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Abstract

In this work, we present TalkCuts, a large-scale dataset designed to facilitate the
study of multi-shot human speech video generation. Unlike existing datasets that
focus on single-shot, static viewpoints, TalkCuts offers 164k clips totaling over 500
hours of high-quality human speech videos with diverse camera shots, including
close-up, half-body, and full-body views. The dataset includes detailed textual
descriptions, 2D keypoints and 3D SMPL-X motion annotations, covering over
10k identities, enabling multimodal learning and evaluation. As a first attempt
to showcase the value of the dataset, we present Orator, an LLM-guided multi-
modal generation framework as a simple baseline, where the language model
functions as a multi-faceted director, orchestrating detailed specifications for cam-
era transitions, speaker gesticulations, and vocal modulation. This architecture
enables the synthesis of coherent long-form videos through our integrated multi-
modal video generation module. Extensive experiments in both pose-guided and
audio-driven settings show that training on TalkCuts significantly enhances the cin-
ematographic coherence and visual appeal of generated multi-shot speech videos.
We believe TalkCuts provides a strong foundation for future work in controllable,
multi-shot speech video generation and broader multimodal learning. Project page:
https://talkcuts.github.io/.

1 Introduction

Human-centric videos permeate modern life across entertainment, communication, and education
domains. Although significant advances have been made in synthesizing such videos from multimodal
inputs, including speech (Xu et al., 2024a; Cui et al., 2024a,b), 2D keypoints (Hu, 2024; Zhang et al.,
2024a; Zhu et al., 2024), and 3D human motion (Zhu et al., 2024), state-of-the-art methods remain
limited to single static camera shots, constraining their application to short-form video synthesis.

In contrast, long-form human-centric videos incorporate multiple shots, such as wide angles, closeups,
and pans (Lin et al., 2025), to break visual monotony, establish mood, and emphasize key speech
elements. This requires orchestrating several interacting systems: the speaker’s articulation, gestures,
and movement within the scene, alongside dynamic camera work that responds appropriately to
spoken content. Previous human video generation models focus on generating short and single-shot
videos, instead of long and multi-shot videos with consistent human appearance (Liu et al., 2024;
Tian et al., 2024; Xu et al., 2024b; Hu et al., 2023; Corona et al., 2024; Kong et al., 2025). Meanwhile,
existing human-centric video datasets are inadequate for this task, as they primarily consist of short-
form content such as TikTok dances (Jafarian and Park, 2021) or fashion videos (Zablotskaia et al.,
2019), typically offering at most one additional modality (e.g., speech or 2D keypoints) and remaining
relatively limited in scale.

To address this gap, we present TalkCuts, a large-scale dataset specifically curated for long-form
human speech video generation with dynamic camera shots. This comprehensive collection features
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Figure 1: Overview of the TalkCuts Dataset. The dataset features (1) diverse camera shot types
(e.g., close-up, half-body, full-body), (2) annotations for 2D keypoints and 3D SMPL-X motion, and
(3) a wide range of speaker identities spanning various ethnicities, body types, and age groups.

videos from talk shows, TED talks, stand-up comedy, and diverse speech scenarios, encompassing
more than 10,000 unique speaker identities. Each video contains multiple camera shots and is
annotated with 2D whole-body keypoints, 3D SMPL-X estimations and textual descriptions. With
1080p resolution and over 500 hours of footage, TalkCuts represents the largest publicly available
dataset of its kind. All content has undergone rigorous filtering and annotation to ensure high quality,
providing a robust resource for training and evaluating models that generate realistic, multi-shot
speech videos in dynamic settings. We compare TalkCuts with recent human video datasets in Table
1 and present a visual overview in Figure 1.

Based on this dataset, we propose a novel task: given a script and reference images, generate coherent
multi-shot human speech videos. We evaluate this long-form human-centric video generation in two
domains: camera shot transition and audio-driven human video generation. We also provide results
under a pose-guided video generation setting to further demonstrate the effectiveness of TalkCuts.
Our experiments show that models trained on TalkCuts consistently outperform existing baselines
across multiple metrics, including shot coherence, motion quality, and identity preservation.

Table 1: Comparison of existing public datasets for pose-guided video generation (top) and audio-
to-gesture generation (bottom), categorized by meta information, modality, and camera details.

Dataset Meta Information Modality Camera
Clips Frames Resolution Hours ID 2D Annot. 3D Annot. Audio Shots

Pose-guided Generation Datasets
TikTok (Jafarian and Park, 2021) 340 93k 604x1080 1.03 ≈300 ✗ ✗ ✓ Single
TED Talks (Siarohin et al., 2021) 1322 197k 384x384 - 173 ✗ ✗ ✓ Single
UBC-Fashion (Zablotskaia et al., 2019) 500 192k 720x964 2 ≈600 DWPose ✗ ✗ Single

Audio-to-gesture Generation Datasets
Speech2Gesture (Ginosar et al., 2019) - - - 144 10 OpenPose ✗ ✓ Single
UBody (Lin et al., 2023) - 1051k - 11.7 - DWPose SMPL-X ✗ Single
TalkSHOW (Yi et al., 2023) 17k - - 38.6 4 ✓ SMPL-X ✓ Single
BEAT2 (Liu et al., 2023) - 32M 1080P 76 30 ✓ SMPL-X ✓ Single

TalkCuts (Ours) 164k 57M 1080P 507 11k+ DWPose SMPL-X ✓ Multi

As a baseline, we introduce Orator, an end-to-end system for automatically synthesizing long-form
speech videos with dynamic camera shots, as is illustrated in Figure 2. The system comprises two key
components: a DirectorLLM and a multi-modal generation module. The DirectorLLM is an LLM-
driven multi-role director that orchestrates the entire generation process through textual guidance.
It integrates speech content, camera transitions (e.g., close-up, medium, or wide shots) based on
emotional flow, and gesture descriptions aligned with the speaker’s actions. Additionally, it provides
vocal delivery instructions to modulate tone, emotion, and pacing. The multi-modal generation
module translates text into long-form speech videos with natural camera transitions, synchronized
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gestures, and dynamic vocal delivery. The module includes SpeechGen, which processes input text
along with LLM-generated audio instructions to produce synchronized speech, and VideoGen, which
integrates the generated audio, input reference images, and motion instructions from the LLM using
a video diffusion model to generate the final video.

Hey Director, let‘s create a long-
form human speech video using

the provided text lines and 
reference images.

[1] I’m like, I ain’t taking this. My foot said, 

you better try it… 

[2] That’s why you see me do this. I’m making a 

shoe for people over… 

[3] And the only medication they got for gout 

kills your liver, so they tell you, take it for a 

day …

[4] If you see me dressed up, the first thing I do 

is I kick my shoes off…

Input Text Lines

[1] I’m like, I ain’t taking this [Audio Instruction: 
Annoyed, slightly raised pitch]. My foot said, you 

better try it…  [Camera Instruction: Close Shot]

[2] That’s why you see me[Motion Instruction: 
Lift right hand]. I’m making a shoe for people 

over… [Camera Instruction: Medium Close Shot]

[3] And the only… kills your liver [Audio 
Instruction: Serious tone, slow pace], so they tell 

you…[Camera Instruction: Medium Shot]

[4] If you see me dressed up [Motion Instruction:
Walk to the left], the first thing I do is I kick my 

shoes off… [Camera Instruction: Full Shot]

Sure! I will direct the talk by 
orchestrating camera shot 
changes, vocal delivery and 

speaker’s gestures.

Reference Images

Figure 2: Multi-shot speech video generation. We propose Orator, a fully automated system that
generates human speech videos with dynamic camera shots. By organically integrating multiple
modules, a DirectorLLM directs camera transitions, gestures, and audio instructions, delivering
coherent and engaging multi-shot speech videos.

In summary, this paper introduces the novel task of speech-driven video generation with dynamic
camera shots across multiple scenarios (head, half-body, and full-body views). We present TalkCuts,
the first large-scale dataset specifically designed for long-form human speech generation, featuring
diverse scenarios and comprehensive annotations including multi-shot camera transitions and 3D
SMPL-X motion data. Furthermore, we propose Orator, an automated pipeline for fine-grained video
generation that maintains visual identity consistency across camera transitions through a multimodal
generation system guided by DirectorLLM. Extensive experiments validate the effectiveness of
TalkCuts in enabling realistic and coherent multi-shot speech video generation.

2 Related Works

Human Video Datasets. Recently, various datasets derived from public platforms such as TikTok and
YouTube have been introduced to advance human video generation research. For example, the TikTok
dataset (Jafarian and Park, 2021) includes 340 short video clips, each lasting 10-15 seconds, primarily
featuring dancing humans. However, these datasets are limited in both scale and quality. To overcome
these limitations, several synthetic datasets (Varol et al., 2017; Patel et al., 2021; Cai et al., 2021;
Yang et al., 2023a) have been developed, significantly enhancing the diversity of backgrounds and the
scale of training data. Besides, the importance of multimodal cues has become increasingly evident.
HumanVid (Wang et al., 2024), comprising over 50 million frames, is annotated using mature and
widely adopted tools, offering a valuable resource for large-scale learning. However, existing datasets
remain limited in several aspects: they are largely constrained by identity-specific annotations, lack
comprehensive multi-shot labeling, and do not provide standardized benchmarks for evaluating shot
transitions. To address these limitations, we introduce TalkCuts, a benchmark specifically designed
for multi-shot video generation, featuring over 10,000 unique identities to enable scalable evaluation.

Audio-driven Human Video Generation. In audio-driven video generation, prior works (Sun et al.,
2023; Zhang et al., 2023) mainly focus on achieving accurate lip synchronization and semantic
alignment with speech. To expand the generated region, Vlogger (Corona et al., 2024) synthesizes
half-body human videos. EchoMimicV2 (Meng et al., 2024) supports combinations of both audios
and selected facial landmarks and in the meantime enhances half-body details. Nevertheless, such
models are constrained to static background settings and are not equipped to effectively model or
generate dynamic backgrounds. Upon these models, Hallo3 (Cui et al., 2024b) adopts a two-stage
training framework that leverages LLMs to enrich textual descriptions, thereby enhancing the model’s
ability to comprehend scene context and generate coherent videos with dynamic backgrounds. Despite
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these advances, existing models remain incapable of generating coherent cross-shot and multi-shot
video sequences. To the best of our knowledge, our proposed baseline is the first to achieve structured
and coherent multi-shot speech video generation.

3 TalkCuts Dataset

We introduce TalkCuts, a large-scale human video dataset specifically designed for speech scenarios
such as TED talks and talkshows. TalkCuts provides high-resolution speech videos with varying
camera shots, and includes diverse modalities such as synchronized texts, audio, 2D keypoints,
3D SMPL-X parameters, and video descriptions, enabling comprehensive multimodal training and
evaluation for multi-shot speech video generation. This dataset provides a comprehensive benchmark
for future research, facilitating further improvements in human video generation.

3.1 Data Curation

Data Collection. We performed keyword searches targeting different speech scenarios on YouTube
to crawl copyright-free, high-resolution real-world videos. Manual filtering was applied to remove
low-quality or irrelevant content and only videos featuring a clearly visible human speaker with
corresponding speech audio were retained.

Data Filtering and 2D Keypoints Detection. We use PySceneDetect (Castellano) to segment each
video into multiple clips based on scene transitions. To ensure high-quality clips, we apply RTMDet
(Lyu et al., 2022) from MMDetection (Chen et al., 2019) for human detection. Clips are filtered out
if no human or multiple humans are detected, or if the bounding box is too small. For the remaining
clips, we apply DWPose (Yang et al., 2023b) for human pose estimation to obtain the COCO whole
body pose with 133 keypoints. Final filtering is based on the head keypoints confidence scores,
discarding clips with low scores for key facial points.

Data Statistics. Our dataset contains over 500 hours of video, with 164K clips and 57M frames,
featuring more than 10K unique speaker identities, all in 1080p resolution. Table 1 provides a
comprehensive comparison of our dataset with existing speech video datasets, highlighting its
scale, diversity, and rich annotations, including multi-camera-shots and 3D SMPL-X motion data.
Additionally, as shown in Fig. 1, our dataset captures a wide range of speech scenarios (e.g., TED
talk, stand-up comedy, presentation, lecture, interview, talkshow and so on), featuring diverse speaker
demographics (in terms of race, body type, and age) and various camera shots for each identity,
making it suitable for training and evaluating multi-shot speech video generation models.

3.2 Data Annotation

Camera Shots Definition and Annotation. In our paper, we classify camera shots into six types:
Close-Up (CU), Medium Close-Up (MCU), Medium Shot (MS), Medium Full Shot (MFS), Full
Shot (FS), and Wide Shot (WS) based on established cinematographic principles (shown in Figure
1), as outlined by (Brown, 2016). This classification allows for capturing various visual details,
from intimate facial expressions to contextualizing the subject within their environment. To annotate
each clip with a corresponding shot type, we analyze the 2D keypoints detected for each segment
and determine the visible body parts, such as head, torso, or full body, and then map them to the
appropriate shot category.

3D SMPL-X Annotation. We adopt the SMPL-X (Pavlakos et al., 2019) model to represent 3D
human motion. For a given T-frame video clip, the corresponding pose states P are represented as:
P = {Pf ,Pb,Ph, ζ, ϵ}, where Pf ∈ RT×3, Pb ∈ RT×63, and Ph ∈ RT×90 represent the jaw poses,
body poses, and hand poses, respectively. ζ ∈ RT×10 and ϵ ∈ RT×3 denote the facial expressions
and global translation. We initially use the state-of-the-art method SMPLer-X (Cai et al., 2024) to
estimate the whole-body motion sequence P , but observed limitations in the accuracy of face and
hand parameters, specifically Pf , ζ, and Ph. To address this, we refine the hand poses P ′

h using
HaMeR (Pavlakos et al., 2024), and improve the jaw poses P ′

f and facial expressions ζ ′ using
EMOCA (Danecek et al., 2022; Feng et al., 2021). We then combine the refined P ′

f , ζ ′, and P ′
h into

the original pose prediction P to obtain the final high-quality motion estimation P ′.

Video Textual Description Annotation. We use the latest Qwen2.5-VL (Bai et al., 2025) to generate
textual descriptions for each video. Each clip is uniformly sampled into 16 frames. For each clip, the
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VLM is prompted to summarize the content with a focus on: 1) Detailed descriptions of the speaker’s
head movements, hand gestures, and body posture changes; 2) The speaker’s facial expressions and
their variations (e.g., smiles, frowns, raised eyebrows), especially those conveying emotions and
delivery style; 3) Camera shot types (e.g., close-up, medium shot, full shot) and any visible camera
movements (e.g., zoom-in, pan left) and 4) Detailed descriptions of the environmental background.

Input Text Lines

Retrieval-based 
Augmentation 

Generation

Embedding 

Model

Corpus Database

SpeechGen

Motion
Instructions

Audio
Instructions

Audio

Reference Images

“Close Shot” “Medium Shot” “Full Shot”

Output Audio

+

Director
LLM

Camera
Instructions

[1]: Close Shot

[2]: Medium Shot

[3]: Full Shot

Output Videos

Video Clip 1

Video 
Diffusion 

Model

[1] What kind of impact did it 

make on you and on the lives of 

others around…

[2] I've preached at people for 

years, trying to get them to follow 

a strict set of rules that I wasn't 

even willing to abide by…

[3] As a pastor, I was trying my 

best to make a positive impact in 

the lives of others…

Top-k Few

Shot Examples

Video Clip 2

Video Clip 3

Figure 3: Pipeline of Orator. The DirectorLLM processes the input script to generate instructions
for camera shots, motion, and audio. These guide the multi-modal video generation model to produce
the final long-form speech video with natural transitions and gestures.

3.3 Orator: A Simple Baseline for Multi-Shot Speech Video Generation

Overall Framework. To address the task of multi-shot human speech video generation, we
introduce a simple baseline, intended to serve as a reference point for subsequent research. The
overall framework of Orator is shown in Figure 3, which consists of a DirectorLLM and a Multimodal
Video Generation Module. Given an input speech script S and a set of reference images {Ik}Kk=1
from different camera angles, our framework aims to automatically generate a long-form speech video
V with natural camera shot transitions. First, the DirectorLLM takes the speech script S as input and
generates camera shot instructions {T c

i }Ni=1, specifying when and how to transition between shots.
These instructions segment the script into N segments {Si}Ni=1, each corresponding to a distinct
shot. For each segment, the DirectorLLM additionally produces motion instructions {Tm

i }Ni=1 for the
speaker’s expression, gestures and body movements, along with audio instructions {T a

i }Ni=1 for vocal
delivery, such as tone, pace and emphasis.

These multi-modal instructions {T c
i }Ni=1, {Tm

i }Ni=1, and {T a
i }Ni=1 are then passed to the generation

module. The SpeechGen module processes each text segment Si with the audio instructions T a
i to

generate the vocal output Ai. Then, following the camera shot plan {T c
i }Ni=1, the VideoGen module

takes the generated speech audio {Ai}Ni=1 and the reference images {Ik}Kk=1, and incorporates the
motion instructions {Tm

i }Ni=1 to synthesize the final video V via a video diffusion model.

3.3.1 DirectorLLM: A Multi-Role Video Director

In this section, we describe the DirectorLLM’s role in orchestrating the key elements of video
generation: camera shot planning, speaker gesture control, and vocal delivery guidance.

LLM as Camera Shots Planner. The DirectorLLM analyzes the speech script S and generates
camera shot instructions {T c

i }Ni=1, which are then utilized to segment the script into N segments
{Si}Ni=1 corresponding to different camera shots. These shot instructions determine the optimal
camera angle transitions based on the narrative structure, emotional flow, and key emphasis points
within the speech. The LLM selects camera shots based on narrative structure, emotional intensity,
and key moments in the script, recommending shot transitions like “close-up" (close_up_shot)
during the emotional highlights and “wide shots" (wide_shot) for contextual emphasis. In our
approach to automatic shot division, we employ a Retrieval-Augmented Generation (RAG)-based
method (Guu et al., 2020; Lewis et al., 2020), leveraging GPT-4o (Achiam et al., 2023) to produce
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shot transitions {T c
i }Ni=1 for video content based on speech. The process begins by extracting

text embeddings E(S) from the input speech S using a text-embedding model. We then compute
the cosine similarity between the input embeddings E(S) and a pre-computed set of embeddings
{E(Sj)}Mj=1 from our training dataset, the Shot Division Corpus (SDC), which contains speech
segments paired with ground-truth shot transitions {T c

j }Mj=1. Using this, we retrieve the top-5 most
similar speech segments based on the cosine similarity. These retrieved examples {Sj}5j=1 and their
corresponding shot transitions {T c

j }5j=1, are used as few-shot prompts for GPT-4o (Achiam et al.,
2023). Given these contextually relevant examples, GPT-4o generates a shot transition plan {T c

i }Ni=1
for the input speech S. This approach enables the model to adapt its predictions by learning from
past similar examples, capturing the nuanced relationship between speech content and shot division.

LLM as Motion Instructor. The DirectorLLM also acts as a motion planner, guiding the speaker’s
body language, gestures, and movement on stage to enhance the delivery of the speech. For each
speech segment Si, the LLM motion instructions {Tm

i }Ni=1, tailored to the content and emotional tone
of the speech. For gestures, the LLM analyzes key points of emphasis and emotion to suggest actions
like “raise right hand" (gesture_raise_right_hand) or “open arms" (gesture_open_arms)
during moments of intensity. For more reflective segments, it might recommend subtler movements
like “fold hands" (gesture_fold_hands). In addition to gestures, the LLM provides instructions
for stage movement. Based on the flow of the speech, the LLM suggests where and when the speaker
should move on stage, suggesting instructions such as “move left" (move_left) or “step forward"
(step_forward) to maintain a dynamic presence.

LLM as Voice Delivery Instructor. DirectorLLM generates fine-grained vocal instructions, in-
cluding intonation, pitch, pace, and emotion, to guide speaker delivery and enhance engagement.
For each speech segment Si, it outputs vocal instructions T a

i
N
i=1 aligned with emotional tone and

context. Sentence-level control is achieved via prompt-based cues (e.g., tone_calm, pitch_low,
slow_pace), such as “calm tone and lower pitch" for introductions or “slow down for emphasis"
in critical moments. The LLM can also leverage token-based control for fine-grained adjustments
by inserting word-level emphasis, breathing, or laughter tokens. For instance, it can emphasize
key terms: “The <strong>only</strong> medication they have for gout kills your liver" or add
realism with [breath] or [laughter] tokens: “I’m like, I ain’t taking this... [breath] My foot said, you
better try it.". These multi-level controls allow the LLM to dynamically adapt vocal delivery to the
speech’s emotional rhythm, resulting in more expressive and natural speech-driven videos.

3.3.2 Multimodal Video Generation

To enable the automatic generation of long-form speech videos with natural camera transitions,
we propose a multimodal video generation pipeline composed of two main modules: SpeechGen,
responsible for generating synchronized speech audio, and VideoGen, responsible for synthesizing
the final video. Both modules operate under the guidance of instructions provided by DirectorLLM.

SpeechGen. The SpeechGen module is responsible for generating expressive speech audio based on
the vocal instructions provided by the DirectorLLM. After receiving the vocal instructions {T a

i }Ni=1,
which specify the tone, pitch, pace, and pauses for each speech segment Si, the SpeechGen module
processes the input text lines Si and generates corresponding audio output Ai. We utilize the text-
to-speech model CosyVoice (Du et al., 2024), which is instruction fine-tuned (Ji et al., 2024) for
enhanced controllability. The model allows for sentence-level adjustments such as emotion, speaking
rate, and pitch, as well as token-level controls to insert elements like laughter, breaths, and word
emphasis. The SpeechGen module seamlessly integrates these controls from the DirectorLLM,
with sentence-level prompts guiding the overall tone and pacing, and tokens like <strong> for
emphasis and [breath] for natural pauses. This combined approach ensures that the generated
audio synchronizes with the speech content and emotional flow.

VideoGen. The VideoGen module synthesizes human speech videos based on reference images
{Ik}Kk=1, speech audio {Ai}Ni=1 from the SpeechGen module, and motion instructions {Tm

i }Ni=1.
The objective is to generate visually coherent videos that accurately align with the speech audio while
maintaining the identity and visual consistency of the speaker across different camera shots.

To achieve this, we build upon CogVideoX Yang et al. (2024b), a powerful transformer-based
diffusion model that utilizes a 3D VAE to enhance video quality and ensure narrative coherence. By
leveraging this pretrained model, we significantly reduce both data requirements and computational
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costs. To enable audio-driven human video generation, we integrate the latest Hallo3 (Cui et al.,
2024b) architecture, a two-stage DiT-based framework. In the first stage, we enhance identity
preservation by injecting reference features into the video generation process. A T5-based text
encoder (Raffel et al., 2020) encodes the motion instructions Tm

i into text embeddings, which, along
with identity features extracted from the reference image using a 3D causal VAE, are processed by an
identity reference network. This network generates reference features, which are then injected into
the 3D attention blocks of the denoising network. Additionally, cross-attention layers take facical
embedding extracted from the reference image Iki

via InsightFace (DeepInsight, 2024) to further
refine identity consistency across frames. In the second stage, the model is fine-tuned for audio-driven
generation by conditioning the denoising network on Wav2Vec extracted (Schneider et al., 2019)
speech embeddings, which are fed into audio attention modules via cross attention. Finally, for each
video segment, we generate individual video clips Vi by combining the corresponding speech audio
Ai and the reference image Iki . The final long-form speech video V with different camera shots is
obtained by concatenating all the generated video clips {Vi}Ni=1.

While the pretrained models offer strong identity preservation and synchronization, they exhibit
limitations when applied to multi-shot settings, particularly in maintaining fine details in hand regions
and object interactions. Additionally, since the original model was primarily trained on portrait
scenarios and upper-body shots, their performance degrades significantly when handling half-body,
full-body, and side-angle views. To address these issues, we fine-tune the model with two stages on
our dataset, specifically adapting the model to speech videos with various camera views.

4 Experiments

To evaluate the effectiveness of the TalkCuts dataset, we apply the previously introduced Orator
baseline across two tasks: LLM-guided camera shot transitions (Sec. 4.1) and audio-driven human
video generation (Sec. 4.2). In addition, we provide results under a pose-guided video generation
setting (Sec. 4.3) to further illustrate the dataset’s utility. These experiments demonstrate that TalkCuts
supports both audio- and pose-driven speech video generation, highlighting its value for advancing
multi-shot human video synthesis.

4.1 LLM-guided Camera Shot Transitions
Table 2: Quantitative results of LLM-
guided camera shot transitions. Z.S.
refers to zershot , R.F. refers to random
fewshot and Tune refers to fine tune.
Best result is shown in bold and second
best in underline.

Method Accuracy↑ SMA↑ IOU↑

Embedding Model 35.60% 30.42% 35.60%

Llama 3.1 8B Z.S. 20.41% 23.72% 10.50%
Llama 3.1 8B R.F. 24.63% 44.01% 13.28%
Llama 3.1 8B RAG 21.65% 47.15% 15.33 %
Llama 3.1 8B Tune 79.09% 49.40% 30.06%

Qwen 2.5 7B Z.S 26.59% 11.81 % 19.79%
Qwen 2.5 7B RAG 46.16% 13.93% 26.39%

GPT-4o Z.S. 64.34% 48.34% 40.59%
GPT-4o R.F. 67.50% 58.12% 42.46%

GPT-4o RAG (Ours) 70.66% 64.06% 48.10%

Metrics. We assess shot planning accuracy using three
key metrics: IoU (Intersection over Union), measuring the
overlap between predicted and ground truth shot bound-
aries (higher IoU indicates better alignment); Accuracy,
reflecting the percentage of correctly predicted shot types;
and Shot Matching Accuracy (SMA), which evaluates how
consistently the predicted shot types match the ground
truth at specific time intervals.

Baselines. We compare several models: GPT-4o (Achiam
et al., 2023), LLaMA 3.1-8B-Instruct (Dubey et al., 2024),
Qwen 2.5 (Yang et al., 2024a) and Snowflake-Embed
(Merrick et al., 2024). For GPT-4o, we evaluate three
setups: RAG-fewshot, random-fewshot, and zeroshot. For
the RAG-fewshot setup, we utilized text-embedding-3-
small and FAISS (Douze et al., 2024) to retrieve the five
most similar examples from the training set to serve as few-
shot samples. In contrast, for the random-fewshot setup,
we randomly selected five examples from the training set.
LLaMA 3.1 (Dubey et al., 2024) and Qwen 2.5 (Yang et al., 2024a) are evaluated using similar
setups, with fine-tuning performed using LoRA (Hu et al., 2021). Snowflake-Embed, being an
embedding model, required the addition of a linear classification head to function as a classifier.

Result Analysis. We present the comparison between different baselines in Table 2. The embedding
model serves as a baseline and shows limited performance without contextual understanding. IoU and
SMA values are observed to be better indicators of alignment between the predicted and ground truth
shot boundaries compared to accuracy, as high accuracy may be due to overfitting, making Qwen a
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Figure 4: Qualitative Comparison of Human Video Generation Results. We compare our results
with baseline models across close-up, medium, and full-body shots. Artifacts in baseline outputs,
such as facial distortions, motion blur, mismatched hand gestures, and lip-sync inconsistencies, are
highlighted with arrows and bounding boxes. Our model produces more realistic results across all
shot types, maintaining visual fidelity and smoother transitions compared to the baselines.

suboptimal option. For SMA and IoU, both the Llama (Dubey et al., 2024) and GPT-4o (Achiam
et al., 2023) RAG models outperform random-fewshot, indicating that selecting relevant examples in
our data corpus improves shot planning performance. It is worth noting that the fine-tuned LLaMA
model does not achieve a higher IoU than the Embedding Model, but its SMA is significantly better.
This suggests that the fine-tuned Llama model has learned some contextual information. On the other
hand, GPT-4o (Achiam et al., 2023), although slightly inferior to the fine-tuned Llama (Dubey et al.,
2024) in terms of accuracy, shows much higher SMA and IoU, making it the final chosen model.

Table 3: Quantitative Comparison for audio-driven human speech video generation. Best result
is shown in bold and the second-best result is shown in underline.

Method Video Generation Quality Lip Sync. Consistency & Dynamic Degree
FID↓ FVD↓ PSNR ↑SSIM ↑LPIPS ↓Sync-C ↑Sync-D ↓Sub. Cons. ↑Back. Cons. ↑Dynamic Degree ↑Motion Smooth. ↑

SadTalker 159.78 926.01 12.46 0.356 0.572 4.57 8.89 91.72% 98.99% 19.42% 99.81%
EchoMimicV2177.221770.22 14.88 0.582 0.511 1.94 9.65 88.61% 93.25% 87.10% 99.30%

Hallo3 57.28 855.84 19.22 0.644 0.215 3.84 9.76 95.81% 94.33% 54.84% 99.45%

Ours 45.86 622.76 20.61 0.708 0.198 4.35 8.32 96.24% 95.42% 68.48% 99.63%

4.2 Audio-driven Human Video Generation

Metrics. We evaluate the generation quality across multiple dimensions. To assess overall video
quality, we compute FID (Heusel et al., 2017), FVD (Unterthiner et al., 2019b), PSNR, SSIM
(Wang et al., 2004), and LPIPS (Zhang et al., 2018). For audio-lip synchronization, we employ
SyncNet (Prajwal et al., 2020) to measure Sync-C and Sync-D scores. Additionally, we incorporate
VBench (Huang et al., 2024a,b) metrics for a more comprehensive video quality assessment. Subject
consistency is evaluated using DINO feature similarity (Caron et al., 2021), while background
consistency is measured via CLIP feature similarity (Radford et al., 2021). We further assess motion
smoothness by leveraging motion priors from a video frame interpolation model (Li et al., 2023) and
quantify the degree of motion dynamics using RAFT optical flow (Teed and Deng, 2020).

Baselines. We compare our trained model against recent state-of-the-art publicly available methods
for speech-driven human video generation, including SadTalker (Zhang et al., 2023), EchoMimicV2
(Meng et al., 2024), and Hallo3 (Cui et al., 2024b).

Evaluation Benchmark. We provide a test set of 50 video clips from our proposed TalkCuts dataset,
featuring diverse identities and varying camera shot angles for comprehensive evaluation.

Result Analysis. As shown in Table 3, our model, trained on the TalkCuts dataset with its diverse
range of identities and dynamic camera shots, achieves the highest scores in overall video generation
quality. For audio-lip synchronization, our model consistently ranks among the top, demonstrating
strong alignment between speech and visual articulation. Additionally, across VBench metrics,
including subject consistency, background stability, motion smoothness, and dynamic expressiveness,
our approach outperforms existing baselines in several key aspects, securing either the highest or
second-highest scores. These results highlight the effectiveness of our framework in generating
high-fidelity, temporally coherent, and expressive speech videos. Figure 4 presents a qualitative
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comparison with previous SOTA methods. We observe that existing models exhibit significant
limitations: EchoMimicV2 struggles with accurate lip synchronization, often producing misaligned
mouth movements. Hallo3 suffers from motion blur and poor hand region details. In contrast, our
method produces natural gestures, detailed hand renderings, and strong identity preservation.

4.3 Pose-guided Human Video Generation

Metrics. We assess the generation quality across three dimensions: 1) Single-frame image quality
using SSIM, PSNR, LPIPS, and FID; 2) Video quality measured by FVD (Unterthiner et al., 2019a);
3) Identity preservation using the ArcFace Distance (Deng et al., 2019).

Baselines. We benchmark different state-of-the-art methods, including MagicAnimate (Xu et al.,
2024b), MusePose (Tong et al., 2024), MimicMotion (Zhang et al., 2024a), Animate Anyone (Hu,
2024), and ControlNeXt (Peng et al., 2024). To further investigate the effectiveness of our proposed
TalkCuts dataset, we selected three SOTA methods: MusePose (Tong et al., 2024), Animate Anyone
(Hu, 2024), and ControlNeXt (Peng et al., 2024), and fine-tuned them on our dataset.

Table 4: Quantitative Comparison for pose-guided speech video generation. Best result is shown
in bold and the second-best result is shown in underline.

Method Video Generation Quality ID Preser.
SSIM↑ PSNR↑ LPIPS↓ FID↓ FVD↓ ArcFace Dis. ↓

MagicAnimate Xu et al. (2024b) 0.731 18.397 0.235 125.500 893.230 0.552
MimicMotion Zhang et al. (2024b) 0.759 20.572 0.168 81.820 702.410 0.435

Animate Anyone Hu (2024) 0.754 20.468 0.176 93.230 789.360 0.450
AnimateAnyone Tuned 0.843 24.576 0.114 57.410 456.842 0.344

MusePose Tong et al. (2024) 0.771 19.468 0.191 106.760 823.020 0.513
MusePose Tuned 0.785 20.933 0.164 87.000 1014.342 0.450

ControlNeXt Peng et al. (2024) 0.746 21.584 0.149 63.150 485.118 0.409
ControlNeXt Tuned 0.763 21.959 0.146 62.550 480.210 0.372

Result Analysis. The quantitative results are presented in Table 4. After fine-tuning on our proposed
TalkCuts dataset, all three selected pose-driven models exhibit significant improvements across all key
metrics, demonstrating the impact of high-quality training data. Notably, fine-tuned models achieve
more natural and detailed body movements, improved facial expression accuracy, and better hand
region synthesis under various camera perspectives. Additionally, we observe distinct performance
patterns across different models. Animate Anyone (Hu, 2024), a two-stage diffusion model that first
learns appearance and subsequently refines motion, retains detailed per-frame appearance well, but
suffers from noticeable temporal inconsistency, leading to unstable and jittery motion. On the other
hand, ControlNeXt (Peng et al., 2024), which builds upon SVD Blattmann et al. (2023), excels at
generating smooth motion, yet struggles with identity consistency, occasionally failing to maintain
facial fidelity across frames. While fine-tuning improved facial detail retention, discrepancies
between generated faces and reference images persist. Overall, these results highlight that while
current pose-guided generation methods benefit greatly from TalkCuts, they still face challenges in
temporal coherence, identity preservation, and high-fidelity motion synthesis across diverse camera
perspectives. These findings further emphasize the importance of developing stronger motion-aware
diffusion models for pose-driven human video generation.

5 Conclusion

In this paper, we introduced TalkCuts, a large-scale benchmark dataset designed to support research
in multi-shot speech video generation. TalkCuts provides over 500 hours of high-quality speech
videos with comprehensive annotations, including transcripts, audio, 2D keypoints, and 3D SMPL-X,
covering a wide range of identities and camera shots. To demonstrate the value of this benchmark,
we proposed a new generation task and developed Orator, a modular pipeline that leverages LLM-
based planning and multimodal generation. Through extensive experiments in both pose-guided and
audio-driven settings, we show that models trained on TalkCuts consistently outperform existing
baselines across multiple aspects, including shot coherence, motion quality, and identity preserva-
tion. We hope TalkCuts will serve as a foundation for future research in dynamic human video
synthesis.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction faithfully summarize the key contributions of
our work. These claims are consistently supported throughout the paper, including dataset
design, annotation pipelines, and experiments demonstrating enhanced generation quality
when training on TalkCuts.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this paper in the supplemental material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This question does not apply to our work.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper includes experimental settings and provides both the data and the
complete data processing pipeline code. Dataset is available on our website.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Due to the large volume of data, we provide data links along with the complete
code for data acquisition and preprocessing. A large subset of annotated data are also
provided, please check out website.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In each subsection of the Experiments section, we detail the parameter settings
of the algorithms used, as well as the training and testing datasets employed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our work primarily focuses on the construction of a new dataset and the
demonstration of its utility through baseline models. As our experiments are intended to
showcase feasibility rather than establish fine-grained performance differences, statistical
significance analysis is not applicable in this context.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include training details for the baseline video diffusion model in the
supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and ensured that our work
complies with its principles while preserving anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impacts in the supplemental material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We dicuss the safeguards in the supplemental material.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use existing videos from YouTube for research purposes in accordance
with YouTube’s Terms of Service. We do not redistribute any raw video data. For all
annotation and processing components, we use publicly available tools (e.g., OpenPose,
SMPLer-X, HAMER, EMOCA) under MIT or similar permissive licenses, and we properly
cite and credit these tools in the paper and README. All reused assets are restricted to
non-commercial academic use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

18



• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The TalkCuts dataset is documented with a comprehensive top-level README
that outlines the dataset structure, available modalities, usage instructions, and license.
Each component (e.g., data processing, annotation tools) is accompanied by dedicated
README files describing their purpose and usage. We also provide scripts and guidance
for reproducing annotations and downloading source videos.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our dataset is constructed from publicly available videos on YouTube, and we
did not conduct any crowdsourcing or research involving human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: Our work does not involve study participants or private user data. All data are
sourced from publicly available YouTube videos under research-use-only conditions. No
IRB approval was required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Our method includes a central component called DirectorLLM, a language
model-based module that generates shot-level instructions for camera transitions, speaker
gestures, and vocal delivery. This usage is detailed in the methodology section of the paper,
and plays a key role in guiding the multimodal video generation pipeline.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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