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Abstract

In enhancing the reasoning capabilities of large language models (LLMs), prior
research primarily focuses on specific prompting techniques such as few-shot or
zero-shot chain-of-thought (CoT) prompting. These methods, while effective,
often involve manually intensive prompt engineering. Our study takes a novel
approach by asking: Can LLMs reason effectively without prompting? Our findings
reveal that, intriguingly, CoT reasoning paths can be elicited from pre-trained
LLMs by simply altering the decoding process. Rather than conventional greedy
decoding, we investigate the top-k alternative tokens, uncovering that CoT paths
are frequently inherent in these sequences. This approach not only bypasses the
confounders of prompting but also allows us to assess the LLMs’ intrinsic reasoning
abilities. Moreover, we observe that the presence of a CoT in the decoding path
correlates with a higher confidence in the model’s decoded answer. This confidence
metric effectively differentiates between CoT and non-CoT paths. Extensive
empirical studies on various reasoning benchmarks show that the proposed CoT-
decoding effectively elicits reasoning capabilities from language models, which
were previously obscured by standard greedy decoding.

1 Introduction

Large language models (LLMs) have demonstrated remarkable performance on various complicated
reasoning benchmarks (Anil et al., 2023; Brown et al., 2020; Chowdhery et al., 2023; Gemini,
2023; OpenAI, 2023; Romera-Paredes et al., 2023). These reasoning capabilities of LLMs are
typically elicited by prompting techniques (Brown et al., 2020), which can be few-shot prompting
with intermediate steps augmented demonstration exemplars (Chen et al., 2023b; Gao et al., 2022;
Nye et al., 2021; Wei et al., 2022; Yao et al., 2023; Zhou et al., 2023a), or zero-shot prompting with
specific instructions which ask for showing certain intermediate steps (Kojima et al., 2022; Yasunaga
et al., 2023). The other prevalent strategy for eliciting LLM reasoning is through model training or
instruction tuning using a substantial amount of chain-of-thought (CoT) reasoning data (Chung et al.,
2022; Cobbe et al., 2021; Ling et al., 2017; Nye et al., 2021).

Prompting techniques, while effective, often encode task-specific human priors, thereby making it
difficult to assess a language model’s intrinsic reasoning abilities. Ideally, a well-trained language
model should be capable of independent reasoning and delivering optimal responses, without requiring
humans to tweak the prompts or refine repeatedly when the initial response is unsatisfactory. Model-
tuning can be expensive and requires a substantial amount of supervised data. In this work, we
explore a different perspective and ask: Can LLMs reason effectively without prompting? And to
what extent can they reason? We find that, perhaps surprisingly, there exists a task-agnostic way to
elicit CoT reasoning from pre-trained LLMs by simply altering the decoding procedure. Figure 1
illustrates this phenomenon: given a reasoning question, the LLM generates a wrong answer via the
standard greedy decoding path, yet alternative top-k token inspection unveiled inherent CoT paths
(e.g., decoding paths 2 and 4), which accurately resolved the query. This decoding modification
bypasses prompting and is entirely unsupervised without the need for model tuning.
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Q: I have 3 apples, my dad has 2 
more apples than me, how many 
apples do we have in total?
A:

Language 
model

Decoding step 0

top-1:  5
top-2:  I
top-3:  We
top-4:  You
top-5:  The

Continue greedy decoding

5 apples

I have 3 apples, my dad has 2 more apples than me, so he 
has 5 apples. 3+5=8. We have 8 apples in total.

We have 5 apples in total.

You have 3 apples, your dad has 2 more apples than you, 
so he has 5 apples. 3+5=8. You have 8 apples in total.

The answer is 5.

uncertain certain

Question in standard QA format

Figure 1: Illustration of CoT-decoding. Pre-trained LLMs are capable of inherent reasoning without
prompting by considering alternative top-k tokens, rather than solely relying on the top-1 greedy
decoding path. Moreover, these models tend to display higher confidence in decoding the final answer
(indicated by a darker shaded color) when a CoT reasoning path is present.

In more details, we formulate the input using the standard question-answer (QA) format: “Q:
[question]\nA:".1 While most existing work suggest that LLMs falter in such direct-QA scenarios on
reasoning (Cobbe et al., 2021; Kojima et al., 2022; Nye et al., 2021; Wei et al., 2022), our findings
reveal a nuanced picture. We observe that LLMs indeed struggle with reasoning when relying solely
on greedily decoded paths. However, when we consider alternative paths among the top-k tokens,
CoT reasoning patterns emerge naturally within the decoding trajectories of LLMs. In addition,
we have observed an interesting pattern: the model demonstrates increased confidence in the final
answer when a CoT reasoning path is present in the decoding process. As illustrated in Figure 1,
this is evident where paths 2 and 4 show heightened certainty in arriving at the correct answer “8”,
contrasting sharply with the high uncertainty in paths that lead to the incorrect “5”. Leveraging this
phenomenon, we develop a method to sift through the top-k decoding paths, which we refer to as
CoT-decoding, thereby isolating the most reliable paths for model output.

Our contributions are summarized as follows:

• We present a novel finding that LLMs can reason by simple decoding changes, without the
use of prompting. In contrast to prior research that focuses on refining prompts to elicit reasoning
from LLMs, our work, for the first time, shows that the reasoning process can be readily elicited
by simple decoding changes. Moreover, we challenge the prevailing notion in the literature that
LLMs are inherently incapable of effective reasoning without prompting. We show that this belief
is an artifact of considering only the greedy path during decoding, and the model’s reasoning paths
can be revealed by traversing the alternative decoding paths.

• Our method enables a better understanding of LLMs’ intrinsic reasoning capabilities with-
out imposing human priors. The employment of intricate prompting techniques often introduces
various human priors, making it difficult to distinguish between the extent of “human teaching"
and the degree to which LLMs can reason independently. Our approach bypasses the confounders
introduced by prompting, enabling a more truthful assessment of the models’ intrinsic reason-
ing abilities. Our study reveals that pre-trained language models inherently possess reasoning
capabilities for many tasks including math and commonsense reasoning, and existing prompting
approaches mostly serve the role of bringing those inherent reasoning paths forward as the top
decoding paths. In contrast, the CoT-paths are less prevalent in complex and highly synthetic tasks,
where the few-shot CoT demonstrations play a “teaching” role in guiding how models solve a task,
with models primarily mimicing the format of these prompts to generate accurate reasoning paths.

• We further propose CoT-decoding that reliably selects CoT-paths based on answer confi-
dence. We find that the language model’s confidence in its final answers increases when a CoT is
present in its decoding path. Leveraging this increased confidence, we propose CoT-decoding to
select more reliable decoding paths, demonstrating significant improvements over greedy decoding
across various reasoning benchmarks.

1The QA format is only needed because without it a pre-trained language model will continue the question
instead of answering. It is also the most basic formatting employed in existing works for pre-trained models.
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2 Chain-of-Thought (CoT) Decoding

2.1 Pre-trained Language Models Can Reason without Prompting

We investigate whether pre-trained language models inherently possess reasoning capabilities, without
explicit prompts or human intervention. In Table 1, we show example decoding paths across math
(GSM8K, Cobbe et al. (2021)) and commonsense reasoning (year parity, Allen-Zhu and Li (2023)).
We employ the pre-trained PaLM-2 large model (Anil et al., 2023) to compare its greedy decoding
path (k = 0), predominantly used in state-of-the-art LLMs for reasoning tasks, with alternative
decoding paths (k > 0), where k represents the choice of the k-th token at the first decoding step.

[GSM8K] One glass costs $5, but every second glass costs only 60% of the
price. Kylar wants to buy 16 glasses. How much does he need to pay for them?

[Year Parity] Was Nicolas Cage born in an even or odd
year?

Greedy path:
k = 0: $60.00 (0.029)
Alternative top-k paths:
k = 1: 60 (0.058)
k = 2: Kylar needs to pay $60 for 16 glasses. (0.058)
. . .
k = 7: If Kylar buys 16 glasses, he will pay $60. (0.032)
k = 9: We can calculate . . . we need to multiply the price of one glass by 16
and then subtract 40% of the price of 8 glasses. 16 x 5 = 80 8 x 5 = 40 40 x 0.4
= 16 80 – 16 = 64 Kylar needs to pay $64 for 16 glasses. (0.994)

Greedy path:
k = 0: Nicolas Cage was born in an odd year. (0.117)

Alternative top-k paths:
k = 1: Even (0.207)
k = 2: Odd (0.198)
k = 3: 1964, an even year. (0.949)
k = 4: He was born in an even year. (0.0)
. . .
k = 7: Cage was born in 1964, an even year. (0.978)

Table 1: Examples of greedy decoded paths and alternative top-k paths over the PaLM-2 Large model.
The model’s confidence over the answers (bolded) are highlighted in blue (See §2.2 for details).

LLMs indeed cannot reason if we only consider the greedy decoding path. First, we observe
that models employing greedy decoding often does not contain a CoT path, opting to solve problems
directly. This tendency may stem from the model’s skewed perception of problem difficulty, shaped
by its pre-training on predominantly simpler questions. Consequently, the model is predisposed to
immediate problem-solving. This observation aligns with findings in (Cobbe et al., 2021; Kojima
et al., 2022; Nye et al., 2021; Wei et al., 2022), which show that direct-answer prompts generally
result in low accuracy on reasoning tasks even for large language models.

LLMs can reason if we consider the alternative decoding paths. Contrastingly, an intriguing
phenomenon emerges when exploring alternative top-k (k > 0) tokens at the first decoding step.
Continuing with greedy decoding from this point reveals natural CoT reasoning in many cases. These
findings suggest that large language models possess inherent reasoning capabilities for numerous tasks
following pre-training, but these abilities are obscured by the predominant use of greedy decoding.
These reasoning paths can be easily uncovered by incorporating alternative decoding paths.

For instance, in the GSM8K question (Table 1), a valid CoT emerges at k = 9. Similarly, in the
year parity task, greedy decoding attempts to directly answer the parity question at k = 0, leading to
a random choice between “even” and “odd” which often results in an incorrect answer. However,
when exploring k > 0, the model naturally generates CoT paths at k = 3 and k = 7, where it first
determines the year before resolving the parity.

2.2 CoT-Decoding for Extracting CoT Paths

In this section, we further show how we can reliably extract those CoT-paths during the decoding
process. We observe that CoT paths do not consistently outrank non-CoT ones in the model’s
probability assessment. Moreover, they often do not represent the predominant answer among all
paths, rendering methods like self-consistency (Wang et al., 2023a) inapplicable. For instance, in the
GSM8K question, the prevalent answer “60”, which aligns with the greedy decoding result, fails to
serve as a reliable indicator for identifying the correct path.

Interestingly, upon examining the model’s logits, we found that the presence of a CoT path typically
leads to a more confident decoding of the final answer, characterized by a significant probability
disparity between the top and secondary tokens:

∆k,answer =
1

|answer|
∑

xt∈answer

p(x1
t | x<t)− p(x2

t | x<t).
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Here x1
t and x2

t represent the top two tokens at the t-th decoding step in the k-th decoding path, chosen
for their maximum post-softmax probabilities from the vocabulary, given xt being part of the answer
tokens. This uncertainty measure is similar to the minimum-margin approach in (Jiang and Gupta,
2019) and in our case, the model’s overall confidence in decoding the final answer is approximated
by averaging these probability differences for all relevant answer tokens xt. For example, for the
GSM8K question in Table 1, given the answer “60”, we average the probability differences for all
tokens in that answer, i.e., “6” and “0”.2

This method, referred to as CoT-decoding, extracts such CoT paths among the decoded paths from
the model. As illustrated in Table 1, each decoding path is marked with its corresponding ∆ value
in blue (the answer tokens are bolded). It is evident that paths with a CoT component exhibit a
significantly higher ∆, highlighting the model’s increased confidence, as opposed to paths without
CoT. We also did a quantitative analysis by manually examining the first 100 questions in GSM8K,
and among those, if we take the decoding path with the highest answer confidence among the top-10
decoding paths, 88% of them contain CoT paths. This shows an overwhelmingly high correlation
between the model’s answer confidence and the CoT paths.

Comparing different CoT-path extraction approaches. In Table 2, we compare different ways
to extract the CoT-paths out of the top-10 decoded paths. It is easy to see that the model’s own
probability measure does not serve as a reliable indicator, nor does the model’s length-normalized
probability (since an intuition could be a CoT-path should usually be a longer decoding path, which
is not always the case, e.g., on the year parity task). In contrast, CoT-decoding can reliably extract
the CoT-paths, yielding a significant boost on the model’s reasoning performance.

GSM8K (top-100) Year Parity

Greedy decoding 44.0% 57.0%
Decode 10 paths, rank by model’s highest log-prob 37.0% 55.0%
Decode 10 paths, rank by model’s highest length-normalized log-prob 51.0% 57.0%
CoT-decoding (decode 10 paths, rank by model’s answer confidence) 72.0% 95.0%

Table 2: CoT-decoding reliably extracts the CoT-paths compared to other methods (on PaLM-2 L).

Identify the answer spans. Computing ∆ requires identifying the answer spans in a model’s
response. One common approach used for public models is to extract the last numerical value in
math reasoning tasks, or the final option in set-based reasoning tasks, as the answer, following the
Tülu evaluation (Ivison et al., 2023; Liu et al., 2024; Wang et al., 2023b). Alternatively, similarly to
the method used in Kojima et al. (2022), we can extend the model’s output with the prompt "So the
answer is", and then align these continuations with spans in the model’s decoding path as the answer.

Table 3: CoT-decoding and self-consistency w/o prompts on GSM8K.
Mistral-7B PaLM-2 L

Greedy decoding 9.9% 34.8%
Self-consistency without CoT-prompt (10 paths) 12.9% 40.6%
CoT-decoding (10 paths) 25.1% 63.2%

Sampling under the stan-
dard QA format. CoT-
decoding explores alternative
tokens at the first decoding
step. A natural question
arises: can sampling achieve
a similar effect and unveil
the CoT reasoning paths? We
found that, although sampling works well under few-shot CoT prompting (Wang et al., 2023a), it
does not exhibit the desired behaviour without the prompts. In Table 3, we show that when no CoT
prompt is used, CoT-decoding is much more sample-efficient than sampling-based approaches like
self-consistency. The ineffectiveness of sampling stems from the model’s skewed distribution towards
the direct answer tokens, hence the first token tends to have less diversity compared to CoT-decoding.
In contrast, CoT-decoding works by explicitly encouraging diversity at the first decoding step.

Branching at other decoding steps. Another natural question is whether branching is viable at
later decoding stages, comparing to only branching at the first decoding step. In Figure 2, we highlight

2We also considered other popular choices for measuring the model’s uncertainty (Settles, 2009), e.g., using
the model’s probability on the token itself (i.e., p(x1

t | x<t) only), which performs slightly worse compared to
the min-margin approach. In addition, an entropy estimate is not accurate due to the large vocabulary size in
LLMs and the common use of vocabulary truncation.
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the impact of alternative token consideration in subsequent decoding steps. It is evident that early
branching, e.g., at the first decoding step, significantly enhances the diversity of potential paths.
Conversely, later-stage branching is significantly influenced by previously generated tokens. For
instance, initiating with the token “5" greatly decreases the likelihood of rectifying an erroneous path.
Nonetheless, the optimal branching point may vary with the task; in the year parity task, for instance,
mid-path branching can effectively yield correct CoT paths.

step 0

top-1:   5

top-2:   I

top-3:  We

top-4:  You

top-5:  The

apples
\n

have 3 apples, my dad... We have 8 apples in total.
don't know…

have 5 apples in total.
don't know, because we don't know how many apples...

have 3 apples, your dad... You have 8 apples in total.
can't know...

answer is 5.
apples are a metaphor...

I have 3 apples, my dad has 2 more apples than me, 
how many apples do we have in total?

step 1 step 0

top-1: Nicolas

top-2:   Even

top-3:   Odd

top-4:      1               964,

top-5:    He

\n
.

 an even year.
 even.

was born in an even year.
is 55 years old.

Was Nicolas Cage born in an even or odd year?

step 1

.
\n

Cage was born in
was born in an even year.

an odd year.
1964, which is an even year.

step k

Figure 2: We present an analysis of the decoded paths by considering alternative tokens at various
decoding steps. Task-dependent challenges arise: at times, the model encounters difficulty recovering
from incorrect paths when branching at later tokens. For certain tasks, multiple branching positions
may exist, all leading to the correct reasoning path.

Aggregation of the decoding paths. Since we already decode the top-k paths, one natural exten-
sion is to aggregate the answers over all those paths, similar to self-consistency (Wang et al., 2023a)
but without the use of prompts. The rationale behind this aggregation is to mitigate sensitivity to small
differences in the model’s logits, particularly when relying solely on the path with the maximum ∆.
The examples in Table 1 show that the majority answer is unlikely to be the correct one. Instead, we
propose a weighted aggregation method, i.e., we take the answer that maximizes ∆̃a =

∑
k ∆k,a

where ∆k,a is the k-th decoding path whose answer = a. We found that adopting this approach
enhances the stability of the results, and further analysis is presented in Section §3.3.

3 Experiments

We evaluate CoT-decoding across a range of reasoning benchmarks, demonstrating its capability
to successfully recover CoT reasoning paths during decoding, all without the need for specialized
prompting.

Experiment Setup. For all experiments, the default input to the model is the standard QA format
of Q: [question]\nA:, where [question] is filled with the actual question depending on the task, and
we ask the model to continue the generation given that prefix. During decoding, we use k = 10 as
default for the alternative top-k tokens at the first decoding position, and continue greedy decoding
afterwards. We show ablation studies with respect to the different choice of k in Section §3.1.

Datasets. For mathematical reasoning, we use the Grade-school math problems (GSM8K; Cobbe
et al., 2021) and the multi-step arithmetic dataset from (MultiArith; Roy and Roth, 2015). For
commonsense reasoning, we investigate the “year parity” task where recent literature finds large
language models still struggle with. The task is to query the model with “Was [person] born in an
even or odd year?” where “[person]” is filled by a random celebrity name.3 Existing work (Allen-Zhu
and Li, 2023; Berglund et al., 2023) shows that even SoTA models like GPT-4 struggle with such
tasks, achieving at-chance accuracy (∼50%) when prompted directly. Additionally, we investigate
symbolic reasoning tasks from Big-Bench-Hard (bench authors, 2023; Suzgun et al., 2022).

Models. We use three public models: (1) PaLM-2 (Anil et al., 2023) with different scales, ranging
from X-Small, Small, Medium, and Large; (2) Mistral-7B (Jiang et al., 2023), and (3) Gemma-7B

3We curate a list of the top 100 celebrity names from (Berglund et al., 2023): https://github.com/
lukasberglund/reversal_curse/blob/main/data/celebrity_relations/top_celebrities.txt
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(Team et al., 2024). Our experiments primarily focus on pre-trained models, but we also include
experiments with instruction-tuned models (denoted as “inst-tuned” or “IT”).

3.1 CoT-Decoding Effectively Elicits Reasoning from Language Models

Table 4: CoT-decoding is the only decoding strategy
that can effectively elicit language models’ reasoning.

GSM8K Acc

Top-k sampling (k = 10) 4.9%
Top-p / Nucleus sampling (p = 0.9) 6.4%

Beam search (b = 10) 6.7%
Temperature sampling (T = 0.7) 7.5%

Greedy decoding 9.9%
Self-consistency w/o CoT prompt (10 paths) 12.9%

CoT-decoding (k = 10) 25.1%

CoT-decoding is the only decoding strat-
egy that effectively elicits language
model reasoning. In Table 4, we present
results from popular decoding baselines on
the Mistral-7B pre-trained model, includ-
ing temperature sampling (Ackley et al.,
1985; Ficler and Goldberg, 2017), top-k
sampling (Fan et al., 2018; Holtzman et al.,
2018; Radford et al., 2019), nucleus sam-
pling (Holtzman et al., 2020), and beam
search. We can see that CoT-decoding is
the only decoding strategy that effectively
enables language models to reason, while some of the decoding methods even hurt model’s reasoning
ability compared to greedy decoding.

CoT-decoding effectively elicits reasoning across language models. In Figure 3, we show that
across three language model families, PaLM-2, Mistral and Gemma, CoT-decoding yields consistent
accuracy gains on both math and commonsense reasoning tasks, sometimes doubling or even tripling
the performance compared to greedy decoding.

PaLM-2 LargeMistral-7B Gemma-7B

Figure 3: CoT-decoding effectively elicits reasoning across multiple language model families includ-
ing PaLM-2, Mistral and Gemma, with significant accuracy gains over three reasoning tasks.

CoT-decoding elicits reasoning across model scales. In Figure 4, we show that CoT-decoding
enhances reasoning across different model scales over the PaLM-2 model family. On GSM8K,
CoT-decoding consistently yields +10-30% absolute accuracy gains. On year parity, when using
greedy decoding, the model’s performance remains flat even after scaling up model sizes, consistent
with the findings in (Allen-Zhu and Li, 2023). In contrast, CoT-decoding significantly boosts the
performance by recovering the CoT paths, achieving almost perfect accuracy at larger model scales.

0

25

50

75

100

XS Small Medium Large Inst-tuned

Greedy CoT decoding

GSM8K accuracy

40.0

60.0

80.0

100.0

Small Medium Large

Greedy CoT decoding

Year Parity accuracy

Figure 4: CoT-decoding reliably improves reasoning performance across model scales (PaLM-2),
even when the task does not naturally improve by scaling up only (e.g., year parity).
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CoT-decoding partially closes the reasoning gap between pre-trained and instruction-tuned
models, without using any supervised data. Intriguingly, we observe that CoT-decoding enables
a pre-trained model to achieve a similar performance of an instruction-tuned model: in Figure 4
(left), CoT-decoding achieves 63.2% accuracy on the pre-trained PaLM-2 Large model, close to the
performance of the instruction-tuned model of the same scale at 67.8%. The results demonstrate
that instruction-tuning with sufficient CoT data (Chung et al., 2022) can be partially achieved by
modifying the decoding procedure within pre-trained models.

Table 5: CoT-decoding improves both pre-trained
and instruction-tuned Mistral-7B models.

Pre-trained Inst-tuned

GSM8K Greedy 9.9 31.2
CoT-decoding 25.1 (+15.2) 38.2 (+7.0)

MultiArith Greedy 14.3 37.8
CoT-decoding 45.7 (+31.4) 66.5 (+28.7)

Year
Parity

Greedy 35.0 62.2
CoT-decoding 66.0 (+31.0) 73.5 (+11.3)

More interestingly, we observe that CoT-
decoding can further improve the instruction-
tuned model (Figure 4 (left) and Table 5).
The instruction-tuning procedure (Chung et al.,
2022) incorporated a large amount of CoT an-
notations during the fine-tuning process. Con-
sequently, the model is expected to inherently
generate CoT paths when addressing reasoning
tasks. However, upon analyzing specific exam-
ples, we found that even after instruction-tuning,
the model occasionally persists in attempting to
directly address a question. In contrast, CoT-
decoding can enhance the exploration of alter-
native paths by triggering a CoT first, consequently leading to more accurate answers.

Choice of k. In Figure 5, we illustrate how the choice of k, representing the number of top
alternative tokens considered, influences the overall accuracy. Overall we found that higher values of
k typically result in improved model performance, suggesting that in many cases, the correct CoT
paths may indeed exist but are often ranked lower during model’s decoding. For instruction-tuned
models, the effect of k is less significant, indicating that the process of instruction-tuning effectively
brings forth the majority of CoT-paths to the first few decoding paths.

Figure 5: The effect of k on reasoning accuracy w.r.t. PaLM-2 model scales and task difficulty.

3.2 CoT-decoding Enables a Better Understanding of Model’s Intrinsic Reasoning Abilities

Compared to existing works that improve model’s reasoning via better human-written prompts,
a key distinction of our proposed approach lies in the complete elimination of human-provided
prompts. This modification enables a more truthful assessment of a language model’s intrinsic
reasoning capabilities. In the previous section, we show that language models inherently possess
reasoning capabilities for grade-school-level math problems and simple commonsense reasoning
tasks. In this section, we will systematically vary the difficulty levels of synthetic tasks to gain a more
comprehensive understanding of language models’ inherent reasoning abilities via CoT-decoding.

We consider the following symbolic reasoning tasks: (1) the Coin Flip task from (Wei et al., 2022),
with 2, 3, 4 rounds of potential flips; and two tasks from Big-Bench-Hard (bench authors, 2023;
Suzgun et al., 2022): (2) Web of lies, with 3, 4, 5 truth/lie statements, and (3) Multi-step arithmetic
with various depth level d and length l. For each task, we produce 100 examples for each difficulty
level, except for Web-of-Lies (5) we use the existing dataset from (Suzgun et al., 2022). We also
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include two natural-language-based but synthetic tasks from Big-Bench, Sports Understanding and
Object Counting, to probe model’s intrinsic abilities in solving synthetic tasks.

Coin Flip Web of lies Multi-step Arithmetic Sports
Und.

Object
Count

2 3 4 3 4 5 d0, l3 d0, l4 d2, l3 d2, l4

Greedy 70.0 53.0 48.0 76.0 58.0 53.6 39.0 19.0 8.0 0.0 58.8 36.0
CoT-decoding 94.0 57.0 55.0 87.0 63.0 57.6 56.0 42.0 35.0 16.0 58.0 39.2

Table 6: The model’s intrinsic reasoning ability varies depending on the task difficulty levels.

The presence of correct CoT paths depends on the task difficulty levels and correlates with task
prominence in the pre-training distribution. The results in Table 6 (on PaLM-2 L) show that
despite CoT-decoding helps elicit better reasoning across almost all tasks, the gains vary significantly
depending on the task difficulty level: the simpler the task is, the better chance that a correct reasoning
path can be found. We also looked at the model’s top-k decoding paths, and found that models can
generate the correct CoT paths when the solution involves at most 1 or 2 step knowledge manipulation,
and the model starts to struggle with generating the correct CoT-paths when the steps become 3 or
more. See Figure 5 (right) where the model’s accuracy improves only for larger k’s as task complexity
increases (higher d and l’s). This phenomenon suggests that the correct CoT-paths become harder to
find when the task becomes more synthetic. This mirrors the finding in (McCoy et al., 2023), where
the authors show language models are highly influenced by the distribution they have been trained on.

CoT-decoding unveils model’s intrinsic vulnerabilities in reasoning. Our results also unveil the
specific areas where language models still struggle with: for example, on Coin-Flip and Web-of-Lies,
we observe that the model can generate CoT paths that simulate the process step-by-step, but it can
easily lose track of the states, especially when the task complexity increases. This reveals model’s
intrinsic vulnerability in performing accurate state tracking. On Multi-step Arithmetic, we observe
that the model tends to perform calculations from left to right in the CoT-decoding paths, rather than
following the correct mathematical order. These observations point to future directions where we
should improve the models on.

In addition, over these synthetic tasks, we found that existing CoT prompts on Big-Bench-Hard
(Suzgun et al., 2022) play a larger “teaching” role in guiding the model to solve such tasks, and in
most cases the model just mimics the patterns in the CoT prompts to generate the correct response:
e.g., the few-shot CoT prompts teach the model to perform explicit state tracking in each step for
Web-of-lies. On the Sports Understanding task, CoT-decoding can better reveal LLMs’ intrinsic
strategy in solving a problem (see Appendix A), without being influenced by the external prompts
which could be biased by the prompt designers. In contrast, few-shot CoT prompting constrains the
model to follow an artificial strategy curated through human knowledge and intervention.

3.3 Combining CoT-decoding with CoT-Prompting

Mistral-7B PaLM-2 L Compute

Methods without
prompting

Greedy decoding 9.9% 34.8% O(1)
Self-consistency without CoT 12.9% 40.6% O(k)
CoT-decoding (max path) 25.1% 63.2% O(k)
CoT-decoding (agg path) 25.3% 64.1% O(k)

Methods with
prompting

Zero-shot CoT prompting 17.5% 75.1% O(1)
Self-consistency with zero-shot CoT-prompt 39.4% 85.3% O(k)
CoT-decoding (max path) + zero-shot CoT-prompt 40.2% 78.6% O(k)
CoT-decoding (agg path) + zero-shot CoT-prompt 48.4% 87.0% O(k)

Table 7: Adding CoT-decoding on top of zero-shot CoT-prompting can further boost the reasoning
performance on both models. The accuracy number here is computed over the GSM8K test set.

We further show that CoT-decoding can be easily combined with CoT-prompting, yielding even
larger reasoning gains over multiple language models (Table 7). CoT-decoding maintains a strong
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performance compared to self-consistency (Wang et al., 2023a) when both are combined with CoT-
prompts. Since self-consistency aggregates over multiple paths, we also show the performance based
on our path aggregation algorithm, which significantly improves the model’s reasoning at a similar
cost. For a fair comparison, we use k = 10 for all methods that require multiple decoding paths.

4 Related Work

Chain-of-thought reasoning in large language models. Existing work enhancing the reasoning
abilities in large language models predominantly involve proposing better prompting techniques
to better elicit CoT reasoning paths from the model (Kojima et al., 2022; Nye et al., 2021; Wei
et al., 2022; Yao et al., 2023; Yasunaga et al., 2023; Zhou et al., 2023a). Despite achieving high
performance, few-shot prompting techniques are often task-specific, requiring prompt designs tailored
to each task. This limits their generalizability across tasks. Advanced prompting techniques often
require manually intensive prompt engineering, and their effectiveness varies depending on the choice
of prompts, resulting in inconsistent performance outcomes (Wang et al., 2022; Ye and Durrett, 2022;
Zhou et al., 2023b). Efforts to discover improved prompts (Yang et al., 2024; Zhou et al., 2023b)
further entail model-specific and task-specific tuning.

In addition, these prompting techniques can subtly alter the vocabulary’s posterior distribution
in ways that remain largely elusive (Min et al., 2022; Webson and Pavlick, 2022). Specifically,
prompts may assist in task decomposition, induce the model to generate additional tokens, or directly
“teach” the model the exact underlying procedure to solve particular problems via manually crafted
few-shot demonstrations. Dissecting the distinct influence of each aspect, however, presents a
significant challenge. In contrast, our work explores a different perspective within the decoding stage,
demonstrating that, even without explicit prompting, the model inherently holds the capability to
generate chain-of-thought reasoning paths across a wide set of tasks.

Recent work proposes to improve the CoT generation process via better controlling and verifying the
steps generated, e.g., step-by-step verification (Lightman et al., 2023), process-based feedback (Uesato
et al., 2022), self-evaluation guided beam search (Xie et al., 2023), and PathFinder (Golovneva et al.,
2023). Note all these works still require CoT prompting in order to generate the CoT reasoning paths,
while our work completely removes CoT prompting. In addition, these works focus on searching
and verifying the “steps” produced by the language model, while our work purely searches in the
decoding space on the token-level and utilizes the confidence scores when decoding the answer.

Additionally, recent works (Feng et al., 2023; Li et al., 2023b; Prystawski et al., 2023). McCoy et al.
(2023); Razeghi et al. (2022) demonstrate a similar phenomenon where the pretraining distribution
heavily influences the model’s performance in few-shot reasoning.

Instruction-tuning to elicit CoTs in language models. When supervision is allowed, techniques
such as instruction-tuning or distillation offer another way to elicit reasoning paths from language
models without explicit prompting (Chung et al., 2022; Huang et al., 2023; Magister et al., 2023).
However, these approaches typically involve resource-intensive fine-tuning over large language
models and require a large set of examples annotated with CoTs, which may not be readily available.

Liu et al. (2024) show that a language model can be tuned by a proxy. Their method requires a few
additional models, and implicitly assumes that the tuned model is well-optimized, e.g., on reasoning
benchmarks the model needs to be tuned with CoT paths to enable contrasting logits with respect to
the base untuned model. In contrast, our approach is entirely unsupervised and examines a model’s
intrinsic ability in generating CoT paths, without resorting to fine-tuning or any additional models.

Decoding algorithms for language models. The predominant focus in existing literature on de-
coding for language models revolves around aspects such as fluency, coherence, reduction of repeti-
tiveness, and diversity in responses. Popular decoding algorithms used for language models include
greedy decoding, temperature sampling (Ackley et al., 1985; Ficler and Goldberg, 2017), top-k
sampling (Fan et al., 2018; Holtzman et al., 2018; Radford et al., 2019), and nucleus sampling
(Holtzman et al., 2020). Additionally, there exist refined algorithms such as minimum Bayes risk
decoding (Eikema and Aziz, 2020), and typical decoding (Meister et al., 2022). Diverse beam
search (Vijayakumar et al., 2018) is another way to explore alternative paths in a model’s generation.
However, it emphasizes generation diversity rather than accuracy.
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There is relatively little research dedicated to enhancing decoding algorithms specifically for reasoning
tasks. Wang et al. (2023a) improves upon CoT prompting by sampling and aggregating over multiple
generated responses to improve reasoning. Contrastive decoding (Li et al., 2023a) is another way to
improve model’s generation quality by penalizing the logits from smaller models, and recent work
(O’Brien and Lewis, 2023) shows that contrastive decoding can contribute to enhancing reasoning
performance. Shi et al. (2023) propose context-aware decoding to improves the faithfulness of
language models. These approaches typically require additional information, such as employing
additional models to generate contrasting logits or incorporating additional contexts. In contrast, our
work relies solely on a single model without the need for supplementary knowledge.

Decoding algorithms for efficiency. In addition to decoding algorithms for improving quality,
there is a substantial body of research dedicated to improving decoding efficiency, e.g., speculative
decoding (Chen et al., 2023a; Leviathan et al., 2022; Zhou et al., 2024). This line of work is orthogonal
to our work as their primary focus is not on improving a model’s reasoning performance. However,
these techniques could potentially be leveraged to improve the efficiency of CoT-decoding.

5 Conclusion and Discussion

We investigate the inherent capabilities of language models in generating CoT reasoning paths during
decoding, abstaining from any specialized prompting. Our findings indicate that, contrary to the
prevalent practice of exclusively employing greedy decoding, exploring alternative top-k tokens in
the decoding space reveals the natural existence of reasoning paths within these models. Furthermore,
our empirical observations highlight that the presence of a CoT reasoning path correlates with
increased model confidence in decoding its final answer. Based on this observation, we introduce
CoT-decoding to extract more reliable decoding paths from language models, thereby enhancing their
overall reasoning performance.

Discussion and Limitations. The exploration of alternative decoding paths incurs additional com-
putational costs. Future work could leverage the CoT-decoding paths to fine-tune the model to further
enhance its reasoning capabilities. Additionally, in cases where the answers are more open-ended,
utilizing the probability differences of the top two tokens as an indicator of how models prefer one
answer over another could be less precise. While existing work (Burns et al., 2023) leverages the
model’s activation space to uncover latent knowledge, its applicability is restricted to answering
yes-no questions. We hope that future research can address this limitation by delving deeper into the
model’s internal representation across a broader, more open-ended answer space.

Our current exploration focuses on branching at the first token, but for future work one can explore
branching at any token and searching for the best possible paths during the decoding phase. The
computational cost will be substantially higher though, and how to reliably identify the best token
during the search will be an interesting direction to explore. In addition, we leverage the model’s
intrinsic probability of ranking the top-k tokens during the initial decoding step. For more complex
or nuanced tasks, however, if the model is inadequately trained, it is possible that none of the top-k
tokens will yield relevant paths. This limitation can, in turn, help identify specific areas of model
weakness, indicating the need for additional data coverage during training or for explicit guidance via
expert knowledge during inference to successfully address these tasks.
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A Qualitative analysis on CoT paths elicited by CoT-decoding and existing
approaches

In Table 8, we present qualitative examples illustrating the distinctions in the generated CoTs for
each method. Overall we observe that CoT-decoding exhibits a more "free-form" CoT generation in
comparison to alternative CoT prompting methods. This divergence may be attributed to two factors:
(1) we encourage the diversity at the initial decoding step, and (2) the absence of explicit constraints
imposed by prompting.

Another noteworthy observation is that CoT-decoding can better reveal what LLMs’ intrinsic strategy
in solving a problem, without being influenced by the external prompts which could be biased
by the prompt designers. Take the last example in Table 8, we see that the few-shot CoT path
is heavily influenced by the few-shot prompts. Specifically, the few-shot prompts, sourced from
(Suzgun et al., 2022), consistently follow a standard analytical approach – first assessing the person’s
profession, followed by an evaluation of whether the profession aligns with the action. This aligns
with the standard method of solving this particular task.4 In contrast, CoT-decoding reveals paths that
deviate from the conventional problem-solving approach. Despite yielding an incorrect final answer
according to the ground truth in some cases, the CoT paths remain to be valid.

[GSM8K] Claire makes a 3 egg omelet every morning for breakfast. How many dozens of eggs will she eat
in 4 weeks?
Greedy: 3
CoT-decoding: A dozen is 12. 3 eggs per day for 4 weeks is 84 eggs. 84/12 = 7. 7 dozen eggs.
Few-shot CoT: There are 7 days in a week. 4 weeks is 4 * 7 = 28 days. She eats 3 eggs each day, so in 28
days she eats 28 * 3 = 84 eggs. 1 dozen is 12 eggs. 84 eggs is 84 / 12 = 7 dozen eggs. The answer is 7.
Zero-shot CoT: First, how many eggs does she eat in a week? 7 days in a week, 3 eggs per day, so 7 x 3 =
21 eggs per week. Now, how many eggs does she eat in 4 weeks? 4 x 21 = 84 eggs. Now, how many dozens
of eggs is that? 84 / 12 = 7 dozens.

[Year Parity] Was Nicolas Cage born in an even or odd year?
Greedy: Nicolas Cage was born in an odd year.
CoT-decoding: Cage was born in 1964, an even year.
Zero-shot CoT: 1. Nicolas Cage was born in 1964.
2. 1964 is an even number.
3. Therefore, Nicolas Cage was born in an even year.

[Sports Understanding] Is the following sentence plausible? “Walker Buehler earned a trip to the penalty
box."
Greedy: No.
CoT-decoding (the top few paths):
- Sure, if he’s playing hockey.
- In the context of a baseball game, no.
- I’m not sure what you mean by "plausible". It’s a perfectly grammatical sentence, and it’s a perfectly
reasonable thing to say.
Few-shot CoT: Walker Buehler is a baseball player. Penalty box is part of ice hockey. So the answer is no.

Table 8: Example of generated CoTs using different approaches.

B Examples of CoT-decoding Paths on Additional Tasks

Table 9 provides an example where the Mistral-7B model attempts to directly solve the question with
greedy decoding. However, when considering alternative tokens for the first decoding step, CoT
reasoning again emerges from the model’s decoding paths. We show additional examples comparing
greedy decoding with CoT-decoding on various reasoning tasks in Table 10.

In Table 11, we further show an example where CoT-decoding improves over the Mistral-7B
instruction-tuned model. We found in some cases, even after instruction-tuning, the model still
tends to address the question by directly providing an answer, while CoT-decoding can enable more
consistent behaviours by first eliciting the CoT path before generating an answer. For this example,
another interesting observation is that, the model generates a CoT after an initial answer “16” is

4https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/sports_understanding
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I have 3 apples, my dad has 2 more apples than me, how many apples do we have in total?
Top-k paths:
k = 0: 5 (0.227)
k = 1: I have 3 apples, my dad has 2 more apples than me, how many apples do we have in total? (0.722)
k = 2: We have 5 apples. (0.317)
k = 3: My dad has 5 apples and I have 3 apples, so we have 8 apples in total. (0.956)
. . .
k = 8: You have 3 apples, your dad has 2 more apples than you, so he has 3+2=5 apples. Together you have
3+5=8 apples. (0.931)

Table 9: Example of the top-k paths from the Mistral-7B pretrained-model showing a similar
behaviour where CoT paths again exist but are ranked lower during decoding.

generated. In this case, the model’s generated CoTs will be affected by the already-generated answer,
thus possibly leading to an incorrect CoT path afterwards.

In Table 12, we show the top-k paths for two tasks (math and year parity) on the Mistral-7B model,
along with their ∆ values in each decoding path. Again we see that high ∆ values correlate well with
the CoT paths and more correct final answers.

C Choice of k on Additional Models and Tasks

In Figure 6, we further show how the choice of k affects the performance over the Mistral-7B model.
We include both the pre-trained model as well as the instruction-tuned model. Overall we found the
improvement is highly consistent for the pre-trained model with a higher value of k. However, for the
instruction-tuned model, since the model is already fine-tuned with CoT data to generate CoTs for
the first few decoding paths, exploring more tokens towards a larger k does not necessarily result in
further gains.

Figure 6: Accuracy with respect to the choice of k over the Mistral-7B model.

In Table 13, we illustrate with a concrete example of how the path aggregation algorithm works and
why it could identify the correct answer more reliably. For the correct answer 18, we see it appears
4 times, each with ∆ = 0.994 (k = 0), ∆ = 0.911 (k = 6), ∆ = 0.584 (k = 8), and ∆ = 0.999
(k = 9), so overall its

∑
k ∆k,a = 3.5; while all other incorrect answer options 14, 16, 20, 10 have a

much lower sum of ∆.

D Details on Experimental Settings

Experiment settings for the PaLM-2 Model family. For all the experiments on CoT-decoding,
we use an input sequence length of 256 and a maximum decoding step of 128, given that the input
sequence is a direct formatting of the original question. For few-shot CoT prompting, the input
sequence length needs to be extended to 1024 given a set of few-shot exemplars is used (Wei et al.,
2022). For both few-shot CoT and zero-shot CoT prompting, the output decoding step is set to 256
because we observe longer output sequences under both techniques.
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[Sports Understanding]

Is the following sentence plausible? “Kawhi Leonard took a turnaround jumper."
Greedy: No.
CoT-decoding: Kawhi Leonard is a basketball player. → yes

Is the following sentence plausible? “Neymar took a backhand shot in the Stanley Cup."
Greedy: No.
CoT-decoding: Neymar is a soccer player, and the Stanley Cup is a hockey tournament. → no

Is the following sentence plausible? “Carson Wentz took to the ice."
Greedy: No.
CoT-decoding: Carson Wentz is a quarterback for the Philadelphia Eagles. He is not a hockey player. → no

[Coin Flip]

A coin is heads up. Raymond flips the coin. Conception flips the coin. Is the coin still heads up?
Greedy: No.
CoT-decoding: Raymond flips the coin. The coin is now tails up. Conception flips the coin. The coin is now
heads up. (correct state tracking)

A coin is heads up. Millie does not flip the coin. Teressa does not flip the coin. Conception flips the coin. Is
the coin still heads up?
Greedy: No.
CoT-decoding: Millie does not flip the coin. Teressa does not flip the coin. Conception flips the coin. The
coin is still heads up. (failed state tracking)

A coin is heads up. Inga flips the coin. Jamey does not flip the coin. Shalonda does not flip the coin. Shaunda
flips the coin. Is the coin still heads up?
Greedy: No. The coin is tails up.
CoT-decoding: Since the coin was flipped an odd number of times, it is not heads up. (flawed alternative
reasoning)

[Multi-step Arithmetic]

(3 + -3 + -9 * 1) =
Greedy: 0.
CoT-decoding: (((3 + -3) + -9) * 1) = ((0 + -9) * 1) = (-9 * 1) = -9. (correct)

(6 + 8 * 3 + 5) =
Greedy: 100
CoT-decoding: ((6 + 8) * 3) + 5 = 14 * 3 + 5 = 42 + 5 = 47 (incorrect, the model does calculation from left
to right rather than following the order of operations in math.)

((0 - 9 * -7 + 3) - (-2 + -1 * -9 * 3)) =
Greedy: -1
CoT-decoding: ((0 - 9 * -7 + 3) - (-2 + 9 * 3)) = ((0 - 9 * -7 + 3) - (-2 + 27)) = ((0 - 9 * -7 + 3) - 25) = (0 - 9
* -7 + 3 - 25) = (0 - -63 + 3 - 25) = (63 + 3 - 25) = 41 (correct)

Table 10: Example of generated CoTs by CoT-decoding without explicit prompting.

For input format, by default we use “Q: [question]\nA:” for all the tasks. For multi-step arithmetic
we use the original input without the QA format, as it is unnatural to insert Q/A given the original
question (e.g., “3+5-6=”).

Model ids used for all open-sourced models. We use the huggingface library for both Mistral and
Gemma models, the corresponding model ids used in our experiments are:

• Mistral-7B pre-trained/inst-tuned: mistralai/Mistral-7B-v0.1, mistralai/Mistral-7B-Instruct-v0.1

• Gemma-7B pre-trained: google/gemma-7b

Identifying the answer spans. To identify the answer spans, we extract the last numerical numbers
or the available options (e.g., “even” or “odd” for the year parity task) over the Mistral and Gemma
models, as this is the common protocol used in evaluating public language models (Ivison et al., 2023;
Wang et al., 2023b). For PaLM-2 model families, we extend the model’s output with the prompt "So
the answer is" and align the continuations in the original decoding path as the answer.

18



[GSM8K] John invited 20 people to a birthday party. Each guest will eat 2 hot dogs. He already has 4 hot
dogs left over from a previous party. If a pack of hot dogs contains 6 hot dogs and costs $2, how much does
he need to spend on hot dogs?

Greedy (k = 0,∆ = 0.56):
John needs to spend $16 on hot dogs.
Here’s the reasoning:
1. First, we need to determine how many hot dogs John has in total. He has 4 left over from a previous party
and 20 guests at his current party. So, he has 4 + 20 = 24 hot dogs.
2. Next, we need to figure out how many packs of hot dogs he needs to buy. Each pack contains 6 hot dogs,
so he’ll need 24 / 6 = 4 packs.
3. Finally, we need to calculate the cost of buying these packs. Each pack costs $2, so 4 packs will cost 4 *
$2 = $8.
Therefore, John needs to spend $16 on hot dogs for his party.

CoT-Decoding (k = 1,∆ = 1.0):
Let’s break down the problem:
1. John has 4 hot dogs left over.
2. He needs to provide 2 hot dogs for each of the 20 guests.
3. That means he needs to provide a total of 20 x 2 = 〈〈20*2=40〉〉40 hot dogs.
4. Since he already has 4 hot dogs, he needs to buy 40 - 4 = 〈〈40-4=36〉〉36 hot dogs.
5. A pack of hot dogs contains 6 hot dogs, so he needs to buy 36 / 6 = 〈〈36/6=6〉〉6 packs of hot dogs.
6. Each pack of hot dogs costs $2, so he needs to spend 6 x $2 = $〈〈6*2=12〉〉12 on hot dogs.
Final answer: John needs to spend $12 on hot dogs.

Table 11: Example responses to a GSM8K question from the Mistral-7B instruction-tuned model
using greedy decoding vs CoT-decoding.

I have 3 apples, my dad has 2 more apples than me, how many apples do we have in total?
Top-k paths:
k = 0: 5 (0.227)
k = 1: I have 3 apples, my dad has 2 more apples than me, how many apples do we have in total? (0.722)
k = 2: We have 5 apples. (0.317)
k = 3: My dad has 5 apples and I have 3 apples, so we have 8 apples in total. (0.956)
k = 4: A: 5 (0.211)
k = 5: The answer is 5. (0.313)
k = 6: Five
k = 7: Three apples.
k = 8: You have 3 apples, your dad has 2 more apples than you, so he has 3+2=5 apples. Together you have
3+5=8 apples. (0.931)
k = 9: $3+2=5$ (0.902)

Was Daniel Portman born in an even or odd year?
Top-k paths:
k = 0: 1992
k = 1: Even (0.146)
k = 2: He was born in an even year. (0.431)
k = 3: Odd. (0.146)
k = 4: Daniel Portman was born in an even year. (0.434)
k = 5: His birthday is on the 25th of March, 1992. That means he was born in an even year. (0.968)
k = 6: An even year. (0.281)
k = 7: The year Daniel Portman was born was an even year. (0.498)
k = 8: I don’t know.
k = 9: In an even year. (0.426)

Table 12: Example of the top-k paths from the Mistral-7B pretrained-model (Mistral-7B-v0.1)
showing a similar behaviour where CoT paths again exist but are ranked lower during decoding.

Additional processing when the continuation after “So the answer is” is not found in the orig-
inal decoding path. For math reasoning tasks we simply ignore that decoding path; for other
reasoning tasks, we compute ∆ over the continuation (again averaged over all tokens) to handle
more open-ended generation cases. This can happen in zero-shot QA because without any formatting
constraint, the model can output a reasoning path without giving an explicit final answer. For symbolic
reasoning tasks where the answer is a choice between “yes” or “no” (e.g., Coin Flip, Web of Lies),
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Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her
friends every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh duck egg.
How much in dollars does she make every day at the farmers’ market?

Top-k paths:
k = 0: 16 - 3 - 4 = 9 eggs per day. 9 eggs per day x $2 per egg = $18 per day. (0.994)
k = 1: $14 (0.095)
k = 2: Janet makes $14 per day at the farmers’ market. (0.064)
k = 3: The answer is 16. (0.162)
k = 4: She makes $14 per day. (0.083)
k = 5: (16 - 3 - 4) x 2 = $20 (0.561)
k = 6: If Janet eats three eggs and bakes with four, she has nine eggs left to sell. If she sells them for $2
each, she makes $18 per day. (0.911)
k = 7: 16−3−4

1
× 2 = 10 (0.424)

k = 8: This is a simple subtraction problem. 16 – 3 – 4 = 9. Janet makes $18 per day at the farmers’ market.
(0.584)
k = 9: To solve this problem, you need to know how many eggs Janet has left to sell. She starts with 16
eggs, eats 3, and uses 4 for baking. That means she has 16 – 3 – 4 = 9 eggs left to sell. She sells each egg for
$2, so she makes 9 x $2 = $18. (0.999)

Table 13: Example of the path aggregation algorithm on a GSM8K question.

we compute the difference between the probabilities masses over “yes/true” and “no/false” (cases
ignored). We found when the answer choices are fixed, processing the continuation in this way is
slightly more accurate than computing ∆ over the continuation directly, since sometimes the model
might output invalid options like “We don’t know” with high confidence. Despite the fact that it
shows the model is uncertain about the question, this is not a valid answer option which causes
difficulty in evaluation.

Remove ill-formed responses. Under zero-shot QA format and without explicit prompting, some-
times the model can output ill-formed responses such as empty or repeated responses. Those responses
are easy to be filtered though, and we adopt simple heuristics like if the output response length is
zero (meaning empty response) or the same as the maximum decoded step (meaning the response
is usually unfinished and repeats itself). We also filter responses that end in a question mark as we
found in some rare cases the model tends to repeat the input question. For Mistral models we found
in some cases the model outputs texts similar to the training data in alternative decoded paths (similar
to the findings in Nasr et al. (2023)), and we filter those as well since they do not directly address the
input question.

Experiment settings for the Mistral model. For the Mistral pre-trained model, we format the
question similarly as “Q: question\nA:”. For the Mistral instruction-finetuned model, we follow
Mistral’s instruction-finetuning format by surrounding each question by [INST] and [/INST] tokens,
i.e., “[INST] question [/INST]”.5 As hyperparameters, on math tasks we generate 200 new tokens for
the pre-trained model and 400 new tokens for the instruction-tuned model, to make sure the responses
do not get truncated in the middle. The instruction-tuned model requires a higher number of new
tokens as we observe the Mistral model’s responses get much longer after instruction-tuning. For the
year parity task, we generate 50 new tokens for the pre-trained model and 100 new tokens for the
instruction-tuned model.

Additionally, for the year parity task, we found that due to their small model size, the Mistral-7B
models cannot reliably extract the correct birth year of a celebrity in some cases. Consequently, we
adjust the evaluation protocol: we first query the Mistral-7B model about the birth year for each
celebrity, and use that as the ground truth to evaluate the original parity question. Names for which
the Mistral-7B model cannot retrieve year information are disregarded, constituting a small portion
(less than 2% on the instruction-tuned model).

Compute Resources. For Mistral and Gemma models, we use A100 GPU with 40 GB RAM to
run the decoding experiments. On average each task takes about 10-20 hours to run depending on the
number of examples. On PaLM-2 models, we use TPU v4 and depending on the task and model sizes,
each job could take a few hours (for smaller model scales) to a few days (for the largest model size).

5https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
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//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details in the experiment section as well as in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our results are deterministic (top-k tokens used at the first decoding step,
and then continue with greedy decoding), so there is no variance involved. We perform
experiments over multiple public language models and the results can be easily reproduced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details on the computer resources used in the appendix.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We adhere to the NeurIPS Code of Ethics throughout the entire paper.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss in the last section on both the positive societal impacts (we can
better inspect models’ intrinsic reasoning capability) as well as negative societal impacts
(the method incurs higher computational costs).
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our proposed method investigates the intrinsic reasoning capability in language
models. It does not involve a high risk of misuse.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide links and citations to each of the dataset used in this paper.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets is introduced in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No Study with Human Subjects in this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No Study with Human Subjects in this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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