
Published as a conference paper at ICLR 2025

SOLVING HIDDEN MONOTONE VARIATIONAL IN-
EQUALITIES WITH SURROGATE LOSSES

Ryan D’Orazio, Danilo Vucetic & Zichu Liu
Mila Québec AI Institute, Université de Montréal
Montréal, QC, Canada
{ryan.dorazio, danilo.vucetic, zichu.liu}@mila.quebec

Junhyung Lyle Kim
Department of Computer Science, Rice University
Houston, TX, USA
jlylekim@rice.edu

Ioannis Mitliagkas & Gauthier Gidel
Mila Québec AI Institute, Université de Montréal, CIFAR AI Chair
Montréal, QC, Canada
{ioannis, gidelgau}@mila.quebec

ABSTRACT

Deep learning has proven to be effective in a wide variety of loss minimization
problems. However, many applications of interest, like minimizing projected
Bellman error and min-max optimization, cannot be modelled as minimizing a
scalar loss function but instead correspond to solving a variational inequality (VI)
problem. This difference in setting has caused many practical challenges as naive
gradient-based approaches from supervised learning tend to diverge and cycle in
the VI case. In this work, we propose a principled surrogate-based approach com-
patible with deep learning to solve VIs. We show that our surrogate-based ap-
proach has three main benefits: (1) under assumptions that are realistic in practice
(when hidden monotone structure is present, interpolation, and sufficient opti-
mization of the surrogates), it guarantees convergence, (2) it provides a unifying
perspective of existing methods, and (3) is amenable to existing deep learning
optimizers like ADAM. Experimentally, we demonstrate our surrogate-based ap-
proach is effective in min-max optimization and minimizing projected Bellman
error. Furthermore, in the deep reinforcement learning case, we propose a novel
variant of TD(0) which is more compute and sample efficient.

1 INTRODUCTION

Most machine learning approaches learn from data by minimizing a loss function with respect to
model parameters. Despite the lack of global convergence guarantees in deep learning, losses
can often still be minimized with an appropriately tuned first-order adaptive method such as
ADAM (Kingma, 2014). Unfortunately, outside of scalar loss minimization, deep learning becomes
more challenging: the dynamics of variational inequality (VI) problems (e.g., min-max) are often
plagued with rotations and posses no efficient stationary point guarantees (Daskalakis et al., 2021).
Thus, the additional challenges posed by VI problems do not allow one to easily plug in existing
techniques from deep learning.

We propose a practical and provably convergent algorithm for solving VI problems in deep learning.
Importantly, our approach is compatible with any black-box optimizer, including ADAM and its
variants (Kingma, 2014), so long as they are effective at descending a scalar loss. Our approach
guarantees convergence by leveraging the hidden structure commonly found in machine learning.

1

Published as a conference paper at ICLR 2025

More precisely, many applications admit a hidden structure corresponding to the following problem:
find z∗ such that ⟨F (z∗), z − z∗⟩ ≥ 0 ∀z ∈ Z = cl{g(θ) : θ ∈ Rd}, (1)

where the mapping g : Rd → Z ⊆ Rn maps model parameters to model outputs, and the set Z
encodes the closure of the set of realizable outputs from the chosen model. Since F is defined over
model outputs, it will often be structured, e.g., monotone and Lipschitz.

In order to leverage the hidden structure in VI problems, we employ surrogate losses, which have
been studied in the scalar minimization case by Johnson & Zhang (2020) and Vaswani et al. (2021),
among others. The surrogate loss approach has been shown to be scalable with deep learning and
has been used in modern reinforcement learning policy gradient methods (Schulman et al., 2015;
2017; Abdolmaleki et al., 2018). Moreover, these surrogate loss approaches have been shown to
improve data efficiency in cases where evaluating F is expensive like interacting with a simulator in
reinforcement learning (Vaswani et al., 2021; Lavington et al., 2023).

Our approach reduces the VI in (1) to the approximate minimization of a sequence of surrogate
losses {ℓt}t∈N, which are then used to produce a sequence of parameters {θt}t∈N. To ensure con-
vergence we propose a new α-descent condition on ℓt, allowing for a dynamic inner-loop that makes
no assumption on how the surrogate losses are minimized, thereby allowing for any deep-learning
optimizer to minimize the scalar loss ℓt. With our α-descent condition we provide convergence
guarantees to a solution in the space of model predictions {zt = g(θt)}t∈N → z∗ for a sufficiently
small α. Our general method is summarized in Algorithm 1.

Algorithm 1: α-descent on surrogate

Input: Outer loop interactions T , initial parameters θ1 ∈ Rd, step size η for surrogate loss,
α ∈ (0, 1), optimizer update A : L × Rd → Rd.

for t = 1← to T do
Compute VI operator: F (g(θt))
Set surrogate loss: ℓt(θ) = 1

2∥g(θ)− (g(θt)− ηF (g(θt))∥2
θs ← θt
while ℓt(θs)− ℓ∗t > α2(ℓt(θt)− ℓ∗t) do

Update parameters with optimizer: θs ← A(ℓt, θs)
θt+1 ← θs

return θT+1

In summary, we propose a novel algorithm to solve VI problems by exploiting the hidden structure
of common loss functions. We demonstrate the efficacy of our method with a variety of experi-
ments, which themselves make further connections and innovations on prior work. Our specific
contributions are as follow:
• We provide the first extension of surrogate losses to VI problems. We also show a clear separa-

tion in difficulty of using surrogate methods in VI problems when compared to scalar minimiza-
tion; specifically, we show that divergence is possible in a strongly monotone VI problem where
in contrast convergence is guaranteed in the non-convex scalar minimization case.

• We propose the α-descent condition with convergence guarantees. This condition allows for
global convergence while avoiding common assumptions such as enforcing errors to be summable
or globally upper-bounded.

• Unifying perspective of pre-conditioning methods. With our surrogate loss approach, we unify
existing pre-conditioning methods (Bertsekas, 2009; Mladenovic et al., 2022; Sakos et al., 2024)
by showing they are equivalent to using the Gauss-Newton method as the optimizer A in Algo-
rithm 1 to minimize the surrogate losses. We demonstrate the value of this new perspective by
providing natural extensions of their methods with better empirical robustness.

• Experimental results and new TD variants. We demonstrate the performance and versatility of
surrogate loss-based optimization in a variety of VI problems. In Sections 5.1 and 5.2 we complete
experiments in min-max optimization and value prediction tasks, respectively. Importantly, we
propose a new data-efficient variant to TD(0) which significantly outperforms prior approaches.

2 BACKGROUND AND RELATED WORK

Notation. We use ⟨x, y⟩ =
∑n

i=1 x
iyi to denote the standard inner product over Rn and ∥x∥ =√

⟨x, x⟩ to be the Euclidean norm. We write ∥x∥2Ξ to mean ⟨x,Ξx⟩, and ∥x∥Ξ is a norm if and only

2

Published as a conference paper at ICLR 2025

if Ξ is positive definite. For a set X we denote clX its closure and riX its relative interior. For a
given set, which will be clear from context, we denote Π(x) as the Euclidean projection of x onto the
set and similarly ΠΞ(x) the projection with respect to ∥x∥Ξ. We use Id to denote the identity matrix.
A matrix A has lower and upper bounded singular values if there exists σmin, σmax ∈ (0,∞) such
that for any x we have σ2

min∥x∥2 ≤ ⟨x,A⊤Ax⟩ ≤ σ2
max∥x∥2. If a matrix A is invertible we write

A−1 otherwise we denote the pseudo-inverse as A†. For a given function g : Rd → Rn we write
Dg(θ) as its Jacobian evaluated at θ. We say Dg has uniformly lower and upper bounded singular
values if there is a constant upper and lower bound to the singular values of Dg(θ) for all θ ∈ Rd.

Surrogate Loss Background. In the scalar minimization case such as supervised learning, a non-
convex loss function of the form f(g(θ)) is minimized where the non-convexity is due to the model
parametrization as represented by the model predictions: g(θ) =

[
g1(θ), · · · , gn(θ)

]⊤ ∈ Rn. In
supervised learning, each prediction is zi = gi(θ) = h(xi, θ), for some feature vector xi and fixed
model architecture h. Despite the non-convexity in parameter space θ ∈ Rd due to g, the loss
function is often convex and smooth with respect to the closure of the predictions Z = cl{g(θ) :
θ ∈ Rd}.1 The optimization problem can then be reframed as a constrained optimization problem,

min
θ

f(g(θ)) = min
z∈Z

f(z). (2)

If Z is convex then projected gradient descent zt+1 = Π(zt − η∇f(zt)) is guaranteed to con-
verge (Beck, 2017). However, the projection Π is expensive since it is with respect to the set
Z ⊆ Rn. In general, the model-dependent constraint Z may not be convex. Yet, this assump-
tion is essential since we require convergence of the projected gradient method; we leave relaxing
this assumption for future work. Nevertheless, this assumption is satisfied in two important extreme
cases, when a model is linear or with large capacity neural networks that can interpolate any dataset
e.g. Z = Rn (Zhang et al., 2017).

Beyond supervised learning, similar hidden structure exists in losses within machine learning such
as: generative models and min max optimization (Gidel et al., 2021), robust reinforcement learning
(RL) (Pinto et al., 2017), and minimizing projected Bellman error (Bertsekas, 2009). However, in
these applications the problem cannot be written as minimizing a loss and we must instead consider
the VI problem (1). For example, in the min-max case, the min and max players’ strategies may be
given by two separate networks h1(θ1), h2(θ2), respectively, with the following objective:

min
θ1

max
θ2

f(h1(θ1), h2(θ2)), (3)

where f is convex-concave. Similar to (2) we can rewrite the problem in parameter space as a con-
strained problem with respect to model predictions but instead within the VI (1); where θ = (θ1, θ2),
and g(θ) = (h1(θ1), h2(θ2)), with operator F (z) = F (g(θ)) = [∇z1f(z1, z2),−∇z2f(z1, z2)]⊤

where z1 = h1(θ1) and z2 = h2(θ2). The solution with respect to model outputs is then equivalent
to solving the constrained VI (1). If F is well-conditioned (e.g. Lipschitz and strongly monotone)
and Z is closed and convex, then the projected gradient method zt+1 = Π(zt − ηF (zt)) converges
to a solution z∗ with an appropriate stepsize η (Facchinei & Pang, 2003).

To solve problems of the form (1) and take advantage of the structure given by g and F , we extend
the idea of surrogate losses (Johnson & Zhang, 2020; Vaswani et al., 2021), where parameters are
selected by descending a sequence of surrogates ℓt(θ) that approximate the exact projected gradient
method. More precisely, at iteration t, θt+1 is selected by descending the surrogate loss:

ℓt(θ) =
1

2

∥∥g(θ)− [g(θt)− ηF (g(θt))]
∥∥2. (4)

Importantly, this loss and its gradient are easily constructed via automatic differentiation packages
as a non-linear squared error loss. Minimizing the loss exactly gives zt+1 = g(θt+1) = Π(zt −
ηF (zt)), the exact projected gradient step, and guarantees convergence of {zt = g(θt)}t∈N to z∗.

Surrogate losses in scalar minimization. The surrogate losses proposed by Johnson & Zhang
(2020) and Vaswani et al. (2021), apply to supervised learning and RL respectively.2 They did not

1We consider the closure of the predictions to include cases such as softmax paramerizations, where the
predictions only lie within the relative interior of the simplex but its closure includes the whole simplex.

2Note that Johnson & Zhang (2020) and Vaswani et al. (2021) more generally use Bregman divergences.

3

Published as a conference paper at ICLR 2025

study the VI case, nor do they exploit any convexity properties in the scalar minimization case.
Lavington et al. (2023) also study the scalar minimization case and provide convergence to a neigh-
bourhood of a global minimum of (2) and allow for stochasticity. The neighbourhood of convergence
depends on an upperbound on the errors ϵt = ∥zt+1 − z∗t ∥, where z∗t is an exact projected gradient
step. Therefore, the neighbourhood of convergence scales with the worst error ϵt across the trajec-
tory {zt = g(θt)}t∈N. Shrinking the neighbourhood necessitates a double loop algorithm that might
spend too much time optimizing the surrogate. Similar results can also be found within the analysis
of quasi-Fejér monotone sequences (Franci & Grammatico, 2022). For example, if z∗t = T (zt)
where T is a contraction, then ϵt → 0 is sufficient to guarantee convergence (see Proposition A.5).

In contrast to the existing surrogate loss approaches, we propose a simple α-descent condition on ℓt
(Definition 2.1) that does not require all errors to be bounded or summable apriori. This condition
allows for convergence without fully minimizing ℓt and better models implementations in practice
where a fixed number of gradient descent steps are used for each ℓt.

Definition 2.1 (α-descent). Let ℓt be the surrogate defined in (4) and ℓ∗t = infθ∈Rd ℓt(θ). The
trajectory {θt}t∈N satisfies the α-descent condition if at each step t the following holds

ℓt(θt+1)− ℓ∗t ≤ α2 (ℓt(θt)− ℓ∗t) , α ∈ [0, 1). (5)

Given the α-descent condition we can define a general purpose algorithm (Algorithm 1). With any
black-box optimizer updateA and a double-loop structure, we can construct a trajectory that satisfies
the condition so long as A can effectively descend the loss ℓt. In general ℓ∗t may not be zero and
so this condition cannot be verified directly, however, this condition can often be met via first-order
methods for a fixed number of steps or can be approximated with ℓ∗t = 0.

From a theoretical perspective, we show that the α-descent condition guarantees the following:

∥zt+1 − z∗t ∥ ≤ αη∥F (zt)− F (z∗)∥, (6)

for a proof see Lemma A.2. As expected, the errors are controlled by α and the stepsize η in the
surrogate. However, the error also scales with the distance to the solution if F is Lipschitz.

In the unconstrained scalar minimization case, inequality (6) is similar to the relative error condi-
tion ∥pt −∇f(zt)∥ ≤ α∥∇f(zt)∥ used in biased gradient descent, where pt is the biased direction
(zt+1 = zt−pt) (Ajalloeian & Stich, 2020; Drusvyatskiy & Xiao, 2023). Similar to biased gradient
descent, our assumption with any α < 1 is sufficient to guarantee convergence in scalar minimiza-
tion with any L-smooth non-convex loss f (see Proposition A.3). However, for VIs, α < 1 can still
lead to divergence due to possible rotations in the dynamics of z∗t (see Proposition 3.3).

Within the context of solving VI problems, Solodov & Svaiter (1999) proposed a similar condition to
approximate the proximal point algorithm where z∗t = zt − ηF (z∗t).

3 However, verifying their con-
dition would induce an inner loop with multiple evaluations of F , which can be expensive in many
applications such as reinforcement learning (Vaswani et al., 2021). They also show that divergence
is still possible under their condition unless an extra-gradient like step is performed. Unfortunately,
such a step is impractical in our setting as it requires minimizing a surrogate loss exactly.

Hidden monotone problems and preconditioning methods. In scalar minimization problems,
hidden monotone structure has been studied under hidden convexity (Bach, 2017; Xia, 2020;
Chancelier & De Lara, 2021; Fatkhullin et al., 2023). In zero-sum games with hidden monotonicity,
Gidel et al. (2021) study the existence of equilibria and establish approximate min-max theorems
but do not propose an algorithm to take advantage of the hidden structure. For games that admit
a hidden strictly convex-concave structure, Vlatakis-Gkaragkounis et al. (2021) prove global con-
vergence of continuous time gradient descent-ascent. Similarly, Mladenovic et al. (2022) propose
natural hidden gradient dynamics (NHGD) with continuous time global convergence guarantees in
hidden convex-concave games. A more general and descritized version of NHGD was studied by
Sakos et al. (2024), the preconditioned hidden gradient descent method (PHGD), to solve VIs of the
form (1). One step of PHGD corresponds to the update:

θt+1 = θt − η(Dg(θt)
⊤Dg(θt))

†Dg(θt)
⊤F (zt). (7)

3They assume ∥zt+1 − (zt − ηF (zt+1))∥ ≤ α∥zt+1 − zt∥.

4

Published as a conference paper at ICLR 2025

PHGD and stochastic variants were also studied in the linear case by Bertsekas (2009). PHGD can
be viewed as a discretization of a continuous flow that guarantees zt+1 = zt − ηF (zt) as η ↓ 0
(Sakos et al., 2024). Interestingly, in Section 4 we show that PHGD is also equivalent to taking one
step of the Gauss-Newton method (GN) (Björck, 1996) on the surrogate loss.

3 CONVERGENCE ANALYSIS UNDER α-DESCENT ON SURROGATE LOSSES

In this section we provide analysis in both the deterministic and stochastic settings. In both settings
we make the following assumption on the hidden structure in the VI (1).

Assumption 3.1. In the VI (1), Z is convex. There exists a solution within the relative interior,
z∗ ∈ riZ . F is both L-Lipschitz ∥F (x) − F (y)∥ ≤ L∥x − y∥ and µ-strongly monotone ⟨F (x) −
F (y), x− y⟩ ≥ µ∥x− y∥2 for any x, y ∈ Z and some µ > 0.

This assumption is commonly used in the VI literature to establish linear convergence of the pro-
jected gradient method zt = Π(zt − ηF (zt)) (Facchinei & Pang, 2003). In the scalar minimization
case this assumptions implies F (z) = ∇f(z) for a scalar loss function f that is µ-strongly-convex
and L-smooth. In min-max optimization with hidden structure, such as (3), Assumption (3.1) is sat-
isfied if f(z1, z2) is strongly-convex-concave and smooth (each players’ gradient is Lipschitz with
respect to all players, e.g. see Bubeck et al. (2015)). It corresponds to many practical cases as the
losses used in machine learning applications are often strongly convex with respect to the model
predictions z. note that Z is convex for many classes of models used in practice, e.g., linear models
or models that can interpolate any noisy labels on the train set (Z = [0, 1]n). The latter has been
reported with large enough neural networks (Zhang et al., 2017) and kernels (Belkin et al., 2019).

3.1 CONVERGENCE AND DIVERGENCE IN THE DETERMINISTIC CASE

Convergence for sufficiently small α. Below we provide a linear convergence result if α is small
enough by controlling the stepsize η in the surrogate loss ℓt. Note that the convergence is with
respect to zt = g(θt) and is linear in the number of outer loop iterations of Algorithm 1.

Theorem 3.2. Let Assumption 3.1 hold and let {zt = g(θt)}t∈N be the iterates produced by Algo-
rithm 1. If α and η are picked such that ρ := 1−2η(µ−αL)+(1+α2)η2L2 < 1 then, zt converge
linearly to the solution z∗ at the following linear rate:

∥zt+1 − z∗∥2 ≤ ρt∥z1 − z∗∥2. (8)

Particularly, if α < µ
L and η < 2(µ−αL)

(1+α2)L2 then ρ < 1 and if α ≤ µ
2L and η = 2µ

5L2 then ρ ≤ 1− µ2

5L2 .

Note that, to obtain a practical convergence rate (e.g., bounding the number of gradient compu-
tations), we need to bound the number of inner-loop steps in Algorithm 1 required to obtain the
condition (5). In general, we cannot provide any global guarantee as it is well established that,
in general, finding a global minima of a smooth non-convex optimization function like (4) can be
intractable (Murty & Kabadi, 1985; Nemirovskij & Yudin, 1983). However, many classes of over-
parametrized models are known to be able to interpolate random labels (e.g., neural networks (Zhang
et al., 2017), kernels (Belkin et al., 2019), or boosting (Bartlett et al., 1998)) which is strong evi-
dence that, in practice, the condition (5) can be obtained with a few gradient steps. The latter is also
supported by our experiments in Section 5.

Divergence with α < 1. In non-convex smooth scalar minimization, α < 1 is sufficient for
convergence (Proposition A.3). However, despite our strong monotonicity assumption we show
that α < 1 can still give divergence in the VI setting. This shows that α being small enough
is not only sufficient but is necessary for convergence. Our example demonstrates the additional
challenges of using a surrogate loss in the VI setting. Our construction uses the min-max problem
minx maxy

1
2x

2 + xy − 1
2y

2 and showing that gradient descent-ascent on the loss f(x, y) = xy
satisfies the α-descent condition with α = 1/

√
2 but diverges for any η.

Proposition 3.3. There exists an L-Lipschitz and µ-strongly monotone F , and a sequence of iterates
{zt}t∈N verifying the alpha descent condition with α < 1 such that zt diverges for any η.

5

Published as a conference paper at ICLR 2025

3.2 UNCONSTRAINED STOCHASTIC CASE

For the stochastic case we assume Z = Rn, the predictions can represent all of Rn. Although this
assumption is strong it can be satisfied for large capacity neural networks that can interpolate any
dataset. The stochastic case is more challenging as our setup corresponds to solving VIs with bias,
for which we show can diverge even in the deterministic case (Proposition 3.3).

Since Z = Rn, no projection is needed for z∗t , and the minimum of the surrogate ℓt is the gradient
step z∗t = zt − ηF (zt). We also assume the standard setup, the possibility to generate independent
and identically distributed realizations (ξ1, ξ2, · · ·) of a random variable ξ such that Fξ(z) is an
unbiased estimator of F (z). For the noise, we define σ2 = Eξ

[
∥Fξ(z∗)∥2

]
and use the expected

co-coercive assumption from Loizou et al. (2021):
Assumption 3.4 (expected co-coercivity4). Eξ

[
∥Fξ(z)∥2

]
≤ 2L⟨F (z), z−z∗⟩+2σ2, for all z ∈ Z .

Without access to the true operator F in the stochastic case, a different α-descent condition is re-
quired using the stochastic estimate Fξt(zt). Instead of ℓt (4), we will use the loss ℓ̃t, an approxima-
tion of a projected stochastic gradient step, ℓ̃t(θ) = 1

2∥g(θ)− (g(θt)− ηFξt(zt))∥2, or equivalently

ℓ̃t(θ) =
η2

2
∥Fξt(zt)∥2 + η⟨Fξt(zt), g(θ)− g(θt)⟩+

1

2
∥g(θ)− g(θt)∥2. (9)

In practice, minimizing ℓ̃t exactly is impractical if n is very large due to the sum of squares
∥g(θ)− g(θt)∥2 in (9). Therefore we assume it can be minimized on expectation with the following
assumption.
Definition 3.5 (α-expected descent). The trajectory {θt}t∈N satisfies the α-expected descent condi-
tion if at for each t the following holds: given Fξt(zt), the parameter θt+1 is generated such that

E
[
ℓ̃t(θt+1)− ℓ̃∗t

]
≤ α2(ℓ̃t(θt)− ℓ̃∗t).

Similar to the deterministic case, we can prove linear convergence to a neighbourhood.
Theorem 3.6. Let Z = Rn, and Assumption (3.4) hold. If Fξ(x) is L-Lipschitz and η ≤ 1

2(1+c)L

where c ≥ 2(1 + α2) then any trajectory {θt}t∈N satisfying the α-expected descent condition guar-
antees:

E
[
1
2∥zt+1 − z∗∥2

]
≤ E

[
1
2∥zt − z∗∥2

] (
1− ηµ+ α2

)
+ η2(1 + c)σ2.

If we take c = 4 and η ≤ 1/10L then we have convergence to a neighbourhood if α <
√
ηµ. Theorem

3.6 provides a generalization of Loizou et al. (2021)[Theorem 4.1] where zt+1 follows a random
biased direction pt that on expectation guarantees E

[
∥pt − ηFξt(zt)∥2

]
≤ α2η2∥Fξt(zt)∥2. In

comparison to the stochastic results of Lavington et al. (2023), they avoid the assumption Z = Rn

by using a different surrogate. However, their result only applies to scalar minimization.

4 A NONLINEAR LEAST SQUARES PERSPECTIVE

The surrogate loss perspective and our α-descent condition allows for convergence so long as the
surrogate losses {ℓt}t∈N are sufficiently minimized. One approach to minimizing ℓt is to view it as
the following non-linear least-squares problem

min
θ

f(θ) = min
θ

1

2
∥r(θ)∥2, (10)

with a residual function r : Rd → Rn, where ℓt(θ) = f(θ) if r(θ) = g(θ) − g(θt) + ηF (g(θt)).
Due to the specific structure of f we can consider specialized methods such as Gauss-Newton
(GN), Damped Gauss-Newton (DGN), and Levenbergh-Marquardt (LM) (Björck, 1996; Nocedal
& Wright, 1999). These methods can be viewed as quasi-Newton methods that use a linear approx-
imation of r, r(θ) ≈ r(θt) +Dr(θt)(θ − θt).

The GN method is defined by the update rule θt+1 = θt − (Dr(θt)
⊤Dr(θt))

†Dr(θt)
⊤r(θt). GN

inherits the same local quadratic convergence properties as Newton’s method when the Hessian at
4Note that this is not exactly expected co-coercivity but implied by it (Loizou et al., 2021, Lemma 3.4).

6

Published as a conference paper at ICLR 2025

the minimum ∇2f(θ∗) ≈ Dr(θ∗)
⊤Dr(θ∗). However, GN is known to struggle with highly non-

linear problems, those with large residuals, or if Dr(θt) is nearly rank-deficient (Björck, 1996).
Fortunately, the GN direction is a descent direction of f , the DGN method takes steps in the GN
direction with a stepsize parameter ηGN and converges for a sufficiently small stepsize or with line
search (Björck, 1996). In cases where Dr(θt) is nearly rank deficient, the LM method can be used.

To minimize the surrogate we can consider taking multiple steps of gradient descent (Surr-GD),
DGN or LM. Denoting θst as sth intermediate step between θt+1 and θt we have the following:

θs+1
t = θst − ηGDDg(θst)

⊤(g(θst)− g(θt) + ηF (g(θt)) (Surr-GD)

θs+1
t = θst − ηGN (Dg(θst)

⊤Dg(θst))
†Dg(θst)

⊤(g(θst)− g(θt) + ηF (g(θt)) (DGN)

θs+1
t = θst − (Dg(θst)

⊤Dg(θst) + λ Id)−1Dg(θst)
⊤(g(θst)− g(θt) + ηF (g(θt)). (LM)

Note that we used the fact that Dr(θ) = Dg(θ), and if ηGN = 1 then DGN is the same as GN. Also,
note that one step of GN recovers exactly the PHGD method proposed by Sakos et al. (2024).

4.1 FAVOURABLE CONDITIONS FOR GRADIENT DESCENT

Several conditions allow for fast linear convergence of gradient descent for ℓt(θ)−ℓ∗t ; see for exam-
ple Guille-Escuret et al. (2021). Under linear convergence, s-steps of gradient descent guarantees
α = ρs for some ρ ∈ [0, 1), therefore any target value of α is achievable in a finite number of steps
that depends only logarithmically in α. In this section, we show how assumptions used in Sakos
et al. (2024) imply two common assumptions for fast convergence of GD: the Polyak-Łojasiewicz
(PL) condition (Polyak, 1964; Łojasiewicz, 1963, Definition B.2) and L-smoothness.

The four assumptions made by Sakos et al. (2024) to study the behaviour of PHGD are: (1-2) Dg⊤

has both uniformly lower bounded and upper bounded singular values, (3) each component function
gi is β-smooth, (4) and thatZ is bounded.5 In Proposition 4.1 we show that globally lower bounding
the singular values of Dg⊤ guarantees that the composition of a PL function f with g is still PL.
Proposition 4.1. Assume f satisfies the µ-PL condition, and let σmin be a lower bound on the
singular values of Dg(θ)⊤. Then, f ◦ g is µσ2

min-PL.

This implies that the surrogate loss ℓt is PL since ℓt = ft ◦ g where ft(z) = 1/2∥z − vt∥2 is 1-PL.
Similarly, ℓt can be shown to be L-smooth if Dg⊤ has uniformly upper bounded singular values,
each gi is β-smooth, andZ is bounded (see Lemma B.1). However, these 4 assumptions cannot hold
all at once. In Prop. 4.2, we show that if the first three assumptions (1-3) hold, then Z is unbounded.
Proposition 4.2. If g : Rd → Rn is differentiable where gi is β-smooth and Dg(θ)⊤ has globally
lower and upper bounded singular values, then {g(θ) : θ ∈ Rd} is unbounded.

This contradiction suggests that the lower bounded singular value assumption is strong. Indeed, it
forces the dimension of the parameter space d to be larger than the dimension of the prediction space
n, and if g is linear then it must be surjective Z = Rn. In the case n = d, it enforces Dg to be
invertible everywhere, which is violated in important cases such as softmax.

5 EXPERIMENTS

We consider min-max optimization and policy evaluation to demonstrate the behaviour and con-
vergence of surrogate based methods with hidden monotone structure. For min-max optimization
we compare different approaches from Section 4 on two domains from Sakos et al. (2024): hidden
matching pennies and hidden rock-paper scissors. For RL policy evaluation we consider the problem
of minimizing projected Bellman error (PBE) with linear and non-linear approximation.

5.1 MIN-MAX EXPERIMENTS

We compare four different approaches from Section 4: GN, DGN, LM, and Surr-GD. Taking only
one inner step for GN and Surr-GD gives PHGD and gradient descent-ascent (GDA), respectively.

5The set Z (note that Z is the “set of latent variables” denoted as X in Sakos et al. (2024)) is assumed to be
bounded in their Lemma 4 “template inequality”. More precisely, the existence of a constant D = diam(X)
(i.e. X is bounded) is used in equation B.20 in Appendix B. Lemma 4 is then used in Theorems 1-4.

7

Published as a conference paper at ICLR 2025

0 500 1000
Outer loop iterations

10 11

10 8

10 5

10 2

1 2
‖z

t
−
z ∗
‖2

2 0 2

6

4

2

0

2
θt trajectory

0.4 0.6 0.8

0.4

0.6

0.8

zt = g(θt) trajectory

0 500 1000
Outer loop iterations

0.0

0.2

0.4

0.6

0.8

1.0
`t(θt+ 1)/`t(θt)

PHGD(η=0.01)
GN(inner=5,η=0.01)

PHGD(η=0.1)
DGN(inner=75,η=0.1,ηalg=0.001)

LM(inner=1,η=0.1,λ=0.01)
LM(inner=10,η=0.1,λ=0.01)

GDA(η=0.1)
Surr-GD(inner=5,η=0.1)

Surr-GD(inner=10,η=0.1)
Surr-GD(inner=100,η=0.1)

Figure 1: Convergence of various algorithms from Section 4 on the hidden matching pennies game. PHGD
and GDA as presented in Sakos et al. (2024) are compared against GN, DGN, LM, and GD. (left) Linear con-
vergence to the equilbrium is observed for several methods with LM and GD outperforming the rest. (middle)
Trajectories for some methods are plotted in both the parameter and prediction space. (right) The loss ratio
ℓt(θt+1)/ℓt(θt) is illustrated for the considered methods.

Player 1 Player 2

0 500 1000
Outer loop iterations

10 5

10 3

10 1

1 2
‖z

t
−
z ∗
‖2

0 500 1000
Outer loop iterations

0.0

0.5

1.0
`t(θt+ 1)/`t(θt)

PHGD(η=0.1)
LM(inner=1,η=0.1,λ=0.01)

LM(inner=5,η=0.1,λ=0.01)
GDA(η=0.1)

Surr-GD(inner=10,η=0.1)
Surr-GD(inner=100,η=0.1)

Figure 2: Convergence in the hidden rps game.

Hidden Matching Pennies. The hid-
den matching pennies game is a zero-
sum game of the form (3), where
each player has the parameterization
hi(θ) = sigmoid(αi

2 CELU(αi
1θ)). The

convex-concave objective f is given by
f(z1, z2) = −(2z1 − 1)(2z2 − 1) +
0.75
2

(
(z1 − 1/2)2 + (z2 − 1/2)2

)
. The pa-

rameters αi
j are chosen to approximately

replicate the trajectory of PHGD presented
in Sakos et al. (2024, Figure 4) (see Ap-
pendix C.1 for more details). In Figure 1,
we observe that PHGD converges linearly
in the squared distance to the equilibrium, but performs poorly if multiple inner steps are taken (GN
with 5 inner steps). If η is increased by an order of magnitude, PHGD is observed to diverge; how-
ever, convergence is possible via DGN with the same η, with multiple iterations and an appropriate
choice of ηDGN . In contrast to GN, LM is more stable with a larger η and converges faster than
PHGD/GN. Finally we tested GD for a different number of inner steps with η = 0.1. Convergence is
observed for GDA albeit slow. The benefit of multiple steps is clear, with 10 inner steps outperform-
ing PHGD and only surpassed by LM. Although more inner steps increases the computational cost,
it is marginal when compared to evaluating F (see Fig. 5). Interestingly, Fig. 1 (right) shows that
spending more compute to minimize the surrogate at each iteration does not necessarily translate to
faster overall convergence with respect to the outer loop (left). GD with 10 inner steps has a larger
loss ratio than GD with 100 steps but converges faster to the equilibrium.

Hidden rock-paper-scissors. In the hidden rps game each player’s mixed strategy in rock-
paper-scissors is parameterized. Where player i’s strategy zi is given by the function hi(θ) =
softmax(Ai

2 CELU(Ai
1θ

i)), with θi ∈ R5 and randomly initialized matrices: Ai
1 ∈ R4×5, and

Ai
2 ∈ R3×4. Figure 2 demonstrates the behaviour of various algorithms for a fixed initialization of

θ = (θ1, θ2) and the matrices Ai
j . We observe that PHGD and LM with one inner step achieve linear

convergence while GDA performs poorly with an unstable behaviour. Like in the hidden matching
pennies game, increasing the number of inner steps for GD improves stability and performance, with
the best performance not necessarily corresponding to the methods with the lowest loss ratio. Both
LM and GD degrade in performance if too many inner steps are taken, with one and 10 inner steps
outperforming 5 and 100 steps for LM and GD respectively.

5.2 MINIMIZING PROJECTED BELLMAN ERROR

For our RL experiments we consider the policy evaluation problem of approximating a value vec-
tor vπ ∈ Rn, representing the expected discounted return over n states for a given policy π and
Markov decision process (MDP). To this end, we consider a common approach to policy evaluation:
minimizing the projected Bellman error, which is a fixed point problem associated with temporal
difference learning (TD) (Sutton, 1988). Despite the widespread practical success of TD and its
variants, the analysis and behaviour of TD has proven challenging since it cannot be modeled as a
scalar minimizing problem and is known not to follow the gradient of any objective (Baird, 1995;

8

Published as a conference paper at ICLR 2025

Antos et al., 2008). Bertsekas (2009) showed that minimizing PBE is equivalent to solving a smooth
and strongly monotone VI problem of the form (1) where F (z) = Ξ(z − Tπ(z)) (Bertsekas, 2009).
Tπ : Rn → Rn is the linear Bellman policy evaluation operator defined over all n states (s1, · · · , sn)
in a given MDP and is defined as Tπ(z) = rπ + γPπz, where rπ is the associated expected reward
vector at each state and Pπ is the state to state probability transition matrix as given by the MDP and
π. Ξ is the diagonal matrix with entries corresponding to the stationary distribution ξ ∈ Rn of states
according to π. The constraint Z in this case is the set of all representable value functions. With
respect to θ, solving the VI associated with minimizing PBE is equivalent to finding the fixed point:

θ∗ ∈ argmin
θ

[
BE(θ, θ∗) =

1

2

n∑
i=1

ξi(vθ(s
i)− (rπ(s

i)− γEs′∼Pπ

[
vθ∗(s

′)|si
]
)2

]
, (11)

where vθ is the predicted value vector given parameters θ. See Appendix D for more details.

5.2.1 LINEAR APPROXIMATION

0 200 400 600 800 1000
Outer loop iterations

10 5

10 4

10 3

10 2

10 1

100

Pa
ra

m
ete

r e
rro

r:
‖ θ
t
−
θ B

er
t‖

Surr-GD, inner =1
Surr-GD, inner =5
Surr-GD, inner =10
Surr-GD, inner =50

Figure 3: The average approximation error be-
tween GD on the surrogate (14, Surr-GD) and up-
date (13) over 10,000 runs in a slow mixing 100-
state Markov chain from Bertsekas (2009) and Yu
& Bertsekas (2009, Example 3). Surr-GD is ob-
served to converge to the exact update (13) with
faster convergence for more inner steps.

For our linear RL experiments, we consider a
slow-mixing 100-state Markov chain from Bertsekas
(2009) and Yu & Bertsekas (2009). Using a linear
model, z = g(θ) = Φθ with θ ∈ Rd, Φ ∈ Rn×d

and d ≪ n. Bertsekas (2009) proposed several
methods to leverage the hidden structure in F . Sim-
ilar to Sakos et al. (2024), the proposed methods
are presented via preconditioning schemes that ap-
proximate a projected gradient step in the space of
representable value functions Z . Bertsekas (2009)
suggests performing the deterministic and stochastic
PHGD-like updates:

θt+1 = θt − (Φ⊤ΞΦ)−1Φ⊤F (zt), (12)

θt+1 = θt − D̂−1
t (Ĉtθt − r̂t). (13)

The deterministic update is expensive, requiring the full feature matrix Φ. Hence, Bertsekas (2009)
constructs an online sequence of estimators {D̂t}t∈N, {Ĉt}t∈N, and {r̂t} from a trajectory and
suggests the stochastic update (13). Although this method applies more generally, in the context of
solving (11) update (13) is equivalent to least-squares policy evaluation (Bertsekas & Ioffe, 1996).

Equivalently, update (12) can be seen as one step of the generalized Gauss-Newton method (Ortega
& Rheinboldt, 2000) on the surrogate ℓt(θ) = 1/2∥Φθ − Tπ(Φθt)∥2Ξ. Since the model is linear, the
update is the minimizer of the surrogate, and corresponds to an exact projected gradient step in the
space of value functions, which is known to be a contraction (Bertsekas, 2012).

Similar to the deterministic update, we show that the stochastic version can be shown to be the min-
imizer of a surrogate loss ℓ̃t(θ), whose minimizer is the exact update (13). The stochastic surrogate
ℓ̃t and its gradient, derived in Proposition D.1, are

ℓ̃t(θ) =
1

2
∥Φθ − T̂π(zt)∥2Ξ̂, ∇ℓ̃t(θ) = Ĉtθt − r̂t + D̂t(θ − θt), (14)

where Ξ̂ and T̂π correspond to the natural estimators using the empirical distribution (see Appendix
D.1 for more details). Instead of minimizing the loss exactly it can be approximated with GD, thus
avoiding the matrix inversion D̂−1

t , which can make (13) intractable. Figure 3 demonstrates the
effectiveness of approximating update (13) via GD on the surrogate ℓ̃t (14).

5.2.2 NON-LINEAR PROJECTED BELLMAN ERROR

For the non-linear setting, we approximate the value function of a fixed reference policy with a two-
layer neural network in two Mujoco environments, Ant and Half Cheetah (Todorov et al., 2012).
These environments are characterized by continuous state and action spaces, where the agent must

9

Published as a conference paper at ICLR 2025

102 103 104

Outerloop Iterations

100

101

102

103

104

Va
lu

e
Pr

ed
ict

io
n

Er
ro

r Outerloop Based Comparison (Ant-v4)

102 103 104 105

Wallclock Time (seconds)

100

101

102

103

104

Va
lu

e
Pr

ed
ict

io
n

Er
ro

r Wallclock Time Based Comparison (Ant-v4)

102 103 104

Outerloop Iterations

103

104

Va
lu

e
Pr

ed
ict

io
n

Er
ro

r Outerloop Based Comparison (Half Cheetah-v4)

102 103 104 105

Wallclock Time (seconds)

103

104

Va
lu

e
Pr

ed
ict

io
n

Er
ro

r Wallclock Time Based Comparison (Half Cheetah-v4)

Thresholded Surr-GD, 2=0.5, inner=50
Surr-GD with double sampling, inner=10

Surr-GD with double sampling, inner=50
Surr-GD with double sampling, inner=1000

Surr-GD, inner=10
Surr-GD, inner=50

Surr-GD, inner=1000
TD0 (Surr-GD, inner=1)

Figure 4: Comparison of average performance of TD(0) and surrogate methods in minimizing the value
prediction error for RL tasks with nonlinear function approximation in Ant (top) and HalfCheetah (bottom)
environments, measured by outer loop iterations (left) and wallclock time (right). The average value prediction
error across 20 runs along with 95% confidence intervals are computed from a fixed test set. The red dashed
line represents the lowest value prediction error achieved by any of the algorithms.

control high-dimensional, physics-based simulations to achieve locomotion tasks. The reference
policy is derived by training a policy network with the soft-actor-critic algorithm (Haarnoja et al.,
2018). For each environment, we consider two different surrogate-based methods with TD(0) as
a special case. Similar to the linear case, we aim to find the fixed point (11), and consider the
surrogate ℓt(θ) = 1/2∥vθ − Tπ(vθt)∥2Ξ. However, due to the large state spaces we must instead
consider miniziming the stochastic surrogate ℓ̃t (9) from Section 3.2. Notice that ℓ̃t consists of two
main parts: an inner product term that is linear in vθ = g(θ), and a squared error term ∥vθ − vθt∥2.
Our two surrogate methods use different estimates for the linear and error term.

The first method, Surr-GD, uses the same batch of data to approximate both the inner product part
and the squared error term. This fixed batch approach was proposed in Lavington et al. (2023)
for scalar minimization, and introduces bias due to approximating the squared error term across
all states with states seen in the batch. With this approximation we perform either a fixed number
of steps (inner = # steps) or an adaptive number of steps depending on a loss ratio (Thresholded
Surr-GD). Taking one step recovers a batch version of TD(0), for more details see Algorithms 2, 4.

The second method, surrogate with double sampling, uses a fixed batch to approximate the inner
product term but resamples a new batch to approximate the squared error part at each gradient step.
By resampling a new batch for the squared error we have removed the bias from the first method at
the cost of increased variance in the gradient. For more details see Algorithm 3.

All methods are evaluated with value prediction error, the squared error for a test sample of 10,000
states visited by a fixed reference policy. The values in these test states are approximated by 10
Monte-Carlo roll-outs. As shown in Figure 4, surrogate methods significantly outperformed TD(0)
in both data efficiency (outer loop iterations) and wall-clock time. Interestingly, the surrogate meth-
ods converge to a lower prediction error than TD(0), as indicated by the red dashed line.

Although the inner loop in the surrogate methods requires more gradient computations, the compu-
tational overhead is marginal when compared to environment interactions, a common bottleneck in
RL tasks (Vaswani et al., 2021). We observe that increasing the inner loop size improves data effi-
ciency at the trade-off of a potentially slower convergence in wall-clock time. An inner loop count,
such as 50, seems to balance both data efficiency and wall-clock time.

6 CONCLUSION

In this work we proposed a principled and scalable surrogate loss approach to solving variational in-
equality problems with hidden monotone structure. We have presented a novel α-descent condition
that is optimizer agnostic and quantifies sufficient progress on the surrogate for convergence. We
have proved linear convergence in both the deterministic and stochastic settings. We have also shown
that surrogate losses in VI problems are strictly more difficult to analyze than in scalar minimization.
Furthermore, we have demonstrated the generality of our approach by showing how existing meth-
ods can be viewed as special cases of our general framework. Empirically, we have demonstrated
the effectiveness of using surrogate losses in both min-max optimization and minimizing projected
Bellman error. Finally, by using surrogate losses, we have proposed novel variants of TD(0) that are
more data and run-time efficient in the deep reinforcement learning setting.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

We thank Nicolas Le Roux, David Kanaa, Iosif Sakos, Andrew Patterson, Khurram Javed, and
Arushi Jain, for helpful discussions and feedback. This work was supported by Borealis AI through
the Borealis AI Global Fellowship Award.

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Mar-
tin Riedmiller. Maximum a posteriori policy optimisation. In International Conference on Learn-
ing Representations, 2018.

Ahmad Ajalloeian and Sebastian U Stich. On the convergence of sgd with biased gradients. arXiv
preprint arXiv:2008.00051, 2020.

András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with bellman-
residual minimization based fitted policy iteration and a single sample path. Machine Learning,
71:89–129, 2008.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. Journal of
Machine Learning Research, 18(19):1–53, 2017. URL http://jmlr.org/papers/v18/
14-546.html.

Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Machine learning proceedings 1995, pp. 30–37. Elsevier, 1995.

Peter Bartlett, Yoav Freund, Wee Sun Lee, and Robert E Schapire. Boosting the margin: A new
explanation for the effectiveness of voting methods. The annals of statistics, 26(5):1651–1686,
1998.

Amir Beck. First-order methods in optimization. SIAM, 2017.

Mikhail Belkin, Alexander Rakhlin, and Alexandre B Tsybakov. Does data interpolation contra-
dict statistical optimality? In The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 1611–1619. PMLR, 2019.

Dimitri Bertsekas. Dynamic programming and optimal control: Volume I, volume 4. Athena scien-
tific, 2012.

Dimitri P Bertsekas. Projected equations, variational inequalities, and temporal difference methods.
Lab. for Information and Decision Systems Report LIDS-P-2808, MIT, 2009.

Dimitri P Bertsekas and Sergey Ioffe. Temporal differences-based policy iteration and applications
in neuro-dynamic programming. Lab. for Info. and Decision Systems Report LIDS-P-2349, MIT,
Cambridge, MA, 14:8, 1996.

Åke Björck. Numerical methods for least squares problems. SIAM, 1996.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231–357, 2015.

Jean-Philippe Chancelier and Michel De Lara. Conditional infimum and hidden convexity in opti-
mization. arXiv preprint arXiv:2104.05266, 2021.

Ching-An Cheng, Jonathan Lee, Ken Goldberg, and Byron Boots. Online learning with continuous
variations: Dynamic regret and reductions. In International Conference on Artificial Intelligence
and Statistics, pp. 2218–2228. PMLR, 2020.

Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. The complexity of constrained
min-max optimization. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pp. 1466–1478, 2021.

Dmitriy Drusvyatskiy and Lin Xiao. Stochastic optimization with decision-dependent distributions.
Mathematics of Operations Research, 48(2):954–998, 2023.

11

http://jmlr.org/papers/v18/14-546.html
http://jmlr.org/papers/v18/14-546.html

Published as a conference paper at ICLR 2025

Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational inequalities and comple-
mentarity problems. Springer, 2003.

Ilyas Fatkhullin, Niao He, and Yifan Hu. Stochastic optimization under hidden convexity. arXiv
preprint arXiv:2401.00108, 2023.

Barbara Franci and Sergio Grammatico. Convergence of sequences: A survey. Annual Re-
views in Control, 53:161–186, 2022. ISSN 1367-5788. doi: https://doi.org/10.1016/j.arcontrol.
2022.01.003. URL https://www.sciencedirect.com/science/article/pii/
S1367578822000037.

Gauthier Gidel, David Balduzzi, Wojciech Czarnecki, Marta Garnelo, and Yoram Bachrach. A
limited-capacity minimax theorem for non-convex games or: How i learned to stop worrying
about mixed-nash and love neural nets. In International Conference on Artificial Intelligence and
Statistics, pp. 2548–2556. PMLR, 2021.

Charles Guille-Escuret, Manuela Girotti, Baptiste Goujaud, and Ioannis Mitliagkas. A study of
condition numbers for first-order optimization. In Arindam Banerjee and Kenji Fukumizu (eds.),
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, volume
130 of Proceedings of Machine Learning Research, pp. 1261–1269. PMLR, 13–15 Apr 2021.
URL https://proceedings.mlr.press/v130/guille-escuret21a.html.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Lars Hörmander. The analysis of linear partial differential operators III: Pseudo-differential oper-
ators. Springer Science & Business Media, 2007.

Rie Johnson and Tong Zhang. Guided learning of nonconvex models through successive func-
tional gradient optimization. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 4921–4930. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/johnson20b.html.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Jonathan Wilder Lavington, Sharan Vaswani, Reza Babanezhad Harikandeh, Mark Schmidt, and
Nicolas Le Roux. Target-based surrogates for stochastic optimization. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 18614–18651. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/lavington23a.html.

Nicolas Loizou, Hugo Berard, Gauthier Gidel, Ioannis Mitliagkas, and Simon Lacoste-Julien.
Stochastic gradient descent-ascent and consensus optimization for smooth games: Convergence
analysis under expected co-coercivity. Advances in Neural Information Processing Systems, 34:
19095–19108, 2021.

Stanislaw Łojasiewicz. Une propriété topologique des sous-ensembles analytiques réels, 1963.

Andjela Mladenovic, Iosif Sakos, Gauthier Gidel, and Georgios Piliouras. Generalized natural gra-
dient flows in hidden convex-concave games and GANs. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=bsycpMi00R1.

Mehrnaz Mofakhami, Ioannis Mitliagkas, and Gauthier Gidel. Performative prediction with neural
networks. In International Conference on Artificial Intelligence and Statistics, pp. 11079–11093.
PMLR, 2023.

Katta G Murty and Santosh N Kabadi. Some np-complete problems in quadratic and nonlinear
programming. Technical report, 1985.

12

https://www.sciencedirect.com/science/article/pii/S1367578822000037
https://www.sciencedirect.com/science/article/pii/S1367578822000037
https://proceedings.mlr.press/v130/guille-escuret21a.html
https://proceedings.mlr.press/v119/johnson20b.html
https://proceedings.mlr.press/v119/johnson20b.html
https://proceedings.mlr.press/v202/lavington23a.html
https://openreview.net/forum?id=bsycpMi00R1

Published as a conference paper at ICLR 2025

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

James M Ortega and Werner C Rheinboldt. Iterative solution of nonlinear equations in several
variables. SIAM, 2000.

Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative prediction.
In International Conference on Machine Learning, pp. 7599–7609. PMLR, 2020.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. In International conference on machine learning, pp. 2817–2826. PMLR, 2017.

Boris T Polyak. Gradient methods for solving equations and inequalities. USSR Computational
Mathematics and Mathematical Physics, 4(6):17–32, 1964.

R.T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics and Physics. Prince-
ton University Press, 1997. ISBN 9780691015866. URL https://books.google.ca/
books?id=wj4Fh4h_V7QC.

Iosif Sakos, Emmanouil-Vasileios Vlatakis-Gkaragkounis, Panayotis Mertikopoulos, and Georgios
Piliouras. Exploiting hidden structures in non-convex games for convergence to nash equilibrium.
Advances in Neural Information Processing Systems, 36, 2024.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Mikhail V Solodov and Benar F Svaiter. A hybrid approximate extragradient–proximal point algo-
rithm using the enlargement of a maximal monotone operator. Set-Valued Analysis, 7(4):323–345,
1999.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9–44, 1988.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Sharan Vaswani, Olivier Bachem, Simone Totaro, Robert Müller, Shivam Garg, Matthieu Geist,
Marlos C Machado, Pablo Samuel Castro, and Nicolas Le Roux. A general class of surrogate
functions for stable and efficient reinforcement learning. arXiv preprint arXiv:2108.05828, 2021.

Emmanouil-Vasileios Vlatakis-Gkaragkounis, Lampros Flokas, and Georgios Piliouras. Solving
min-max optimization with hidden structure via gradient descent ascent. Advances in Neural
Information Processing Systems, 34:2373–2386, 2021.

Yong Xia. A survey of hidden convex optimization. Journal of the Operations Research Society of
China, 8(1):1–28, 2020.

Huizhen Yu and Dimitri P. Bertsekas. Convergence results for some temporal difference methods
based on least squares. IEEE Transactions on Automatic Control, 54(7):1515–1531, 2009. ISSN
0018-9286. doi: 10.1109/TAC.2009.2022097. Funding Information: Manuscript received July
17, 2006; revised August 15, 2007 and August 22, 2008. Current version published July 09,
2009. This work was supported by National Science Foundation (NSF) Grant ECS-0218328.
Recommended by Associate Editor A. Lim.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In International Conference on Learning Rep-
resentations, 2017. URL https://openreview.net/forum?id=Sy8gdB9xx.

13

https://books.google.ca/books?id=wj4Fh4h_V7QC
https://books.google.ca/books?id=wj4Fh4h_V7QC
https://openreview.net/forum?id=Sy8gdB9xx

Published as a conference paper at ICLR 2025

A PROOFS

Remark A.1. If g is continuous, and {g(θ) : θ ∈ Rd} is convex with Z as its closure, then the
least-squares surrogate loss ℓt(θ) = 1

2∥g(θ) − zt + ηF (zt)∥2 admits a unique point z∗t ∈ Z such
that

ℓ∗t =
1

2
∥z∗t − zt + ηF (zt)∥2,

and for any θ
1

2
∥g(θ)− z∗t ∥2 ≤ ℓt(θ)− ℓ∗t ,

where ℓ∗t = infθ∈Rd ℓt(θ).

Proof. Let f(z) = 1
2∥z − zt + ηF (zt)∥2 be the surrogate loss with respect to the predictions

z = g(θ). We have that f(z) = ℓt(θ) for all θ ∈ Rd. Now consider the set Z = cl{g(θ) : θ ∈ Rd},
since it is closed and convex, we have that f has a unique minimum z∗t because it is 1-strongly
convex. Furthermore, we have

1

2
∥z − z∗t ∥2 ≤ f(z)− f(z∗t).

Now since z∗t ∈ Z and Z is the closure of {g(θ) : θ ∈ Rd}, there exists a sequence of parameters
{θt}t∈N such that {zt = g(θt)}t∈N → z∗t . Therefore we have that,

f(z∗t) = lim
t→∞

f(zt) = lim
t→∞

ℓt(θt) ≥ ℓ∗t ≥ f(z∗t).

Where we have used the continuity of f and g. The last inequality follows because {g(θ) : θ ∈
Rd} ⊆ Z . Therefore ℓ∗t = f(z∗t) and the result follows.

Lemma A.2. If F is monotone and z∗ is in the relative interior of the constraint Z , then

ℓt(θt)− ℓ∗t ≤
η2

2
∥F (zt)− F (z∗)∥2.

Furthermore, under the α-descent condition (Definition 2.1) we have

∥zt+1 − z∗t ∥ ≤ αη∥F (zt)− F (z∗)∥.

Proof. If z∗ is a solution then we have

⟨F (z∗), z − z∗⟩ ≥ 0 , ∀z ∈ Z.
If z∗ is in the relative interior then for any z ∈ Z there exists a λ > 1 such that z′ = (1−λ)z+λz∗ ∈
Z (Rockafellar, 1997)[Theorem 6.4]. Therefore by optimality we have

0 ≤ ⟨F (z∗), z
′ − z∗⟩ = ⟨F (z∗), (1− λ)z + λz∗ − z∗⟩ = (1− λ)⟨F (z∗), z − z∗⟩ ≤ 0.

Where the last inequality follows from λ > 1. Altogether we have

⟨F (z∗), z − z∗⟩ = 0 , ∀z ∈ Z.
Moreover, as a consequence we have that for any two points z, z′ ∈ Z

⟨F (z∗), z − z′⟩ = ⟨F (z∗), z − z∗⟩+ ⟨F (z∗), z∗ − z′⟩ = 0.

Letting z∗t be the exact projected gradient step and zt = g(θt) the current iterate we have

ℓt(θt)− ℓ∗t =
1

2
∥ηF (zt)∥2 −

(
1

2
∥z∗t − zt + ηF (zt)∥2

)
= η⟨F (zt), zt − z∗t ⟩ −

1

2
∥z∗t − zt∥2

= η⟨F (zt)− F (z∗), zt − z∗t ⟩+ η⟨F (z∗), zt − z∗t ⟩ −
1

2
∥z∗t − zt∥2

= η⟨F (zt)− F (z∗), zt − z∗t ⟩ −
1

2
∥z∗t − zt∥2

≤ η2

2
∥F (zt)− F (z∗)∥2.

14

Published as a conference paper at ICLR 2025

Where the last two inequalities follow by: z∗ being within the relative interior, and the inequality
⟨u, v⟩ ≤ ρ

2∥u∥
2 + 1

2ρ∥v∥
2 for any ρ > 0.

By Remark A.1 and the α-decent condition,

1

2
∥zt+1 − z∗t ∥2 ≤ ℓt(θt+1)− ℓ∗t ≤ α2(ℓt(θt)− ℓ∗t) ≤ α2 η

2

2
∥F (zt)− F (z∗)∥2.

Proposition A.3. Let f : Rn → R be L-smooth. For some g : Rd → Rn define the surrogate loss
ℓt(θ) = 1

2∥g(θ) − zt +
1
L∇f(zt)∥

2, where zt = g(θt). Then the α-descent condition (Definition
2.1) guarantees

f(zt+1) ≤ f(zt)− L(1− α2)(ℓt(θt)− ℓ∗t).

If f is bounded below then {zt − z∗t }t∈N → 0, where z∗t = Π(zt − 1
L∇f(zt)).

Proof. Let ẑt = zt − 1
L∇f(zt).

f(zt+1)− f(zt) ≤ ⟨∇f(zt), zt+1 − zt⟩+
L

2
∥zt+1 − zt∥2

= L⟨zt − ẑt, zt+1 − zt⟩+
L

2
∥zt+1 − zt∥2

= L

(
−∥ẑt − zt∥2 + ⟨zt − ẑt, zt+1 − ẑt⟩+

1

2
∥zt+1 − zt∥2

)
= L

(
1

2
∥ẑt − zt+1∥2 −

1

2
∥ẑt − zt∥2

)
= L (ℓt(θt+1)− ℓt(θt)) .

The second to last equality follows from expanding 1
2∥zt+1 − zt∥2 = 1

2∥zt+1 − ẑt + ẑt − zt∥2.
Using the α-descent condition we have

ℓt(θt+1)− ℓt(θt) ≤ (α2 − 1)(ℓt(θt)− ℓ∗t),

yielding the first result.

If f is bounded below by some constant c then we have:

T∑
t=1

L(1− α2)(ℓt(θt)− ℓ∗t) ≤ f(z1)− f(zT) ≤ f(z1)− c.

Therefore the series
∑∞

t=1 ℓt(θt) − ℓ∗t converges with ℓt(θt) − ℓ∗t → 0. By Remark A.1 we have
1
2∥zt − z∗t ∥2 ≤ ℓt(θt)− ℓ∗t implying the result zt − z∗t → 0.

Theorem 3.2. Let Assumption 3.1 hold and let {zt = g(θt)}t∈N be the iterates produced by Algo-
rithm 1. If α and η are picked such that ρ := 1−2η(µ−αL)+(1+α2)η2L2 < 1 then, zt converge
linearly to the solution z∗ at the following linear rate:

∥zt+1 − z∗∥2 ≤ ρt∥z1 − z∗∥2. (15)

Particularly, if α < µ
L and η < 2(µ−αL)

(1+α2)L2 then ρ < 1 and if α ≤ µ
2L and η = 2µ

5L2 then ρ ≤ 1− µ2

5L2 .

Proof. First note that by definition of Algorithm 1, the iterates zt = g(θt)t∈N satisfy the α-descent
property (Definition 2.1), therefore Lemma A.2 holds. Recall that z∗t , the exact projection update, is
a contraction if η < 2µ

L since

∥z∗t − z∗∥2 ≤ κ2∥zt − z∗∥2 (16)

15

Published as a conference paper at ICLR 2025

where κ2 = 1− 2ηµ+ η2L2(Facchinei & Pang, 2003, Theorem 12.1.2). For the remainder, assume
that η < 2µ

L so that κ ∈ [0, 1). Denoting Ft = F (zt) and F∗ = F (z∗), we have

∥zt+1 − z∗∥2 = ∥z∗t − z∗ + zt+1 − z∗t ∥2

= ∥z∗t − z∗∥2 + 2⟨zt+1 − z∗t , z
∗
t − z∗⟩+ ∥zt+1 − z∗t ∥2

≤ ∥z∗t − z∗∥2 + 2∥zt+1 − z∗t ∥∥z∗t − z∗∥+ ∥zt+1 − z∗t ∥2 (Cauchy–Schwarz)

≤ ∥z∗t − z∗∥2 + 2αηκ∥Ft − F∗∥∥zt − z∗∥+ α2η2∥Ft − F∗∥2 (Lemma A.2)

≤ ∥z∗t − z∗∥2 + 2αηL∥zt − z∗∥2 + α2η2L2∥zt − z∗∥2 (Smoothness of F and κ < 1)

≤ κ2∥zt − z∗∥2 + 2αηL∥zt − z∗∥2 + α2η2L2∥zt − z∗∥2 (Eq. 16)

= ∥zt − z∗∥2
(
1− 2ηµ+ 2αηL+ (1 + α2)η2L2

)
.

If α < µ
L then

∥zt+1 − z∗∥2 ≤ ∥zt − z∗∥2
1− 2η (µ− αL)︸ ︷︷ ︸

>0

+(1 + α2)η2L2

 .

Taking η < 2(µ−αL)
(1+α2)L2 would guarantee a contraction.

If α ≤ µ
2L and taking η = 2µ

5L2 we have:

1− 2ηµ+ 2αηL+ (1 + α2)η2L2
α≤µ/2L≤1/2

≤ 1− ηµ+

(
1 +

1

4

)
η2L2

η= 2µ

L2

= 1− 2µ2

5L2
+

µ2

5L2
= 1− µ2

5L2
.

Proposition A.5. Take θt+1 to be an approximate minima of ℓt(θ). Suppose T = Π ◦ (Id−ηF) is
a contraction, if ℓt(θt+1)− ℓ∗t → 0 then the induced sequence {zt = g(θt)}t∈N converges, zt → z∗
where z∗ is the unique solution to VI(Z, F).

Proof. Let ϵt = zt+1 − z∗t be the approximation error between zt+1 and z∗t the minimum of the
surrogate ℓt (exact projected gradient step).

1

2
∥zt+1 − z∗∥2 =

1

2
∥z∗t − z∗ + ϵt∥2

=
1

2
∥z∗t − z∗∥2 + ⟨z∗t − z∗, ϵt⟩+

1

2
∥ϵt∥2

ρ>0

≤ 1

2
∥z∗t − z∗∥2 +

ρ

2
∥z∗t − z∗∥2 +

1

2ρ
∥ϵt∥2 +

1

2
∥ϵt∥2

κ∈[0,1)

≤ κ(1 + ρ)

2
∥zt − z∗∥2 + (1 +

1

ρ
)(ℓt(θt+1)− ℓ∗t).

Where we use the fact that 1
2∥ϵt∥

2 = 1
2∥zt+1 − z∗t ∥2 ≤ ℓt(θt+1)− ℓ∗t from Remark A.1. Take any

ρ such that κ(1 + ρ) < 1 then apply Lemma 3.9 in Franci & Grammatico (2022).

Proposition 3.3. There exists an L-smooth and µ-strongly monotone F , and a sequence of iterates
{zt}t∈N verifying the alpha descent condition with α < 1 such that zt diverges for any η.

Proof. Let us consider the simple min max example with loss

min
x

max
y

1

2
x2 + xy − 1

2
y2.

This problem can be written as VIP where z = (x, y) and the operator F is linear given by the
matrix

F =

[
1 1
−1 1

]
.

16

Published as a conference paper at ICLR 2025

It is well-known that F is both smooth and strongly monotone with zt+1 = zt − ηF (zt) being a
contraction for small enough η (Facchinei & Pang, 2003). Now if we consider a biased direction
given by a matrix P , that is zt+1 = zt − Pzt, then using the fact that ℓ∗t = 0 the α-descent on the
surrogate corresponds to the following bound

∥zt+1 − zt + ηFzt∥ = ∥(ηF − P)zt∥ ≤ α∥ηFzt∥.

Despite being a contraction when we follow the true gradient F , the above min max loss causes
rotations in the dynamics that are inherent to the adversarial nature of the problem. These rotations
are carefully controlled by the stepsize and strong convexity/concavity of the loss. Our counterex-
ample simply adds a bit of rotation that ensures α < 1 but yet is detrimental to the convergence.
Mathematically, we take P = (Id−αQ)ηF where Q is the rotation matrix

Q =

[
1√
2
− 1√

2
1√
2

1√
2
.

]
With this construction we are guaranteed that α < 1 since

∥(ηF − P)zt∥ = ∥αQηFzt∥ = αη∥Fzt∥,

where the last equality is due the the fact that Q is an orthogonal matrix and therefore does not
change the Euclidean norm of a vector.

Now taking α = 1/
√
2 gives

P =

(
Id−α

[
1√
2
− 1√

2
1√
2

1√
2

])[
η η
−η η

]
.

=

[
1
2

1
2

− 1
2

1
2

] [
η η
−η η

]
=

[
0 η
−η 0.

]

We have that zt+1 = zt − Pzt =

[
1 −η
η 1

]
zt has an α = 1/

√
2 but yet diverges for any η > 0 since

the Eigenvalues of the linear system are λ = 1 ± iη therefore the spectral radius is strictly greater
than one. Note that these dynamics are equivalent to gradient descent ascent on the bilinear loss
f(x, y) = xy, which is known to diverge for any stepsize.

Theorem 3.6. Let Z = Rn, and Assumption (3.4) hold. If Fξ(x) is L-smooth and η ≤ 1
2(1+c)L

where c ≥ 2(1 + α2) then any trajectory {θt}t∈N satisfying the α-expected descent condition guar-
antees:

E
[
1
2∥zt+1 − z∗∥2

]
≤ E

[
1
2∥zt − z∗∥2

] (
1− ηµ+ α2

)
+ η2(1 + c)σ2.

Proof. For convenience let Fξt(zt) = F̂t. Let z∗t = zt − ηF̂t and pt = zt − zt+1, Eθt+1
[·] denote

the expectation over zt+1 = g(θt+1) given zt, and ξt. The expected α-descent condition in the
unconstrained case is equivalent to

Eθt+1

[
∥zt+1 − zt + ηF̂t∥2

]
≤ α2η2∥F̂t∥2.

By concavity of the square root and the expected α-descent condition we have E
[√

X
]
≤
√
E [X]

and

Eθt+1

[
∥zt+1 − zt + ηF̂t∥

]
= Eθt+1

[√
∥zt+1 − zt + ηF̂t∥2

]
(17)

≤
√
E
[
∥zt+1 − zt + ηF̂t∥2

]
(18)

≤ αη∥F̂t∥. (19)

17

Published as a conference paper at ICLR 2025

We also have the following bound

Eθt+1

[
∥zt+1 − zt∥2

]
= Eθt+1

[
∥zt+1 − zt + ηF̂t − ηF̂t∥2

]
(20)

≤ Eθt+1

[
2∥zt+1 − zt + ηF̂t∥2 + 2∥ηF̂t∥2

]
(21)

≤ 2(1 + α2)η2∥F̂t∥2. (22)

Next we expand and bound the distance 1
2∥zt+1 − z∗∥2.

1

2
∥zt+1 − z∗∥2 =

1

2
∥zt − pt − z∗∥2

=
1

2
∥zt − z∗∥2 − ⟨pt, zt − z∗⟩+

1

2
∥pt∥2

=
1

2
∥zt − z∗∥2 − η⟨F̂t, zt − z∗⟩+ ⟨ηF̂t − pt, zt − z∗⟩+

1

2
∥pt∥2

≤ 1

2
∥zt − z∗∥2 − η⟨F̂t, zt − z∗⟩+ ∥ηF̂t − pt∥∥zt − z∗∥+

1

2
∥pt∥2

=
1

2
∥zt − z∗∥2 − η⟨F̂t, zt − z∗⟩+ ∥zt+1 − zt + ηF̂t∥∥zt − z∗∥+

1

2
∥zt+1 − zt∥2

Taking an expectation over zt+1 given zt, and ξt we have

Eθt+1

[
1

2
∥zt+1 − z∗∥2

]
(19,22)

≤ 1

2
∥zt − z∗∥2 − η⟨F̂t, zt − z∗⟩+ ηα∥F̂t∥∥zt − z∗∥+

2(1 + α2)η2

2
∥F̂t∥2

≤ 1

2
∥zt − z∗∥2 − η⟨F̂t, zt − z∗⟩+ ηα∥F̂t∥∥zt − z∗∥+

cη2

2
∥F̂t∥2

≤ 1

2
∥zt − z∗∥2 − η⟨F̂t, zt − z∗⟩+

α2

2
∥zt − z∗∥2 +

η2(1 + c)

2
∥F̂t∥2

where in the inequality we used (19, 22) and in the second inequality c ≥ 2(1 + α2). Taking an
expectation given information up to time t and using the expected co-coercivity assumption gives,

Et

[
1

2
∥zt+1 − z∗∥2

]
≤ 1

2
∥zt − z∗∥2 − η⟨Ft, zt − z∗⟩+

α2

2
∥zt − z∗∥2 +

η2(1 + c)

2
Et

[
∥F̂t∥2

]
(3.4)
≤ 1

2
∥zt − z∗∥2 − η⟨Ft, zt − z∗⟩+

α2

2
∥zt − z∗∥2 + η2(1 + c)L⟨Ft, zt − z∗⟩+ η2(1 + c)σ2

=
1

2
∥zt − z∗∥2 − η (1− η(1 + c)L) ⟨Ft, zt − z∗⟩+

α2

2
∥zt − z∗∥2 + η2(1 + c)σ2

η(1+c)L<1

≤ 1

2
∥zt − z∗∥2 − ηµ (1− η(1 + c)L) ∥zt − z∗∥2 +

α2

2
∥zt − z∗∥2 + η2(1 + c)σ2

If we take η < 1
2(1+c)L then we have the following recursion

Et

[
1

2
∥zt+1 − z∗∥2

]
≤ 1

2
∥zt − z∗∥2

(
1− ηµ+ α2

)
+ η2(1 + c)σ2.

Taking an expectation over zt gives the result.

B NON-LINEAR LEAST-SQUARES

Lemma B.1. Let f(θ) = 1
2∥r(θ)∥

2 where r : Rd → Rn, r(θ) = (ri(θ), · · · , rn(θ))⊤. Suppose
ri(θ) is β-smooth and Dr(θ)⊤ has singular values that are globally upper bounded by σmax > 0.
If r is bounded, then f is L-smooth: there exists L ≥ 0 such that ∥∇f(θ)−∇f(θ′)∥ ≤ L∥θ − θ′∥
for any θ, θ′ ∈ Rd.

18

Published as a conference paper at ICLR 2025

Proof. Since each ri is β-smooth we have that

∥Dr(θ)⊤ −Dr(θ′)⊤∥1,2 = sup{∥(Dr(θ)⊤ −Dr(θ′)⊤)v∥1 : v ∈ Rn, ∥v∥2 ≤ 1}
= max

i
∥∇gi(θ)−∇gi(θ′)∥ ≤ L∥θ − θ′∥.

∥∇f(θ)−∇f(θ′)∥ = ∥Dr(θ)⊤r(θ)−Dr(θ′)⊤r(θ′)∥
= ∥Dr(θ)⊤r(θ)−Dr(θ)⊤r(θ′) +Dr(θ)⊤r(θ′)−Dr(θ′)⊤r(θ′)∥
≤ ∥Dr(θ)⊤r(θ)−Dr(θ)⊤r(θ′)∥+ ∥Dr(θ)⊤r(θ′)−Dr(θ′)⊤r(θ′)∥
≤ σmax∥r(θ)− r(θ′)∥+ ∥Dr(θ)⊤ −Dr(θ′)⊤∥1,2∥r(θ′)∥1
≤ σ2

max∥θ − θ′∥+ βC∥θ − θ′∥.

Where the last inequality follows from r being σmax Lipschitz since ∥r(θ)−r(θ′)∥ ≤ ∥Dr(θ)∥∥θ−
θ′∥ by the mean value inequality (Hörmander, 2007) and by the fact that ∥Dr(θ)⊤∥ ≤ σmax. Since
r is bounded it follows that there exists ∥r(θ)∥1 ≤ C for all θ.

Definition B.2 (Polyak (1964); Łojasiewicz (1963)). A function f : Rn → R satisfies the PL
condition if there exists µ > 0 such that for all x ∈ Rn

∥∇f(x)∥2 ≥ 2µ(f(x)− f∗), (23)

where f∗ = infx∈Rn f(x).

Proposition 4.1. Assume f satisfies the µ-PL condition, and let σmin be a lower bound on the
singular values of Dg(θ)⊤. Then, we have f ◦ g is µσ2

min-PL.

Proof. We have that

||∇f ◦ g(θ)||2 = ||Dg(θ)⊤∇z=g(θ)f(z)||2

= ∇f(z)⊤D(g(θ))D(g(θ))⊤∇f(z)
≥ σ2

min||∇f(z)||2

≥ σ2
minµ(f(z)− inf

z′
f(z′))

≥ σ2
minµ(f(z)− min

z′∈Z
f(z′))

= σ2
minµ(f(g(θ))− inf

θ′
f(g(θ′))).

Proposition B.4. If g : Rd → Rn g(θ) = (g1(θ), · · · , gn(θ))⊤ is differentiable where gi is β-
smooth and Dg(θ)⊤ has globally lower and upper bounded singular values, then {g(θ) : θ ∈ Rd}
is unbounded.

Proof. We prove by contradiction. Suppose {g(θ) : θ ∈ Rd} is bounded and denote Z as its closure
which is also bounded. Then there exists v ∈ Rn /∈ Z . Consider the function f(θ) = 1

2∥g(θ)−v∥2.
Taking r(θ) = g(θ) − v, we have Dr = Dg, and ri are still β-smooth, therefore by Lemma B.1 f
is L-smooth. Since f is continuous and Z is compact, its minimum is attained, and thus there exists
z∗ ∈ Z such that

1

2
∥z∗ − v∥2 = inf

θ∈Rd
f(θ).

Moreover, there exists a sequence {θt}t∈N such that g(θt) → z∗ since Z is closed. By the smooth-
ness of f it also follows that

∥∇f(θt)∥2

2L
≤ f(θt)− inf

θ∈Rd
f(θ).

19

Published as a conference paper at ICLR 2025

PHGD
GN(5)

DGN(75)
LM(1)

LM(10)
GDA

Surr-G
D(5)

Surr-G
D(10)

Surr-G
D(100)

0.0

0.2

0.4

0.6

0.8

1.0

Time for 10k Updates (s)

Figure 5: Time in seconds for performing 10,000 iterations of each method. The number in paren-
thesis correspond to number of inner steps taken. As a special case we have PHGD and GDA are
equivalent to GN(1) and Surr-GD(1) respectively.

0 200 400 600 800 1000
Outer loop iterations

10 2

10 1

1 2
‖z

t
−
z ∗
‖2

PHGD(η=0.1)
GN(inner=5,η=0.1)
PHGD(η=1.0)

DGN(inner=75,η=1.0,ηalg=0.001)
LM(inner=1,η=1.0,λ=0.01)
LM(inner=10,η=1.0,λ=0.01)

GDA(η=1.0)
Surr-GD(inner=5,η=1.0)

Surr-GD(inner=10,η=1.0)
Surr-GD(inner=100,η=1.0)

Figure 6: Average convergence for various surrogate methods from Section 4 in the hidden matching
pennies game. The average was computed over 1,000 trajectories each with randomly sampled
parameters αi

j and θ0.

Since singular values of Dg(θ)⊤ are lower-bounded, there exists σmin > 0 such that ∥Dg(θ)⊤v∥ ≥
σmin∥v∥. Therefore we have

0 = lim
t

f(θt)− inf
θ∈Rd

f(θ) ≥ lim
t

∥∇f(θt)∥2

2L

= lim
t

∥Dg(θt)
⊤(g(θt)− v)∥2

2L
≥ lim

t

σ2
min

2L
∥g(θt)− v∥2,

which implies that z∗ = limt g(θt) = v and that v is indeed within Z a contradiction!

20

Published as a conference paper at ICLR 2025

0 200 400 600 800 1000
Outer loop iterations

10 2

10 1

1 2
‖z

t
−
z ∗
‖2

PHGD(η=0.1)
LM(inner=1,η=0.1,λ=0.01)

LM(inner=5,η=0.1,λ=0.01)
GDA(η=0.1)

Surr-GD(inner=10,η=0.1)
Surr-GD(inner=100,η=0.1)

Figure 7: Average convergence for various surrogate methods from Section 4 in the hidden rock-
paper-scissors game. The average was computed over 1,000 trajectories each with randomly sam-
pled parameters Ai

j and θ0.

C MIN MAX EXPERIMENTS

C.1 HIDDEN MATCHING PENNIES

In the hidden matching pennies game each player i has the parameterization hi(θ) =
sigmoid(αi

2 CELU(αi
1θ)). The parameters for each player are:

α1
1 = 0.5, and α1

2 = 1 for player 1,

α2
1 = 0.7, and α2

2 = 1 for player 2.

The parameters αi
1, α

i
2, were chosen to approximately replicate the trajectory of PHGD presented

in Sakos et al. (2024, Figure 4). The initial parameters θ1 were selected to be the same as those
selected by Sakos et al. (2024), θ1 = (θ11, θ

2
1) = (1.25, 2.25).

In Figure 5 we report the runtime for different surrogate algorithms and number of inner steps. In
Figure 6, the average distance across 100 random initializations is observered. θ0 was randomly
sampled from two independent Gaussians with standard deviation of 4. Similarly, each αi

j was
randomly sampled from a uniform random variable with support [−1, 1].

C.2 HIDDEN ROCK-PAPER-SCISSORS

Each player i’s mixed strategy in the hidden rock-paper-scissors game is parameterized by the func-
tion hi(θ) = softmax(Ai

2 CELU(Ai
1θ

i)), with θi ∈ R5. The min-max objective is f(z1, z2) =
⟨z1, Az2⟩+ 0.2

2 ∥z−z∗∥2, where z = (z1, z2) and z∗ is the equilibrium of rock-paper-scissors (sam-
ple rock, paper, and scissors with equal probability) (Sakos et al., 2024). In Figure 7 we observe the
average convergence across 100 random initializations of θ1 ∈ R5 and matrixes Ai

j for various sur-
rogate based methods. θ1 was sampled from a 5-dimensional isotropic Gaussian while each element
of Ai

j was sampled from a uniform random variable with support [−1, 1].

D POLICY EVALUATION AND PROJECTED BELLMAN ERROR

In this section we provide some background on minimizing projected Bellman error (PBE) and the
stochastic methods proposed by Bertsekas (2009). For a given MDP with n states (s1, · · · , sn),
and policy π, we denote the expected reward rπ ∈ Rn, discount factor γ ∈ (0, 1), and state
to state probability transition matrix Pπ ∈ Rn×n. The associated linear Bellman operator is
Tπ(z) = rπ + γPπz and is contraction Bertsekas (2012). The value vector vπ ∈ Rn is the
unique fixed point of Tπ , with ith component vi equals to the discounted return starting from state

21

Published as a conference paper at ICLR 2025

si, Eτ=(s1,s2,···)
[∑∞

t=1 γ
trπ(st)|s1 = si

]
, where we use rπ(s) to mean riπ such that si = s, and

the expectation is over possible trajectories τ = (s1, s2, · · ·).
Under function approximation it may not be possible to find a fixed point of Tπ and find the true
value function. Instead we can consider the projected fixed point,

z∗ = ΠΞ(Tπ(z∗)). (24)

Where the projection is on to the set of realizable value functions Z = {vθ : θ ∈ Rd}. We use
the notation vθ in place of g(θ) to be consistent with the RL literature, the prediction for state si is
vθ(s

i) = g(θ)i. Ξ is the diagonal matrix with entries corresponding to the stationary distribution
ξ = (ξ1, · · · , ξn) of Pπ .

As pointed out by Bertsekas (2009), finding the fixed point (24) is equivalent to solving a VI of the
form (1) with constraint Z and operator

F (z) = Ξ(z − Tπ(z)). (25)

Additionally, Bertsekas (2009) showed that F is both smooth and strongly monotone and therefore
satisfies our hidden structure Assumption 3.1.

This fixed point can then be equivalently mapped to the minimum of the projected Bellman error
with respect to the parameters, i.e. a TD fixed point. The fixed point z∗ = vθ∗ corresponds to finding
parameters θ∗ such that

θ∗ ∈ argmin
θ

[
BE(θ, θ∗) =

1

2

n∑
i=1

ξi(vθ(s
i)− (rπ(s

i)− γEs′∼Pπ

[
vθ∗(s

′)|si
]
)2

]
. (26)

Note this is not a scalar minimization problem since the loss is not directly minimized through the
next state prediction, doing so would result in minimizing the Bellman error, minθ BE(θ, θ) and
not PBE. The fixed points of these objectives need not coincide even with linear function approxi-
mation (Sutton & Barto, 2018).

Using the function BE and the stationary condition (26) we can define the following natural gap
function

BEgap(θ) = BE(θ, θ)− inf
θ′

BE(θ′, θ). (27)

Notice that BEgap(θ) ≥ 0 for all θ and is zero if and only if θ is a fixed point of (26).

Since ΠΞ ◦ Tπ is known to be a contraction (Bertsekas, 2012) but is expensive to compute exactly,
we can devise a surrogate loss that approximates it. The operator ΠΞ ◦Tπ is equivalent to the scaled
projected gradient method zt+1 = Π(zt − Ξ−1F (zt)), where zt = vθt , and is minimum of the
surrogate loss

ℓt(θ) =
1

2
∥vθ −

(
vθt − Ξ−1F (vθt)

)
∥2Ξ (28)

=
1

2
∥vθ − Tπ(vθt)∥2Ξ. (29)

Note that if Ξ = Id than this is the same surrogate loss (4) with η = 1.

D.1 THE LINEAR CASE

In this section we assume that predicted values are linear, g(θ) = Φθ, with some feature matrix

Φ =

 ϕ⊤(s1)
...

ϕ⊤(sn)

 ∈ Rn×d.

In this case we have that the operator F is also linear in θ

F (z) = F (Φθ) = Ξ(Φθ − γPπΦθ − rπ) = Ξ(Φ− γPπΦ)θ − Ξrπ.

22

Published as a conference paper at ICLR 2025

Since g linear, there exists a preconditioning scheme that can generate a sequence of parameters
{θt}t∈N such that {zt+1 = Φθt+1 = ΠΞ(Tπ(zt))} and therefore is guaranteed to converge linearly.
This preconditioning scheme is simply the minimizer of the weighted least-squares surrogate loss
ℓt(θ) = 1/2∥Φθ − Tπ(θt)∥2Ξ,

θt+1 = θt − (Φ⊤ΞΦ)−1Φ⊤F (zt).

If there is no unique minimizer then the pseudo-inverse (Φ⊤ΞΦ)† can be used. To approximate
the iteration Bertsekas (2009) suggests using estimators that depend only on the history states
(s1, s2, · · · , st, st+1) and rewards (r1, · · · , rt) to approximate the conditioning matrix Φ⊤ΞΦ and
gradient Φ⊤F (zt). The following estimators are proposed:

• D̂t =
1
t

∑t
i=1 ϕ(si)ϕ

⊤(si)

• Ĉt =
1
t

∑t
i=1 ϕ(si)(ϕ(si)− γϕ(si+1))

⊤

• r̂t =
1
t

∑t
i=1 ϕ(si)ri.

If the chain is fully mixed then the sampled states are drawn according to ξ making the above
estimators unbiased:

Φ⊤ΞΦ =

n∑
i

ξiϕ(si)ϕ(si)⊤ = E
[
D̂t

]
,

Φ⊤F (z) =
∑
i

ξiϕ(si)(ϕ(si)⊤θ −
∑
s′

(Pπ)si,sϕ(s)
⊤θ − rπ(s

i)) = E
[
Ĉtθ − r̂t

]
.

Where (Pπ)s,s′ is the transition probability to state s′ when in state s. Therefore the iteration

θt+1 = θt − (D̂t)
−1(Ĉtθt − r̂t),

eventually converges to exact deterministic iteration. Interestingly, the stochastic version can be
shown to be the minimmum of the surrogate

ℓ̃t(θ) =
1

2
∥Φθ − T̂π(zt)∥2Ξ̂.

Where T̂π(z) = r̄ + γP̄π(z), with Ξ, r, and Pπ being estimated with the empirical distribution.
More precisely, denoting the number of times that a state s is visited in a trajectory of length t as
n(s), and the number of times s′ is visited after s as n(s, s′), then the empirical distribution over
states is ξ̂ = (n(s

1)/t, · · · , n(sn)/t) and Ξ̂ is the diagonal matrix with diagonal ξ̂. Similarly, the
transition matrix is estimated by (P̄π)s,s′ = n(s, s′)/n(s) if n(s) > 0, and arbitrary otherwise. For
convenience, we write ξ̂(si) = ξ̂i.

Proposition D.1. The gradient of the surrogate loss ℓ̃t(θ) = 1
2∥Φθ − T̂π(zt)∥2Ξ̂ is

∇ℓ̃t(θ) = Ĉtθt − r̂ + D̂t(θ − θt).

If D̂t is invertible then its minimum is

θt+1 = θt − (D̂t)
−1(Ĉtθt − r̂t).

23

Published as a conference paper at ICLR 2025

Proof. By definition of Ξ̂, we have that D̂t =
1
t

∑
i ϕ(si)ϕ(si)

⊤ = Φ⊤Ξ̂Φ. Similarly, we have that
Ĉt =

1
t

∑t
i=1 ϕ(si)(ϕ(si)− γϕ(si+1))

⊤ = Φ⊤Ξ̂Φ− γ 1
t

∑t
i=1 ϕ(si)ϕ(si+1)

⊤. Where

1

t

t∑
i=1

ϕ(si)ϕ(si+1)
⊤ =

1

t

∑
s,s′

n(s, s′)ϕ(s)ϕ(s′)⊤ (30)

=
1

t

∑
s

ϕ(s)
∑
s′

n(s, s′)ϕ(s′)⊤ (31)

=
1

t

∑
s

n(s)ϕ(s)
∑
s′

n(s, s′)

n(s)
ϕ(s′)⊤ (32)

=
1

t

∑
s

n(s)ϕ(s)
∑
s′

(P̄π)s,s′ϕ(s
′)⊤ (33)

=
∑
s

ξ̂(s)ϕ(s)
∑
s′

(P̄π)s,s′ϕ(s
′)⊤ (34)

= Φ⊤Ξ̂P̄πΦ. (35)

Therefore Ĉt = Φ⊤Ξ̂(Φ− γP̄πΦ). Similarly, r̂t = 1
t

∑t
i=1 ϕ(si)ri = Φ⊤Ξr̄π .

Now consider the weighted least squares loss

ℓ̃t(θ) =
1

2
∥Φθ − T̂π(Φθt)∥2Ξ̂.

The gradient of ℓt is

∇ℓt(θ) = Φ⊤Ξ̂(Φθ − T̂π(Φθt)) = Φ⊤Ξ̂(Φθ − γP̄πΦθt − r̄π) (36)

= Φ⊤Ξ̂(Φθ − Φθt +Φθt − γP̄πΦθt − r̄π) (37)

= Φ⊤Ξ̂(Φθ − Φθt) + Φ⊤Ξ̂(Φθt − γP̄πΦθt − r̄π) (38)

= D̂t(θ − θt) + Ĉtθt − r̂t (39)

Setting the gradient to zero gives the minimum of ℓ̃t.

D.2 THE NONLINEAR CASE

In this section, we detail the surrogate algorithms used for the nonlinear setting, as outlined in
Algorithms 2, 3 and 4. As a complement to Section 5.2, we compare the convergence properties of
TD(0) with the surrogate methods under a an offline, full-batch setting, where the training data is
pre-collected from the reference policy. This experiment provides insight on two important fronts:
how well can the methods solve the hidden monotone VI problem, and how the performance of the
different algorithms are affected when there is no environment interaction.

In our deep learning/nonlinear setting, the state space is too large to verify if we have solved the
VI (25) by the BEgap(27) or other metrics. To test the effectiveness of our methods at solving this
VI and minimizing PBE we consider an empirical approximation given a fixed batch of data (i.e.
offline). In this setting, n tuples of state, reward and next state are collected {(st, rt, st+1)}nt=1 from
a fixed reference policy π. Using these observations we construct an empirical estimate of BE (26),

B̂E(θ, θ′) =
1

n

n∑
t=1

(vθ(st)− (rt − γvθ′(st+1)))
2. (40)

We can then define the following fixed point problem: find θ∗ such that

θ∗ ∈ argmin
θ

B̂E(θ, θ∗). (41)

Given this new empirical approximation of PBE we can define a gap analogous to (27),

B̂Egap(θ) = B̂E(θ, θ)− inf
θ′

B̂E(θ′, θ). (42)

24

Published as a conference paper at ICLR 2025

101 102 103 104 105 106

Gradient Computations

10 5

10 4

10 3

10 2

10 1

100

Be
llm

an
 G

ap
Gradient Based Comparison (Ant-v4)

101 102 103

Wallclock Time (seconds)

10 5

10 4

10 3

10 2

10 1

100

Be
llm

an
 G

ap

Wallclock Time Based Comparison (Ant-v4)

101 102 103 104 105 106

Gradient Computations

10 4

10 3

10 2

10 1

100

Be
llm

an
 G

ap

Gradient Based Comparison (Half Cheetah-v4)

101 102 103

Wallclock Time (seconds)

10 4

10 3

10 2

10 1

100

Be
llm

an
 G

ap

Wallclock Time Based Comparison (Half Cheetah-v4)

Thresholded Surr-GD, 2=0.5, inner=50
Surr-GD, inner=10

Surr-GD, inner=50 Surr-GD, inner=1000 TD0 (Surr-GD, inner=1)

Figure 8: Comparison of Bellman gap during training of TD(0) and surrogate methods in the offline full-batch
setting with nonlinear function approximation in Ant (top) and HalfCheetah (bottom) environments, measured
by gradient computations (left) and wallclock time (right). The average Bellman gap (42) across 20 runs along
with 95% confidence intervals are computed from a fixed training set. The red dashed line represents the lowest
Bellman gap achieved by any of the algorithms.

101 102 103 104 105 106

Gradient Computations

101

102

103

104

Va
lu

e
Pr

ed
ict

io
n

Er
ro

r

Gradient Based Comparison (Ant-v4)

101 102 103

Wallclock Time (seconds)

101

102

103

104

Va
lu

e
Pr

ed
ict

io
n

Er
ro

r

Wallclock Time Based Comparison (Ant-v4)

101 102 103 104 105 106

Gradient Computations

102

103

104

Va
lu

e
Pr

ed
ict

io
n

Er
ro

r

Gradient Based Comparison (Half Cheetah-v4)

101 102 103

Wallclock Time (seconds)

102

103

104

Va
lu

e
Pr

ed
ict

io
n

Er
ro

r

Wallclock Time Based Comparison (Half Cheetah-v4)

Thresholded Surr-GD, 2=0.5, inner=50
Surr-GD, inner=10

Surr-GD, inner=50 Surr-GD, inner=1000 TD0 (Surr-GD, inner=1)

Figure 9: Comparison of average performance of TD(0) and surrogate methods in minimizing the value predic-
tion error in the offline full-batch setting with nonlinear function approximation in Ant (top) and HalfCheetah
(bottom) environments, measured by gradient computations (left) and wallclock time (right). The average value
prediction error across 20 runs along with 95% confidence intervals are computed from a fixed test set. The red
dashed line represents the lowest value prediction error achieved by any of the algorithms.

25

Published as a conference paper at ICLR 2025

102 103 104

Outerloop Iterations

101

102

103

104

Va
lu

e
Pr

ed
ict

io
n

Er
ro

r

Gradient Based Comparison (Ant-v4)

102 103 104 105

Wallclock Time (seconds)

101

102

103

104

Va
lu

e
Pr

ed
ict

io
n

Er
ro

r

Wallclock Time Based Comparison (Ant-v4)

102 103 104

Outerloop Iterations

101

102

103

104

Va
lu

e
Pr

ed
ict

io
n

Er
ro

r

Gradient Based Comparison (Half Cheetah-v4)

102 103 104 105

Wallclock Time (seconds)

101

102

103

104

Va
lu

e
Pr

ed
ict

io
n

Er
ro

r

Wallclock Time Based Comparison (Half Cheetah-v4)

Thresholded Surr-GD, 2=0.5, inner=50
Surr-GD with double sampling, inner=10

Surr-GD with double sampling, inner=50
Surr-GD with double sampling, inner=1000

Surr-GD, inner=10
Surr-GD, inner=50

Surr-GD, inner=1000
TD0 (Surr-GD, inner=1)

Figure 10: Comparison of average performance of surrogate methods in minimizing the value prediction error
for RL tasks with a 16-layer MLP in Ant as measured by outer loop iterations (left) and wallclock time (right).
The average value prediction error across 20 runs along with 95% confidence intervals are computed from a
fixed test set. The red dashed line represents the lowest value prediction error achieved by any of the algorithms.

In practice we approximate the infimum in B̂E by 500 steps of AdamW, with a learning rate of
1× 10−4 and exponential annealing at a decay rate of γ = 0.995. In the offline setting we consider
deterministic algorithms like in the min-max experiments of Section 5.1, and therefore we do not
consider the double sampling algorithm (Algorithm 3) but only full-batch versions of Algorithm 2
and Algorithm 4. We compare different algorithms with B̂Egap (42), giving a measure of how much
the fixed point condition (41) is violated. Given enough data this fixed point is a proxy for the fixed
point (26).

Since no environment interaction is required during training, we compare the performance of the
methods in terms of gradient computations and wall-clock time, with the former being the dominant
factor in computational cost, unlike the setting in Section 5.2 where environment interaction plays a
larger role.

As shown in Figure 8, increasing the number of inner loop steps significantly reduces the Bellman
gap, suggesting that the model approaches the fixed point more effectively. Notably, the surrogate
method with 10 inner steps is more efficient than TD(0) in terms of gradient computations, while
both inner steps = 10 and 50 outperform TD(0) in wall-clock time.

As presented in Figure 9, we also evaluate the value prediction error on a test set to further assess
the performance of the algorithms in the full batch and deterministic setting. In all cases, at least one
variant of the surrogate method converges faster than TD(0), both in terms of gradient computations
and wall-clock time. This demonstrates that, with an appropriate choice of inner loop steps and
alpha threshold, the surrogate method not only outperforms TD(0) in terms of stability but also in
computational efficiency.

D.2.1 LARGER NETWORK

In Figure 10 we report the average performance of surrogate methods using a 16 layer MLP. We
observe similar runtimes and performance to the 2 layer MLP used in Section 4.

26

Published as a conference paper at ICLR 2025

Algorithm 2: Surrogate Method with Inner Loop
Input: Reference policy π, initial value function parameters θ0, length of trajectories N ,

discount factor γ, learning rate η, number of inner steps M , number of outer loop
iterations T, stop gradient function sg(·)

for t = 0 toT do
Collect a batch of trajectories {(si, ai, ri, s′i)}Ni=1 from π
for each (si, ri, s

′
i) in the batch do

Compute TD target: yi = ri + γsg(Vθt(s
′
i))

Initialize inner loop θ: θ(0)t = θt
for m = 0 toM − 1 do

for each (si, ri, s
′
i) in the batch do

Compute TD error: δ(m)
i = V

θ
(m)
t

(si)− yi

Compute mean squared error: 1
N

∑N
i=1(δ

(m)
i)2

Update inner loop θ: θ(m+1)
t ← θ

(m)
t − η 1

N

∑N
i=1 δ

(m)
i ∇θVθ

(m)
t

(si)

Update outer loop θ: θt+1 = θ
(M)
t

Algorithm 3: Surrogate Method with Double Sampling
Input: Reference policy π, initial value function parameters θ0, length of trajectories N , buffer

size K, discount factor γ, learning rate η, number of inner steps M , number of outer
loop iterations T, stop gradient function sg(·)

Collect K batches of trajectories {(si, ai, ri, s′i)}Ni=1 from π to construct a buffer
for t = 0 toT do

Collect a batch of trajectories {(si, ai, ri, s′i)}Ni=1 from π
for each (si, ri, s

′
i) in the batch do

Compute TD target: yi = ri + γsg(Vθt(s
′
i))

Compute TD error: F (Vθt(si)) = sg(Vθt(si))− yi
Initialize inner loop θ: θ(0)t = θt
for m = 0 toM − 1 do

Sample m mod K-th batch {(sj , aj , rj , s′j)}Nj=1 from the buffer
for each (si, ri, s

′
i) in the new batch do

Compute linearization term l1(θ
(m)
t) = ⟨F (Vθt(si)), Vθ

(m)
t

(si)− sg(Vθt(si))⟩
for each (sj , rj , s

′
j) in the buffer batch do

Compute regularization term l2(θ
(m)
t) = 1

2∥Vθ
(m)
t

(sj)− sg(Vθt(sj))∥22
Construct the surrogate loss function L(θ

(m)
t) = 1

N (l1(θ
(m)
t) + l2(θ

(m)
t))

Update inner loop θ
(m)
t by minimizing the surrogate loss:

θ
(m+1)
t ← θ

(m)
t − η∇θL(θ

(m)
t)

Update outer loop θ: θt+1 = θ
(M)
t

27

Published as a conference paper at ICLR 2025

Algorithm 4: Thresholded Surrogate Method
Input: Reference policy π, initial value function parameters θ0, length of trajectories N ,

discount factor γ, learning rate η, number of inner steps M , number of outer loop
iterations T, stop gradient function sg(·), α2 ∈ (0, 1)

for t = 0 toT do
Collect a batch of trajectories {(si, ai, ri, s′i)}Ni=1 from π
for each (si, ri, s

′
i) in the batch do

Compute TD target: yi = ri + γsg(Vθt(s
′
i))

Initialize inner loop θ: θ(0)t = θt
Compute initial surrogate loss: lt(θt) = 1

N

∑N
i=1∥Vθt(si)− yi∥22

while lt(θ
(m)
t)/lt(θt) ≥ α2 and m ≤M do

for each (si, ri, s
′
i) in the batch do

Compute TD error: δ(m)
i = V

θ
(m)
t

(si)− yi

Compute mean squared error: 1
N

∑N
i=1(δ

(m)
i)2

Update inner loop θ: θ(m+1)
t ← θ

(m)
t − η 1

N

∑N
i=1 δ

(m)
i ∇θVθ

(m)
t

(si)

Update m : m← m+ 1

Update outer loop θ: θt+1 = θ
(M)
t

E APPLICATIONS TO PERFORMATIVE PREDICTION

Minimizing Projected Bellman error can be viewed as a special case of finding a stable point in
performative prediction (Perdomo et al., 2020). In performative prediction or more generally opti-
mization under decision dependent distributions (Drusvyatskiy & Xiao, 2023), the model predictions
z = g(θ) influence the targets y. With moving targets it is of interest to find model predictions that
are performatively stable; such models are optimal under the shifting targets and are stable under
repeated applications of empirical risk minimization.

For simplicity, we stay within the finite dimensional case where a model’s prediction function is
given by the n-dimensional vector, z = g(θ) ∈ Rn. Where each prediction is zi = gi(θ) =
h(xi, θ), for some feature vector xi and fixed model architecture h. Given an error function ℓ(z, y),
quantifying error between predictions z ∈ Rn and targets y ∈ Rn, the performatively stable models
satisfy

θ∗ ∈ argmin
θ

Ey∼D(g(θ∗)) [ℓ(g(θ), y)] . (43)

The prediction dependent shift in targets is represented by the distribution D(·) being a function of
the model predictions g(θ). Note that we have used the formulation of performative prediction with
respect to model predictions (Mofakhami et al., 2023) instead of parameters.

The problem of minimizng projected Bellman error is a special case of (43) with ℓ(z, y) = ||z−y||2Ξ
and D(z) is the distribution with full weight on Tπ(z).

The problem of finding a performatively stable point can more generally be expressed as the follow-
ing decision-dependent optimization problem:

θ∗ ∈ argmin
θ

fg(θ∗)(g(θ)). (44)

Or equivalently a constrained optimization problem with constraint Z = cl{g(θ) : θ ∈ Rd}:
θ∗ ∈ argmin

θ
fg(θ∗)(g(θ))⇔ z∗ ∈ argmin

z∈Z
fz∗(z).

If Z is closed convex and fz′(z) is convex and differentiable with respect to z, then the above
constrainted formulation is equivalent to the fixed point problem:

z∗ = Π ◦ T (z∗) = Π(z∗ − η∇fz∗(z∗)), (45)

where we denote the gradient of fz′(z) with respect to z as simply ∇fz′(z). As mentioned in
Section D, Bertsekas (2009) showed that solving (45) is equivalent to solving a strongly monotone

28

Published as a conference paper at ICLR 2025

and smooth VI if either T or Π◦T is a contraction. Therefore, under these contraction conditions (45)
is a hidden strongly monotone and smooth VI problem of the form (1)! Thankfully, (Drusvyatskiy
& Xiao, 2023; Cheng et al., 2020) showed that Π ◦ T is a contraction if fz′(z) is µ strongly convex
with respect to z and ∇fz′(z) is β-Lipschitz with respect to z′ and if β/µ < 1. Therefore, under
standard performative prediction assumptions such as those found in Drusvyatskiy & Xiao (2023),
the performatively stable point (43) is equivalent to solving a hidden strongly monotone and smooth
VI problem where our surrogate loss approach (Algorithm (1)) applies and converges to the stable
point under Theorems (3.2,3.6,A.5).

29

	Introduction
	Background and Related Work
	Convergence analysis under -descent on surrogate losses
	Convergence and divergence in the deterministic case
	Unconstrained Stochastic Case

	A Nonlinear Least Squares Perspective
	Favourable conditions for gradient descent

	Experiments
	Min-max Experiments
	Minimizing Projected Bellman error
	Linear Approximation
	Non-linear Projected Bellman Error

	Conclusion
	Proofs
	Non-linear least-squares
	Min max experiments
	Hidden Matching Pennies
	Hidden Rock-Paper-Scissors

	Policy Evaluation and Projected Bellman Error
	The Linear Case
	The Nonlinear Case
	Larger network

	Applications to Performative Prediction

