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Abstract
This paper presents a novel approach to address-
ing the distributionally robust nonlinear model
predictive control (DRNMPC) problem. Current
literature primarily focuses on the static Wasser-
stein distributionally robust optimal control prob-
lem with a prespecified ambiguity set of uncer-
tain system states. Although a few studies have
tackled the dynamic setting, a practical algorithm
remains elusive. To bridge this gap, we introduce
a DRNMPC scheme that dynamically controls
the propagation of ambiguity, based on the con-
strained iterative linear quadratic regulator. The
theoretical results are also provided to charac-
terize the stochastic error reachable sets under
ambiguity. We evaluate the effectiveness of our
proposed iterative DRMPC algorithm by compar-
ing the closed-loop performance of feedback and
open-loop on a mass-spring system, and demon-
strate in numerical experiments that our algorithm
controls the propagated Wasserstein ambiguity.

1. Introduction
Model predictive control (MPC) repeatedly solves optimiza-
tion problems online based on a system model and pre-
scribed constraints to determine optimal control actions
(Mayne et al., 2000). However, the closed-loop perfor-
mance of MPC designed based on the nominal system model
could be severely deteriorated when the real system suffers
from uncertainty (Cannon et al., 2009). To effectively de-
velop control methods addressing the detrimental effect of
uncertainty, two classes of MPC that explicitly take the
uncertainty into account have emerged: stochastic MPC
(SMPC) and robust MPC (RMPC). RMPC determines the
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optimal control actions under the worst-case scenario within
a pre-specified deterministic uncertainty set (Mayne et al.,
2005), whereas SMPC assumes or estimates the distribu-
tion of the uncertainty and selects the best control action
for an objective function under soft constraints (Mayne,
2014). However, the performance of RMPC might be over-
conservative as low-probability uncertainty is also taken into
account, whereas the actual performance of SMPC could
significantly deviate from the designed one due to the dis-
tribution discrepancy between the true distribution and the
nominal distribution used in the controller design (Heirung
et al., 2018).

For the purpose of addressing the challenges mentioned
above - conservativeness or misspecified nominal distri-
bution - we consider a data-driven distributionally robust
nonlinear MPC (DRNMPC) problem using the Wasserstein
metric. In the construction of this controller, instead of
knowing the probability distribution of disturbances exactly,
only samples of the disturbance realizations are required to
construct the Wasserstein ambiguity set. The ambiguity set
includes the empirical distribution of disturbance samples at
its center and all distributions within a certain Wasserstein
distance. Control actions are determined based on the worst-
case distribution from this set, considering distributional
robustness.

1.1. Related work

Recently, distributionally robust control using the Wasser-
stein ambiguity garners a lot of interest and attention. For
the purpose of state constraint satisfaction, the recent papers
(Mark & Liu, 2020; Zhong et al., 2021; Coulson et al., 2021;
Micheli et al., 2022; Fochesato & Lygeros, 2022) consider
such a distributionally robust MPC problem with respect
to the Wasserstein ambiguity set defined on the product
probability space for linear systems, wherein the center of
the ambiguity set is determined based i.i.d. samples of dis-
turbance sequences. Both (Hakobyan & Yang, 2022) and
(Yang, 2020) consider the distributionally robust control
problem as a two-player zero-sum game without state con-
straints and solve the problem via dynamic programming
with a relaxed formulation using a Wasserstein penalty. For
nonlinear systems, (Zolanvari & Cherukuri, 2022) consid-
ers deterministic systems with disturbed constraints, and
(Zhong et al., 2023) solves distributionally robust MPC
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Figure 1. Closed-loop error dynamics (as in tube MPC) of 30
realizations with the feedback gains and nominal inputs solved by
1. Red: Our method. Blue: Fixed feedback gain. Black: Zero
feedback gain, i.e. open-loop. The arrow indicates the error vector
between two consecutive sampling times, i.e. the tail indicates the
accumulated error of all the previous steps and the head indicates
the accumulated error including the error from the current step.
See Section 4.4 for the theoretical characterization.

for nonlinear systems with additive disturbances via iter-
ative linearization. However, in (Zhong et al., 2023), the
propagation of the ambiguity set is not considered and the
feedback gain is static for each sampling time. After the
initial submission of this manuscript, we were brought to the
awareness of a recent preprint (Aolaritei et al., 2023), which
is the closest to our work. While both works consider the
dynamic setting in terms of Wasserstein ambiguity, we di-
rectly formulate the DRO problem based on the disturbance
ambiguity dynamically, which is mathematically equivalent
to their propagation to the state distributions while enjoying
simpler forms; cf. (18), (27). Furthermore, compared with
(Aolaritei et al., 2023), this paper solves DRNMPC based
on iterative LQR, whereas they considered linear systems.

In this work, we consider Wasserstein distributionally ro-
bust MPC for nonlinear systems with additive disturbances.
Instead of constructing the Wasserstein ambiguity set for
disturbance sequences, we consider the Wasserstein ambi-
guity set of disturbance for the single-step dynamics and
propagate the Wasserstein ambiguity sets within the predic-
tion horizon. Also, instead of using a relaxed formulation,
we solve the original DRNMPC problem via an iterative
method with the help of Riccati recursion. We will show
that our method could dynamically control the propagation
of the Wasserstein ambiguity sets and hence guarantee a
non-conservative closed-loop performance.

1.2. Contribution

This paper makes the following main contributions. 1) We
solve a Wasserstein distributionally robust nonlinear model
predictive control (DRNMPC) problem for nonlinear sys-
tems (5). To the best of our knowledge, this is the only work

that does not assume a priori Wasserstein ambiguity sets of
the state distributions for nonlinear systems. 2) We present
an iterative-linearized DRMPC scheme that uses feedback
to dynamically control the propagation of Wasserstein am-
biguity sets, whereas open-loop control fails to do so. The
derivation of such an approach is summarized in Proposition
4.5 and the corresponding algorithm is introduced in Algo-
rithm 1. This approach is a significant improvement over
the existing literature, as previous research only addressed
static problems with fixed ambiguity sets or dynamic prob-
lems without a practical algorithm. To the authors’ best
knowledge, our proposed algorithm is the first to provide a
practical and efficient method for controlling the propaga-
tion of Wasserstein ambiguity sets in nonlinear dynamics. 3)
We analytically characterize the Wasserstein distributional
reachable set under dynamic propagation in our algorithm
in Proposition 4.8. 4) We visualize the closed-loop perfor-
mance of the proposed approach via an error diagram in
Fig 1. We observe that our method effectively controls the
propagation of the ambiguity sets.

The rest of the paper is organized as follows. In Section
II, we introduce the control problem and the preliminary
DRNMPC. Section III describes the Wasserstein ambiguity
set applied to this work. In Section IV, we introduce the
propagation of Wasserstein ambiguity sets and the corre-
sponding algorithm dynamically controls the propagation.
Also, we analyze the reachable sets of dynamic Wasser-
stein ambiguity and linearization error. In Section V, we
provide a numerical experiment of a mass-spring system to
demonstrate our method and comparison results.

2. Problem statement
2.1. Notations

We use xk for the measured state at time k and xi|k for
the state predicted i steps ahead at time k. [A]j and [a]j
denote the j-th row and entry of the matrix A and vector
a, respectively. Similarly, we denote the element of i-th
row and j-th column in the matrix A as [A]ij . We define
the notation [A]i:j for the i-th to j-th row in the matrix
A. The set N>0 denotes the positive integers and N≥0 =
{0}∪N>0. The set NN

1 denotes the set of integers from 1 to
N .M(Ξ) defines the space of all probability distributions
supported on Ξ with finite first moments. (·)(i) denotes the
i-th sample from the training set. The sequence of length N
of vectors v0|k, . . . , vN−1|k is denoted by vN |k. γij denotes
the element of a 2-D tensor, such that this element is the i-th,
j-th element along the first and second axis, respectively.
Similar for 1-D λi. Let Bnx

∞ := {d ∈ Rnx | ∥d∥∞ ≤ 1}
denote the unit ball. Let P⊗i := P0× · · · ×Pi−1 denote the
product distribution.
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2.2. System dynamics, constraints and objective

We consider the nonlinear time-invariant dynamical system
with additive disturbance

xk+1 = fd(xk, uk) + wk, k ∈ N≥0, (1)

where fd : Rnx × Rnu → Rnx is a discrete-time nonlin-
ear dynamics, k is the discrete sampling time, the state
xk ∈ Rnx , the control uk ∈ Rnu , and the additive distur-
bance wk ∈ Rnx . Each disturbance wk of the disturbance
sequence {wk}k∈N≥0

is assumed to be a realization of the
corresponding random variable (r.v.) Wk from the random
process {Wk}k∈N≥0

satisfying the following assumption.

Assumption 2.1 (Bounded i.i.d Random Disturbance). All
random variables Wk ∼ Pw for k ∈ N≥0 from the family of
random variables {Wk}k∈N≥0

are assumed to be zero-mean
and independent and identically distributed (i.i.d) with an
unknown probability distribution Pw and a known polyhe-
dral support Ww ≜ {w | Hww ≤ hw}.

For any given state measurement xk at the sample time k,
the predicted system states within the prediction horizon N
are described as

xi+1|k = fd(xi|k, ui|k) +Wi|k, x0|k = xk,

where xi|k, ui|k, and Wi|k := Wk+i are all random vari-
ables.

We further introduce the nonlinear dynamics fd,i : Rnx ×
Rnu × · · · × Rnu︸ ︷︷ ︸

i times

×Rnx × · · · × Rnx︸ ︷︷ ︸
i times

→ Rnx for the pre-

dicted state xi|k with i ≥ 1 dependent on the measurement
xk, input sequence u0|k, . . . , ui−1|k, and disturbance se-
quence W0|k, . . . ,Wi−1|k

xi|k =fd,i(xk, u0|k, . . . , ui−1|k,W0|k, . . . ,Wi−1|k)

:=fd(fd(. . . fd(xk, u0|k) +W0|k · · · ), ui−1|k)

+Wi−1|k.

(2)

To highlight that the predicted state is dependent on the
disturbance sequence, we use a slight abuse of notation and
denote

fd,i(xk, u0|k, . . . , ui−1|k,W0|k, . . . ,Wi−1|k) :=

xi|k(W0|k, . . . ,Wi−1|k).

For any nonlinear system, we consider distributionally ro-
bust constraints with ambiguity set propagation to the states

sup
Pm∈Pk+m,m=0,...,i−1

EP⊗i

{
[F ]nxi|k(W0|k, . . . ,Wi−1|k)

}
≤ [f ]n,

(3)
where Wm|k ∼ Pm is the disturbance variable, P⊗i :=
P0 × · · · × Pi−1, k ∈ N≥0, n ∈ NnF

1 , i ∈ NN
1 , F ∈

RnF×nx , f ∈ RnF . For each additive disturbance Wi|k
within the prediction horizon, we centered an ambiguity set
Pk+i as the Wasserstein ball around the empirical distribu-
tion P̂k+i :=

1
M

∑M
l=1 δŵ(l)

i|k
. Due to the i.i.d assumption,

the realization of additive disturbance is time-independent;
hence, we will denote the ambiguity set as P and the cor-
responding empirical distribution as P̂ without explicitly
indicating the predicted step i.
Remark 2.2. Through our formulation of the worst-case dis-
tributionally robust state constraints, the predicted states are
affected by the accumulated error of the worst-cast distribu-
tions from each previous step within the prediction horizon.
Hence, the control actions will be determined with an ex-
plicit consideration of the propagated effect of the worst
distribution at each step of prediction. More details will be
introduced in Section 4.

Without loss of generality, we characterize the control target
as tracking the equilibrium point, which we assume to be the
origin of the coordinate system, from an initial state while
satisfying the prespecified constraints. The control objective
is hence defined as the minimization of the expected value
with the reference trajectory uniformly equal to zero

EP

{
N−1∑
i=0

(
∥∥xi|k

∥∥2
Q
+
∥∥ui|k

∥∥2
R
) +

∥∥xN |k
∥∥2
Qf

}
. (4)

Here Q,Qf ∈ Rnx×nx and Rnu×nu are penalty matrices
for the quadratic stage costs. The corresponding optimiza-
tion problem of DRNMPC for nonlinear systems is defined
as
Problem 1.

min
u

EP

{∑N−1
i=0 (

∥∥xi|k
∥∥2
Q
+
∥∥ui|k

∥∥2
R
) +

∥∥xN |k
∥∥2
Qf

}
s.t. x0|k = xk

xi+1|k = fd(xi|k, ui|k) +Wk+i

sup
Pm∈Pk+m,m=0,...,i−1

EP⊗i{[F ]nxi|k(W0|k, . . . ,

Wi−1|k)} ≤ [f ]n,
∀ i ∈ NN

1 , n ∈ NnF
1 , k ∈ N≥0.

(5)
where Wm|k ∼ Pm is the disturbance variable.

3. Distributionally robust optimization and
Wasserstein Ambiguity Sets

Distributionally robust optimization is an optimization
framework that utilizes partial information about the un-
derlying probability distribution of the random variables in
a stochastic model. We consider the Wasserstein ambigu-
ity set (Zhao & Guan, 2018; Mohajerin Esfahani & Kuhn,
2018) in this paper, which is modelled as a Wasserstein ball
centered at a discrete empirical distribution. The Wasser-
stein metric defines the distance between all probability
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distributions Q supported on the uncertainty set Wξ ∈ Rnξ

with finite p-moment, i.e.
∫
Wξ
∥ξ∥pQ(dξ) <∞.

Definition 3.1 (Wasserstein Metric (Ambrosio et al., 2005)).
The Wasserstein metric of order p ≥ 1 is defined as dw :
M(Wξ) × M(Wξ) → R for all distribution Q1,Q2 ∈
M(Wξ) and arbitrary norm on Rnξ :

dpw (Q1,Q2) := inf
Π

∫
W2

ξ

∥ξ1 − ξ2∥p Π(dξ1, dξ2) , (6)

where Π is a joint distribution of ξ1 and ξ2 with marginals
Q1 and Q2 respectively.

The Wasserstein metric originates from the optimal trans-
portation problem (Villani, 2009), which studies the most
efficient way to transport the mass of a distribution to an-
other. In (6), the Wasserstein distance between the distri-
bution Q1 and Q2 can be interpreted as the minimal cost
spent on the allocation if the Euclidean norm is selected and
p = 2. In the following, we will regard one distribution
as the empirical distribution and the other as one of the un-
known distributions which we assess whether to include or
not in the ambiguity set. All these unknown distributions,
whose distance from the empirical distribution is lower than
a certain value in the Wasserstein sense, are included in the
ambiguity set.

Specifically, we will only consider the type-1 Wasserstein
metric in the remainder of this paper, i.e. p = 1. In principle,
it is also possible to use other p values given the correspond-
ing reformulation techniques (Kuhn et al., 2019). Then we
could define the ambiguity set P centered at the empirical
distribution leveraging the Wasserstein metric as

Bε

(
P̂
)
:=

{
Q ∈M(Wξ) : dw

(
P̂,Q

)
≤ ε

}
(7)

which specifies the Wasserstein ball with radius ε > 0
around the discrete empirical probability distribution P̂.
M(Wξ) denotes the set of Borel probability measures
on Wξ. The empirical probability distribution P̂ :=
1
M

∑M
l=1 δξ̂(l) is the mean of M Dirac distributions which

concentrates mass at the disturbance realization ξ̂(l) ∈Wξ.
We denote the training set of offline collected realizations ξ
as Ξ̂M :=

{
ξ̂(l)

}
l∈NM

1

⊂Wξ, which contains M observed

disturbance realizations.

The radius ε determines the size of the Wasserstein ball
(7), of which the size has been argued from various sta-
tistical perspective in the literature (Zhao & Guan, 2018;
Rahimian & Mehrotra, 2022; Blanchet et al., 2019) . Fur-
thermore, as a function of the radius, the solution of this
Wasserstein ambiguity-based DRO lies between the classi-
cal robust optimization and sample average approximation
(Mohajerin Esfahani & Kuhn, 2018).

4. Propagation of ambiguity sets for nonlinear
systems: Iterative distributionally robust
LQR

In this section, we propose an algorithm to solve the optimal
control problem (5) leveraging the techniques of Wasser-
stein ambiguity set propagation with dynamic feedback
gains and iterative Linear Quadratic Regulator (iLQR) (Li
& Todorov, 2004).

For any given sampling time k, we solve the optimal control
problem (5) via sequentially deriving the linearized system
and the corresponding feedback gains via Riccati recursion
(Rawlings et al., 2017, Sec. 8.8.3), solving a perturbed nom-
inal problem, and updating the perturbations based on the
solution from a DRO problem. Such an iterative method
could be similarly found in, for example, (Messerer & Diehl,
2021). However, our method significantly differs from the
robust MPC approach (Messerer & Diehl, 2021) mainly
in two aspects: (1) Instead of propagating the state uncer-
tainty based on the ellipsoid support set of additive distur-
bances, we propagate the Wasserstein ambiguity through
the dynamics. (2) We consider soft constraint satisfaction in
expectation instead of robust constraint satisfaction.

4.1. LTV formulation and error dynamics

We first consider predicting the system dynamics with the
help of tube-based MPC and a linear time-varying (LTV)
error system as used in tube-based RMPC (Leeman et al.,
2023).

We consider the predicted nonlinear dynamics (1) in the
form of the first-order Taylor series expansion:

xi+1|k =fd(xi|k, ui|k) +Wi|k

=fd(zi|k, vi|k) +A(zi|k, vi|k)(xi|k − zi|k)

+B(zi|k, vi|k)(ui|k − vi|k)

+ r(xi|k, ui|k, zi|k, vi|k) +Wi|k,

(8)

where A(zi|k, vi|k) := ∂fd
∂x

∣∣∣
(x,u)=(zi|k,vi|k)

,

B(zi|k, vi|k) := ∂fd
∂u

∣∣∣
(x,u)=(zi|k,vi|k)

and the remain-

der r : Rnx × Rnu × Rnx × Rnu 7→ Rnx .

Let ∆xi|k := xi|k − zi|k,∆ui|k := ui|k − vi|k denote the
errors between nominal and real quantities, we have the
following LTV error system

∆xi+1|k = Ai|k∆xi|k+Bi|k∆ui|k+Wi|k+ri|k,∆x0 = 0nx ,
(9)

with Ai|k := A
(
zi|k, vi|k

)
, Bi|k := B

(
zi|k, vi|k

)
, ri|k :=

r(xi|k, u,i|k zi|k, vi|k). Furthermore, we apply the follow-
ing control policy with dynamic feedback gain Ki|k at each
step

ui|k = Ki|kxi|k + ci|k, (10)



Nonlinear Wasserstein Distributionally Robust Optimal Control

where ci|k ∈ Rnu are decision variables in the optimal
control problem. Also, we have the corresponding nominal
policy

vi|k = Ki|kzi|k + ci|k. (11)

Given the error dynamics (9), control policy (10) and nomi-
nal policy (11), we have

∆xi+2|k =Acl,i+1∆xi+1|k +Wi+1|k + ri+1|k

=Acl,i+1(Acl,i∆xi|k +Wi|k + ri|k)

+ wi+1|k + ri+1|k,

(12)

where Acl,i := Ai|k +Bi|kKi|k. Next, let

ei+1|k = Acl,iei|k +Wi|k e0|k = 0,
εi+1|k = Acl,iεi|k + ri|k ε0|k = 0.

If x0|k = z0|k, i.e. ∆x0|k = 0, we have

∆xi|k = ei|k + εi|k,∀i ∈ NN
0 (13)

by induction.
Remark 4.1. In this paper, we consider three cases of feed-
back gains: fixed feedback with zero gain (open-loop con-
trol), fixed feedback with stabilizing gain, and feedback gain
computed using iLQR. We will show that if the feedback
gain is zero (i.e. open-loop control), the closed-loop per-
formance is significantly worse than with fixed feedback
gain and dynamic feedback gain as the size of the propa-
gated ambiguity sets cannot be effectively controlled under
open-loop control.

4.2. Distributionally robust nonlinear model predictive
control

Given the error dynamics (13), we consider solving an ap-
proximated version of the prototype DRNMPC problem
(5). In this subsection, similar to (Messerer & Diehl, 2021),
we consider the approximated dynamics till the first-order
approximation - i.e. ignore the term of linearization error r
in (8) - via

xi+1|k ≈fd(zi|k, vi|k) +Ai|k(xi|k − zi|k)

+Bi|k(ui|k − vi|k) +Wi|k.
(14)

Based on the approximated linearized dynamics (14), we
find the following LTV error dynamics

∆xi+1|k ≈ ei+1|k. (15)

Hence the predicted state can be formulated as

xi+1|k ≈ zi+1|k +Acl,iei|k +Wi|k. (16)

Each of the terms evolves under the feedback control (10)

zi+1|k = fd(zi|k, vi|k) z0|k = xk

ei+1|k = Acl,iei|k +Wi|k e0|k = 0
vi|k = Ki|kzi|k + ci|k,

where vi|k is the predicted nominal input. As systems’ be-
havior is predicted within a finite prediction horizon, we let
ck = [c⊤0|k, . . . , c

⊤
N−1|k]

⊤ and set ci|k = 0 for all i ≥ N
to ensure a finite number of decision variables. Similarly,
we denote vk and zk for the prediction problem with the
horizon N .
Remark 4.2. We will also introduce the error propagation
with an explicit consideration of the linearization errors in
Section A. However, we will consider only the dynamic am-
biguity propagation in this paper for the interest of practical
application.

Now we define the objective function for the linearized
dynamics at time k as EP{

∑N−1
i=0 (∥zi|k + ei|k∥2Q + ∥ci|k +

K(zi|k + ei|k)∥2R) + ∥zN |k + eN |k∥2Qf
}. Here Q,Qf ∈

Rnx×nx and R ∈ Rnu×nu are positive definite penalty
matrices for the quadratic stage costs. Furthermore, based
on the assumption of zero-mean additive disturbances, all
the accumulated errors ei|k∀i ∈ NN

0 are also zero mean. We
could hence reformulate the objective function equivalently
to

∑N−1
i=1 ∥zi|k∥2Q + ∥vi|k∥2R + ∥zN |k∥2Qf

.

Next, we consider the closed-loop propagation of additive
disturbances under closed-loop matrices Acl,i,∀NN

1 . For ex-
pected constraints satisfaction (3), we roll out the predicted
state (i ≥ 1) in terms of additive disturbances within the
prediction horizon as

xi|k ≈zi|k + ei|k

=zi|k +

i−1∑
m=0

i−1−m∏
j=0

A
min{1,i−1−m−j}
cl,i−1−j Wm|k,

(17)

where
∏i−1−m

j=0 A
min{1,i−1−m−j}
cl,i−1−j =

Acl,i−1 . . . Acl,i−1−mI for m < i − 1. Take x3|k as
an example, it can be formulated in terms of additive distur-
bances via x3|k = Acl,2Acl,1Acl,0x0|k + Acl,2Acl,1w0|k +
Acl,2w1|k + w2|k.
Remark 4.3. The relation

ei|k =

i−1∑
m=0

i−1−m∏
j=0

A
min{1,i−1−m−j}
cl,i−1−j Wm|k (18)

is the key to our ambiguity set propagation through the (non-
linear) dynamics. The most significant difference between
our work and existing DRMPC works such as (Mark & Liu,
2020) is that we do not assume having data samples of the
predicted states x̂i|k, which would simply reduce the opti-
mal control problem to static Wasserstein DRO. However,
in practice, one is often faced with the question of having to
predict future state distributions and the corresponding am-
biguity. We shall demonstrate that, in such dynamic settings,
the real power of feedback control is to control the size of
the dynamic Wasserstein ambiguity sets in a closed-loop
fashion, see Fig. 1. The only previous work considering the
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setting equivalent to our dynamic ambiguity set propagation
is (Yang, 2020; Aolaritei et al., 2023), but only in the much
simpler setting of linear systems. Also, in order to solve
dynamic ambiguity set propagation, (Yang, 2020) solves
a relaxed problem called the Wasserstein penalty problem
( without state constraints), which still requires solving a
semi-infinite problem. The technical difficulty that prevents
previous works to go beyond that simple setting lies in the
very core of Wasserstein DRO reformulation techniques – it
does not treat complex nonlinear objectives as in nonlinear
OCPs. In contrast, this work proposes the first dynamic
Wasserstein closed-loop DRC with nonlinear dynamics and
constraints. The Wasserstein distributional reachable set un-
der dynamic propagation will be analytically characterized
in Proposition 4.8.

Hence, based on the linearized dynamics, we consider an
approximated optimal control problem corresponding to the
prototype DRNMPC problem (5).
Problem 2.

min
z,v,K

∑N−1
i=0 (

∥∥zi|k∥∥2Q +
∥∥vi|k∥∥2R) + ∥∥zN |k

∥∥2
Qf

s.t. z0|k = xk, zi+1|k = fd(zi|k, vi|k)
vi|k = Ki|kzi|k + ci|k

sup
Pm∈Pk+m,m=0,...,i−1

EP⊗i{[F ]n(zi|k

+

i−1∑
m=0

A
(i,j,m)
cl Wm|k)} ≤ [f ]n

∀ i ∈ NN
1 , n ∈ NnF

1 , k ∈ N≥0,
(19)

where Wm|k ∼ Pm is the disturbance variable and
A

(i,j,m)
cl :=

∏i−1−m
j=0 A

min{1,i−1−m−j}
cl,i−1−j .

In the following, we will provide the exact reformulation
of the optimization problem (19). Before showing the final
reformulation, we require the following Lemma to reformu-
late the distributionally robust constraints.

Lemma 4.4. Consider the polytopic uncertainty set Ww

and the Wasserstein ambiguity set P as the Wasserstein ball
around the empirical distribution P̂ = 1

M

∑M
l=1 δŵ(l) with

type-1 Wasserstein metric and ball radius ε. Then, the worst-
case expectation supPm∈P EPm

{
[F ]n(A

(i,j,m)
cl Wm|k)

}
evaluates to

inf
λ,sl,γl

λε+
1

N

M∑
l=1

sl

s.t. [F ]n(A
(i,j,m)
cl )ŵ(l) + γ⊤

l (hw −Hwŵ
(l)) ≤ sl

∥H⊤
w γl −

[
[F ]nA

(i,j,m)
cl

]⊤
∥∗ ≤ λ

γl ≥ 0, ∀l ∈ NM
1 ,

(20)

where λ ∈ R, sl ∈ R, γl ∈ RnH , and ∥ · ∥∗ is the dual norm
corresponding to the norm applied in (6).

Proposition 4.5. Consider the polytopic uncertainty set
Ww. Then, the DRMPC problem (19) evaluate to

min
z,v,K,

λm,sml,γml

∑N−1
i=0 (

∥∥zi|k∥∥2Q +
∥∥vi|k∥∥2R) + ∥∥zN |k

∥∥2
Qf

s.t. z0|k = xk

zi+1|k = fd(zi|k, vi|k)
vi|k = Ki|kzi|k + ci|k∑i−1

m=0 λε+
1
N

∑M
l=1 sml ≤ [f ]n − [F ]nzi|k

[F ]nA
(i,j,m)
cl ŵ(l) + γ⊤

l (hw −Hwŵ
(l)) ≤ sml

∥H⊤
w γl − [[F ]nA

(i,j,m)
cl ]⊤∥∗ ≤ λm

γml ≥ 0, ∀l ∈ NM
1 ,∀m ∈ Ni−1

0

∀ i ∈ NN
1 , n ∈ NnF

1 , k ∈ N≥0.
(21)

Remark 4.6. All the results about the worst-case expected
constraints in this paper can be easily replaced by the worst-
case chance constraints via the CVaR formulation intro-
duced by (Hota et al., 2019; Xie, 2021). Also, this work can
be easily extended to the control problem with polytopic
input constraints, e.g. (Zhong et al., 2023).

4.3. Iterative distributionally robust LQR

Optimization problem (19) is difficult to solve as the matri-
ces of the linearized system depend on the unknown nominal
trajectory and the unknown system matrices. Hence, we
propose in the following an algorithm iterating by sequen-
tially deriving the linearized system and the corresponding
feedback gains via Riccati recursion (Rawlings et al., 2017,
Sec. 8.8.3), solving a perturbed nominal problem, and up-
dating the perturbations based on the solution from a DRO
problem.

We consider below the setting of distributionally robust op-
timal control, i.e. the problem (21) with the initial sampling
time k = 0 and a fixed prediction horizon N . Given initial
trajectories of nominal state and input z, v (e.g. nomi-
nal nonlinear MPC), we solve an iterative LQR problem by
Riccati Recursion (Mayne, 1966; Li & Todorov, 2004; Rawl-
ings et al., 2017) to get the matrices A,B,K corresponding
to the linearized system, where A = {A0|k, . . . , AN |k},
B = {B0|k, . . . , BN |k}, and K = {K0|k, . . . ,KN |k}. The
feedback gain derived from Riccati recursion makes the
closed-loop system matrix Acl stable locally around the lin-
earization point. Then, we solve (20) to update the back-off
β = {β0|k, . . . , βN |k}, where

βi|k := sup
Pm∈P,m=0,...,i−1

EP⊗i{[F ]n(

i−1∑
m=0

A
(i,j,m)
cl Wm|k)}.

(22)
After determining the back-off, we solve the constraint-
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tightened program

min
z,v

∑N−1
i=0 (

∥∥zi|k∥∥2Q +
∥∥vi|k∥∥2R) + ∥∥zN |k

∥∥2
Qf

s.t. z0|k = xk

zi+1|k = fd(zi|k, vi|k)
vi|k = Ki|kzi|k + ci|k
[F ]nzi|k ≤ [f ]n − βi|k,
∀ i ∈ NN

1 , n ∈ NnF
1 , k = 0.

(23)

We iterate the process above until convergence. The pro-
posed algorithm is summarized in Algorithm 1.

Algorithm 1 Iterative distributionally robust LQR

1: Input: Initial guess z,v, ε, {ŵ(l)}Mi=1

2: while Not Converge do
3: A,B,K ← Riccati Recursion (z,v) (Rawlings

et al., 2017, Sec. 8.8.3)
4: β← DRO (A,B,K, ε, {ŵ(l)}Mi=1) (20)
5: z,v, c ← Nonlinear optimal control problem with

fixed A,B,K,β (23)
6: end while
7: Return: z,v, c,K

Remark 4.7. For the original distributionally robust MPC
problem (5), we could recursively solve Algorithm 1 at each
sampling time k for the given measurement xk. The initial
guess could be generated from a nominal NMPC or a shifted
trajectory derived from the previous step.

4.4. Wasserstein distributional reachable sets for error
dynamics

We now further show that the stochastic error characterized
by the LTV dynamics

ei+1 = Acl,iei +Wi, Wi
i.i.d.∼ Pw (24)

can be contained in a dynamic Wasserstein ambiguity set
given below. This gives a theoretical bound for the experi-
mental results in Figure 1.

Let êi ∼ Q̂N,i be the empirical error vector at predicted
time step i, and Q̂N,i be its empirical error distribution,
given by the empirical LTV error dynamics

êi+1 = Acl,iêi + Ŵi, e0 = 0, Ŵi
i.i.d.∼ P̂.

We now consider a dynamic ambiguity set—Wasserstein
ambiguity tube associated with the LTV dynamics, with a
slight abuse of notation,

Tϵ(P̂N ) :=
{
Qi, i = 0, . . . , T | ei ∼ Qi, ei+1 = Acl,iei +Wi,

Wi ∼ Pw, d
p
w

(
Pw, P̂

)
≤ ϵ, e0 = 0

}
.

The intuition is that the Wasserstein ambiguity tube con-
tains all evolution paths of the ambiguous stochastic system,
i.e., the state distribution of our MPC problem lives in this
ambiguity tube {Qi} ∈ Tϵ(P̂).

The following result characterizes the size of the Wasserstein
ambiguity tube.

Proposition 4.8 (Wasserstein distributional reachable sets).
We have, ∀{Qi} ∈ Tϵ(P̂),

dpw

(
Qi, Q̂N,i

)
≤ ϵ ·

i−1∑
m=0

i−1−m∏
j=0

∥Amin{1,i−1−m−j}
cl,i−1−j ∥p,

for i = 0, . . . , T , where ∥ · ∥ is the corresponding induced
matrix norm.

Proposition 4.8 equips us with a reachable set for the error
in the Wasserstein distance. We illustrate this in a Figure 1.
It further implies that the aforementioned ambiguity tube
can be bounded in a more straightforward and computable
dynamic ambiguity set (tube)

Tϵ(P̂) ⊂
{
Qi, i = 0, . . . , T | dpw

(
Qi, Q̂N,i

)
≤

ϵ ·
i−1∑
m=0

i−1−m∏
j=0

∥Amin{1,i−1−m−j}
cl,i−1−j ∥p, êi ∼ Q̂N,i,

êi+1 = Acl,iêi + Ŵi, Ŵi
i.i.d.∼ P̂, e0 = 0.

}
(25)

Unlike aforementioned works in the existing literature
where the ambiguity sets are often given a priori, our dy-
namic Wasserstein ambiguity set is obtained by propagating
through the LTV error dynamics.
Remark 4.9 (Wasserstein invariant ambiguity sets). While
this paper does not deal with infinite-horizon con-
trol or positive invariant sets, it is easy to see that
Proposition 4.8 can be used to construct Wasser-
stein invariant ambiguity sets by examining the series∑∞

m=0

∏m
j=0 ∥A

min{1,i−1−m−j}
cl,i−1−j ∥p, i.e., if ∃C < ∞

such that
∑∞

m=0

∏m
j=0 ∥A

min{1,i−1−m−j}
cl,i−1−j ∥p ≤ C, then

the following set of distributions is a Wasserstein in-
variant set for the ambiguous system state distribution{
Q | dpw

(
Q, Q̂N,∞

)
≤ ϵ ·C

}
, where Q̂N,∞ is the equilib-

rium state distribution of the nominal error dynamics (24).
Remark 4.10. The error dynamics propagation for lineariza-
tion errors can be found in Section A.

5. Case study
The system considered is a nonlinear mass spring system
with m = 2 kg, k1 = 3N/m, k2 = 2N/m:

ẋ1 = x2, ẋ2 = −k2
m

x5
1 −

k1
m

x2 +
1

m
u.
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The discrete-time system is acquired by using the Runge-
Kutta method with fourth order with the sampling period
0.1 s. We simulate the control performance for the discrete-
time system suffering from the uniformly distributed addi-
tive disturbance bounded within [−1e − 3, 1e − 3] on the
state element x1, and [−0.1, 0.1] on x2. The prediction
horizon for this system is set to N = 140.

The control goal of this system is to track the state xr =
[0, 0]⊤ starting from the initial state xinit = [−2, 0]⊤, while
satisfying the distributionally robust state constraint corre-
sponding to x2 ≤ 0.5m/s. The parameters are selected as

Q = Qf =

[
100 0
0 1

]
, R = [1]. We compare the closed-

loop performance of three different methods: our method,
fixed feedback gain, and no feedback gain in this section.
The fixed feedback gain K = [−7.97,−7.16] is derived
from the LQR controller for the nonlinear system linearized
around the equilibrium point with the same penalty matrices.

With M = 5 offline collected disturbance samples and
ball radius ε = 0.03, simulation results of nominal tra-
jectories solved by Algorithm 1 with the three different
methods mentioned above (for the method with the fix or
zero feedback gain we only linearize the nominal nonlinear
system without update K) can be found in Fig. 2. We apply
uk = Kkxk + ck to the disturbed nonlinear system from
k = 0 to k = N , where Kk = 0 for the method with zero
feedback gain and Kk = [−7.97,−7.16] for the method
with fixed feedback gain. Fig 3 illustrates 20 realizations of
the closed-loop performance. Fig. 1 illustrates the accumu-
lated error between the closed-loop state and the nominal
state shown in Fig. 2. The arrow indicates the error differ-
ence between two consecutive sampling times, i.e. the tail
indicates the accumulated error with respect to the nominal
state of the previous steps and the head indicates the accu-
mulated error with respect to the nominal state at the current
step.

Based on our experiments, we conclude that though the
open-loop controller is capable of controlling the nominal
trajectory, it is not effective in reducing the growth of am-
biguity, as depicted in Fig 1. Conversely, our feedback
controller successfully controls the size of ambiguity, which
is the main insight of our paper.

6. Conclusions
Our key insight is that the sizes of Wasserstein ambiguity
sets for nonlinear systems can be controlled using nonlinear
feedback control. To demonstrate that, this paper proposes
the DRNMPC with dynamic Wasserstein ambiguity. We
propose an iterative MPC scheme to dynamically control the
propagation of Wasserstein ambiguity sets. We analytically
characterize the Wasserstein distributional reachable set un-
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x
2

dynamic K traj iter0

fix K traj iter0

zero K traj iter0

dynamic K traj iter1

fix K traj iter1

zero K traj iter1

dynamic K traj iter2

fix K traj iter2

zero K traj iter2

dynamic K traj iter3

fix K traj iter3

zero K traj iter3

Figure 2. Nominal state trajectories solved by Algorithm 1 with
Wasserstein ball radius ε = 0.03.
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0.8

x
2

dynamic K

fix K

zero K

Figure 3. Closed-loop performance of 30 realizations with the feed-
back gains and nominal inputs solved by 1. Red: Out method. Blue:
Fixed feedback gain. Black: Zero feedback gain.

der dynamic propagation in our algorithm. To evaluate the
effectiveness of our proposed algorithm, we compare the
closed-loop performances of dynamic feedback, fixed feed-
back, and no feedback on a mass-spring system. The simu-
lation results demonstrate that the proposed iterative scheme
can effectively control the ambiguity set propagation, which
is a critical step in solving the DRNMPC problem.
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A. Linearization error reachable sets
Let us now consider the error dynamics propagation for linearization errors with the following standard assumption.
Assumption A.1. The nonlinear dynamics (1) fd : Rnx× Rnu 7→ Rnx are three times continuously differentiable.

To bound the linearization error, we consider the following condition of locally bounded eigenvalues on Hessian, similar as
in (Leeman et al., 2023). Let X ∈ Rnx and U ∈ Rnu denote the state and input space, respectively and Hn : Rnx+nu 7→
R(nx+nu)×(nx+nu) denote the Hessian corresponding to the n-th component of fd, i.e.

Hn(ξx, ξu) =

[
∂2fd,n
∂x2

∂2fd,n
∂x∂u

∗ ∂2fd,n
∂u2

]∣∣∣∣∣
(x,u)=(ξx,ξu)

,

where ξx ∈ X and ξu ∈ U . We further denote the constant µn as the corresponding locally maximal eigenvalue, i.e.

µn :=
1

2
max

ξx∈X ,ξu∈U,∥h∥∞≤1

∣∣h⊤Hn(ξx, ξu)h
∣∣ .

Then we have the following bound for each n-th element of the vector of linearization errors r(x, u, z, v) in (8).
Lemma A.2. (Leeman et al., 2023, Proposition III.1.) Given Assumption A.1, the remainder in (8) satisfies

|rn(x, u, z, v)| ≤ ∥η∥2∞µn,

for any z, x ∈ X , u, v ∈ U , where η =

[
∆x
∆u

]
.

Proof. By second-order Mean Value Theorem, we know that there exist ξx ∈ [x, z] and ξu ∈ [u, v] (with a little abuse of

notation) such that rn(x, u, z, v) = 1
2

[
x− z
u− v

]T
Hn(ξx, ξu)

[
x− z
u− v

]
. Hence we have

|rn(x, u, z, v)| ≤ max
ξx,ξu

1

2

∣∣∣∣∣
[
∆x
∆u

]T
Hn(ξx, ξu)

[
∆x
∆u

]∣∣∣∣∣
≤

∥∥∥∥[∆x
∆u

]∥∥∥∥2 max
ξx∈X ,ξu∈U,∥h∥≤1

1

2

∣∣hTHn(ξx, ξu)h
∣∣ .

If the infinity norm is considered here, we have |rn(x, u, z, v)| ≤ ∥η∥2∞µn.

Given Lemma A.2, dynamics (13) and the control policy, we have the following lemma characterizing the upper bound of
the linearization error.
Lemma A.3. Given Assumption A.1, the remainder in (8) is upper bounded by

rn(xk+i, uk+i, zk+i, vk+i) ≤
(∥∥∥∥[ ek+i

Kk+iek+i

]∥∥∥∥
∞

+

∥∥∥∥[ εk+i

Kk+iεk+i

]∥∥∥∥
∞

)2

µn, (26)

for any z, x ∈ X , u, v ∈ U , where i ∈ N+ and n ∈ Nnx
1 .

Proof. This can be directly derived from Lemma A.2 with the error dynamics (13).

Furthermore, let µ := diag (µ1, . . . , µnx
), then the linearization error satisfies

rk+i ∈
(∥∥∥∥[ ek+i

Kk+iek+i

]∥∥∥∥
∞

+

∥∥∥∥[ εk+i

Kk+iεk+i

]∥∥∥∥
∞

)2

µBnx
∞ ,

where rk+i :=

 r1(xk+i, uk+i, zk+i, vk+i)
...

rnx(xk+i, uk+i, zk+i, vk+i)

.

Remark A.4. The back-off due to the linearization error can be derived from Lemma A.3. However, we observed that, in
practical experiments, the linearization error propagation might result in an over-conservative closed-loop performance;
hence, we will only consider the dynamic propagation of ambiguity sets in practical numerical experiments below.
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B. Proofs
B.1. Proof to Lemma 4.4

Proof. The equivalent reformulation can be derived with ak := [F ]nA
(i,j,m)
cl in (Mohajerin Esfahani & Kuhn, 2018,

Corollary 5.1).

B.2. Proof to Proposition 4.5

Proof. The reformulation (21) is the consequence of the exact reformulation of the distributionally robust con-
straints. For any given i and k, based on the linearity property of expectation, the distributionally robust constraints
suprm|k,P0∈P,...,Pi−1∈P EP⊗i{[F ]n(zi|k +

∑i−1
m=0 A

(i,j,m)
cl Wm|k)} ≤ [f ]n is equivalent to

i−1∑
m=0

sup
Pm∈P

EPm

{
[F ]n(A

(i,j,m)
cl Wm|k)

}
+ [F ]nzi|k ≤ [f ]n. (27)

Let Zf := {z | z is feasible in (27) ∀i ∈ NN
1 }. By applying Lemma 4.4 to supPm∈P EPm

{
[F ]n(A

(i,j,m)
cl Wm|k)

}
for each

m, we acquire that the inequality (27) containing the summation of distributionally robust optimizations is equivalent to

i−1∑
m=0

inf
λm,sml,γml

λε+
1

N

M∑
l=1

sml ≤ [f ]n − [F ]nzi|k

s.t. [F ]nA
(i,j,m)
cl ŵl + γ⊤

l (h−Hŵl) ≤ sml

∥H⊤
w γl − [[F ]nA

(i,j,m)
cl ]⊤∥∗ ≤ λm

γml ≥ 0, ∀l ∈ NM
1 ,∀m ∈ Ni−1

0 .

(28)

Hence the feasible set Zf is equivalent to

Zf := {z | ∃λm, sml, γml s.t. z is feasible in
i−1∑
m=0

λε+
1

N

M∑
l=1

sml ≤ [f ]n − [F ]nzi|k

[F ]nA
(i,j,m)
cl ŵl + γ⊤

l (h−Hŵl) ≤ sml

∥H⊤
w γl − [[F ]nA

(i,j,m)
cl ]⊤∥∗ ≤ λm

γml ≥ 0, ∀l ∈ NM
1 ,∀m ∈ Ni−1

0

∀i ∈ NN
1 }.

Together with the objective function and equality constraints corresponding to the nominal dynamic, we complete the
proof.

B.3. Proof to Proposition 4.8

Proof. By the definition of the Wasserstein distance,

dpw

(
Qi, Q̂N,i

)
= inf

Π

∫
W2

w

∥e∗i − êi∥p dΠ (e∗i , êi) ,

where Π is a joint distribution (transport plan) with marginals Qi, Q̂N,i.
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Plugging in the error dynamics decomposition (18),

inf
Γ

∫
W2

w

∥∥∥∥∥
i−1∑
m=0

i−1−m∏
j=0

A
min{1,i−1−m−j}
cl,i−1−j (W ∗

m − Ŵm)

∥∥∥∥∥
p

dΓ
(
W ∗

m, Ŵm

)

≤
i−1∑
m=0

∥∥∥∥∥
i−1−m∏
j=0

A
min{1,i−1−m−j}
cl,i−1−j

∥∥∥∥∥
p

· inf
Γ

∫
W2

w

∥∥∥W ∗
m − Ŵm

∥∥∥p

dΓ
(
W ∗

m, Ŵm

)

≤ ϵ ·
i−1∑
m=0

i−1−m∏
j=0

∥∥∥Amin{1,i−1−m−j}
cl,i−1−j

∥∥∥p

,

where Γ is the joint distribution of W ∗
m, Ŵm. Due to the dynamics structure (24), the joint distribution Π is determined by

the joint distributions Γ. The last inequality estimate above is due to the Wasserstein distance estimate dpw
(
Pw, P̂

)
≤ ϵ.


