swap

:::
the

::::::
teacher

:::::
block

::::
back

::
in

::
to

:::::
create

::::::::::
interpolated

::::::
models

::::::
(§2.3). We align the hidden states of the i-th layer in the student model

with the hidden states produced by teacher block b(i), which corresponds to the (ℓi+1 − 1)-th layer
in the teacher, using a cosine distance loss:

L(i)
cos(x<j ;θS) = 1−

(
x
(S,i)
j · x(T,li+1−1)

j

)/(
||x(S,i)

j || ||x(T,li+1−1)
j ||

)

where x(S,i)
j and x

(T,ℓi+1−1)
j are the hidden states of i-th layer of the student and (ℓi+1−1)-th layer

of the teacher for the j-th token given input x<j .

The full training objective for the student is therefore:

L(x,θS) = LCE(xj | x<j ;θS) + λKL LKL(x<j ;θS) + λcos

M∑

i=1

L(i)
cos(x<j ;θS) (1)

where λKL > 0 and λcos > 0 are hyperparameters tuned to weigh the three loss terms (Appendix C).

2.3 STUDENT PATCHING

After distillation, we construct interpolated models by selectively patching the student with layers
from the teacher model (Figure 1, step ➂). Specifically, replacing the i-th student layer with its
corresponding block of teacher layers b(i) = (θ

(ℓi)
T , . . . ,θ

(ℓi+1−1)
T ) yields:

(θ
(1)
S ,θ

(2)
S , · · · ,θ(i−1)

S ,θ
(i)
S ,θ

(i+1)
S , · · · ,θ(M)

S ) → (θ
(1)
S ,θ

(2)
S , · · · ,θ(i−1)

S , b(i),θ
(i+1)
S , · · · ,θ(M)

S )

= (θ
(1)
S ,θ

(2)
S , · · · ,θ(i−1)

S ,θ
(ℓi)
T ,θ

(ℓi+1)
T , · · · ,θ(ℓi+1−1)

T ,θ
(i+1)
S , · · · ,θ(M)

S )

Applying this substitution repeatedly produces models of various intermediate sizes between S and
T . Once we have the set transformer layers for the interpolated model, we pick the embedding
layer from the model that contributes the first layer (i.e., pick θE

S when using θ
(1)
S , and θE

T when
using b(1)), and likewise pick the LM head from that model that contributes the last layer.
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3 EXPERIMENTS

In this section, we study the boomerang distillation phenomenon in depth. We begin by identifying
necessary conditions for it to succeed (§3.1). Then, we compare the quality of the zero-shot inter-
polated models created from boomerang distillation to models trained with standard knowledge dis-
tillation (§3.2). Next, we analyze the role of individual loss terms in enabling interpolation between
student and teacher (§3.3). We further demonstrate that boomerang distillation also arises in existing
pretrained models (§3.4). Then, we compare boomerang distillation to layer pruning methods, show-
ing that our interpolated models perform significantly better than layer pruning approaches for the
same model size (§3.5). Finally, we summarize additional experiments with boomerang distillation
on the impact of training tokens and initial student model sizes (§3.6). In these experiments, we use
Qwen3-4B-Base as our main teacher model. In Appendices F, G, and H, we reproduce experiments
from Sections 3.1, 3.2, and 3.3 with Pythia-2.8B and Llama-3.2-3B as the teacher models and report
similar findings, demonstrating that boomerang distillation is a general phenomenon in LLMs.

Boomerang Distillation Implementation Details. We primarily use Qwen3-4B-Base (Yang
et al., 2025) as the teacher model. The student model, with 2.7B inference-time parameters, is
initialized by removing every other layer (except the last layer) from the teacher model and is
then trained on the deduplicated Pile (Gao et al., 2021) using the overall loss (Equation 1) with a
budget of 2.1B tokens. To create interpolated models, we patch the distilled student model with
corresponding contiguous blocks of teacher layers in reverse order, starting from the last layer. In all
experiments, we report the inference-time parameters as the parameter count. For more details on
student initialization, training, and patching order for all pretrained teacher models, see Appendix B.

Datasets. We use the same classification and generation datasets throughout the paper. We use
lm-evaluation-harness (Gao et al., 2023) to evaluate all of the models and report classi-
fication accuracy on ten datasets and exact match accuracy on three generation datasets. We also
compute perplexity on the WikiText dataset (Merity et al., 2017) for all models and report it in
Appendix M.1. For more details on datasets, see Appendix D.

3.1 THE BOOMERANG DISTILLATION PHENOMENON

In this section, we study conditions necessary for boomerang distillation to occur, and demonstrate
its strong interpolation performance between the student and teacher model.

Setup. We evaluate against two key baselines: (1) naive layer pruning and (2) distillation with
a randomly initialized student model. In naive layer pruning, we iteratively remove layers from
the teacher model, starting with the second layer and then every other layer (up to θ

(N−2)
T ) until

the desired model size is attained. This corresponds to the same set of teacher layers used in the
distilled and patched student model, but without any distillation training. This baseline tests if
knowledge distillation (2.2) is essential for teacher patching. For the second baseline, distillation
with a randomly initialized student model, instead of initializing the student from teacher layers,
we initialize all weights randomly (leaving the architecture unchanged) before distilling with the
same loss from Equation 1. This baseline tests if student initialization with teacher weights (2.1) is
required for student patching to create models with interpolated performance.

Results. Figure 2 shows that boomerang distillation creates models whose size and performance
interpolate smoothly (for a complete breakdown, see Appendix Figures 31 and 35). This enables
us to create a full suite of intermediate models without any additional training. We show that
boomerang distillation occurs when the layer-pruned, distilled student model is patched with corre-
sponding teacher layers. In contrast, we find that the boomerang distillation phenomenon does not
occur for naive layer pruning and randomly initialized distillation baselines. When we naively drop
layers, there is a significant drop in classification and generation performance for models of size
less than 4B inference-time parameters. However, we do not see such a dramatic drop in perfor-
mance in the interpolated models created with boomerang distillation. In the randomly initialized
model, there is almost no gain in performance when patching teacher layers to the distilled student.
These results show that layer pruning or distillation alone is not sufficient for boomerang distil-
lation.

:::
We

::::
also

::::::
observe

::::
that

::::::::::
boomerang

:::::::::
distillation

:::::
shows

::::::::
smoother

:::::::::::
interpolation

::
in
:::::::::::

classification
:::::::
accuracy

::::
than

::
in

:::::::::
generation

:::::::::
accuracy.

::::
This

::::::::::
discrepancy

::::
has

::::
been

::::::::
observed

::
in

:::::
prior

::::
work

:::
on

::::
layer

:::::::
pruning:

:::::::::
ShortGPT

:::::::::::::::
(Men et al., 2024)

:::::::::::
hypothesizes

::::
that

:::::
errors

::::::::::
accumulate

:::::
much

:::::
more

::
in

::::::
smaller
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Figure 2: Boomerang distillation produces models with smooth size–performance interpola-
tion, consistently outperforming naive layer pruning and interpolation from randomly initialized
distilled models. These results indicate that effective interpolation depends on initializing the stu-
dent with teacher weights and training under a knowledge distillation objective.
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Figure 3: Boomerang distillation emerges across model families. Shown here for Qwen3-8B,
Pythia-6.9B, and Llama-3.2-3B, boomerang distillation yields intermediate models with smooth
accuracy–parameter scaling, outperforming naive layer pruning and random interpolation baselines.

::::::
pruned

::::::
models

::::
than

::
in

:::::
larger

:::::
ones.

:::::::::
However,

::
in

:::::::
Section

:::
3.5,

:::
we

:::::
show

::::
that

:::::::::
boomerang

:::::::::
distillation

::::::::
maintains

:::::
much

:::::
higher

:::::::::
generation

:::::::::::
performance

:::
for

::::::
smaller

::::::
models

:::::::::
compared

::
to

:::::::
pruning

:::::::
methods.

:

In Figure 3, we show that boomerang distillation also occurs in Qwen3-8B-Base, Pythia-6.9B,
and Llama-3.2-3B, demonstrating that boomerang distillation is a general phenomenon in distilled
LLMs that can be observed across various model sizes and families (See Appendix F for full
results). We note that in the Llama model, we keep the first two layers instead of the last two layers
during student initialization and patch the model starting from the first layer. This is because the
first two layers of the teacher model have low cosine similarity with each other, and excluding
them from the training hurts the performance of the student model and the interpolated models (see
Appendix I for cosine similarity analysis).

3.2 HOW GOOD IS BOOMERANG DISTILLATION?

To test the quality of the zero-shot interpolated models created using boomerang distillation, we
compare them against models of intermediate sizes created through standard knowledge distillation.

Setup. For standard knowledge distillation, we follow the training setup in Appendix B to train
intermediate-size models. We initialize the intermediate models by removing every other teacher
model layer starting from the second layer and continuing up to layer θ(j)

T to match the set of layers
in the same size interpolated model. For a fair comparison, we train the intermediate model with
our overall loss (Equation 1) for 2.1B tokens. To contextualize these results, we also compare with
pretrained LLMs: Pythia-2.8B (Biderman et al., 2023) and Llama-3.2-3B (Grattafiori et al., 2024).

Results. Boomerang distillation produces interpolated models that show comparable performance
to the intermediate models trained via standard knowledge distillation, even outperforming them at
larger sizes (Figure 4; for a per-task breakdown, see Appendix Figures 32 and 36). A key difference
between the models from boomerang distillation and the standard distilled models is that we only
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Figure 4: Interpolated models produced using boomerang distillation have comparable perfor-
mance to pretrained and standard distilled models. We compare the interpolation performance
of boomerang distillation to distilled models initialized with the corresponding teacher layers and
distilled using Equation 1. At small sizes, the interpolated models have comparable performance to
distilled and pretrained models. At larger sizes, the interpolated models outperform distilled models,
likely due to catastrophic forgetting caused by distilling on a presumably lower-quality corpus.

need to train a single small student model and create interpolated models by patching teacher
weights without additional training. This dramatically reduces the time and resources needed to
create a family of intermediate-sized models by orders of magnitude.

We also observe that the interpolated models achieve comparable performance to existing pre-
trained models. Despite the student model being trained on far fewer tokens than Pythia-2.8B
and Llama-3.2-3B, boomerang distillation adaptively produces interpolated models of comparable
size and performance without any additional training. Finally, in Appendices G and H, we also
find that interpolated models created with boomerang distillation using Pythia and Llama achieve
comparable performance to distilled models. This demonstrates the universality of the boomerang
distillation phenomenon across different model families.

In Figure 4, we observe that the intermediate models at larger sizes underperform boomerang
distillation models. We suspect that updating the weights of Qwen3-4B-Base on a presumably
lower-quality corpus, such as The Pile, leads to catastrophic forgetting (French, 1999; Kirkpatrick
et al., 2017), which results in a drop in performance. This is a practical problem with open-weight
models because we often do not have access to the original training corpus (Jiang et al., 2023;
Yang et al., 2025). Despite that, can retain the benefits of the original model by patching its
weights back into the student model. We

:::
We

:::
also

:
show that such a drop in performance also occurs

for intermediate distilled models for Llama-3.2-3B (Figure 20 in Appendix H), but not for
:
.
:::

On
::
the

:::::
other

:::::
hand,

::::
we

:::
find

::::
that

:
intermediate models created by distilling Pythia-2.8B (Figure 17 in

Appendix G) since it is
:::::::
perform

:::::
better

::::
than

::::::::::
interpolated

::::::
models

:::::
since

:::
the

:::::
Pythia

::::::
models

:::
are

:
trained

on The Pile.
:::::
These

::::::
results

::::::
suggest

::::
that

:::::::::
boomerang

::::::::::
distillation

:::
can

:::::
retain

:::
the

:::::::
benefits

::
of

:::
the

::::::
original

::::::
model,

:::::::
trained

::
on

:
a
::::::::::::
higher-quality

:::::::
corpus,

::
by

:::::::
patching

:::
its

:::::::
weights

::::
back

:::
into

:::
the

:::::::
student

::::::
model.

3.3 EFFECT OF KNOWLEDGE DISTILLATION

In this experiment, we aim to understand which of the losses in the knowledge distillation objective
contribute to the boomerang distillation phenomenon.

Setup. We compare four loss terms in this experiment: (1) cross entropy (LCE), (2) cross
entropy with knowledge distillation loss (LCE + LKL), (3) cross entropy with alignment loss
(LCE+

∑
i L

(i)
cos), (4) overall loss, i.e., cross entropy with knowledge distillation loss and alignment

loss (LCE+LKL+
∑

i L
(i)
cos). We follow the setup from Appendix B to initialize the student models

and train on 2.1B tokens with different loss objectives.

Result. Figure 5 shows that the cross entropy with knowledge distillation loss and alignment
loss (Equation 1) creates interpolated models with the lowest perplexity compared to the other loss
terms (for full per-task breakdown see Appendix Figures 33 and 37). We do not see a meaningful
difference in classification and generation accuracies on downstream tasks for the majority of model
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Figure 5: Per-layer loss yields stable and smoother interpolation performance. Models distilled
with per-layer cosine distance loss have smoother interpolation behavior across all model sizes.
However, boomerang distillation still occurs for models without per-layer cosine distance loss, indi-
cating that initialization using teacher layers provides substantial alignment information.
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Figure 6: Boomerang distillation works for off-the-shelf pretrained models without any addi-
tional training. Boomerang distillation via student patching DistilBERT (Sanh et al., 2019) with
BERT layers (Devlin et al., 2019) (left) and student patching DistilGPT2 (Sanh et al., 2019) with
GPT2 layers (Radford et al., 2019) (right) produces interpolated models that significantly outper-
form naive layer pruning from the teacher model.

sizes. However, at both extremes of intermediate model size (leftmost and rightmost interpolated
models), there is slight instability in performance, especially for the cases with no per-layer
loss. These models correspond to patching the last few and first few teacher layers, respectively,
indicating that layer-wise alignment is especially important for the first and last layers. This aligns
with prior work showing that the initial and last model layers are distinct, while intermediate
layers are more interchangeable (Gromov et al., 2024; Men et al., 2024). In Appendices G and
H, we demonstrate that Pythia and Llama models produce a similar ranking of loss objectives by
perplexity, while also showing meaningful differences in classification accuracy.

While these results confirm that alignment losses, such as cosine distance loss, are needed to achieve
the best-performing interpolated models, we still observe boomerang distillation even when students
are trained with only a cross entropy objective. This suggests that initializing the student with teacher
weights is itself a central factor in enabling boomerang distillation, consistent with our findings in
Section 3.1. An open question, however, is whether comparable performance and stability can be
achieved without retaining the teacher weights in memory, which would substantially reduce the
memory footprint.

3.4 ZERO-SHOT MODEL SIZE INTERPOLATION WITH EXISTING OFF-THE-SHELF MODELS

Here we show that boomerang distillation occurs even between popular existing off-the-shelf open-
source models and their distilled variants (Devlin et al., 2019; Radford et al., 2019; Sanh et al., 2019).

Setup. We interpolate between off-the-shelf DistilBERT and BERT, and DistilGPT2 and GPT2.
Similar to our setup, DistilBERT and DistilGPT2 are initialized by pruning alternate layers from
their teacher models, BERT and GPT2, and then trained with knowledge distillation and cosine
distance loss objective. Although DistilBERT and DistilGPT2 use cosine distance loss only on the
final hidden states, we use both models without modification. We then add back the teacher layers
to patch the distilled student models to create the interpolated models. We report the perplexity

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

3.0 3.5 4.0
Parameter Count (Billions)

0.4

0.5

0.6

A
cc

ur
ac

y

Classification Accuracy (↑)

3.0 3.5 4.0
Parameter Count (Billions)

0.2

0.4

A
cc

ur
ac

y

Generation Accuracy (↑)

Layer dropping strategy

Boomerang distillation

Naive layer pruning

ShortGPT

LaCo

Model type
Qwen3-4B-Base Distilled models Pruned models Interpolated models

Model type
Qwen3-4B-Base Distilled models Pruned models Interpolated models

Figure 7: Boomerang distillation performs significantly better than layer pruning methods. We
compare boomerang distillation to two popular layer pruning approaches, LaCo (Yang et al., 2024)
and ShortGPT (Men et al., 2024). Boomerang distillation has significantly better performance across
all intermediate sizes, especially for generation tasks, where layer pruning quickly degrades to very
low accuracy.

for both models, as they do not exhibit strong out-of-the-box zero-shot performance. We report
pseudo-perplexity for BERT and DistilBERT and perplexity for GPT2 and DistilGPT2 on WikiText.

Results. Figure 6 shows that intermediate models created by patching corresponding teacher
layers from BERT into DistilBERT show a clean interpolation in performance without any training.
We observe that the intermediate GPT2 models show a less clean interpolation compared to the
BERT models, yet they still outperform the naive layer pruning baseline. This result shows that the
boomerang distillation phenomenon occurs even in existing small pretrained language models. To
our knowledge, we are the first to discover zero-shot model size interpolation between these models.

Many existing LLMs distilled from larger teacher models are not readily usable for boomerang
distillation as their setup differs from ours in several ways. For example, Muralidharan et al.
(2024) uses layer pruning along with neuron pruning to initialize the student model, which creates
a mismatch in the dimensions of the hidden state. This prevents us from patching the student
model with teacher weights. Furthermore, existing distillation frameworks often do not use cosine
distance loss in their training (Kim et al., 2024; Gu et al., 2024). We suspect this is because it
increases the memory footprint during training and does not significantly improve the student model
performance. Distilling large-scale LLMs with layer pruning and cosine distance loss, with a large
token budget, for boomerang distillation is a promising direction for future research.

3.5 COMPARISON TO LAYER PRUNING METHODS

We compare boomerang distillation against layer pruning approaches, since they most closely ap-
proximate our setting of creating models with different numbers of layers without additional training.

Setup. We consider two popular layer pruning methods: Layer Collapse (LaCo) (Yang et al.,
2024) and ShortGPT (Men et al., 2024). LaCo identifies blocks of layers with high cosine similarity
between the outputs of the first and last layer in the block, then collapses the later layers in the block
into the first one by adding their difference in parameters. ShortGPT ranks each layer in the model
by its block influence, or cosine distance between the input and output activations of the layer. It then
prunes the layers with the lowest block influence score. For implementation details, see Appendix N.

Results. Figure 7 shows that zero-shot interpolation via boomerang distillation results in signifi-
cantly better classification and generation accuracy than layer pruning methods (for full breakdown
see Appendix Figures 34 and 38). In particular, as observed in the ShortGPT paper (Men et al.,
2024), the generation capabilities for the pruning approaches collapse to near zero after just a
few layers removed, whereas boomerang distillation maintains higher generation accuracy for
much smaller models. Boomerang distillation also smoothly interpolates in classification accuracy
between the distilled student model and the teacher model, whereas the classification accuracy
of all three pruning methods plateaus to near random performance for models of size around 3B
parameters. We note that both of these layer pruning strategies could be used to initialize the
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student model in a boomerang distillation pipeline and leave exploration of different layer pruning
initializations for boomerang distillation to future work.

3.6 ABLATIONS

We include additional experiments in Appendix E. An ablation on smaller student models, achieved
by a more aggressive layer pruning, shows that boomerang distillation performs well as long as the
distilled student model has non-trivial performance on target tasks. Furthermore, we study the effect
of training tokens on boomerang distillation and find that increasing the student’s training budget
yields interpolated models with improved performance.

4 RELATED WORK

Model Interpolation. Model interpolation is a key technique that combines trained models by
directly interpolating their weights (Singh & Jaggi, 2020; Frankle et al., 2020; Wortsman et al.,
2022). These works focus on combining weights of multiple models with additional training to
improve robustness and out-of-domain generalization (Wortsman et al., 2022; Jin et al., 2023; Dang
et al., 2025), create multi-task models (Ilharco et al., 2023; Yadav et al., 2023; Zhu et al., 2025),
and controllable generation (Gandikota et al., 2024; Kangaslahti & Alvarez-Melis, 2024). All these
works interpolate between model weights of the same size. In contrast, we interpolate between
the student and the teacher model to create interpolated models of different sizes.

:::::::::::::
Cai et al. (2025)

::::
trains

:::
the

:::::::
teacher

:::::
model

::
in
:::
an

::::::
elastic

:::::::::
transformer

::::::::::
architecture

:::::
along

:::::
with

:
a
:::::::
Gumbel

::::::::::::
Softmax-based

:::::
router

::::
and

::::::::::
interpolates

::::::
model

:::::
sizes

:::::
using

:::
the

:::::::
trained

::::::
router.

:::::
On

:::
the

:::::
other

:::::
hand,

::::::::::
boomerang

:::::::::
distillation

:::::
trains

::
a

::::::
smaller

:::::::
student

::::::
model

:::::
using

::
a
:::::::
standard

::::::::::
knowledge

:::::::::
distillation

::::::::
pipeline

:::
and

:::::::::
interpolates

::::::
model

::::
sizes

:::
by

:::::::
patching

::::
the

:::::::
distilled

::::::
student

::::
with

::::::
teacher

::::::
layers,

::::
and

::::
does

:::
not

::::::
require

::::::
training

::
a

:::::::::
specialized

::::::
router.

Knowledge Distillation. Knowledge distillation is a popular method used to train a smaller
student model to mimic the behavior of the larger teacher model with fewer parameters (Hinton
et al., 2015; Sanh et al., 2019). Knowledge distillation can be used to train a smaller student
model even if the teacher and the student do not share the same architecture. This has enabled
researchers to distill vision models (Oquab et al., 2023), large language models (Team et al., 2024),
and proprietary API-based models (Taori et al., 2023; Gudibande et al., 2024) into smaller models.
Recently, knowledge distillation has been used to distill a pretrained teacher LLM into multiple
smaller student LLMs of varying sizes to create a family of language models, but this approach
incurs significant compute cost (Muralidharan et al., 2024; Sreenivas et al., 2024). In contrast, we
use knowledge distillation to train a single student LLM using a larger teacher LLM and create
interpolated models of fine-grained sizes without requiring any additional training.

Pruning. Model pruning is a widely studied area where the goal is to compress model parameters
by removing redundant parameters to reduce computational requirements while maintaining the
performance of the full model (LeCun et al., 1989; Han et al., 2015; Sun et al., 2024). Several
techniques have been proposed to prune model parameters. These include layer dropping (Men
et al., 2024; Chen et al., 2025), neuron pruning (Ma et al., 2023), SVD-based pruning (Yuan et al.,
2023; Lin et al., 2024; Wang et al., 2025), and more (Cheng et al., 2024). They often require
training the pruned model over an auxiliary dataset to recover the initial performance (Xia et al.,
2024). In this work, we initialize a student model by dropping layers from an existing pretrained
large language model and then train it with a knowledge distillation objective.

Dynamic Compute Allocation. Dynamically allocating a variable amount of compute at infer-
ence time based on task complexity is critical for today’s intelligent systems (Damani et al., 2024).
Several techniques, such as early exiting (Schuster et al., 2022; Elhoushi et al., 2024), test-time
scaling (Snell et al., 2024; Muennighoff et al., 2025), and compute-adaptive embeddings (Kusupati
et al., 2022; Lee et al., 2024), have been proposed for dynamic compute allocation. In our work,
we focus on dynamically creating new models by interpolating model sizes that require different
amounts of compute during inference. Existing approaches that produce models of variable
sizes often require explicit training (Kusupati et al., 2022; Lee et al., 2024), which is expensive
and time-consuming when many fine-grained model variants are needed. In contrast, we create
fine-grained interpolated models without any additional training with only one student model.
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5 CONCLUSION

We identify boomerang distillation, a novel phenomenon in large language models. We show that
boomerang distillation can be used to create a family of models that smoothly interpolate in size
and performance between a given student and teacher model, without any additional training. In
our experiments, we show that boomerang distillation occurs when training a student model with
knowledge distillation from a teacher model. Crucially, we identify that the student has to be ini-
tialized from the teacher with layer pruning. Furthermore, we observe that boomerang distillation
occurs even in existing open-source models such as DistilBERT and DistilGPT2 (Sanh et al., 2019).
Our interpolated models consistently match or even outperform models of the same size directly
trained with knowledge distillation, and exhibit superior downstream performance compared to ex-
isting pruning approaches. In conclusion, we provide a simple recipe for creating fine-grained model
families from a single student-teacher pair, which significantly reduces training time and cost.

REPRODUCIBILITY STATEMENT

We implement all our experiments using PyTorch (Paszke et al., 2019) and HuggingFace transform-
ers (Wolf et al., 2019) packages. We also experiment with public models available on Hugging-
Face Hub. We provide an anonymous version of our code at https://anonymous.4open.
science/r/size-interpolation-1976 and will open-source our codebase for all the ex-
periments upon acceptance.

ETHICS STATEMENT

Interpolated models created using boomerang distillation may inherit or amplify the biases of the
pretrained teacher model. Before deploying, we recommend comprehensively evaluating the models
on the target tasks to identify potential biases. To further mitigate any residual biases, we suggest
training the model to follow instructions and carry out additional safety training.
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A LIMITATIONS
:::::
AND

:::::::::
FUTURE

:::::::
WORK

We briefly discuss the limitations of boomerang distillation
:::
and

::::::::
directions

:::
for

:::::
future

:::::
work.

Boomerang distillation requires a distilled student LLM, which can be computationally expensive
to train. As discussed in Section 3.1, we show that a distilled student LLM trained is crucial for
boomerang distillation. While we get interpolated models of intermediate sizes without any addi-
tional training, training the student LLM itself requires a significant amount of compute.

Our computational resources limit the model size and number of distillation tokens in our experi-
ments. Scaling this approach to larger models with a greater token budget is an exciting avenue for
future work.

Boomerang distillation could also benefit from a more sophisticated
::::::::::
initialization

::::
and student patch-

ing order.
:::::
While

:::
we

::::::::
initialize

:::
the

:::::::
student

::::::
model

::::
with

:::::
every

:::::
other

:::::
layer

::
in

:::::::
Section

::
3,
::::

we
::::
show

::
in

::::::::
Appendix

::::
E.2

::::
that

:::::::::
initializing

::::
the

:::::::
student

::
in

::
a
:::::::
manner

::::
that

::::::::
maintains

:::::::::
alignment

::::::
allows

:::
for

:::::::::
boomerang

:::::::::
distillation

::::
with

::::
even

:::::::
smaller

::::::
student

:::::::
models. In our work, we consider two approaches

to patching the student model: either starting from the first layers or the last layers. However, in some
cases, this naive patching order can lead to instability in performance in the interpolated models
(Appendix

:
I). Patching the student models with teacher layers

::
In

::::::::
Appendix

::
I,
:::
we

:::::::
analyze

:::::::
per-layer

::::::::
activation

::::::
cosine

::::::::
similarity

:::::::
between

:::
all

::::
pairs

::
of

:::
the

::::::::
distilled

::::::
student

:::
and

:::
the

:::::
base

::::::
teacher

:::::
layers

::
in

::::::::::::
Llama-3.2-3B.

:::
We

:::::
found

:::
that

::::::::
patching

:::
the

::::::
student

:::::
model

::::
with

::::::
layers

:::
that

::::
have

::::
low

:::::
cosine

::::::::
similarity

::
to

::::
their

:::::::
teacher

:::::
layers

::::::::
provides

::::::::
smoother

:::::::::::
interpolation

:::::::::::
performance.

::::::::::
Therefore,

::::::::::
initializing

:::
and

:::::::
patching

:::
the

::::::
student

:::::::
models

::
in

::
a
::::::
manner

::::
that

::
is

:
guided by the similarity of the layers could help

mitigate the instability of the interpolated models.

:::::::::
Boomerang

::::::::::
distillation

:::::::
requires

:::
the

:::::::
distilled

:::::::
student

::
to

::
be

:::::::
created

:::
via

:::::
layer

:::::::
pruning.

::::::::::
Combining

:::
this

::::
with

:::::
other

::::::
pruning

:::::::::
strategies,

::::
such

::
as

:::::
width

:::::::
pruning

::::
and

:::::::
attention

:::::
head

:::::::
pruning,

::::
may

:::
not

::::
work

:::
out

::
of

:::
the

::::
box:

::
If
:::
the

:::::::
teacher

:::
and

:::::::
student

::::
have

:::::::
different

:::::::
hidden

:::::::::
dimensions

::::
due

::
to

:::::
width

:::::::
pruning,

::::::
student

:::::::
patching

::::::
cannot

::
be

:::::::
applied

:::
out

::
of

::
the

::::
box

:::::::
because

:
it
::::::
would

:::::
result

::
in

:
a
::::::::
mismatch

::
in

:::
the

:::::
output

::::::::
dimension

:::
of

::
the

::::::
hidden

::::::
states.

::
A

::::::
similar

:::::::
obstacle

::::::
occurs

:::::
when

:::::::
pruning

:::::::
attention

::::::
heads.

::::::::
Extending

:::::::::
boomerang

:::::::::
distillation

::
in

:::::
these

::::::
settings

::
is
::
a

::::::::
promising

:::::
future

:::::::::
direction.

::::::
Finally,

:::::::::
although

:::
we

::::::
show

::::
that

:::::::::::
boomerang

::::::::::
distillation

::
is
:::

a
::::::::::::

phenomenon
::::
that

:::::::
occurs

::
in

:::::::
language

::::::::
models,

::
it
::::::::

remains
:::
to

:::
be

::::
seen

::::::::
whether

::
it
:::::

also
::::::

occurs
:::

in
:::::

other
::::::::::

modalities,
:::::

such
::
as

::::::
vision

:::::::::::::::::::
(Siméoni et al., 2025)

:::
and

::::::
audio

:::::::::::::::::::
(Radford et al., 2023),

:::::
that

::::
use

:::::::::::::::
transformer-based

:::::::::::
architectures.

:::
We

:::::
leave

:::::::::
extensions

::
to

::::
other

:::::::::
modalities

::
as

:::::
future

::::::
work.

B BOOMERANG DISTILLATION IMPLEMENTATION

For all the experiments in Section 3, we primarily consider Qwen3-4B-Base (Yang et al., 2025) as a
teacher model. We follow the same student initialization and training setup for additional models in
Appendix F. All the implementation was done using PyTorch (Paszke et al., 2019) and HuggingFace
transformers (Wolf et al., 2019).

Teacher Model Student Model
Name Inf. params Train. params Inf. params

Qwen3-4B-Base 4.4B 2.3B 2.7B
Qwen3-8B-Base 8.8B 4.9B 5.6B
Pythia-2.8B 2.8B 1.6B 1.6B
Pythia-6.9B 6.9B 3.8B 3.8B
Llama-3.2-3B 3.6B 1.9B 2.3B

Table 1: The sizes of the initialized student models after pruning the layers from the teacher
model. We note that the Pythia models do not employ weight tying, so their train and inference pa-
rameters are equivalent. On the other hand, the Qwen and Llama models weight tie their embedding
layers and LM heads, so their inference-time parameters are higher than their training parameters.
This is because both the embedding layer and LM head are used during inference.
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Student Initialization. For convenience and increased granularity, in our experiments, similar to
Sanh et al. (2019), we drop every other layer from the teacher model to initialize the student model.
However, our work is not limited to this setting and could benefit from informed initialization
strategies (Men et al., 2024). We also keep the last teacher layer, since doing so has been shown
to be essential when pruning (Gromov et al., 2024). Table 1 summarizes the trainable and inference
parameters of the teacher and the student models. In Qwen and Llama models, the number of train-
able and inference-time parameters differs because the embedding layer is reused as the language
modeling head during training. In all experiments, we report the inference-time parameters as the
parameter count.

Training. We distill the student model on 2.1B tokens of the deduplicated Pile (Gao et al., 2021)
using the overall loss (Eq. 1). We train the models on four NVIDIA H100 GPUs or four H200
GPUs, depending on their availability. Based on the size of the student model, the total training time
typically ranged from 12 to 72 hours. Unless stated otherwise, we use the same hyperparameters to
train all the student models. For full training hyperparameters, see Appendix C.

Student Patching. We perform student patching by replacing each student layer with its corre-
sponding block of teacher layers. For all models except the Llama models, we patch the student
layers starting backwards from the M -th layer and progressively patch more layers until all the
layers are replaced with the teacher blocks. For the Llama models, we patch starting from the first
layer and progressively patch until the M -th layer (see Appendix I for more details). As mentioned
in Section 2.3, depending on the order of patching, we use the embedding and language modeling
differently. In Qwen and Pythia models, we use the embedding layer from the distilled student
model and the language modeling head from the teacher model. In Llama, we use the embedding
layer from the teacher model and the language modeling head from the distilled teacher model.

C HYPERPARAMETERS

Hyperparameters Values
Learning rate 3e-4
Learning rate scheduler cosine
Warmup ratio 0.01
Optimizer AdamW
Adam betas (0.9, 0.95)
Adam epsilon 1e-8
Weight decay 0.1
Max. gradient norm 1.0
Number of training steps 500
Max. sequence length 2048
Effective batch size 2048
Mixed precision bf16
KLDiv weight λKL 0.1
Cosine distance weight λcos 2.0 / (M+1)

Table 2: Hyperparameters used to train the student model. We choose the training hyperparam-
eters to align with the values used in Pythia training (Biderman et al., 2023) and set the KLDiv and
cosine distance weights such that the cross entropy, KLDiv, and cosine distance loss are approxi-
mately equal in magnitude at the beginning of training.

Table 2 lists all the hyperparameters used to train the student model.

D DATASETS

We utilize the same evaluation datasets throughout the paper. We use lm-
evaluation-harness (Gao et al., 2023) to evaluate classification accuracy, generation
exact match accuracy, and perplexity. We compute classification accuracy on 10 tasks: ARC-easy
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and ARC-challenge (Clark et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers et al.,
2019), OpenBookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi
et al., 2020), RACE (Lai et al., 2017), MMLU (Hendrycks et al., 2021a), and RTE (Wang et al.,
2019). For generation, we report exact match accuracy on 3 tasks: GSM8K (Cobbe et al., 2021),
IFEval (Zhou et al., 2023), and MATH (Hendrycks et al., 2021b). We also compute perplexity on
the WikiText dataset (Merity et al., 2017) for all experiments and report it in Appendix M.1.

E ADDITIONAL ABLATION EXPERIMENTS

E.1 ABLATING DISTILLED MODEL SIZES

In this experiment, we test what size of distilled student model is best for boomerang distillation.
Ideally, the student model should be as small as possible while maintaining interpolation perfor-
mance.

Setup. We train four student models initialized by keeping every other layer, every third layer,
every fourth layer, and every fifth layer of the teacher model.
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2 3 4
Parameter Count (Billions)

0.1

0.2

0.3

0.4

A
cc

ur
ac

y

Generation Accuracy (↑)

Layer initialization strategy

Every 2nd layer

Every 3rd layer

Every 4th layer

Every 5th layer

Model type
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Figure 8: Boomerang distillation occurs for smaller student models with non-trivial perfor-
mance. We compare the standard every 2nd layer initialization to models where we keep every 3rd,
4th, and 5th teacher layer when initializing the student. Every 3rd layer initialization produces sim-
ilar interpolation behavior to every 2nd layer, but the smaller models do not interpolate smoothly,
likely due to low student model performance and gaps in cosine similarity (see Appendix J).

Results. In Figure 8, we find that student models initialized with every 2nd and every 3rd
layer have similar interpolation performance, while the two smallest models do not have smooth
interpolation behavior, which suggests that boomerang distillation works well when the student
model shows non-trivial performance. We show in Appendix J that the cosine similarity between
the output activations of the patched teacher block and the student layer it is replacing is correlated
with interpolation performance. For instance, the drop in accuracy in every 4th layer after 3B
parameters is primarily due to low cosine similarity between the patched teacher block and the
student layer. This suggests that patching layers with high cosine similarity is a possible heuristic
to consider for model interpolation to prevent a significant drop in performance.

E.2
::::::::
FURTHER

:::::::::::::
COMPRESSING

::::
THE

::::::::::
DISTILLED

:::::::
MODEL

:::::
Setup.

::
To

::::
test

::::
our

:::::::::
hypothesis

::::
that

:::
the

:::::
small

:::::::
models

:::
do

:::
not

:::::
have

:::::
clean

:::::::::::
interpolation

:::::::
behavior

::::::
because

:::
of

:::
low

::::::
cosine

::::::::
similarity,

:::
we

::::::::
initialize

:
a
:::

set
:::
of

::::
small

:::::::
student

::::::
models

:::
by

::::::::
manually

:::::::
selecting

::::::
teacher

::::::
layers

::
to

:::::
copy

:::
in

::
a

::::
way

::::
that

::::::::
preserves

::::::::::
alignment.

::::
To

:::
do

::::
so,

:::
we

::::
first

::::::::
compute

:::
the

:::::::
pairwise

::::::::
activation

::::::
cosine

:::::::::
similarity

:::::::
between

::::
each

::::
the

::::::
output

:::::::::
activations

::
of

:::::
each

::::
pair

::
of

::::::
teacher

:::::
layers.

::::
We

::::::::
calculate

::::
the

:::::
cosine

:::::::::
similarity

:::::
using

::
a
:::::::::
calibration

::::::
dataset

:::
of

::::
128

:::::::
samples

:::::
from

:::
The

:::
Pile

:::::::::::::::
(Gao et al., 2021).

::::
We

::::
then

:::::::
initialize

:::
the

:::::::
student

::
by

::::::::
choosing

:::::::
teacher

:::::
layers

::::
such

::::
that

:::
the

:::
first

:::
and

:::
last

:::::
layer

::
in

::::
each

::::::
teacher

:::::
block

::::::::
maintain

::::
high

:::::
cosine

:::::::::
similarity.
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Figure 9:
::::::::::
Boomerang

:::::::::::
distillation

:::::::
occurs

::::
for

:::::
very

::::::
small

:::::::
student

::::::::
models

:::::
with

::::::
cosine

:::::::::::::::::
similarity-informed

:::::::::::
initialization

:::::::
Student

::::::
models

:::
of

::::
size

:::
as

:::::
small

::
as

::::::
505M

::::::::::
parameters

::::
have

:::::::
relatively

:::::::
smooth

::::::::::::
interpolation

::::::::
behavior

:::::
when

::::::::
choosing

::::
the

::::::
student

:::::::::::
initialization

:::::::::
manually

::
to

:::::::
preserve

:::::::::
alignment.

::::
This

:::::::
indicates

::::
that

:::
the

::::::::::::::
Qwen3-4B-Base

::::::
teacher

:::::
model

::::
can

::
be

::::::::::
compressed

::
up

::
to

::::
8.7x

:
if
:::
the

:::::::::::
initialization

::
is

:::::::::
performed

::
in

:
a
::::
way

:::
that

::::::::
preserves

::::::
cosine

::::::::
similarity

:::::::
between

:::
the

::::
first

:::
and

:::
last

:::::
layers

::
in

::::
each

:::::::
teacher

:::::
block.

:::::::
Results.

:::::
Figure

:
9
::::::
shows

:::
that

:::
by

:::::::::
initializing

:::
the

::::::
student

::
in
::
a
::::
way

::::
such

:::
that

:::
the

:::::::
teacher

:::::
blocks

::::
have

::::
high

::::::::
similarity

:::::::
between

:::
the

:::
first

::::
and

:::
last

:::::
layer,

:::
we

:::
can

::::::::
compress

:::
the

::::::
student

::::::
model

::
up

::
to
:::::
8.7x

::::
while

::::::::
preserving

:::::::::::
interpolation

::::::::
behavior.

::::
This

::::::::
validates

:::
our

:::::::::
hypothesis

::::
from

:::::::::
Appendix

:::
E.1

:::
that

::::
low

:::::
cosine

::::::::
similarity

:
is
:::
the

::::::
reason

:::
for

::::
poor

::::::::::
interpolation

:::::::::::
performance

::
for

:::
the

::::::
naively

:::::::::
initialized

::::::
models

::
in

:::::
Figure

::
8.

::::::::
Although

:::
the

::::::
student

:::::::
models

:::
can

:::
be

::::::::::
compressed

::::::::::
significantly

:::::::
beyond

:::::
every

:::
2nd

:::::
layer,

:::
we

::::
note

:::
that

:::::
these

::::::
smaller

:::::::
models

::::::::
inherently

:::::::
produce

::
a
:::
less

::::::::
granular

::
set

:::
of

::::::::::
interpolated

:::::::
models,

::::
since

::::
each

::::::
student

::::
layer

:::::
must

::
be

:::::::
patched

::::
with

::
its

:::::
entire

::::::::::::
corresponding

::::::
teacher

:::::
block

::
at
:::::
once,

::::::::
allowing

::::
only

::
for

:
a
::::::::
maximum

:::
of

::::::
M − 1

::::::::::
intermediate

:::::::
models

::::::
(where

::
M

::
is

:::
the

:::::::
number

::
of

::::::
student

:::::::
layers).

E.3 IMPACT OF TRAINING TOKENS

In this experiment, we study the impact of training tokens and the performance of the interpolated
models.

Setup. Following the same experimental setup from Section B, we train student models on differ-
ent token budgets: 0.5B, 1B, 1.5B, 2B, 2.5B, and 3.1B. Depending on the token budget, we adjust
the number of training steps and train the model for one epoch.

Results. We find that training the student models with more tokens results in better student models,
which in turn creates better interpolated models (Figure 10). We also observe that if the distilled
student model shows trivial performance (when trained with 0.5B tokens), the interpolated models
also show trivial performance up to 4B parameters. In summary, for boomerang distillation to be
effective, the student needs to show non-trivial performance.

F THE BOOMERANG DISTILLATION PHENOMENON WITH QWEN, PYTHIA,
AND LLAMA MODELS

In this section, we show boomerang distillation with Qwen3-8B-Base, Pythia-2.8B, Pythia-6.9B,
and Llama-3.2-3B.

F.1 QWEN3-8B-BASE
:::
AND

:::::::::::::::::
QWEN3-14B-BASE

Figure 11 shows
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Figure 10: Increased training token budget produces better interpolated models. Distilling the
student model on more tokens results in distilled models with higher performance, which create
better interpolated models. Distilled student models with trivial performance (0.52B tokens) do
not have smooth interpolation behavior, indicating that non-trivial student model performance is
necessary for boomerang distillation to occur.
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Figure 11: Boomerang distillation with Qwen 8B creates models with smoothly interpolated
size and performance.
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Figure 12:
::::::::::
Boomerang

::::::::::
distillation

::::
with

::::::
Qwen

::::
14B

::::::
creates

:::::::
models

::::
with

::::::::
smoothly

:::::::::::
interpolated

:::
size

::::
and

::::::::::::
performance.

::::::
Figures

:::
11

::::
and

:::
12

:::::
show

::::
that

:
boomerang distillation occurs in the Qwen3-8B-Base model

::
and

::::::::::::::
Qwen3-14B-Base

:::::::
models. Similar to Qwen3-4B-Base (§3.1), we observe a clear trend in per-

formance as the size of the interpolated models increases. We also note that the student model
created with Qwen3-8B-Base is approximately 5.6B parameters in size, which is close to the pre-
trained Qwen-3-4B-Base model but performs significantly worse.

::::::::
Similarly,

:::
the

:::::::
student

::::::
created
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::::
with

::::::::::::::
Qwen3-14B-Base

::::
has

::::::
around

::::
8.5B

:::::::::
parameters

::::
and

::::::::
performs

:::::
worse

::::
than

::::::::::::::
Qwen3-8B-Base.

:
We

suspect that the corpus used to pretrain Qwen is of a higher quality and trained on significantly
more tokens compared to the distilled student model, which leads to improved out-of-the-box per-
formance. In such cases, for a given size, we recommend choosing the model interpolated from the
closest pretrained model.

F.2 PYTHIA-2.8BAND ,
:
PYTHIA-6.9B

:
,
::::
AND

::::::::
PYTHIA

::::
12B

2.0 2.5
Parameter Count (Billions)

0.35

0.40

0.45

A
cc

ur
ac

y

Classification Accuracy (↑)

2.0 2.5
Parameter Count (Billions)

0.00

0.02

0.04

0.06

A
cc

ur
ac

y

Generation Accuracy (↑)

Layer dropping strategy

Boomerang distillation

Naive layer pruning

Interpolation from randomly
initialized distilled model

Model type
Pythia-2.8B Distilled models Pruned models Interpolated models

Model type
Pythia-2.8B Distilled models Pruned models Interpolated models

Figure 13: Boomerang distillation with Pythia 2.8B creates models with smoothly interpolated
size and performance.
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Figure 14: Boomerang distillation with Pythia 6.9B creates models with smoothly interpolated
size and performance.

Figures 13 and 14

::::::
Figures

:::
13,

:::
14,

::::
and

::
15

:
show boomerang distillation with Pythia 2.8Band

:
, Pythia 6.9B,

::::
and

:::::
Pythia

:::
12B

:
models. In both

::
all

:
cases, we see that interpolated shows improved performance in classifi-

cation accuracy, but their performance on generation tasks is nearly 0%. We also observe that the
performance of the pretrained models is close to 0%, which suggests that boomerang distillation may
not improve the performance of the interpolated models beyond the performance of the pretrained
models.

F.3 LLAMA-3.2-3B

Figure 16 shows the boomerang distillation phenomenon in Llama-3.2-3B. We modify the initial-
ization and student patching order setup due to the behavior of the first base model layer to ensure
that first-layer information is preserved (see Appendix I for details). We find that boomerang distil-
lation with Llama-3.2-3B as a base model produces interpolated models with smoothly interpolated
performance across classification and generation tasks. In contrast, naive layer pruning and inter-
polation using a randomly initialized distilled student model do not recover smoothly interpolated
models.
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Figure 15:
::::::::::
Boomerang

::::::::::
distillation

::::
with

::::::
Pythia

::::
12B

::::::
creates

:::::::
models

::::
with

:::::::::
smoothly

::::::::::
interpolated

:::
size

::::
and

::::::::::::
performance.
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Figure 16: Boomerang distillation with Llama-3.2-3B creates models with smoothly interpo-
lated size and performance.

G PYTHIA-2.8B FULL RESULTS
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Figure 17: Interpolated models produced using boomerang distillation and Pythia-2.8B have
comparable performance to pretrained and naively distilled models.

Comparison to Standard Knowledge Distillation. Figure 17 shows that interpolated models cre-
ated using boomerang distillation for Pythia-2.8B have comparable performance to the intermediate
models trained using standard knowledge distillation. Unlike the Qwen models, the models trained
with standard distillation perform better than interpolated models across all sizes, suggesting that
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Qwen models are trained on a much higher quality corpus, and training them on The Pile drops their
performance.
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Figure 18: Per-layer loss yields stable and smoother interpolation performance in Pythia-2.8B.

Effect of Knowledge Distillation. Figure 18 shows that student models trained with a cross en-
tropy and an alignment loss create interpolated models with lower perplexity. We also observe that
the interpolated models incorporating cross entropy and alignment losses show meaningful differ-
ences in classification accuracy compared to models trained without them, particularly at smaller
model sizes. Finally, we see that the interpolated models show trivial performance on generation
tasks since the teacher performs poorly on those tasks.

Comparison to Layer Pruning Methods. Figure 19 shows that boomerang distillation and layer
pruning exhibit similar performance on the classification tasks. While boomerang distillation shows
stronger performance at smaller model sizes, we see that LaCo and ShortGPT show stronger perfor-
mance at larger model sizes. Since the pretrained teacher model itself does not show strong perfor-
mance, we suspect the patching order makes a difference in performance. Nevertheless, boomerang
distillation is competitive with existing approaches in the layer pruning.

H LLAMA-3.2-3B FULL RESULTS

Comparison to Standard Knowledge Distillation. Figure 20 shows that boomerang distillation
creates interpolated models that show comparable performance to the models trained with standard
knowledge distillation, and even outperforms them at larger sizes. Similar to Qwen, since we do
not have access to the Llama’s pretraining corpus, we find that distilling on The Pile leads to a
performance drop at larger sizes. On the other hand, boomerang distillation retains the benefits of
pretraining and outperforms standard distillation in some cases.

2.0 2.5
Parameter Count (Billions)

0.35

0.40

0.45

A
cc

ur
ac

y

Classification Accuracy (↑)

2.0 2.5
Parameter Count (Billions)

0.03

0.04

0.05

0.06

A
cc

ur
ac

y

Generation Accuracy (↑)

Layer dropping strategy

Boomerang distillation

Naive layer pruning

ShortGPT

LaCo

Model type
Pythia-2.8B Distilled models Pruned models Interpolated models

Model type
Pythia-2.8B Distilled models Pruned models Interpolated models

Figure 19: Boomerang distillation with Pythia-2.8B performs similarly to depth pruning meth-
ods.
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Figure 20: Interpolated models produced using boomerang distillation and Llama-3.2-3B have
comparable performance to pretrained and naively distilled models.
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Figure 21: Per-layer loss yields stable and smoother interpolation performance in Llama-3.2-
3B.

Effect of Knowledge Distillation. Figure 21 shows that training with alignment loss, i.e., cosine
distance loss, creates interpolated models with lower perplexity across most intermediate sizes. The
classification accuracy is also slightly higher, especially for models with around 2.5-3B inference
parameters. Similarly to the Qwen models, we see that training without alignment loss degrades
generation performance at high parameter counts, likely due to the importance of the last layers.
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Figure 22: Boomerang distillation with Llama-3.2-3B performs significantly better than depth
pruning methods.

Comparison to Layer Pruning Methods. Figure 22 shows that boomerang distillation outper-
forms layer pruning approaches at all sizes. We observe that the gap in classification accuracy is
initially quite high, but around 3.2B, LaCo recovers performance and performs competitively to
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boomerang distillation. These results suggest that the interpolated models created using boomerang
distillation perform significantly better than existing approaches, but they perform similarly to LaCo
as the model size approaches that of the pretrained teacher model.

I LLAMA-3.2-3B COSINE SIMILARITY ANALYSIS

In this section, we analyze the per-layer activation cosine similarity between the output activations
of all pairs of distilled and base model layers. We compute the activations on a calibration set
consisting of 128 samples from The Pile (Gao et al., 2021) and report the mean cosine similarity
across all tokens in each sample. We find that per-layer cosine similarity explains when boomerang
distillation is noisy or has poor interpolation performance. Our results indicate that the best practices
when using boomerang distillation are to (1) patch student layers with low cosine similarity first and
(2) ensure that consecutive layers with low cosine similarity are not pruned when initializing the
student model.

Standard Initialization. Figure 23 shows the cosine similarity analysis for the distilled model cre-
ated by initializing the student model from Llama-3.2-3B by pruning every other layer and keeping
the last two layers:

θS = (θE
T ,θ

(1)
T ,θ

(3)
T , . . . ,θ

(N−3)
T ,θ

(N−1)
T ,θ

(N)
T ,θD

T ) (2)

Figure 23 demonstrates that the output activations of the first layer in the distilled student model
have high cosine similarity to the output activations of the first layer in the teacher model, but have
low cosine similarity to the outputs of the second layer in the teacher. As a result, the remaining
layers in the distilled student do not have high cosine similarity to their corresponding base model
layers until the last two layers of the student model. This means that the model does not recover
smoothly interpolated performance when patching layers of the student model starting from the last
layers of the model (Figure 24 green line). In Figure 24 (blue line), we show that this issue can
be mitigated by patching from the first layers of the model. Thus, beginning the student patching
process with layers with low cosine similarity to their corresponding teacher layers provides a way
to improve interpolation performance.

Preserving First-Layer Information. In Figure 25, we consider an alternative student initializa-
tion to solve the misalignment in the first student layer (Figure 23), where we instead keep the first
two teacher layers and alternate layers for the remaining initialization:

θS = (θE
T ,θ

(1)
T ,θ

(2)
T ,θ

(4)
T , . . . ,θ

(N−2)
T ,θ

(N)
T ,θD

T ) (3)

We choose this initialization because we hypothesize that given the low cosine similarity between
the first and second layers in the model (Figure 23), combining the first two base model layers into
one student layer needlessly decreases the alignment between subsequent student and base model
layers. In Figure 25, we find that keeping the first and second Llama-3.2-3B layers indeed results
in significantly higher cosine similarity between student and base model layers. This translates
to significantly higher student and interpolation performance (Figure 24 pink and yellow lines),
especially when combined with our strategy of patching layers starting from the first model layers
(Figure 24 pink line).

Takeaways. In summary, we observe that for some base models (such as Llama-3.2-3B), naive
initialization and patching approaches are insufficient. We identify low cosine similarity between
key base model layers as a contributing factor to this issue. We find that we can improve perfor-
mance by choosing a student patching order that prioritizes blocks of teacher layers with low cosine
similarity or by initializing the student model in a manner that ensures the activations of the first and
last layer in each block b(i) do not have low cosine similarity to each other.

J STUDENT MODEL SIZE ABLATION COSINE SIMILARITY ANALYSIS

Here, we study the per-layer cosine similarity between each pair of distilled and base model layers
in the student model initialized with every 4th layer in Figure 8. We use the same setup as in
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Figure 23: Per-layer cosine similarity between the output activations of the distilled student
model and the teacher model, Llama 3.2 3B. The first student and teacher layer exhibit high
cosine similarity, but all student layers except for the last one have low cosine similarity to their
corresponding teacher block (layer θ(ℓi)

T shown in pink and layer θ(ℓi+1−1)
T shown in yellow). As a

result, patching the student model starting from the last layer does not smoothly recover the interpo-
lated performance (Figure 24).
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Figure 24: Model size interpolation with different student initialization and patching order
with Llama 3.2 3B. We find that the distilled student model trained by initializing with the first two
layers and every other layer from the teacher model, and then patching from the first layer to the
last, creates the best interpolated models in Llama 3.2 3B.

§I to calculate the cosine similarity values. Figure 26 shows that student layers 0 and 4-11 have
high cosine similarity to the outputs of their corresponding teacher blocks (shown in yellow). In
contrast, student layers 2-3 have low cosine similarity to the input and output activations of their
corresponding teacher blocks, while layer 1 has high cosine similarity to the first layer in its teacher
block but not the last one. Thus, when student layers are patched starting from the last layers of
the model in Figure 8, the performance increases for the first 4 patched student layers (7, 6, 5, 4),
then decreases in the low cosine similarity region when patching (3, 2) before increasing again. This
supports the results in §I and indicates that cosine similarity between the student layer and the layers
in its corresponding teacher block is correlated with interpolation performance.
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Figure 25: Per-layer cosine similarity between the output activations of the distilled student
model initialized with the first two teacher layers and the teacher model, Llama 3.2 3B. After
distilling a student model initialized with the first two layers (Equation 3), all student layers have
high cosine similarity to their corresponding teacher block (layer θ

(ℓi)
T shown in pink and layer

θ
(ℓi+1−1)
T shown in yellow). Thus, patching the student model

::::::
patching

:
recovers smooth interpola-

tion performance (Figure 24).
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Figure 26: Per-layer cosine similarity between the output activations of the distilled student
model initialized with every 4th layer and the teacher model, Qwen3-4B-Base. Student layers
with high cosine similarity to the outputs of their teacher blocks have predictable interpolation per-
formance when patched in Figure 8. On the other hand, student layers with low cosine similarity
see a decrease in interpolation performance when they are patchedwith their corresponding teacher
layers.

K
::::::
WHY

::::::
DOES

::::::::::::::
BOOMERANG

::::::::::::::::
DISTILLATION

::::::::
WORK?

::
In

::::
this

:::::::
section,

:::
we

:::::::
provide

:::
an

:::::::
intution

::::
and

:::::::::::::::
proof-of-concept

::::::::::
experiment

::
to

:::::::::::
demonstrate

::::
why

:::::::::
boomerang

:::::::::
distillation

::::::
works.

:

::::::::::
High-Level

::::::::
Intuition.

:::
The

:::::
main

::::
idea

::::::
behind

::::::::::
boomerang

::::::::::
distillation

::
is

:::
that

::::
we

::::::
ensure

::::::
through

::::::
aligned

:::::::::::
initialization

:::
and

:::::::::
distillation

::::
that

:::
not

::::
only

::::
does

:::
the

:::::::
student

::::::::::
approximate

:::
the

::::::
teacher

::::::
model,

:::
but

::::
each

::::::
student

:::::
layer

::::::::::::
approximates

:::
the

:::::::::::
functionality

::
of

:::
its

::::::::::::
corresponding

:::::::
teacher

:::::
block.

::::::
Then,
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:::::::
patching

:
a
::::::
student

:::::
layer

::::
with

::
its

::::::::::::
corresponding

::::::
teacher

:::::
block

::::::::
produces

:
a
:::::
better

::::::::::::
approximation

:::
of

::
the

::::::
outputs

::
of

:::
the

::::::
teacher

::::::
model.

:
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Figure 27:
:::
Last

::::::
layer

:::::::::
activation

::::::
cosine

:::::::::
similarity

:::::::
between

::::::::::::
interpolated

::::
and

:::::::
teacher

::::::
models

::::::::
increases

::
as

:::::
more

::::::
layers

:::
are

:::::::
patched

::::::
across

:::::::
models.

::
As

::::
more

:::::::
student

:::::
layers

:::
are

:::::::
patched,

:::
the

:::
last

::::
layer

::::::
outputs

:::
of

::
the

:::::::::::
interpolated

::::::
models

:::::
better

::::::::::
approximate

:::::
those

::
of

:::
the

::::::
teacher

::::::
model.

:

:::::::::::::::
Proof-of-Concept

:::::::::::
Experiment.

::
To

:::::
show

:::
that

::::::::
patching

:
a
::::::
higher

:::::::
number

::
of

::::::
student

:::::
layers

::::::
creates

::::::::::
intermediate

::::::
models

::::
that

:::::
better

::::::::::
approximate

:::
the

:::::::
teacher,

:::
we

:::::::
compute

:::
the

:::
last

:::::
layer

:::::
cosine

::::::::
similarity

:::::::
between

:::
the

:::::::::
activations

::
of

:::
the

::::::::::
interpolated

:::
and

:::
the

::::::
teacher

::::::
model

::
for

::::
each

:::::::
number

::
of

:::::
layers

:::::::
patched.

:::
We

:::
use

:
a
:::::::
held-out

:::::::::
calibration

:::
set

::
of

:::
128

:::::
texts

::::
from

::::
The

:::
Pile

:::::::::::::::
(Gao et al., 2021)

::
to

:::::::
compute

:::
the

:::::
cosine

::::::::
similarity.

:::::::
Figure

:::
27

:::::::::::
demonstrates

::::
that

::::::
across

:::::::
different

:::::::
models,

::::
the

:::
last

:::::
layer

::::::
cosine

::::::::
similarity

:::::::
between

:::
the

::::::::::
interpolated

:::
and

:::::::
teacher

::::::
models

::::::::
increases

:::
as

:::
the

::::::
number

:::
of

:::::
layers

:::::::
patched

::::::::
increases.

::::
This

:::::::
confirms

::::
our

::::::::
intuition

::::
that

:::::::
patching

:::::
more

::::::
layers

::::::::
produces

:::::::::::
interpolated

::::::
models

::::
that

:::::
better

::::::::::
approximate

:::
the

:::::::
teacher.

L
::::::::::::::::::
COMPUTATIONAL

::::::::::::::
COMPLEXITY

::
In

:::
this

::::::::
section,

:::
we

::::::::
compute

:::
the

:::::::
floating

:::::
point

:::::::::
operations

::::
per

::::::
second

::::::::
(FLOPS)

::::
for

:::::::::
boomerang

:::::::::
distillation

:::::
versus

::::::::
standard

:::::::::
distillation.

::::
We

:::::::
compute

:::::::
FLOPS

::
for

:::
10

::::::::
iterations

::::::
during

:::::::
training

::::
using

::
the

:
flops-profiler

::::::
package

:::::::::
(Li, 2023)

:::
and

::::::
report

:::
the

:::::::
training

:::
cost

:::::::::
computed

:::
by

:::::::::
multiplying

::
the

:::::::
average

:::::::
FLOPS

:::
per

:::::::
iteration

:::
by

:::
the

::::
total

:::::::
number

::
of

:::::::
training

::::::::
iterations

::
in

:::::
Table

::
3.

::::::::::
Boomerang

:::::::::
distillation

::
is

:::
an

:::::::
instance

:::
of

:::::::::
amortized

::::::::
training

::::
cost,

:::
as

:::::
after

:::
the

::::::
initial

::::::::::
distillation

:::::::
training,

:::::::::
boomerang

:::::::::
distillation

::::
can

:::
be

::::
used

::
to
::::::

obtain
:::::::::::

intermediate
:::::::
models

::
in

::
a

::::::::
zero-shot

:::::::
manner.

::::
As

:
a

:::::
result,

::::::::::
boomerang

:::::::::
distillation

:::
has

:::::::::
equivalent

::::::::::::
computational

:::::::::
compexity

::
to

::::::::
distilling

:
a
::::::

single
:::::
model

::
of

::::::
student

::::
size,

:::
and

:::::::
requires

:::::::::::
14.53-19.17x

:::
less

:::::::
FLOPS

::::::::
compared

::
to

:::::::
training

::::
each

::::::::::
intermediate

:::::
model

::::::::::::
independently.

:::::::
Teacher

:::::
Model

::::::
Models

:::::::
FLOPS

::::::::::::::::

Theoretical
Compute Speedup

::::::::::::::
Qwen3-4B-Base

:::::::
Standard

:::::::::
distillation

: :::::::
8.27e20 -

:

::::::::::
Boomerang

:::::::::
distillation

:::::::
4.31e19

::::::
19.17x

::::::::::
Pythia-2.8B

:::::::
Standard

:::::::::
distillation

: :::::::
4.77e20 -

:

::::::::::
Boomerang

:::::::::
distillation

:::::::
2.80e19

::::::
17.01x

::::::::::::
Llama-3.2-3B

:::::::
Standard

:::::::::
distillation

: :::::::
5.07e20 -

:

::::::::::
Boomerang

:::::::::
distillation

:::::::
3.49e19

::::::
14.53x

Table 3:
::::::::::
Boomerang

::::::::::
distillation

:::::::::
provides

::::::::::
significant

::::::::::::::
computational

::::::::
speedup

:::::::::
compared

::
to

:::::::::::
individually

:::::::::
distilling

::::::::::::
intermediate

::::::::
models.

::
For

::::::::::::::::
Qwen3-4B-Base,

:::::::::::
Pythia-2.8B,

::::
and

::::::::::::
Llama-3.2-3B,

:::
we

:::::
report

:::
the

::::::
FLOPS

::::::::
required

::
to

::::::::::
individually

:::::
distill

::::
each

::::::::::
intermediate

::::::
model

:::::
versus

:::::::::
boomerang

:::::::::
distillation

:::
for

:::
the

::::
same

:::::::
number

::
of

:::::::
training

:::::
tokens

:::::
(2.1B

:::::::
tokens).

:::
We

::::
can

:::::
reduce

::::::
FLOPs

::
by

::::::
19.17x

:::
for

::::::
Qwen,

::::::
17.01x

::
for

:::::::
Pythia,

:::
and

::::::
14.53x

:::
for

:::::
Llama

:::::
using

::::::::::
boomerang

:::::::::
distillation.
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M ADDITIONAL EVALUATION RESULTS

Here, we provide perplexity, per-task classification accuracy, and per-task exact match generation
accuracy for experiments in §3.

M.1 PERPLEXITY
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Figure 28: Boomerang distillation creates models with smoothly interpolated size and perfor-
mance.
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Figure 29: Interpolated models produced using boomerang distillation have comparable per-
formance to pretrained and naively distilled models.

Comparison to Naive Layer Pruning and Random Initialization. Figure 28 shows that
boomerang distillation interpolates smoothly in terms of perplexity between the student and the
distilled model, while perplexity degrades for naive layer pruning as more layers are dropped. All
models interpolated from a randomly initialized distilled model have a perplexity above 104.
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Figure 30: Boomerang distillation performs significantly better than depth pruning methods.
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Comparison to Standard Knowledge Distillation. In Figure 29, small distilled models have
slightly lower perplexity than interpolated models, while larger distilled models have slightly higher
perplexity than interpolated models. This follows our observations in §3.2. However, one notable
difference is that while pretrained Pythia-2.8B and Llama-3.2-3B models have similar classification
and generation performance but lower perplexity than interpolated models. This is likely due to their
extensive pretraining on next-token prediction.

Comparison to Layer Pruning Methods. In Figure 30, we show that boomerang distillation
interpolates smoothly in terms of perplexity between the student and the distilled model, while all
layer pruning approaches increase significantly in perplexity after more than six layers are dropped.

M.2 CLASSIFICATION TASKS

In this section, we report per-task classification accuracy in Figures 31-34 for experiments in §3. We
find that the per-task results for all experiments align with the mean performance reported in §3.

M.3 GENERATION TASKS

Here, we show per-task generation exact match accuracy in Figures 35-38 for experiments in §3. We
find similar trends in per-task generation performance as reported for the mean generation accuracy
in §3.

N PRUNING METHOD DETAILS

In this section, we describe how we prune layers in the comparisons to Layer Collapse (LaCo) (Yang
et al., 2024) and ShortGPT (Men et al., 2024) in Figures 7, 19, 22, 34, and 38.

LaCo. LaCo loops through all the model layers and iteratively merges chunks of C layers if the
cosine similarity of the last layer hidden activations of the merged model and the last layer hidden
activations of the original model is above a certain threshold T . The LaCo layer merging operation
for a chunk starting at layer ℓ is performed by adding the difference in weights between each merged
layer and θ(ℓ) to θ(ℓ) to create a new model θ∗, where

θ∗(ℓ) = θ(ℓ) +

C∑

i=1

θ(ℓ+i) − θ(ℓ) (4)

In order to construct the LaCo models, we compute the cosine similarity values on a held-out calibra-
tion set of 16 samples from the Pile (Gao et al., 2021). We follow the hyperparameter setup detailed
in the appendix of Yang et al. (2024). We set the layer range parameters L = 1 and H = N , where
N is the number of teacher layers. We also fix the minimum interval parameter I = 2. To generate
models with different numbers of layers, we sweep over the set of threshold values T and number
of layers merged per operation C included in Yang et al. (2024). We provide the hyperparameter
details in Table 4.

LaCo Hyperparameters Values
Number of layers merged per operation (C) {3, 4, 5, 6}

Start of layer range (L) 1
End of layer range (H) Number of teacher layers N
Minimum interval (I) 2

Threshold (T ) {0.95, 0.85, 0.75, 0.65, 0.55, 0.45}

Table 4: Hyperparameters used to create LaCo models in Figures 7, 19, 22, 34, and 38
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ShortGPT. In ShortGPT, model layers are pruned by first computing the Block Importance (BI)
score, or the cosine distance between the input and output activations for the layer:

BI(i) = 1− EX,j

[
x
(i)
j · x(i+1)

j

||x(i)
j || ||x(i+1)

j ||

]

Then, layers are removed sequentially by pruning the layer with the lowest BI score. We compute
BI with respect to a held-out set of 128 calibration texts from the Pile (Gao et al., 2021).

O USE OF LARGE LANGUAGE MODELS

We utilized generative AI tools for code completion, debugging, and minor grammatical corrections
in the manuscript. The authors carried out all the substantive research contributions, analyses, and
interpretations.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

3.0 3.5 4.0
Parameter Count (Billions)

0.4

0.6

0.8

A
cc

ur
ac

y

ARC-easy Accuracy (↑)

3.0 3.5 4.0
Parameter Count (Billions)

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

ARC-challenge Accuracy (↑)

3.0 3.5 4.0
Parameter Count (Billions)

0.4

0.6

0.8

A
cc

ur
ac

y

BoolQ Accuracy (↑)

3.0 3.5 4.0
Parameter Count (Billions)

0.3

0.4

0.5

A
cc

ur
ac

y

HellaSwag Accuracy (↑)

3.0 3.5 4.0
Parameter Count (Billions)

0.2

0.3

A
cc

ur
ac

y

OpenBookQA Accuracy (↑)

3.0 3.5 4.0
Parameter Count (Billions)

0.5

0.6

0.7

A
cc

ur
ac

y
PIQA Accuracy (↑)

3.0 3.5 4.0
Parameter Count (Billions)

0.5

0.6

0.7

A
cc

ur
ac

y

WinoGrande Accuracy (↑)

3.0 3.5 4.0
Parameter Count (Billions)

0.2

0.3

0.4

A
cc

ur
ac

y

RACE Accuracy (↑)

3.0 3.5 4.0
Parameter Count (Billions)

0.4

0.6

A
cc

ur
ac

y

MMLU Accuracy (↑)

3.0 3.5 4.0
Parameter Count (Billions)

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

RTE Accuracy (↑)

Layer dropping strategy

Boomerang distillation Naive layer pruning
Interpolation from randomly
initialized distilled model

Layer dropping strategy

Boomerang distillation Naive layer pruning
Interpolation from randomly
initialized distilled model

Model type
Pretrained models Distilled models Pruned models Interpolated models

Model type
Pretrained models Distilled models Pruned models Interpolated models

Figure 31: Boomerang distillation creates models with smoothly interpolated size and per-task
classification accuracy.
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Figure 32: Interpolated models produced using boomerang distillation have comparable per-
task classification accuracy to pretrained and naively distilled models.
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Figure 33: Per-layer loss yields stable and smoother per-task classification accuracy for inter-
polated models.
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Figure 34: Boomerang distillation has significantly better per-task classification accuracy than
depth pruning methods.
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Figure 35: Boomerang distillation creates models with smoothly interpolated size and per-task
generation accuracy.
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Figure 36: Interpolated models produced using boomerang distillation have comparable per-
task generation accuracy to pretrained and naively distilled models.
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Figure 37: Per-layer loss yields stable and smoother per-task generation accuracy for interpo-
lated models.
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Figure 38: Boomerang distillation has significantly better per-task generation accuracy than
depth pruning methods.
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