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Abstract

Video Frame Interpolation is an important video enhancement problem which
aims to generate one or multiple frames between consecutive frames in video.
Optical flow-based frame interpolation approaches estimate intermediate optical
flow from interpolated frame to input frames and warped frames are fused to
generate interpolated frame. However, intermediate flow estimates can itself be
erroneous leading to inaccurate interpolation results. In this work, we improve an
optical flow-based interpolation algorithm, Super-SloMo by residual refinement.
Specifically, we feed intermediate flowmaps, visibility map, warped input frames
and intermediate interpolation estimate to a refinement network to predict a frame
residual. We have also experimented with different architecture choices to be used
in different modules to further improve the results. We found out that GridNet with
four pyramid levels achieves the best results whereas UNet++ performs moderately
well with significantly less number of parameters.

1 Introduction

Video frame interpolation algorithms generate one or multiple frames between two consecutive
frames in a video. These algorithms have applications in frame-rate upscaling, video compression-
decompression [28]], slow-motion video generation, novel view synthesis [7], medical imaging
[15,136] and so on. Optical flow based interpolation methods aim to first estimate intermediate flow
i.e. flow between interpolated frame and source frames. Then the source frames are warped using
the estimated intermediate flow. Finally, the warped frames are used to synthesize the interpolated
result. Liu et al. [20] directly blend two warped frames. Niklaus et al. [23] feed the warped frames
and warped context maps to generate interpolated frame. SuperSloMo [13]] blend the warped frames
using an estimated visibility map. In our work, we generate the intermediate frame in two steps.
First, an estimate of intermediate frame is obtained through intermediate flowmap and visibility map
estimation similar to [13]. Then, this estimate is further refined using a refinement network. A frame
residual is estimated by the refinement network which is added with the intermediate frame estimate
to generate the final interpolated frame. Our network performs better than multiple state-of-the-art
methods on Vimeo-Triplet and UCF101 datasets.

2 Related Works

Early works in Video Frame Interpolation are often based on optical flow estimation and interpolation
accuracy is used to compute quality of optical flow [} |4]. The rise of optical flow estimation
algorithms using Deep Learning has contributed a lot in the progress of Frame Interpolation algorithms
(20,113} 231 133] 127, 19]]. Kernel based frame interpolation algorithms [24} 25 [17] model each pixel in
interpolated frame as linear combination of input patches convolved using spatially adaptive kernels.
Phase based frame interpolation algorithms [22, 21]] perform phase decomposition of source images
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to generate intermediate frame. A few approaches [3} 2] in the literature tries to combine optical flow
based and kernel based methods for frame interpolation.

3 Proposed Method

Given two consecutive frames Iy and I; in a video, video interpolation algorithm predicts I; where
t € (0,1). Our method is based upon a state-of-the-art Video Interpolation algorithm, SuperSloMo
[L3]]. For the sake of completeness, we will describe the complete algorithm in this section. Our
approach is summarized in Figure[T]
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Figure 1: Overview of our refinement based frame interpolation approach.

Flow Estimation module: First step of our algorithm is to estimate bidirectional optical flowmaps
between input frames. Given two input images I and /7, Flow Estimation module will compute
bidirectional flowmaps Fy_,; and F}_,q. [13] estimate optical flow in unsupervised manner using a
UNet. Instead of using UNet for flow estimation as in SuperSloMo, we use pretrained state-of-the-art
flow estimator PWCNet [31]].

Interpolation module: After computing bidirectional optical flows Fj_,; and F}_,( using Flow
Estimation module, we compute approximation of flow from intermediate image to input images,
F,_,o and F;_,; using the following equations [13].

Ftao = _(1 - t)tFO%l + t2F140

R (1
Ft—>1 = (1 - t)2F0—>1 - t(l — t)F1_>0

However, this approximation is not true in case of motion boundaries. Interpolation module acts as a
correction step for computing final intermediate flowmaps. This module generates residual flowmaps
to refine the intermediate flowmaps in Equation [I] Additionally, it computes soft visibility maps
required for fusing the warped input frames. Interpolation network takes in input images Iy, I,
approximate intermediate flows Ft_m and Ft_>1 and input images warped with Ft_>0 and Ft_>1 and
predicts flow residuals Aﬁtﬁo, Aﬁ‘tﬁl and visibility map V;_,q. Visibility map V;_,; is calculated
from V,_,(, since these two visibility maps should complement each other, i.e. V1 = 1 — V,_,.
So, the final estimation of intermediate flows are given by,

Fi 0= Ftﬁo + Aﬁ‘t%o

. . (2)
Ft—>1 = Ft—>1 + AFt—ﬂ

We linearly blend the warped input images to synthesize predicted frame I, as,

i (1 —1)Vio ® bw (Lo, Fy—0) + tVis1 © bw (11, Fy1) 3)
! (1 =t)Vimo +tVio

where bw(., .) is the backward warping function [[12].

Refinement Module: Although the formulation of intermediate frame in Equ{3]is compact, the
synthesized frame can still have erroneous predictions. These errors can subject to large motion and
occlusion. Hur et al. [11]] has shown that iterative residual refinement of optical flow predictions can
improve optical flow accuracy. Inspired by this, we introduce one step of refinement. We compute
residual of the predicted frame Al using a Refinement module. As we already have an approximation
of the interpolated frame, we don’t need to generate the image from scratch and compute the residual
image only. Input images (/y, I1) , refined flow maps (F;_ o, F;—,1), visibility map V;_,o, warped
input images bw(Iy, Fi—0), bw(I1, Fi—1) and predicted frame I, are fed into this network. So, the
final synthesized frame is given by,

Li=1+ Al 4)



Architectures used in Interpolation and Refinement modules: We use (a) UNet [29]], (b) UNet++
[34], (c) GridNet [8, architecture in interpolation and refinement modules. We try both 3-level
and 4-level Gridnet in our experiments. We refer GridNet with 3 levels as GridNet-3 and GridNet
with 4 levels as GridNet-4 for brevity. Details of these architectures are discussed in Appendix.
Among the mentioned architectures, GridNet-4 achieves the best performance. Please refer to Section

[T for analysis.

4 Experiments

Datasets. We have used the Vimeo-Triplet [33]] and UCF101 datasets [30,20] in our experiments.

Training and Evaluation details. We use initial learning rate 10~ for both Interpolation and
Refinement modules. As we use pretrained PWCNeﬂ as our Flow Estimation module, initial learning
rate for this module is 10~6 and we keep it fixed throughout the training. We gradually decrease the
learning rate to 10~ for Interpolation and Refinement modules. We use Adam optimizer [16] with
B1 = 0.9 and B2 = 0.999 and a batch size of 4.

We use train subset of Vimeo-Triplet dataset as our training dataset and evaluate on the test set of the
same dataset. Videos in UCF101 dataset are of lower quality than Vimeo-Triplet sequences. Hence,
for evaluation on test sequences of UCF, we fine-tune our model on our prepared UCF training data
for one epoch. As we only predict the middle frame, ¢ is set to 0.5 for both training and evaluation. We
use Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) metrics for evaluation
on both the datasets.

Loss functions. Our loss function for stage-1 is given by,
L=XNLr+ MLy 4+ Ay Loy + AsLs )
where, £, is Reconstruction (L1) loss, £, is perceptual loss [14], £,, is Warping loss and L, is

Smoothness loss [13]]. In our experiments, we use A\, = 204, A, = 0.005, \,, = 102 and A; = 1. In
stage-2 of training, we finetune the network using only reconstruction loss.

Comparison with other methods. We compare the performance of our algorithm with the following
state-of-the-art models: TOFlow [33]], SepConv [25], SuperSloMo [13], CtxSyn [23]], CyclicGen
[19], MEMC-Net [3], DAIN [2], CAIN [6], BMBC and AdaCoF [18]. For comparison with
SuperSloMo [[13]], we use unofficial pretrained models’|since official pretrained models were not
released. For rest of the models, official pretrained models were used for comparison. Table [I]
summarizes the quantitative results of state-of-the art models. Our algorithm performs best among
the mentioned methods on Vimeo-Triplet dataset and comparable against other state-of-the-art
models in UCF101 dataset. Note that, we have gained 1.71 dB and 0.87 dB improvement on
PSNR scores in Vimeo-Triplet and UCF101 datasets respectively over SuperSloMo, which we have
considered as the base framework. We provide visual comparisons of interpolated images in Figure 2]

Vimeo-Triplet UCF101
Method - -pgNR T SSIM | PSNR | SSIM B —
TOFlow 33.73 ] 0.9682 | 34.58 | 0.9667
SepConv 33.79 | 0.9702 | 34.78 | 0.9669
SuperSloMo 33.44 | 0.9673 | 34.09 | 0.9655
CtxSyn 34.39 | 0.9610 | 34.62 | 0.9490 SuperSloMo CyclicGen
CyclicGen 32.10 | 0.9490 | 35.11 | 0.9680 —
MEMC-Net 34.29 | 09739 | 34.96 | 0.9682
DAIN 3471 | 0.9756 | 34.99 | 0.9683
CAIN 34.65 | 0.9730 | 34.91 | 0.9690
BMBC 35.01 | 0.9764 | 35.15 | 0.9689
AdaCoF 3435 | 09714 | 35.16 | 0.9689
Ours (GridNet-4) | 35.15 | 0.9773 | 34.96 | 0.9690
Ours Ground Truth
Table 1: Comparison with other state-of-the-art architectures in Figure 2: Qualitative comparison with state-
Vimeo-Triplet and UCF101 dataset. of-the-art models.

Uhttps://github.com/sniklaus/pytorch-pwc
“https://github.com/avinashpaliwal/Super-SloMo



4.1 Ablation Study

Importance of Refinement Module: To show the significance of the Refinement Module, we train
basic SuperSloMo Framework both with and without Refinement module. Please note, PWCNet is
used as Flow Estimation module and UNet is used in Interpolation and Refinement modules in these
experiments. Quantitative comparison is shown in Table 2] It can be seen in Table [2]that addition of
refinement module improves the PSNR metric by 0.30 dB on Vimeo-Triplet dataset. Figure [3] shows
significance of Refinement module qualitatively. We can see that rear light of the car is reconstructed
when refinement module is used in Figure 3]

PSNR | SSIM
W/o Refinement Module | 34.27 | 0.9728
W/ Refinement Module 34.57 | 09744

Table 2: Results on Vimeo-Triplet dataset on Basic SuperSloMo Framework with and without Refinement
module.

[— —
without Refinement with Refinement Ground Truth
module module
Figure 3: Effect of Refinement module.

Choice of architecture: We have experimented with four architectures in Interpolation and Re-
finement modules: UNet, UNet++, GridNet-3 and GridNet4. Quantitative results and number of
parameters for each architecture is shown in Table 3] We observe that the two GridNet architectures
perform better than UNet and UNet++ and GridNet-4 performs the best among the discussed archi-
tectures. It is worth mentioning that UNet++ gives good performance considering it has the least
number of parameters among the said architectures. Qualitative comparison between the discussed
architectures is shown in Figure[d] We can see that GridNet-4 as interpolation and refinement module
produces superior results.

# Parameters(M) Performance
Interpolation | Refinement
Module Module PSNR | SSIM
UNet 19.8100 19.8157 34.57 | 0.9744
UNet++ 1.1764 1.1775 34.83 | 0.9755
GridNet-3 2.2493 2.2497 3496 | 0.9764
GridNet-4 5.0813 5.0817 35.15 | 0.9773

Table 3: Performance of different architectures in Interpolation and Refinement module on Vimeo-Triplet
dataset.

UNet++ GridNet-3 GridNet-4 Ground Truth
Figure 4. Qualltatlve comparison between different architectures in Interpolation and Refinement modules.

5 Conclusion

In this work, we adopt a state-of-the-art Video Frame Interpolation framework SuperSloMo
and improve interpolation accuracy with the help of a refinement network. We show this refinement
module can help in case of incorrect intermediate flow estimation. It can also help in enhancing edges
and textures in the generated frame. We have explored a variety of network architectures to be used
in Interpolation and Refinement modules and our experiments show that GridNet-4 performs better
than the rest. On the other hand, UNet++ achieves good performance while being parameter-efficient.
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A Architecture details

UNet: UNet was first proposed for medical image segmentation [29]. However, UNet has gained
popularity in computer vision community and often used in image-to-image translation tasks. We
use 23-layer encoder-decoder architecture used in SuperSloMo [[13]]. The encoder part consists of
12 convolutional layers and 5 average pooling layers. The decoder part consists of 10 convolutional
layers and 5 bilinear upsampling layers. In encoder, first two convolutional layers have kernel size of
7 x 7. Next two layers in encoder use 5 x 5 kernels. Bigger kernels in initial layers is an important
design choice to handle large motion. Kernels of size 3 x 3 are used in rest of the network. Skip
connections (feature concatenation) are used from encoder to decoder for restoring the fine grained
details in decoding part. Our UNet architecture is shown in Figure[3]

32 64 128 256 512 512 512 256 128 64 32

B Conv Layer Il Average Pooling [ Bilinear Upsampling -> Skip Connection
Figure 5: Model architecture of UNet. Number of output channels in convolutional layers are shown below.

UNet++: UNet++ is a Nested UNet architecture which was originally used for medical image
segmentation [34], [35]. UNet++ aims to reduce the semantic gap between features from encoder
branch and decoder branch using dense skip connections. We have used 4-level UNet++ architecture
instead of 5 levels as used in original paper to reduce the model parameters and computational
complexity. Maxpooling and bilinear upsampling is used for feature downsampling and upsampling
respectively. Our UNet++ architecture has 4,3,2 and 1 Convolutional blocks from top to bottom levels
respectively. Convolutional blocks except the output block has two convolutional layers with 3 x 3
kernels. Output block has only one convolutional layer with 1 x 1 kernel size. Output channel sizes in
convolutional blocks from top pyramid level to bottom pyramid level are 32, 64, 96, 128 respectively.
Leaky ReLU is used after each convolutional layer. Model diagram of UNet++ is shown in Figure [f]

GridNet: GridNet is another encoder-decoder architecture where encoder and decoder blocks are
laid out in a grid-like fashion which allows the network to combine features from different scales.
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Figure 6: Model architecture of UNet++.

GridNet is a multi-scale architecture, where at each scale we have a number of lateral blocks. Number
of output channels in this lateral blocks are consistent in same scale. Lateral blocks consists of
convolutional layers with PReLU activation [10]] and residual connection.

Features from lateral blocks on one level interact with features from other levels using upsampling
and downsampling blocks and residual addition. Upsampling block consists of upscaling layer,
convolutional layers and PReLU activation. Following [23]], we use bilinear upsampling instead of
using deconvolution in upsampling layer as Transposed convolution produces checkerboard artifacts
[26]. Downsampling blocks use strided convolution as downsampling layer along with a convolutional
layer and PReL.U activation.

We try both 3-level and 4-level Gridnet in our experiments. We refer GridNet with 3 levels as GridNet-
3 and GridNet with 4 levels as GridNet-4 for brevity. Output channel dimensions used in GridNet-3
are 32,64, 96 and GridNet-4 are 32,64, 96, 128 respectively from top to bottom. Architectures of
GridNet-3, GridNet-4 and its basic components are shown in Figure [7]

B Edge and texture enhancement using Refinement module

Refinement module can also help in better restoration of edges and textures. Figure|8|shows edge
maps extracted by Canny edge detector [5] for interpolated frames generated when refinement module
is used and when not used. We can observe that use of refinement module produces more clear edge
and textures in interpolated image.

C Requirement for Stage-2 of training

We train our model in two stages. In the first stage, we use Reconstruction loss, Perceptual loss, Warp
loss and Smoothness loss. After the training is converged for first stage, we further fine-tune the
whole model with just Reconstruction loss at a lower learning rate (1e — 6 in our experiments). First
stage of training gives us control over what is learnt by each module, whereas in the second stage, we
can focus on only improving interpolation accuracy. The second stage of training helps to improve
the performance as supported by our experiments in Table[d] PSNR is improved by 0.10 dB and 0.13
dB in case of without and with Refinement module respectively.
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Figure 7: GridNet architectures used in our work and its constituting components.

Without Refinement

With Refinement Ground Truth

module

module

Figure 8: Visualization of extracted edge maps for interpolated results with and without refinement module,

along with ground truth edge map.

Without Refinement | With Refinement
Module Module
PSNR | SSIM | PSNR | SSIM
After Stage-1-\ ) 17 | 09723 | 3444 | 09737
training
After Stage-2 | ) o7 | 09728 | 34.57 | 0.9744
training

Table 4: Importance of Stage-2 of training.
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