
Human Language to Analog Layout Using GLayout Layout
Automation Framework

Ali Hammoud
University of Michigan

Chetanya Goyal
IIIT Hyderabad

Sakib Pathen
University of Michigan

Arlene Dai
University of Michigan

Anhang Li
University of Michigan

Gregory Kielian
Google AI

Mehdi Saligane
University of Michigan

ABSTRACT
Current approaches to Analog Layout Automation apply ML tech-
niques such as Graph Convolutional Neural Networks (GCN) to
translate netlist to layout. While these ML approaches have proven
to be effective, they lack the powerful reasoning capabilities, an
intuitive human interface, and standard evaluation benchmarks
that have been improving at a rapid development pace in Large
Language Models (LLMs). The GLayout framework introduced in
this work translates analog layout into an expressive, technology
generic, compact text representation. Then, an LLM is taught to
understand analog layout through fine-tuning and in-context learn-
ing using Retrieval Augmented Generation (RAG). The LLM is able
to successfully layout unseen circuits based on new information
provided in-context. We train 3.8, 7, and 22 Billion parameter quan-
tized LLMs on a dataset of less than 50 unique circuits, and text
documents providing layout knowledge. The 22B parameter model
is tuned in 2 hours on a single NVIDIA A100 GPU. The open-source
evaluation set is proposed as an automation benchmark for LLM
layout automation tasks, and ranges from 2-transistor circuits to a
ΔΣ ADC. The 22B model completes 70% of the tasks in the evalua-
tion set, and passes DRC and LVS verification on 44% of evaluations
with verified correct blocks up to 4 transistors in size.

KEYWORDS
Analog Layout Automation, Open Source, GLayout, Retrieval Aug-
mented Generation (RAG), Parameter Efficient Fine Tuning, Large
Language Model, Quantized Low Rank Adaptation (QLORA)

ACM Reference Format:
Ali Hammoud, Chetanya Goyal, Sakib Pathen, Arlene Dai, Anhang Li, Gre-
gory Kielian, and Mehdi Saligane. 2024. Human Language to Analog Layout
Using GLayout Layout Automation Framework. In 2024 ACM/IEEE Interna-
tional Symposium on Machine Learning for CAD (MLCAD ’24), September
9–11, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3670474.3685971

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0699-8/24/09. . . $15.00
https://doi.org/10.1145/3670474.3685971

1 INTRODUCTION
The increasing need for Analog and Mixed Signal (AMS) design
automation has been studied in recent works [3]. Previous Analog
generation tools have used approaches which are optimized for a
single type of circuit [9, 20]. Using these tools it is possible to auto-
mate the construction of large blocks, but these design generators
are specially built for a particular circuit, and must be rebuilt for
new circuits. These circuit specific approaches, while providing
great performance, are not realistic for building a general Analog
design generator. Machine Learning has emerged as an effective
approach to the general layout automation problem. Tools such as
[12, 21] use Machine Learning techniques such as Graph Convolu-
tional Neural Networks (GCN) to generate layout constraints and
translate netlist to layout with good results on unseen schematics.

While these approaches have delivered good results [16], they
lack the reasoning capabilities and unified comparison metrics
inherent in modern Large Language Models (LLM). The LLM ap-
proach can be directly scaled (increasing model and dataset size
improves performance 3) and would enable faster development in
Analog automation, it also allows for performance to be measured
on standard evaluation sets across LLM implementations. For ex-
ample, LLMs are benchmarked on datasets such as MBPP [4] which
evaluates code generation, or PIQA which evaluates reasoning [6].
These evaluation scores provide single number, quantified compar-
isons between LLMs. If LLM analog automation tools were created,
they could adopt a standard evaluation set as common comparisons,
which would help unify development efforts.

Additionally, an LLM eliminates the use of constraint files com-
mon with ML layout automation tools [16, 21], in favor of abstract
human language requests: leveraging the LLMs reasoning ability
to fulfil the request, or allowing the LLM to decide automatically
if limited information is provided. For example, the LLM can be

Table 1: Summary of LLM design approaches. Glayout uses
open-source 3, 7, and 22 Billion parameter LLMs. Previous
analog LLMs are not layout capable.

Approach Design Type Layout Open Source Model Size
[7] Digital yes no 1700 B
[13] Analog no no 1700 B
[14] Analog no no 1700 B
[18] Digital yes yes 16 B

Glayout Analog yes yes 3, 7, 22 B

https://doi.org/10.1145/3670474.3685971
https://doi.org/10.1145/3670474.3685971

MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Hammoud et al.

prompted to layout an existing circuit using new styles or layout
a new circuit in a known style without being previously trained
on this task. For the task in question, existing approaches have no
automation mechanisms and would require a manual constraints
file rewrite. Furthermore, virtually any proposed task can be auto-
mated out-of-the-box with an LLM approach, because of the "AI"
assistant interface.

In LLMs, the human language interface also provides ease of use
advantages for the human designer. An assistant is more intuitive
to work with than a traditional tool which may require previous
training. As summarized in table 1, the LLM approach has been ap-
plied to digital layout with tools utilizing LLMs to generate Verilog
code from a high level digital design request [15]. Verilog genera-
tors have been successful at producing valid Verilog with models
as small as 16 Billion parameters finetuned in 15 GPU Hours [18].
There have also been tools enabling LLM based Analog schematic
design such as [13, 14], but as far as we are aware, there are no
existing LLM based systems for Analog Layout.

This work proposes GLayout, an Analog Layout Python API
using a LLM to translate general human language user prompts
into analog layout. GLayout is entirely open-source and available
for public installation via PyPI. GLayout and the corresponding
evaluation set can serve as a starting point for future development
into Analog Layout capable LLMs.

2 APPROACH
It is not wise to describe raw layouts to an LLM, as this would
require many billions of tokens in training data and a massive
amount of compute resources to learn useful patterns. Instead, a
more optimized approach can be created by considering why digital
design is so readily amenable to large language model automation.
Digital design can be captured in a highly compressed text based
format as a Verilog file. In this case, the raw layout is mostly noisy
data and would result in the LLM learning many non-meaningful

strict syntax .convo

Relational
Database

create parameter

absolute move

place cell

create variable

import cell

StrongArmLatch
import CrossCoupledInverters
place a diff pair called inputdiff

…
move clk gnd below inputdiff
move bridge above inputdiff

…
Route between
ckgnd_multiplier_0_gate_W and
clkpwrL_multiplier_0_W
Route between
ckgnd_multiplier_0_gate_E and
clkpwrR_multiplier_0_E

Create a strong-arm latch using interdigitated placement to
match the cross coupled inverters.

Conversational Prompt

RAG
Context
Retrieval

Fine-Tuned
Language

Model

Curated
Datasheets

PDK

Glayout API

GDSFactory
API

Layout

cross
coupled
inverters

clocked
differential

pair

pmos
switches

PDK-Agnostic PDK-Specific

Generates
Python

Code from
strict

syntax,
which can

finally
output

GDSII file

Figure 1: Full process of translating user prompt to a final
layout.

Python Code

Define Dimensions
via_size = pdk.get_grule('via1')['width']
enclosure = pdk.get_grule('via1','met1')['enclosure']
M1_size = via_size + 2*enclosure

Dereference Layers
via1_layer = pdk.get_glayer('via1')
metal1_layer = pdk.get_glayer('met1')

Create Polygons
via = Component()
via.add(rectangle(via_size, via_layer))
via.add(rectangle(M1_size, metal1_layer))

Runtime

Dimensions
via_size = 0.17
enclosure = 0.06
M1_size = 0.29

Layers
via_layer = (67,44)
metal1_layer = (67,20)

Layout

PDK

Layer Mapping

Rule Graph

Figure 2: Instantiating a simple VIA written in Python. The
process design kit is a parameter.

patterns. Verilog distills a digital design to the description of design
intent, which is RTL logic, and omits layout geometry information.

Analog layout can also be compressed to omit noisy data, but it
requires a new description format to capture analog layout design.
This description should capture the layout topology while omitting
layout details. The key to implementing very fast and efficient LLM
learning on analog layouts is to distill the layout information down
to a simple description. For this, we designed a new command
language description format for analog layout topology which we
call "strict syntax".

LLMs are already powerful reasoning engines [19] and can be
guided to understand analog design (as previously demonstrated)
[14]; in-context data can be used to provide layout knowledge and
the fine-tuning step teaches the model to express layout using the
proposed description format. Furthermore, reasoning performance
scales with model size [8] which makes the translation performance
directly scalable with larger model size (see 3 for results).

As illustrated in Fig. 1, the steps of our proposed approach from
user prompt to final layout are as follows:

(1) The user prompt is passed to the LLM which outputs a strict
syntax command file.

(2) The strict syntax file is compiled to a Python function.
(3) The Python function is called, with the PDK (process design

kit) and other parameters passed at run time, to output the
final layout.

2.1 Python API
The fundamental GLayout engine is Python based and calls the
GDSFactory tool [2] for layout manipulation. Circuit blocks written
with the API are Python functions which accept several parameters,
like normal Parameterized Cells (Pcells), but also accept the PDK as
a parameter. A simple example is that of the primitive Pcells. The
GLayout transistor primitives accept parameters for width, length,
multipliers, (among 15 other parameters), and additionally accept
the PDK as one of the parameters.

The PDK is passed in a python class called "MappedPDK", which
acts as an interface between specific technologies and the generic
GLayout API. MappedPDK maps process specific rules and layers
to process-agnostic labels, which enables complete reusability of
GLayout Python generator code across different technologies. The
MappedPDK stores rules and layers as illustrated in Fig. 2

Human Language to Analog Layout Using GLayout Layout Automation Framework MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

Parallel Device #N

Drain Gate Source

W E NS W E S N

Top Level Component

Guard Ring
Dummy 0

Dummy 1 Body Tie

W E NS

Figure 3: Referencing the drain of an n-type transistor. Ports
can be easily referenced thanks to an organized naming stan-
dard.

• Layers: Different processes use similar layers from the de-
signers perspective (such as "active/diffusion", "metal", "via",
etc.) but with different identifiers, represented as integer
pairs in the final layout file. For example, 130nm layouts may
store the tuples (67, 44) for the via1 layer, (68, 20) for metal1,
and (65, 20) to denote active region, while 180nm may store
completely different layer identifiers. Manual layout requires
an engineer (or design tool) creating designs to know the
specific layer identifiers, or to use graphical layout editors
to select layers. MappedPDK abstracts PDK specific design
layers by mapping layers with different names but similar
functions to common identifiers. For example, the identifier
"active" is used in the GLayout API to identify the active re-
gion, regardless of the underlying PDK. The layer identifier
lookup is performed by calling the PDK.get_glayer method.

• Rules: Design rules decks used in DRC (Design Rule Check-
ing) consist of rules such as "min_separation", "min_enclosure"
and "min_width" which exist between layers. Regardless of
technology, combinations of these rules exist between lay-
ers. MappedPDK provides a standard way of searching for
rules between layers, regardless of the underlying PDK. The
rule value lookup is performed by calling the PDK.get_grule
method.

In addition toMappedPDK, GLayout provides a library of parameterized-
cells (pcells). This includes basic cells such as transistors, capaci-
tors, and resistors, and more complex cells created in a hierarchical
manner such as OpAmps, TIAs, and other blocks. Pcells can be
imported in Python and instantiated in larger designs. The API
also supports matched placement methods, which is necessary in
Analog layout. These additional methods allow for a streamlined
process of combining small pcells into larger hierarchies ranging
in size from differential pairs to 4-stage operational amplifiers, all
fully parameterized.

These blocks are routed using several routing macros provided.
The routing macros use metadata saved within the blocks called
Ports. Ports represent the input or output pins on blocks. In the
geometry of the layout, Ports correspond to edges of polygons
and are accessed through an organized naming syntax. The names
correspond to the function of the Port. For example, transistors
may have three main nodes: drain, gate, and source. Each Port
corresponds to an edge in layout, so Port names end with a direction
indicator, North (N), East (E), South (S), or West (W). For example,

if we want to refer to the west edge of the source node, we would
use the port name “source_W”. as shown in Fig. 3.

2.2 Strict Syntax Command Language

Figure 4: Example strict syntax for a source follower.

A strict syntax file summarizes a layout topology into several
text based commands. Because it can be compiled to python code,
it retains all the advantages of the GLayout Python API including:
PDK generic code, highly parameterizable layouts, and hierarchical
blocks for easy importing. Cells can be imported either in Python
format or strict syntax command format.

Each line in a strict syntax file corresponds to a set of layout
operations with several possible preconfigured Python code tem-
plates. A simple example of a strict syntax file is provided in Fig.
4.

• Create Parameter: Parameterizing Components enhances
modularity and customization, and allows for tuning layout
sizing.

• Place: Instantiate blocks with some provided arguments, or
fill in default values when left blank.

• Move: Reposition blocks relative to existing blocks or the
origin. For example, "move m1 below m2" keeps m2 at its
current position while moving m1.

• Route: Routing is accomplished between Ports. For instance,
"route between m1_source_E and m2_source_E" will short
the sources of devices m1 and m2 using the east edges as
Ports.

The strict syntax is compiled to GLayout based python code
(described in 2.1) using the steps as described in Fig. 5.

First a text parser is applied to the command input to identify
important names, parameters, and layout blocks. The parser is im-
plemented with a combination of regular expressions and Context

Place 2 interdigitized nfets
called cmirror

Design Intent Python Code

Route from
cmirror_A_source to

cmirror_B_source

Place(GlayoutAction)

Route(GlayoutAction)

Code Database

Component nfet_interdigitized
Instance Name cmirror
Parameters None (default)

Port 1 A_source
Port 2 B_source
Component cmirror

from glayout.flow.pdk.mappedpdk import MappedPDK
…
from glayout.flow.placement import two_nfet_interdigitized
from glayout.flow.routing.smart_route import route

def CurrentMirror_cell(pdk: MappedPDK):
 CurrentMirror = Component(name="CurrentMirror")
 # placing cmirror centered at the origin
 cmirror = two_nfet_interdigitized(pdk)
 CurrentMirror.add(cmirror)
 …
 # Route Sources
 CurrentMirror <<
route("cmirror_A_source_E","cmirror_B_source_E"
 …
 return CurrentMirror

Figure 5: The command language captures design intent and
uses a text parser with a database to compile Python code

MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Hammoud et al.

Figure 6: Cross Coupled Inverters (example is part of the
training dataset).

Free Grammar (CFG) based syntaxing. CFG allow for defining a
series of allowable syntaxes (called production rules). CFG style
parsing was chosen for robustness in handling a variety of natural
language input, and are explored with detail in [5]. This highly
flexible parsing strategy allows for greater variance in valid inputs,
which make strict syntax easier to learn and contributes to the high
compilation rate from LLM output.

Next, the extracted information from the text parser, such as
ports or parameters, are stored in a relational database which or-
ganizes information based on the command type. The syntaxer
iterates through the entire command file and appends each com-
mand to the database. This step provides additional error checking,
ensuring that the compiled python code will create a layout. For
example, cell imports and parameters are checked to ensure the
provided cells and parameters exist.

Lastly, the saved information in the database guides compilation
to several preconfigured Python operations. Each command in the
database is saved as a class which supports a "command.get_code"
method. The get_code method chooses an appropriate Python tem-
plate based on the command parameters. A wrapper Code Database

Figure 7: Larger model size directly results in better perfor-
mance

class orders and combines the commands to produce a valid block
generator function, including an argument for the user to provide
a PDK. This block generator and all necessary imports is compiled
to a Python file (which can be later imported in a larger block). The
strict syntax can be compiled to any technology, provided the PDK.

2.3 Large Language Model
Using the strict syntax as an expressive text layout description,
the LLM is trained to translate between a general user prompt
and the strict syntax layout. The most important contributions of
the LLM to this framework is the reasoning capabilities, which
allows for intelligent choices in layout and highly dynamic learning
capabilities. In essence, the LLM is the "mind" of GLayout, while
the strict syntax is the language of choice the LLM uses to express
layout design intent. There are two tasks the LLM must learn in
order to produce analog layout:

(1) Understanding Layout strategies and Analog design terms.
The LLM should build connections between user requests,
known Analog design information, and the final layout. This
task is mainly taught through in-context learning using Re-
trieval Augment Generation (RAG). This provides informa-
tion which the LLM should learn to apply to the output
layout. For example, the LLM may receive information that
the transistors in a cross coupled pair should be matched.
The LLM should learn how this information should influence
the final layout.

(2) Describing Layout using strict syntax. This involves building
an intuition for geometry especially learning relative posi-
tions of blocks and where to place components. Learning the
strict syntax is complementary to this task and helps with
building geometric intuition. The strict syntax also provides
some common placement techniques the LLM can incorpo-
rate into its placement of blocks. This task is mainly taught
through fine-tuning.

The LLM fine-tuning involves preprocessing examples to add a
strict syntax reference guide and add some relevant analog design
information to the prompt. The analog design information is pulled
from a library of text documents using RAG. The RAG method
works by constructing vector-embeddings for text documents, then
computing a similarity score between the user prompt and existing
text documents. The most similar text documents are returned,
along with their corresponding similarity scores.

Each unique circuit can be used to create several prompts, to
teach the LLM different ways of phrasing a similar request. After
preprocessing, the training prompts are appended with the desired
strict syntax results and the LLM is fine-tuned with loss computed
on the completions only (as opposed to training on the prompt
and completion). This completion only training prevents the model
from over fitting to the provided context and only rewards the
output strict syntax result.

3 EVALUATION
We fine-tuned and evaluated 3 LLMs: 3.8 Billion parameter Phi3
Model [10], 7 Billion parameter Mistral model [11], and 22 Billion
parameter Codestral model [17]. The models all were given the
same initial strict syntax context as was given during training, and

Human Language to Analog Layout Using GLayout Layout Automation Framework MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

Figure 8: Evaluation pairs on which the LLM was tested. The numbers represents the number of passed tasks for that design. A
design is assigned a score of 3 if the code compiles, and the layout passes DRC and LVS.

Figure 9: Fine tuning loss by step (training examples) vs Evaluation loss. After 1-2 epochs, all models overfit on the training
data, resulting in less generality and performance on the evaluation data.

a previously unseen prompt was appended. These prompts either
targeted a new unique layout topology for a known schematic, such
as common centroid placement for a current mirror, or a completely
unseen circuit, such as an integrator or strong arm latch. To evaluate
the in-context learning we provided text documentation for the
new circuit types. We also provided one additional prompt to guide
the LLM in case of failure. The 8 evaluation examples used are
categorized in Fig. 8.

Each model was trained for 4 epochs with a fixed learning rate
(well past over-fitting as shown in Fig. 9), except for the 22B model
which was trained for 2 epochs. All models were 8 bit quantized,
and low rank adaptation (LORA) was used to reduce memory re-
quirements while training. No other hyper-parameters or training
configurations were modified for different runs; The model was the
only portion changed. Fig. 7 shows the performance on the GLayout
evaluation set between all 3 models vs model size. The 3.8 Billion
parameter and 22 Billion Parameter models completed 10 and 18
tasks from the evaluation set respectively. We see that larger model
provided a significant performance boost, but the performance gain
from 7B to 22B was much less pronounced than the performance
gain from 3.8B to 7B.

The models generally saw success with prompts corresponding
to smaller layouts. This includes layouts such as the PMOS differen-
tial pair, shown in Table 10a. The smaller models such as 3.8B and
7B parameter models produced DRC clean layouts for layouts with
a lower number of transistor placement and routing steps. These
models failed to produce working strict syntax for larger layouts,

where the primary point of failure was accurate placement of the
components. The 22B was able to produce layouts as complex as
those shown in Table 10b and Table 10c within 2 input prompts. The
22B model was also significantly better at consistently producing
valid strict syntax for complex designs, which the smaller models
failed to do in some cases.

4 CONCLUSION
The GLayout combined LLM approach is a scalable layout automa-
tion strategy which can achieve more complex layout with scaling
both the dataset and the model size. The LLM creates DRC and
LVS valid layouts on unseen 4 transistor examples, and shows
performance improvements with increasing model size. The LLM
achieved these layouts with less than 50 unique example circuits
and trained on a single GPU for 2 hours.We showed based on results
with different model sizes and known recent LLM research that this
approach has potential to scale to larger layouts given a larger data
set and larger model size. The model, framework, and evaluation
set are completely open-source, with source code on GitHub [1],
and are available for public contributions and experimentation.

ACKNOWLEDGMENTS
The authors would like to thank the open-source community for
their support.

MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Hammoud et al.

REFERENCES
[1] 2023. Glayout. https://github.com/idea-fasoc/OpenFASOC/tree/main/openfasoc/

generators/glayout.
[2] 2024. GDSFactory. https://github.com/gdsfactory.
[3] Tim Ansell and Mehdi Saligane. 2020. The Missing Pieces of Open Design

Enablement: A Recent History of Google Efforts : lnvited Paper. In 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). 1–8.

[4] Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program Synthesis with Large Language Models. CoRR
abs/2108.07732 (2021). arXiv:2108.07732 https://arxiv.org/abs/2108.07732

[5] Steven Bird, Edward Loper, and Ewan Klein. 2009. Building Feature-Based
Grammars. In Natural Language Processing with Python. O’Reilly Media Inc.,
Chapter 9.

[6] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi.
2020. PIQA: Reasoning about Physical Commonsense in Natural Language. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 7432–7439.
https://doi.org/10.1609/aaai.v34i05.6239

[7] Jason Blocklove, Siddharth Garg, Ramesh Karri, and Hammond Pearce. 2023.
Chip-Chat: Challenges and Opportunities in Conversational Hardware Design.
In 2023 ACM/IEEE 5th Workshop on Machine Learning for CAD (MLCAD). IEEE.
https://doi.org/10.1109/mlcad58807.2023.10299874

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,
Inc., 1877–1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[9] Eric Chang, Jaeduk Han, Woorham Bae, Zhongkai Wang, Nathan Narevsky,
Borivoje NikoliC, and Elad Alon. 2018. BAG2: A process-portable framework
for generator-based AMS circuit design. In 2018 IEEE Custom Integrated Circuits
Conference (CICC). 1–8. https://doi.org/10.1109/CICC.2018.8357061

[10] Marah Abdin et. al. 2024. Phi-3 Technical Report: A Highly Capable Language
Model Locally on Your Phone. arXiv:2404.14219 [cs.CL]

[11] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, De-
vendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux,
Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B. arXiv:2310.06825 [cs.CL]

[12] Kishor Kunal, Meghna Madhusudan, Arvind K. Sharma, Wenbin Xu, Steven M.
Burns, Ramesh Harjani, Jiang Hu, Desmond A. Kirkpatrick, and Sachin S. Sapat-
nekar. 2019. INVITED: ALIGN – Open-Source Analog Layout Automation from
the Ground Up. In 2019 56th ACM/IEEE Design Automation Conference (DAC).
1–4.

[13] Yao Lai, Sungyoung Lee, Guojin Chen, Souradip Poddar, Mengkang Hu, David Z.
Pan, and Ping Luo. 2024. AnalogCoder: Analog Circuit Design via Training-Free
Code Generation. arXiv:2405.14918 [cs.LG]

[14] Chengjie Liu, Yijiang Liu, Yuan Du, et al. 2024. LADAC: Large Language Model-
driven Auto-Designer for Analog Circuits. TechRxiv (January 08 2024).

[15] M. Liu, N. Pinckney, B. Khailany, and H. Ren. 2023. Verilogeval: Evaluating Large
Language Models for Verilog Code Generation. In 2023 IEEE/ACM International
Conference on Computer Aided Design (ICCAD). IEEE, 1–8.

[16] Jitesh Poojary, Ramprasath S, Sachin S. Sapatnekar, and Ramesh Harjani. 2023.
Exploration of Design / Layout Tradeoffs for RF Circuits using ALIGN. In 2023
IEEE Radio Frequency Integrated Circuits Symposium (RFIC). 57–60. https://doi.
org/10.1109/RFIC54547.2023.10186141

[17] Mistral AI Team. 2023. Codestral-22B-v0.1. https://huggingface.co/mistralai/
Codestral-22B-v0.1. Accessed: 2024-06-07.

[18] Shailja Thakur, BaleeghAhmad, Hammond Pearce, Benjamin Tan, BrendanDolan-
Gavitt, Ramesh Karri, and Siddharth Garg. 2024. VeriGen: A Large Language
Model for Verilog Code Generation. ACM Trans. Des. Autom. Electron. Syst. 29, 3,
Article 46 (apr 2024), 31 pages. https://doi.org/10.1145/3643681

[19] JasonWei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia,
Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL]

[20] Qirui Zhang, Wenbo Duan, Tim Edwards, Tim Ansell, David Blaauw, Dennis
Sylvester, and Mehdi Saligane. 2022. An Open-Source and Autonomous Tem-
perature Sensor Generator Verified With 64 Instances in SkyWater 130 nm for
Comprehensive Design Space Exploration. IEEE Solid-State Circuits Letters 5
(2022), 174–177. https://doi.org/10.1109/LSSC.2022.3188925

[21] Keren Zhu, Hao Chen, Mingjie Liu, and David Z. Pan. 2023. Tutorial and Perspec-
tives on MAGICAL: A Silicon-Proven Open-Source Analog IC Layout System.

IEEE Transactions on Circuits and Systems II: Express Briefs 70, 2 (2023), 715–720.
https://doi.org/10.1109/TCSII.2022.3172869

A ADDITIONAL EXAMPLES
A.1 Placement Challenges
The LLM struggles in placement for examples larger than four de-
vices as seen in 10. This is to be expected because the training
data (which is primarily composed of 2 Transistor blocks) did not
include many blocks larger than 4 Transistors. As seen in 10 (a) the
LLM is adept at smaller examples, while struggling with symmetric
placement problems. In 10 (b) 6 transistors are overlapping because
the LLM failed to place transistors on either side of the input dif-
ferential pair, while pairs of transistors have been correctly placed.
The strong arm latch does not suffer from this problem, and has
correct placement.

A.2 Reasoning
Reasoning capabilities are demonstrated in Fig. 11 with a current
mirror example. The model performs several modifications of the
circuit based on user requests. The initial request (not included) is
a prompt for a current mirror identical to a training prompt. As
expected, the LLM produces the valid design which is similar to
the training example. 11 (a) and (b) are the second prompts in two
different cases following the initial current mirror prompt. In Fig.
11 (a) the user includes that it is possible to save area by removing
the well tie rings (rectangular well tap surrounding the transis-
tors) and dummy transistors, and requests the LLM to reduce the
area. In prompt 11 (b) the user requests placing a second reference,
resulting in 1 LVS error. This error is indicated with a red circle.
Both of these tasks require the LLM to recall and combine previous
information, either from training, from RAG data, or from user
hints in the prompt. The LLM automatically names the produced
components based on the user’s request. For example, request 11
(a) was automatically named "CurrentMirrorNTypeReducedArea"
and request 11 (b) was "CurrentMirrorNtypeDualRef".

https://github.com/idea-fasoc/OpenFASOC/tree/main/openfasoc/generators/glayout
https://github.com/idea-fasoc/OpenFASOC/tree/main/openfasoc/generators/glayout
https://github.com/gdsfactory
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.1109/mlcad58807.2023.10299874
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1109/CICC.2018.8357061
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2405.14918
https://doi.org/10.1109/RFIC54547.2023.10186141
https://doi.org/10.1109/RFIC54547.2023.10186141
https://huggingface.co/mistralai/Codestral-22B-v0.1
https://huggingface.co/mistralai/Codestral-22B-v0.1
https://doi.org/10.1145/3643681
https://arxiv.org/abs/2201.11903
https://doi.org/10.1109/LSSC.2022.3188925
https://doi.org/10.1109/TCSII.2022.3172869

Human Language to Analog Layout Using GLayout Layout Automation Framework MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

DiffPair
create a float parameter called width
create a float parameter called length
create a int parameter called fingers
place a pmos called diff_A with width=width,
length=length, fingers=fingers, rmult=1,
multipliers=1, with_substrate_tap=False,
with_tie=False, with_dummy=False
place a pmos called diff_B with width=width,
length=length, fingers=fingers, rmult=1,
multipliers=1, with_substrate_tap=False,
with_tie=False, with_dummy=False
move diff_B below diff_A
route between diff_A_source_E and
diff_B_source_E using smart_route

IntegratorStage
create a float parameter called width
create a float parameter called length
create a int parameter called fingers
… more parameter declarations
place a pmos called diff_A with width=width,
length=length, fingers=fingers, rmult=1,
multipliers=1, with_substrate_tap=False,
with_tie=False, with_dummy=False
… more placement steps
move nfet_B below nfet_A
… more move steps
route between nfet_A_drain_E and
nfet_A_gate_E using smart_route
… more route steps

StrongArmLatch
import CrossCoupledInverters
create a float parameter called bridge_width
create a float parameter called clkgnd_width
… more parameter declarations
place a diff pair called inputdiff
place a CrossCoupledInverters called ccinvs
with ccinvs_fingers=ccinvs_fingers,
ccinvs_length=ccinvs_length
… more placement steps
move clkgnd below inputdiff
move bridge above inputdiff
… more move steps
route between inputdiff_A_drain_E and
bridge_drain_E using smart_route
… more route steps

Make a p-type differential pair. Parametrize
everything.

A strong arm latch consists of a diffpair, a
CrossCoupleInverters, a bridge nfet, a clkgnd
nfet, and two pfets clkpwrL (west) and
clkpwrR (east). place the pfets symmetrically
on either side of the inverters and the other
components.

Create an integrator stage. This is created
using 4 pfets and two nfets with a mimcap.
The nfets must have their gates shorted and
one of the nfets must have their drain shorted
to its gate. The sources are connected to
ground. A pfet current mirror is also required
…

a) b) c)

LLM Prompt

Generated Strict
Syntax

Final Layout

Figure 10: Summary of weak-points and circuit comparison examples of the LLM.

Figure 11: Modifying a current mirror with new requests, red circle indicates an error.

	Abstract
	1 Introduction
	2 Approach
	2.1 Python API
	2.2 Strict Syntax Command Language
	2.3 Large Language Model

	3 Evaluation
	4 Conclusion
	Acknowledgments
	References
	A Additional Examples
	A.1 Placement Challenges
	A.2 Reasoning

