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ABSTRACT

The design of novel materials is fundamentally constrained by the immense chem-
ical space, which renders traditional enumeration-screening methodology com-
putationally prohibitive and inefficient. This paper introduces a paradigm shift
towards insight-exploration-validation, enabling an intelligent and evolution-
ary exploration of material design pathways. We actualize this paradigm through
MatEvolve, a synergistic symbolic–LLM agent that reconceptualizes material de-
sign as a closed-loop, programmatic evolution task. Central to MatEvolve is a
novel symbolic formalism, Material Edit Language, which empowers the agent to
programmatically take chemical operations. The exploration trajectory is directed
by a multifaceted guidance strategy, comprising a dynamic knowledge injection
mechanism and a two-stage exploration strategy that balances broad exploration
and deep optimization. Furthermore, a multi-objective fitness landscape ensures
directional and efficient navigational guidance. These integrated strategies con-
tribute to a 32.2% improvement over direct material structure modification. Cru-
cially, comparisons demonstrate that our insight-exploration-validation paradigm
outperforms the traditional enumeration-screening approach by 33.6%, highlight-
ing its superior efficacy in navigating vast design spaces.

1 INTRODUCTION

The design and application of materials have always been a core driving force for the advancement
of human civilization, positioning materials science as a cornerstone. Traditional materials research,
which relies heavily on trial-and-error wet-lab experiments, is flawed by long cycles and high costs.
Recently, deep learning has catalyzed a paradigm shift. The development of tools such as universal
potential function prediction models has significantly accelerated materials screening, leading to a
enumeration-screening paradigm. Merchant et al. (2023), based on graph neural networks, has
efficiently predicted material stability, identifying millions of potential new crystals. Zeni et al.
(2023) has enabled the de novo design of new materials with specific symmetries and chemical
compositions through diffusion models, while Yang et al. (2024) provides a powerful tool for energy
prediction with conditionally near-first-principles accuracy.

Despite its successes, the enumeration-screening paradigm faces three core limitations. First, the
combinatorial explosion of elements, sites, and compositions creates a vast chemical space, which
leads to algorithms getting stuck in local optima and poses a trade-off between predictive accuracy
and exploration completeness. Second, its open-loop, funnel-like process lacks dynamic feedback
for strategy adjustment, which allows errors to accumulate and prevents the system from correcting
its exploration direction. Third, its reliance on scattered knowledge and expert heuristics restricts its
generalization ability across different material systems. In contrast, work like Novikov et al. (2025)
demonstrates that large language model (LLM) gudied evolutionary approaches can solve complex
optimization problems, offering a new methodological blueprint for materials design.

In this paper, we propose a novel closed-loop paradigm: insight-exploration-validation. Unlike
static enumeration-screening, as shown in Fig. 1, this paradigm injects symbolic insights into an
LLM-based agent to conduct a more efficient and chemically intuitive exploration. Each explo-
ration step is instantly evaluated by multi-objective performance metrics, and the results serve as
feedback to guide the agent’s subsequent decisions. This creates a closed-loop optimization mech-
anism, enabling the exploration process to dynamically converge on high-performance regions. To
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implement this paradigm, we develop a LLM-friendly symbolic system, Material Editing Language
(MEL), which maps comprehensive atom-level operations into code sequences that the LLM-based
agent can fully parse and operate.

Building on this, we develop MatEvolve, a synergistic symbolic–LLM agent framework for materi-
als design. MatEvolve consists of two core components: Material Editing Base (MEB) and Material
Evolution Engine (MEE). MEB is a structured expert knowledge base which is constructed through
an automated pipeline where LLM extracts material modification strategies from high-impact lit-
erature and converts them into the symbolic MEL format. During the design process, MatEvolve
dynamically selects relevant knowledge from MEB as insights to guide the agent’s optimization
pathways. MEE executes a insight–exploration–validation closed-loop. To efficiently navigate in
the vast chemical space, the engine employs a two-stage exploration strategy, beginning with a
breadth-first exploration to cover diverse chemical spaces, and then shifting to a depth-first explo-
ration to accelerate convergence. Newly generated material candidates are instantly evaluated by
surrogate models across general, multidimensional performance dimensions. The evaluation results
are integrated as feedback to continuously optimize MatEvolve’s exploration strategy.

Applied to solid-state electrolytes and electrode materials, MatEvolve not only reproduces and ex-
tends known optimization pathways (Zhou et al., 2019) which can be found in Appendix. F, but also
uncovers chemically plausible, interpretable candidates at a fraction of the computational cost. More
importantly, as a generalizable framework, it offers a methodological blueprint for LLM-guided, dy-
namic, closed-loop materials design beyond current expert-guided, static, open-loop enumeration-
screening approaches.
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evolution_path = [

    "EXPAND(1,1,1)",

    "MOD(P->Si, P site, 4->3)",

    "MOD(S->Cl, S site, 0->1)",

    …
    "MOD(O->S, O site, 2->3)",

    "ADD(Li, 1)"

   ]

Figure 1: Comparison of two paradiams: (a) Enumeration-screening begins by generating mil-
lions of candidate molecules and then uses a funnel-like process, from fast deep learning models to
precise DFT computations and finally wet-lab experiments, to filter them and identify the best mate-
rial. (b) Insight-evaluation-validation starts with initial molecules and uses agents to apply targeted
modifications. Guided by a knowledge base and a scoring system, the agent continuously refines
materials in a feedback loop, evolving them towards a superior material.

In summary, the main contributions of this study are as follows:

• We propose an insight-exploration-validation paradigm and its accompanying MEL, which
overcome the expert-guided, static, open-loop limitations of the enumeration-screening
paradigm.

• We develop the MatEvolve framework and significantly enhance the efficiency and success
rate through dynamic knowledge injection from MEB and a two-stage exploration strategy
embedded in MEE which balances the breadth and depth of material design.

• Our experiments demonstrate the broad applicability and high performance of MatEvolve
in designing solid-state electrolytes and electrode materials, achieving a performance im-
provement of 32.2% over direct modification of material structure and exhibiting 33.6%
greater efficacy than enumeration-screening methods.
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2 RELATED WORKS

2.1 MATERIALS DESIGN

Computational methods have advanced materials discovery, yet often rely on linear, open-loop work-
flows. For instance, Zhang et al. (2019) pioneered an unsupervised learning scheme using modified
X-ray diffraction patterns to screen for solid-state ion conductors like LLZO and LGPS in data-
scarce scenarios. Subsequently, Choi et al. (2021) employed active learning to enhance the accuracy
of machine learning models for predicting the mechanical properties of solid-state electrolytes. More
recently, Chen et al. (2024) demonstrated a massive high-throughput screening pipeline, culminat-
ing in the experimental synthesis of Na2LiYCl6 and successfully closing the prediction-synthesis
loop. Jia et al. (2024) introduces a language-based framework enabling effective zero-shot design
in low-data regimes. Despite these advancements, these approaches essentially remain open-loop
workflows, lacking the dynamic, knowledge-guided feedback required for more efficient and adap-
tive exploration.

2.2 LLM-BASED SCIENTIFIC AGENTS

Recent advancements in LLM have catalyzed sophisticated AI agents to accelerate scientific dis-
covery(Bai et al., 2025; Wei et al., 2025; Hu et al., 2025). One strategy involves integrating expert
tools: Bran et al. (2023); Kang & Kim (2024) enhance LLM performance in chemistry for tasks like
synthesis and drug discovery, while Ruan et al. (2024) automates the entire synthesis workflow us-
ing six specialized GPT-4 agents. Another approach emulates the scientific process itself; Gottweis
et al. (2025) system collaboratively generates, critiques, and refines hypotheses. Concurrently, other
projects build foundational capabilities: Chai et al. (2025) creates an agent architecture for diffi-
cult general scientific benchmarks, and AlphaEvolve, an evolutionary agent, relies on an automated
evaluator to guide LLM-driven code mutations. While these agents excel with fixed tools or general
heuristics, they lack a symbolic framework for programmatic material design. MatEvolve addresses
this gap by introducing MEL and MEB, enabling a efficient exploration of chemical space.
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Exp 1 Exp 2 Exp 3

…Context

Window

Form. Elec. Win. Ioni. Cond. High-T. H2O O2

MatScore

Dynamic Knowledge Injection Two-Stage Exploration

Breadth-Frist Exploration Depth-Frist Exploration

…

Score(t)= W1(t)
+ W2(t) + W3(t) + W4(t) + W5(t) + W6(t)

papers 

screening
knowledge 

extraction

symbolic

encoding

quality 

validation

The Construction of MEB 

evolution_path2 = [

    "EXPAND(1,1,1)",

    "MOD(P->Si, P site, 4->3)",

    "MOD(S->Cl, S site, 0->1)",

    …
    "MOD(O->S, O site, 2->3)",

    "ADD(Li, 1)"

   ]
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    "EXPAND(2,1,2)",

    "MOD(N->C, N site, 2->1)",

    "ADD(Na, 2)",

    "MOD(F->O, F site, 1->2)",

    "MOD(Si->Al, Si site, 4->3)",

    ...

   ]

evolution_path3 = [

    "EXPAND(1,2,1)",

    "ADD(K, 1)",

    "MOD(Cl->S, Cl site, 1->2)",

    "MOD(Fe->Co, Fe site, 3->2)",

    ...

    "MOD(Li->Be, Li site, 0->1)",

   ]
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Figure 2: Overall architecture: MatEvolve framework op-
erates on an iterative loop where the core MEE employs
an AI agent to write MEL code, proposing precise material
modifications. Guided by the MEB knowledge base, each
new candidate is assessed by the MatScore fitness function,
providing feedback to drive the next cycle of exploration.

MatEvolve is a synergistic sym-
bolic–LLM framework that recon-
ceptualizes the process of materials
design. It replaces the conventional
enumeration-screening method with
an intelligent insight-exploration-
validation paradigm. As depicted in
Fig. 2, MatEvolve consists of three
integral components: Materials Edit
Language (MEL), Materials Edit
Base (MEB), and Materials Edit
Engine (MEE).

MEL: MEL is a domain-specific
symbolic language designed to for-
malize material design by encoding
chemical operations (e.g. substitu-
tion, doping) into a programmable
format. This formalism effectively codifies and makes explicit the heuristics prevalent in expert-
guided materials design.

MEB: A structured knowledge base contains proven modification strategies from scientific litera-
ture, all represented in MEL. It provides the agent with validated insights to guide its exploration.

MEE: MEE is the core operational component that orchestrates the design process. It implements
a closed-loop insight–exploration–validation to iteratively optimize material candidates. Guided
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by MEB and chemical principles, the agent writes MEL code to propose syntactically valid ma-
terial modifications. A two-stage exploration strategy is then employed, which transitions from a
breadth-first exploration of diverse chemical spaces to an intensive, depth-first exploration within
high-potential regions. Each resulting candidate is scored by MatScore, a dynamic fitness func-
tion that aggregates multi-objective metrics, including ionic conductivity, thermodynamic stability,
and high-temperature stability. This score provides immediate feedback to guide MatEvolve’s next
exploration step, effectively closing the optimization loop.

3.2 MATERIALS EDIT LANGUAGE

MEL

EXCHANGE

EXPAND

ADD

DEL

MOD(Li → J, Li site, …) EXPAND(2, 1, 1)

ADD(Li, 1) MOD(P → N, P site, …)

Figure 3: MEL: MEL achieves the precise modi-
fication of crystal structures using four fundamen-
tal operations: ADD, EXPAND, and the MOD
operator, which performs both EXCHANGE and
DEL.

Current atomic-level material doping modifica-
tions rely on operating directly on Crystallo-
graphic Information Files (CIFs), as modifica-
tions to chemical formulas cannot capture site-
specific atomic occupancy. However, direct
CIF manipulation is cumbersome and error-
prone due to its data verbosity and complex
symmetry constraints.

To address this challenge, as shown in Fig. 3,
we introduce the Composition Modification
(MOD) operation for the targeted, rule-based
manipulation of CIFs. Its core functionalities
include: 1) substitution of elemental species at
designated crystallographic sites; 2) creation of
vacancies to precisely control their concentra-
tion within the material; 3) automated adjust-
ment of stoichiometry to maintain charge neu-
trality, tracking of all compositional changes.

The MOD operation circumvents the complex-
ities of direct CIF file manipulation, enabling precise compositional control when transforming a
pristine material into a target doped structure. We further leverage the fact that the Wyckoff sites
provide an efficient method for characterizing atomic coordinates(Wyckoff, 1922; Goodall et al.,
2022; Song et al., 2025). As all atoms on an equivalent Wyckoff site are related by symmetry
operations, their positions can be derived from a single representative, significantly reducing data
redundancy. Building on this principle, we propose the Material String representation, which con-
denses the crystal structure into a concise format: Space group — Lattice — (Element – Wyckoff
[Fractional Coordinate]) Sequence. This representation preserves all core structural information,
including space group symmetry, lattice parameters, and atomic site occupancies. It also provides
an unambiguous textual description of the crystal structure, laying a robust foundation for synergy
with the MOD operation and for efficient interpretation by machine learning models.

3.3 MATERIALS EDIT BASE

3.3.1 THE CONSTRUCTION OF MEB

LLMs possess strong language understanding and generation capabilities in general domains but
face two core limitations in vertical materials domains like solid-state electrolytes: first, a scarcity
of domain knowledge, as pre-training data struggles to cover fine-grained materials design rules
(e.g., dopant element selection, ratio control); second, high randomness in the generation process,
prone to producing operation schemes that violate chemical principles without domain knowledge
constraints. To address these issues, this study constructs the Materials Edit Base (MEB), using
the MEL symbolic system as a unified carrier to achieve structured integration and precise reuse of
domain knowledge, providing targeted knowledge guidance for the MEE evolution engine.

The construction of MEB follows a closed-loop process of ”data source screening → knowledge ex-
traction → symbolic encoding → quality validation,” ensuring the authority, accuracy and usability
of the knowledge base. Focusing on the design of solid-state electrolyte materials, it systematically
collects approximately 2000 academic papers published in the last decade in top tier journals such as
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Advanced Materials, Energy & Environmental Science, and Chemistry of Materials. Next, a hybrid
”automated initial screening + manual refinement” knowledge extraction scheme is designed to bal-
ance efficiency and precision, batch-extracting text snippets associating ”operations–performance”
from the papers. Finally, using the MEL symbolic system as a unified format, the extracted domain
knowledge is converted into structured code parsable by LLMs.

Validation is performed on the symbolically encoded knowledge entries to ensure that the MEL
code can be parsed by the decoder without grammatical errors. This results in approximately 200
high-quality domain knowledge entries, covering core design scenarios such as ”dopant element
selection,” ”ratio optimization,” ”vacancy control,” and ”lattice parameter adjustment.”

3.3.2 DYNAMIC KNOWLEDGE INJECTION

…
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…
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Figure 4: Dynamic knowledge injection: An
adaptive mechanism that accelerates material op-
timization by identifying the most critical perfor-
mance bottleneck at each step and injecting tar-
geted knowledge to guide the agent in resolving
it.

A static knowledge injection approach, utiliz-
ing a initial selected subset of MEB, was found
to be suboptimal as it fails to adapt to the shift-
ing performance bottlenecks of a material can-
didate throughout its exploration trajectory. As
shown in Fig. 4, We implement a Dynamic
Knowledge Injection mechanism that provides
adaptive, context-aware guidance to the agent.
This mechanism operates by first identifying
the most deficient performance metric of the
current leading candidate. Subsequently, it re-
trieves a curated, task-relevant subset of the
top 30 knowledge entries from MEB to ensure
the agent’s efforts are precisely targeted at the
most critical aspects of the design challenge,
significantly accelerating convergence towards
a multi-objective optimum.

3.4 MATERIALS EDIT ENGINE

3.4.1 MATSCORE

To guide the design process, we developed MatScore, a unified multi-objective fitness function.
MatScore provides rapid, quantitative feedback for the exploration by aggregating critical perfor-
mance metrics.

Table 1: Material performance evaluation metrics reference.

Metric Meaning

Sval Proportion of valid CIF files

Sform Thermodynamic stability score based on Mattersim potential
Selec Electrochemical window stability score
Sion Li-ion transport capability score
ShighT Thermodynamic stability score at specified high temperatures
SH2O Resistance to decomposition in water environments
SO2 Resistance to oxidation/decomposition in oxygen environments
SSSE Composite score for electrolyte performance

Selastic Material deformation resistance and mechanical strength score
Sbarrier Ease of Li-ion diffusion score
Sstab Structural and performance stability during delithiation
Sgap Suitability of electronic bandgap for battery applications
SCathode Composite score for cathode performance

Table 1 outlines key metrics to assess battery material performance. These metrics collectively
evaluate structural, electrochemical, and mechanical properties of a material, guiding the selection
and optimization of materials for enhanced battery performance and stability. All scores are z-
normalized, sigmoid-mapped to [0,1], and integrated for a comprehensive material assessment.
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SSSE =
1

6

∑
i

1

1 + e−Si
where i ∈ {form, elec, ion, highT,H2O,O2} (1)

SCathode =
1

4

∑
i

1

1 + e−Si
where i ∈ {elastic, stab, gap, barrier} (2)

3.4.2 EVOLUTION STRATEGY

To navigate the vast chemical space effectively, we designed a two-stage exploration strategy that
explicitly balances global exploration with local exploitation. This approach addresses challenges
where initial and broad modifications yield rapid diversification but often lead to premature conver-
gence on performance plateaus.An overview is shown in Fig. 5.

Two-Stage

Exploration

Breadth-Frist Exploration

Depth-Frist Exploration

Material T

9 3

7 6

5 8

Adaptive

Steering

Figure 5: Evolution strategy: A two-
stage exploration, balancing broad ex-
ploration with deep refinement, which is
adaptively steered by the current mate-
rial’s performance bottleneck.

The initial Breadth-First exploration phase is designed to
rapidly map the viable design space. This is achieved
by employing high-variance, stochastic MEL operators,
such as random elemental substitutions and broad-range
adjustments to doping ratios. The objective is not to pin-
point a local optimum, but to efficiently discover diverse
and structurally stable material families, thereby pruning
vast, non-viable regions of the exploration space and es-
tablishing promising territories for further investigation.
Upon identifying these promising subspaces, the strategy
transitions to a Depth-First Exploration phase. The focus
shifts to targeted refinement using fine-grained, determin-
istic MEL operators, like precise elemental tuning and
incremental adjustments to composition. This approach
minimizes redundant computation and accelerates con-
vergence toward superior material configurations within
the identified high-potential regions.

To steer this process, we implement an adaptive steering mechanism. At each exploration step, the
system analyzes the normalized components of the MatScore to identify the primary performance
bottleneck of the current leading candidate. This information dynamically directs the agent’s gen-
erative focus, prompting it to prioritize operations that specifically address this weakness. This dy-
namic re-focusing ensures a balanced, multi-objective improvement path, creating a highly efficient
and responsive closed-loop optimization process.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Our implementation centers on LLM-generated ”SEARCH/REPLACE diff” targeting the evolution
path sequence, using custom MEL operators (EXPAND, MOD, ADD) under stoichiometric/Wyck-
off constraints—unlike AlphaEvolve, our implementation integrates a symbolic system for the ma-
terials domain, extra knowledge injection, and dynamic exploration.

We uniformly use GPT-3.5 (Ouyang et al., 2022) Turbo as the main LLM for our experiments.
During Breadth-Frist Exploration, temperature is set to 0.8 and top-p=0.9 to enhance operational
diversity, supporting broad exploration; Depth-Frist Exploration reduces temperature and top-p to
0.3 to improve generation determinism, facilitating precise convergence.

The evolutionary process adopts an island-based population structure with archive retention to reg-
ulate exploration. For Breadth-First Exploration, we set the population size to 200, archive size
to 30, and number of islands to 6, with an elite ratio of 0.05 and an exploitation ratio of 0.3, en-
abling efficient exploration of large chemical spaces and parallel mining of diverse candidates. In
contrast, Depth-First Exploration adjusts these parameters to a population size of 150, archive size
of 20, and 3 islands, with an elite ratio of 0.1 and an exploitation ratio of 0.8, thereby focusing on
fine-grained tuning in high-potential regions and achieving steady performance improvements.
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We validate MatEvolve’s effectiveness on two prominent, well-established tasks: solid-state elec-
trolytes (SSE) using representative Li6PS5Cl (focusing on MatScore core properties) and cathode
materials using commercial precursors LiCoO2 and LiFePO4 (emphasizing energy-density-related
properties and structural stability). Both tasks reuse the same evolution framework and scoring
strategy for reproducibility and cross-system comparability.

4.2 COMPARATIVE EXPERIMENTS

4.2.1 COMPARISON WITH EXISTING METHODS

To assess the advantage of MatEvolve over hierarchical screening pipelines, we instantiate a baseline
that combines local enumeration with hierarchical screening using the surrogate models in MatScore
(full configuration in Appendix A) and we also compare against LLMatDesign (Jia et al., 2024). As
shown in Table 2, MatEvolve improves the combined score by 15.6% over the screening baseline.
Compared to LLMatDesign, MatEvolve improves the combined score by 19.9% and yields a 57.8%
increase in the fraction of usable structures. These gains stem from MatEvolve’s finer-grained sym-
bolic interface (MEL) and its more flexible knowledge-injection (MEB) and exploration strategy
(MEE).

Table 2: Comparative experiment: In the solid-state electrolyte (SSE) design task, Sval and SSSE
are the most critical metrics and also the key focus of this task. Results show that our proposed
MatEvolve framework achieves the optimal performance, with the highest values in both Sval and
SSSE, significantly outperforming the traditional Screening method and LLMatDesign.

Config Object Sval SSSE Sform Selec Sion ShighT SH2O SO2

Screening CIF – 0.464 11.094 0.224 -4.662 10.701 -0.316 -1.611

LLMatDesign Formula 29.5 0.421 10.136 0.043 -4.479 10.951 -0.141 -1.577

None CIF 38.2 0.469 9.919 0.089 -4.004 9.934 -0.042 -1.582
+MEL MOD 87.2 0.505 9.083 0.079 -4.123 9.098 -0.043 -1.187
+MEL+MEE MOD 86.1 0.547 9.079 0.415 -4.676 9.094 -0.111 -0.748
MatEvolve MOD 87.3 0.620 9.218 0.426 -4.663 9.214 -0.535 -0.736

4.2.2 COMPARISON BETWEEN LLMS

Figure 6: SSSE comparison between LLMs:
Evaluate various closed-source and open-source
LLMs on the SSE design task.Notably, the smaller
GPT-3.5 Turbo performs strongly in our Mat-
Evolve framework, indicating domain-specific
knowledge is more critical than model scale.

To evaluate the performance of different LLMs
on materials deisgn, we compare a range
of closed-source models, e.g., GPT, Gem-
ini (Team et al., 2023), Claude, and open-
source models, e.g., DeepSeek (Liu et al.,
2024), Qwen (Yang et al., 2025; Team, 2024),
GLM (Zeng et al., 2025), on the SSE design
task. As shown in Fig. 6 , larger models such
as GPT-5, Grok-4, and Qwen-3-MAX achieve
combined scores above 0.6, indicating rela-
tively strong performance. By contrast, mod-
els such as Gemini2.5-Flash, Claude-3.7 and
DeepSeek-V3.1 show relatively weaker results
on this task, suggesting that domain-specific
knowledge plays a more decisive role than gen-
eral coding capability. Notably, within our Mat-
Evolve framework, the smaller GPT-3.5 Turbo
(released in 2023) achieves unexpectedly strong performance, even outperforming GPT-5 in our
evaluation. This observation indicates that, once a model has sufficient instruction-following capac-
ity, specialized domain knowledge becomes more critical than scale-driven common-sense knowl-
edge or programming ability for advancing materials design.
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4.3 ABLATION STUDY

In this subsection, we ablate MatEvolve’s three core components—MEL, MEB, and MEE—using
a greedy protocol: (i) compare MEL against prior works and fix the best as the baseline; (ii) ablate
MEB on this baseline and retain its best configuration; and (iii) ablate MEE on the resulting setup.

4.3.1 ABLATION ON MEL

Figure 7: Performance across symbolic sys-
tems:By comparing the final results of our pro-
posed MEL with the two baseline methods,
MEL achieves superior performance, demonstrat-
ing that incorporating operators and Wyckoff po-
sitions can further enhance the effectiveness.

The symbolic system underpins programmatic
material editing. To assess the effectiveness
of MEL, we design two baselines: Baseline
1, adapted from LLMMatDesign, restricts ed-
its to formula-level doping; Baseline 2 directly
prompts the LLM to modify CIF text. Fig. 7 re-
ports average validity (Sval) and overall perfor-
mance (SSSE) under the setting without knowl-
edge injection, two-stage exploration, or dy-
namic weighting.

MEL substantially outperforms Baseline 1 in
both validity and combined score, showing that
atom-level operations enable finer-grained and
more reliable improvements. Compared with
Baseline 2, MEL yields higher validity while
efficiently representing edit operations, reduc-
ing context length and hallucination risk. In-
corporating Wyckoff positions further enhances both metrics, indicating that precise positional in-
formation is essential for guiding LLMs to design doping schemes aligned with chemical principles.

4.3.2 ABLATION ON MEB

Figure 8: Performance comparison of differ-
ent knowledge injection: Compare no injec-
tion, MEB-static, MEB-dynamic, and GPT-5 mini
(stronger LLM). Both MEB variants outperform
no injection, and MEB-dynamic achieves the
highest scores ( outperforming even GPT-5 mini)
validating its context-aware advantage.

To assess the role of MEB, we compare knowl-
edge injection strategies in Fig. 8. None uses
MEL without knowledge; MEB-static adds 30
fixed prior entries; MEB-dynamic adaptively
selects knowledge during optimization. Both
injection strategies outperform the baseline,
confirming the importance of expert knowl-
edge. MEB-dynamic achieves the best final
results, showing that on-demand knowledge se-
lection is more effective than fixed injection.

We further include GPT-5 mini under no in-
jection as a stronger baseline. Compared with
GPT-3.5 Turbo (None), GPT-5 mini improves
more quickly in early stages and ultimately
matches MEB-static, suggesting that larger
LLMs act as implicit static knowledge injec-
tion via richer pretraining. Nonetheless, MEB-
dynamic—with explicit, context-dependent knowledge injection—achieves the highest scores.

4.3.3 ABLATION ON MEE

Fig. 9a shows the evolution of the combined score under different exploration strategies. Single-
Stage applies only Breadth-First Exploration; Two-Stage switches to Depth-First Exploration after
step 1500; and Two-Stage+Weight further introduces dynamic weighting. Two-Stage achieves
higher final scores than Single-Stage, while Two-Stage+Weight accelerates progress and yields
the best overall performance. Fig. 9b further illustrates how optimization focus shifts over time:
early iterations emphasize performance-related metrics (ionic conductivity, electrochemical win-
dow), while later stages prioritize stability (water and high-temperature stability). This adaptive

8
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(a) SSSE of different evolution strategy. (b) Focused metrics during dynamic evolution.

Figure 9: Ablation on MEE. Two-stage search with dynamic weighting yields the best overall per-
formance, as MatEvolve adaptively balances performance and stability objectives across steps.

reweighting demonstrates the effectiveness of dynamic multi-objective optimization in guiding the
exploration process.

4.4 EXTENDING MATEVOLVE TO CATHODE MATERIALS

Cathode materials critically determine battery energy density, cycle life, and safety. To assess the
generalizability of MatEvolve beyond solid-state electrolytes, we extend the framework to cathode
materials design, initializing from two widely deployed commercial systems: LiFePO4 (LFP) and
LiCoO2 (LCO).

(a) Evolutionary trajectories for LFP-based cathodes. (b) Evolutionary trajectories for LCO-based cathodes.

Figure 10: MatEvolve on cathode materials. Evolution pathways and performance profiles for
LFP- and LCO-initialized candidates under MatEvolve; both systems exhibit consistent gains in the
combined score, supporting the framework’s generalizability in cathode design.

As shown in Fig. 10a, LFP-based candidates improve under multi-element co-doping (rare-earth,
transition-metal, anionic): mechanical strength +17% and combined score from 0.67 to 0.72 (+0.05).
For LCO (Fig. 10b), MatEvolve addresses high Li+ diffusion barriers and a suboptimal band gap via
Er/Zr dopants and Cl anions, raising the combined score from 0.54 to 0.67 (+0.12). See Appendix E
for experimental setup and full numerical results.

5 CONCLUSION

In this work, we presented MatEvolve, a symbolic–LLM evolutionary agent that reframes materi-
als design as a closed-loop insight–exploration–validation process. At its core, the Material Edit
Language (MEL) enables atom-level symbolic operations, while the Material Editing Base (MEB)
provides dynamic knowledge injection and the Material Evolution Engine (MEE) implements two-
stage dynamic exploration. Applied to solid-state electrolytes and cathode materials, MatEvolve not
only reproduces known pathways but also uncovers novel, chemically plausible candidates, achiev-
ing substantial gains over enumeration–screening methods. In the future, we will extend MatEvolve
to parent-material discovery and synthesis-protocol design, and ultimately integrate these into a uni-
fied end-to-end materials scientific agent to accelerate the pipeline from candidate generation to
practical preparation.

9
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ETHICS STATEMENT

This work introduces MatEvolve, a symbolic–LLM evolutionary agent for materials design, aiming
to accelerate the discovery of sustainable and high-performance materials. Our experiments rely on
publicly available LLMs and datasets, without involving human subjects or private data, so privacy
concerns are minimal. While the framework demonstrates significant scientific benefits, we ac-
knowledge risks of potential misuse in designing harmful or hazardous compounds; to mitigate this,
we emphasize that outputs must be experimentally validated and restrict release of hazardous gen-
erative capabilities. We commit to transparency and reproducibility through detailed documentation
and code release (subject to safety constraints), and to fair attribution of prior work. Overall, MatE-
volve highlights a paradigm shift in materials design while remaining mindful of safety, responsible
deployment, and its broader societal impact.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, our complete experimental configurations are provided in the supple-
mentary material, including details of numeration-screening baseline (Appendix A), MEL details
(Appendix B), MEB details (Appendix C), MEE details (Appendix D), details of cathode material
design (Appendix E), and more visualization cases (Appendix F), are thoroughly documented.
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A DETAILS OF NUMERATION-SCREENING BASELINE

We instantiate the traditional enumeration–screening baseline as a rational-design, funnel-style
pipeline that first generates a very large pool of candidates and then filters them through staged
thresholds. Starting from representative parent structures in the Li–P–S–Cl system, we construct
approximately 4 × 105 candidates using special quasirandom structures (SQS): expert-curated
whitelists bound the allowable dopants and their ranges on P and S sublattices; supercells are
chosen to ensure integer occupancies, charge-balanced stoichiometry, and statistically disordered
occupation on equivalent Wyckoff sites; vacancy cases are included with explicit compositional
compensation. All structures are formula-normalized, de-duplicated, and validated for CIF parsabil-
ity before screening. Screening proceeds hierarchically with the same surrogate suite as our main
study to ensure comparability: (i) a fast sanity layer removes structures that fail parsing, violate
elemental/dopant-set limits or per-site/total dopant caps, exhibit obvious valence inconsistencies,
or break minimum interatomic-distance constraints; (ii) a primary-threshold layer evaluates the
Mattersim-based formation-energy score Sform, electrochemical stability-window score Selec (phase-
diagram chemical-potential domain), ionic-conductivity score Sion (multimodal DL predictor), high-
temperature stability score ShighT (free-energy correction via mixing entropy), and environmental
stabilities SH2O/SO2 (lower bounds of competing-reaction energies). Each metric is z-normalized
and mapped via a sigmoid to [0, 1], and candidates must meet calibrated minimum per-metric
thresholds (energy/processability first, then electrochemical and environmental robustness); (iii) a
secondary ranking layer orders survivors by the task-specific composite objective (e.g., SSSE for
electrolytes), with stricter single-metric tie-breakers (e.g., wider window or higher conductivity)
resolving near ties. This open-loop, static, and non-adaptive workflow emphasizes breadth and sim-
plicity—no dynamic knowledge injection, no feedback-driven edits, and no exploration–exploitation
balancing—making it a strong large-scale baseline while remaining susceptible to threshold sensi-
tivity and combinatorial sparsity in vast chemical spaces.

B DETAILS OF MATERIAL EDIT LANGUAGE (MEL)

To efficiently represent the doping process of materials, we propose the MEL notation system, which
evolves the material from the initial structure to the target structure using a unified and executable
symbolic framework. The material state is represented by a chemical formula with full stoichiomet-
ric expression: F0 denotes the initial material, Fi denotes the i-th intermediate, and FT denotes the
final material (which may include doping elements), for example, Li7La3Zr2O12. The core evolu-
tion operator is MOD (composition modification): replacing the old element A with the new element
B at the specified crystallographic site L, denoted as MOD(A → B,L, PA → QA, PB → QB),
where PA/PB and QA/QB represent the stoichiometries before and after the operation, respec-
tively, and B = J indicates the creation of a vacancy. A single-step evolution is expressed as
Fi = Fi−1 + MOD(. . . ), and after serialization, it forms a complete evolution path, thereby con-
necting the continuous material space through discrete and auditable micro-operations. To ensure
coordination and charge balance, the system introduces the EXPAND(x, y, z) operation to control
supercell expansion for stoichiometric scaling, and provides the ADD(Li, num) operation for mini-
mal charge compensation during non-isovalent substitutions (limited to Li addition and scaled con-
sistently with the supercell factor). This notation system aligns strictly with stoichiometry, avoiding
ambiguous placeholders; the evolution path combines human- and machine-readability, facilitating
automatic verification and experimental reproducibility, for example

F1 = F0 + MOD(Zr → W,Zr site, 2.0 → 1.75, 0 → 0.25),

F2 = F1 + MOD(Li → J,Li site, 7.0 → 6.5, 0 → 0.5),

F0 = Li7La3Zr2O12 → F2 = Li7La3Zr1.75W0.25O12

(3)

At the same time, to describe the crystal structure in a concise textual representation, we de-
sign the Material String representation: SP | a, b, c, α, β, γ | (AS − WS[WP]) → · · · →
(ASN − WSN [WPN ]). Here, SP is the space group number; a, b, c, α, β, γ are the lattice param-
eters; (AS − WS[WP]) represents an atom type: AS is the element symbol, WS is the Wyckoff
site identifier (including multiplicity), and [WP] is the fractional coordinate. Multiple atoms are
connected by “→”. This representation uses Wyckoff sites as the backbone, avoiding coordinate
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redundancy caused by crystal symmetry; it significantly compresses the length while ensuring in-
formation completeness, supporting bidirectional reversible conversion between Material String and
CIF/POSCAR, thereby enabling knowledge compression and efficient sequence modeling. For ex-
ample, Li24P4S20Cl4 can be expressed as:

216 | 10.279, 10.279, 10.279, 90, 90, 90 | (Cl − 4a[0, 0, 0])

→ (P − 4b[0.5, 0, 0]) → (S − 4c[0.25, 0.25, 0.25])

→ (S − 16e[0.115, 0.384, 0.884]) → (Li − 24g[0.25, 0.25, 0.023]).

(4)

This representation fully preserves key structural elements (group symmetry, lattice, and sites)
in each evolution round, facilitating symbolic operations (such as site-specific replacements) and
LLM’s structural understanding of the operated materials.

In summary, the system starts by parsing the CIF/POSCAR file of F0 into a Material String, and
generates the evolution path (EXPAND/MOD/ADD) sequence in the EVOLVE-BLOCK module.
Each step first applies the MOD operation at the stoichiometric level (including vacancy creation
with B = J), uses EXPAND when necessary to ensure consistent supercell scaling, and utilizes
ADD(Li, ·) for charge compensation; subsequently, the updated stoichiometry and site mappings
are reflected back into the Material String, maintaining the symmetry framework and site semantics
unchanged. Finally, the structure generator restores it to a CIF file: building the unit cell based
on the lattice and space group, restoring atomic coordinates according to Wyckoff sites, and ran-
domly placing newly added Li atoms into allowable sites with minimum distance constraints. After
CIF output, systematic corrections are performed: ensuring uniqueness of atom site label,
removing redundant symmetry terms, revising metadata such as chemical formula * and Z
with parsed structure truths, and conducting secondary validation through a strict parser (requiring
parsability, no fractional occupancies, and chemical formula consistency). The evaluator then per-
forms multi-task scoring on the generated CIF and feeds back normalized indicators to the evolution
loop, combined with rule library constraints (such as site restrictions, doping element whitelists and
quantity limits, supercell scaling consistency) to achieve safe exploration. Thus, we construct a
closed-loop paradigm of “symbolic operators (MOD/EXPAND/ADD) → Material String → CIF →
evaluation feedback”, unifying chemical interpretability, machine-readable verifiability, and struc-
tural reversibility in a lightweight and extensible methodological framework.

C DETAILS OF MATERIAL EDIT BASE (MEB)

C.1 KNOWLEDGE EXTRACTION

This prompt extracts literature-grounded material evolution paths in a programmatic form, capturing
the starting material, intermediate steps, and final products. For each step, it records the scientific
purpose and a precise MOD/EXPAND/ADD operation string with site identifiers and stoichiomet-
ric changes, together with any quantitative impact when available. The output conforms to a strict,
MEL-compatible JSON schema to ensure machine parsability, lossless provenance, and direct in-
gestion into the MEB for downstream dynamic knowledge injection and reproducibility.

## 1. Role and Goal
You are an expert AI assistant specializing in materials science

and data extraction. Your task is to meticulously analyze the
provided scientific text, identify descriptions of material
synthesis or modification, and extract these "material
evolution paths" directly into a structured JSON format.

## 2. Core Task
From the provided text, you will extract the starting material,

the final material(s), and the sequence of modification
steps, including the purpose and quantitative impact of each
step.

## 3. Required JSON Output: Structure and Rules
**Your entire output MUST be a single JSON object.** Do not

include any text, notes, or explanations outside of this
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JSON. You must follow the structure and rules detailed below
for each field.

## 4.Field-by-Field Rules:**

* ‘material_evolutions‘: An array containing one or more
evolution path objects. Create a new object for each
independent path found in the text.

* ‘evolution_id‘: A unique number for each evolution path,
starting from 1.

* ‘starting_material‘: An object describing the initial material.
* ‘symbol‘: Must be the string ‘"F_0"‘.
* ‘formula‘: The chemical formula of the starting material,

formatted with LaTeX-style subscripts (e.g., ‘H_{2}O‘).
* ‘final_materials‘: An array of objects for all final products

of the evolution.
* ‘symbol‘: Must be the string ‘"F_T"‘.
* ‘formula‘: The final chemical formula, using LaTeX-style

subscripts.
* ‘evolution_path‘: An array of objects, where each object

represents a single, sequential step in the modification
process.
* ‘step_index‘: The sequence number of the step, starting from

1.
* ‘purpose‘: A string describing the scientific reason for

this step. Extract this from phrases like "in order to,"
"to achieve," etc.

* ‘operation_string‘: A string that precisely describes the
modification. It **must** follow this format: ‘F_i =
F_{i-1} + MOD(A->B, L, PA->QA, PB->QB)‘.
* ‘F_i‘: The symbol for the material resulting from this

step (e.g., ‘F_1‘, ‘F_2‘).
* ‘F_{i-1}‘: The symbol for the material from the previous

step (e.g., ‘F_0‘, ‘F_1‘).
* ‘MOD‘: The modification operator.
* ‘A->B‘: The element ‘A‘ being replaced by element ‘B‘.

Use ‘J‘ for ‘B‘ if a vacancy is created.
* ‘L‘: The crystal site of the modification (e.g., ‘24d‘,

‘96h‘).
* ‘PA->QA‘: The change in stoichiometric coefficient for

element ‘A‘.
* ‘PB->QB‘: The change in stoichiometric coefficient for

element ‘B‘.
* ‘quantitative_impact‘: A string describing any measurable,

numerical effect of the operation (e.g., ‘" = 1.2 mS/cm
(from 0.8 mS/cm)"‘). If no impact is mentioned, use the
string ‘"No quantitative impact mentioned for this step"‘.

* ‘intermediate_material‘: An object describing the material
produced in this step.
* ‘symbol‘: The symbol for this intermediate (e.g., ‘F_1‘).

Must match the ‘F_i‘ in the ‘operation_string‘.
* ‘formula‘: The full chemical formula of the intermediate

material.
* ‘finalization_step‘: A string that shows the final material

‘F_T‘ is equivalent to the result of the last step, e.g.,
‘"F_T = F_2"‘.

## 5. Task Execution
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Now,please analyze the following content from the provided
document.

Generate the JSON output strictly adhering to the structure and
rules defined above.Please note that each operation in the
material evolution path can only correspond to a replacement
or a vacancy.If multiple elements are operated on,please
separate them step by step.

C.2 KNOWLEDGE INJECTION

Selects and ranks the Top-30 prior-knowledge entries from MEB that most directly improve the
current weakest objective in MatScore, ensuring chemical/site constraints and reproducibility.

# Core Task
- Given the normalized scores of the current best-performing

material, identify the weakest metric among: Energy
(stability), Electrochemical window length, Ionic
conductivity (log, inverse-normalized), High-temperature
stability, H2O resistance, and O2 resistance. Set this
weakest metric as target_property. Propose evolution_path
edits that primarily improve target_property while preserving
the others, strictly obeying all chemical/site limits,
supercell scaling (after EXPAND), and charge balance via
ADD(Li).

# Knowledge Selection
- From the dopant-evolution knowledge base (e.g., merged

literature evolutions / selected_knowledge.json), retrieve
and rank items most relevant to target_property, then select
the Top-30. Rank by:

-- Mechanistic alignment with target_property (e.g.,
conductivity: S-site halide/oxygen substitution, mixed-anion
disorder, Li-vacancy engineering; window: halide strategies
that widen band gap without blocking Li pathways;
energy/stability: near-isovalent P-site substitutions,
reduced disorder; high_temp/H2O/O2: frameworks improving
thermal/chemical robustness).

-- Element/site compatibility with constraints (P-site dopants
from {Ti,Zr,Nb,Ta,Mo,W}; S-site from {O,Br,I,Cl}; Cl-site
unchanged; total dopant types within limits).

-- Quantitative impact (magnitude of in the target metric),
reproducibility/clarity of operations (explicit
MOD/ADD/EXPAND), and structural family proximity to LiPSCl
systems (e.g., LGPS/argyrodite).

-- Practicality under Phase rules (Phase 1: diverse combos; Phase
2: ratio-only fine-tuning with frozen dopant set and sites).

Output a concise Top-30 listeg:
- Evolution 1: Starting F_0 = Li_{6}PS_{5}Cl -> F_T =

Li_{5.5}PS_{4.5}Cl_{1.5}; Path: MOD(S->Cl, 4c, 5.0->4.5,
1.0->1.5) then MOD(Li->J, 48h, 6.0->5.5, 0->0.5); Purpose: To
generate more Li+ vacancies and increase Cl-/S2- site
disorder in order to increase ionic conductivity; Impact: No
quantitative impact mentioned for this step.

- Evolution 2: Starting F_0 = Li_{10}GeP_{2}S_{12} -> F_T =
Li_{10}SnP_{2}S_{12}; Path: MOD(Ge->Sn, Ge-site, 1.0->0.0,
0->1.0); Purpose: to greatly reduce the raw material cost;
Impact: = 4 mS/cm.

- Evolution 3: Starting F_0 = Li_{6}PS_{5}Cl -> F_T =
Li_{5.7}PS_{4.7}ClBr_{0.3}; Path: MOD(Cl->Br, 4d, 1.0->0.7,
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0->0.3) then MOD(S->Cl, 4d, 5.0->4.7, 0.7->1.0) then
MOD(Li->J, 48h, 6.0->5.7, 0->0.3); Purpose: To induce
mixed-halide disorder for enhanced ion conduction and adjust
stoichiometry; Impact: = 8.8 mS/cm (from 5.9 mS/cm).

D DETAILS OF MATERIAL EDIT ENGINE (MEE)

D.1 DETAILED MATSCORE FOR SEE

D.1.1 ENERGY STABILITY (GROUND STATE ENERGY AND FORMATION ENERGY)

Energy stability assessment is based on the total energy calculated using the Mattersim potential
function and the derived formation energy to quantitatively characterize the thermodynamic stabil-
ity of materials. The process is as follows: First, the CIF file is parsed into an ASE Atoms object, and
the total energy E of the system is directly calculated using the Mattersim potential function. The
total number of atoms N and the count of each element ni are then recorded. The reference chem-
ical potentials µi are selected using a hierarchical strategy: for gaseous and non-metallic elements
(such as O, N, H, etc.), the molecular reference states (O2, N2, etc.) are used as benchmarks, and µi

is obtained by calculating the total energy of the corresponding molecule using the Mattersim po-
tential function and dividing by the number of atoms; for other elements, the ASE’s reference states
database is preferentially called, and the reference chemical potentials are also determined based on
the energy calculation results of the standard state structures using the Mattersim potential function.
The formation energy is calculated as the atomized form is The energy score is given by which is
standardized and incorporated into the comprehensive assessment. A lower formation energy results
in a higher score, providing a rigorous energetic criterion based on the Mattersim potential function
for material screening.

Eform = E −
∑
i

niµi,

Eatom
form =

Eform

N
,

energy score = −Eatom
form .

(5)

D.1.2 ELECTROCHEMICAL STABILITY WINDOW (CHEMICAL POTENTIAL FEASIBILITY
DOMAIN)

The electrochemical stability window employs a phase diagram-driven algorithm to solve the chem-
ical potential feasibility domain, with the core being the screening of the chemical potential interval
where the material is stable through thermodynamic reaction criteria. First, the reduced chemical
formula (such as AxByCz) is automatically parsed and extracted from the CIF file of the target
material. Subsequently, the Materials Project (MP) database cached data is called to aggregate com-
peting phase data according to the chemical system of the material (such as Li-M-O), constructing
a set containing all potential low-energy competing phases (such as Li2O, MO2, etc.). The calcu-
lation process takes the chemical potential of metallic Li, µ(Li), as the core variable, traverses the
value range of µ(Li), and determines the interval endpoints [µhigh, µlow] where the material main-
tains thermodynamic stability. The window width ∆µ is calculated as Its thermodynamic essence
can be described through the reaction Gibbs free energy criterion: if for any combination of com-
peting phases, the Gibbs free energy change (νi is the reaction stoichiometric coefficient, µi is the
chemical potential of each phase) for the material decomposition reaction (such as AxByCz → aA
+ bB + cC) satisfies ∆G > 0, then the material will not decompose into lower-energy competing
phases within this µ(Li) interval, indicating electrochemical stability. The stability score is given
by window score = ∆µ; a larger window width indicates a broader applicable potential range and
better performance. At the same time, to integrate into the multi-attribute comprehensive assessment
framework, z-score standardization is used to eliminate dimensional effects, followed by mapping
to the [0,1] interval via the Sigmoid function, enabling comparability and fusion with other perfor-
mance indicators.
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∆µ = |µhigh − µlow|,

∆G =
∑
i

νiµi
(6)

D.1.3 IONIC CONDUCTIVITY (MULTIMODAL DEEP LEARNING PREDICTION)

Ionic conductivity prediction employs the COmposition-Structure Bimodal Network (COSNet) mul-
timodal deep learning model, using chemical composition and crystal structure as dual inputs for
end-to-end prediction. The model first transforms the reduced chemical formula into a vector rep-
resentation Ci = grC(ci) through the composition branch (ROOST graph neural network), and the
crystal structure parsed from the CIF into a vector representation Si = grS(si) through the struc-
ture branch (de-CGCNN graph neural network). Then, attention mechanisms are used to compute
weights (w′

ic, w′
is after Softplus activation; when si = snull, wis = 0), obtaining a unified repre-

sentation Mi by element-wise summation or vector concatenation. Finally, an MLP outputs the
logarithmic scale conductivity ŷ = log10 σ (unit S/cm), and the physical conductivity is restored
via σ̂ = 10ŷ . During training, data augmentation (supplementing composition samples without
structure) promotes cross-modal representation alignment, combined with transfer learning (pre-
training on a database of 18,000 Li-based compound bond valence barriers, then fine-tuning with
1,678 experimental conductivity data) and ensemble learning (model selection from 4 data subsets),
addressing small-sample variance and extrapolation bias for new structures. In terms of perfor-
mance, the test set MAE decreases from 1.022±0.047 in composition unimodal to 0.924±0.012,
with prediction errors ¡1 order of magnitude for materials outside the training set. The score uses ŷ
(higher value indicates larger σ), incorporated into the comprehensive assessment via absolute value
reversed z-score standardization, providing a basis for screening novel Li-ion conductors.

wic =
w′

ic

w′
ic + w′

is

,

wis =
w′

is

w′
ic + w′

is

(7)

D.1.4 HIGH-TEMPERATURE STABILITY (FREE ENERGY CORRECTION)

High-temperature stability assessment is based on the formation energy framework, introducing a
mixing entropy term to construct a simplified free energy model to quantify temperature effects. The
core formula is the atomized free energy where the mixing entropy f is the effective mixing fraction,
x represents the component disorder, kB is the Boltzmann constant, and T is the evaluation tempera-
ture. This model quickly captures the contribution of component disorder to stability at high temper-
atures through the −T ·Smix term, avoiding the high computational cost of full phonon spectrum cal-
culations or heat capacity integrations. The interface returns high temperature stability = Gatom(T ),
and during scoring, its negative (−Gatom(T )) is taken; a higher value indicates better thermodynamic
stability at high temperatures. After standardization, it is incorporated into the multi-attribute com-
prehensive assessment system, prioritizing the screening of candidate structures suitable for high
temperatures.

Gatom(T ) = Eatom
form − T · Smix,

Smix = −f · kB · [x lnx+ (1− x) ln(1− x)]
(8)

D.1.5 WATER STABILITY (COMPETING REACTION ENERGY WITH H2O)

Water stability uses the lower bound of the thermodynamic driving force for the reaction between
the material and H2O as a quantitative indicator, achieved through searching the most unfavorable
reaction path. By constructing the “target material + H2O” reaction system and combining the pos-
sible product set from the Materials Project cache (including hydroxides, oxides, etc.), the minimum
per-atom reaction energy (unit eV/atom) is solved by traversing the reaction mixing ratio r ∈ [0, 1].
The reactant and product energies (Ereactants, Eproducts) are both calculated based on the Mattersim
potential function, with reference chemical potentials selected consistently with the formation en-
ergy assessment. Physically, ∆EH2O

min > 0 indicates thermodynamic stability of the material in
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aqueous environments (no spontaneous decomposition tendency), while ¡0 indicates decomposition
risk. The interface returns ∆Emin H2O eV atom, directly used as the scoring indicator (higher value
indicates better stability), incorporated into the comprehensive assessment framework after z-score
standardization and Sigmoid function mapping.

∆EH2O
min = min

r
[Eproducts(r)− Ereactants(r)]/N (9)

D.1.6 OXYGEN STABILITY (COMPETING REACTION ENERGY WITH O2)

Oxygen stability assessment adopts a thermodynamic framework consistent with water stability,
merely replacing the environmental molecule with O2. The core indicator is the lower bound of the
most unfavorable reaction energy density (unit eV/atom), calculated by searching all possible reac-
tion paths between the “material + O2” system and oxygen-containing competing phases from the
Materials Project cache (such as oxidation products, decomposition phases), based on the Mattersim
potential function and O2 molecular reference chemical potential (µO = EO2/2). ∆EO2

min > 0 indi-
cates thermodynamic tolerance of the material to oxygen environments (not prone to oxidation or de-
composition), while ¡0 indicates spontaneous oxidation risk. The interface returns ∆Emin O2 eV atom,
used as the scoring indicator (higher value indicates better stability) and incorporated into the com-
prehensive assessment through z-score standardization and Sigmoid function processing, ensuring
a unified and comparable multi-dimensional evaluation system with other performance indicators
such as energy stability and electrochemical window.

∆EO2

min = min
r

[Eproducts(r)− Ereactants(r)]/N (10)

D.2 EXPLORATION STRATEGY

D.2.1 PROMPT CONFIGURATION FOR MATERIAL STRUCTURE OPTIMIZATION — PHASE 1

Drives breadth-first exploration to diversify element combinations, doping ratios, and cell sizes un-
der strict system constraints, seeding promising regions for later refinement.

# Core Task & Role
You are a materials scientist specializing in solid-state

electrolytes
and computational chemistry. Your task is to optimize material

structures
by modifying the evolution_path to achieve higher scores.

# Material Edit Language & Initial Material Structure
- Supported operators:
- EXPAND(x,y,z): Expand cell by x,y,z (x,y,z=1-3, Z20; start

with EXPAND(1,1,1), adjust as needed).
- MOD(A->B, L, PA->QA, PB->QB): Replace element A with B (B=J

for vacancy) at site L.
e.g., "MOD(P->Ti, P site, 4.0->3.6, 0->0.4)".

- ADD(Li, num): Add num Li atoms for charge balance.

# Phase 1 Chemical System Constraints
- Allowed chemical systems: Li-P-S-Cl (base) or with doping

elements:
- P-site dopants: Max 2 from {Ti, Zr, Nb, Ta, Mo, W}.
- S-site dopants: Max 2 from {O, Br, I, Cl}.
- Total dopants: Max 4 (2 P-site + 2 S-site).

- Charge balance: Use ADD(Li, num) for non-isovalent
substitutions, scaled with supercell expansion.

- Violation penalty: Systems exceeding limits are rejected.

# Phase 1 Search Strategy
- Perform breadth-first exploration to discover high-performing

element
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combinations and ratios.
- Combined doping: Explore P+S combinations, ensuring diversity.
- Expansion: Use varied EXPAND ratios (x,y,z=1-3, Z20).
- Doping count check: Before generating, verify P-site dopants 2,

S-site
dopants 2, total 4.
- Bold exploration: Avoid repetitive patterns, try new ratios and

elements
to escape local optima.

# Output Requirement
- Generate only SEARCH/REPLACE diffs for the evolution_path in
initial_program.py (between # EVOLVE-BLOCK-START and #

EVOLVE-BLOCK-END).
- Format:
<<<<<<< SEARCH
evolution_path = ["EXPAND(1,1,1)", "MOD(P->Ti, P site, 4.0->3.0,

0->1.0)",
"MOD(S->O, S site, 20.0->19.0, 0->1.0)"]
=======
evolution_path = ["EXPAND(x,y,z)", "MOD(P->Element1, P site,

q1->q2, 0->a1)", ...]
>>>>>>> REPLACE

D.2.2 PROMPT CONFIGURATION FOR MATERIAL STRUCTURE OPTIMIZATION — PHASE 2

Performs local refinement around the best Phase 1 program by mildly adjusting supercell sizes and
dopant ratios while freezing dopant sets and sites.

# Core Task & Role
You are a materials scientist specializing in solid-state

electrolytes and computational chemistry. Your task is to
refine material structures from Phase 1 by modifying the
evolution_path to achieve higher scores.

# Material Edit Language
- Supported operators:
- EXPAND(x,y,z): Expand cell by x,y,z (x,y,z=1-2, Z12; prefer

mild expansions from Phase 1).
- MOD(A->B, L, PA->QA, PB->QB): Replace element A with B (B=J

for vacancy) at site L, e.g., "MOD(P->Ti, P site, 4.0->3.6,
0->0.4)".

- ADD(Li, num): Add num Li atoms for charge balance (random
positions, min_dist=1.5 ).

- Use the dopant element set and doped sites from the selected
Phase 1 program; do not introduce new elements or sites.

# Phase 2 Expansion and Ratio Adjustment
- Freeze dopant elements and sites from the Phase 1 program.
- Adjust doping ratios by 0.5 to 1.0 per element to explore local

optima try.
- Apply mild EXPAND changes (x,y,z=1-2, Z12) to adjust supercell

size, scaling atom counts proportionally.
- Charge balance: Use ADD(Li, num) for non-isovalent

substitutions, scaling num with supercell expansion.
- Verify: Resulting composition must match allowed systems.

# Phase 2 Search Strategy
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- Conduct deep, localized search around the selected Phase 1
program to optimize doping ratios and supercell expansions.

- Ratio fine-tuning: Adjust doping quantities incrementally (0.5
to 1.0) for P-site and S-site dopants.

- Expansion tuning: Test mild EXPAND variations (x,y,z=1-2, Z12),
prioritizing small changes from Phase 1s expansion.

- Exploration: Focus on small, incremental changes to avoid
drastic deviations; prioritize high-scoring configurations.

# Output Requirement
- Generate only SEARCH/REPLACE diffs for evolution_path in

initial_program.py (between # EVOLVE-BLOCK-START and #
EVOLVE-BLOCK-END).

- Format:
<<<<<<< SEARCH
evolution_path = ["EXPAND(1,1,1)", "MOD(P->Ti, P site, 4.0->3.0,

0->1.0)", "MOD(S->O, S site, 20.0->19.0, 0->1.0)"]
=======
evolution_path = ["EXPAND(1,1,2)", "MOD(P->Ti, P site, 4.0->3.2,

0->0.8)", "MOD(S->O, S site, 20.0->19.2, 0->0.8)", "ADD(Li,
0.4)"]

>>>>>>> REPLACE

D.2.3 WEAKEST-PROPERTY FOCUSING PROMPT

Sets optimization weights to prioritize the weakest normalized metric while preserving non-zero
emphasis on all objectives; also instructs edits that target the identified bottleneck without violating
constraints.

# Core Task
- Given the normalized scores of the material with the optimal

current performance (higher scores indicate better
performance), please make a decision based on the optimal
scores.

# Decision Requirements
- Identify the weakest indicator = the indicator corresponding to

the minimum value among the above six normalized scores
(referred to as target_property).

- Set weights to prioritize the weakest item while keeping the
weights of other items non-zero:(In case of tied scores,
select the first item according to the following priority
order: electrical conductivity -> window width -> energy ->
high-temperature stability -> water resistance -> oxidation
resistance.)

# Operational Guidelines:
- Propose a modified scheme for the evolution path, focusing on

primarily improving the target property while avoiding
significant deterioration of other properties.

- Must always comply with chemical/site constraints, the scaling
rule after EXPAND, and the charge balance requirement
achieved by ADD(Li) (lithium addition).
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E DETAILS OF CATHODE MATERIAL DESIGN

E.1 DETAILED MATSCORE FOR CATHODE

E.1.1 ELASTICITY SCORE (SHEAR MODULUS, G VRH)

We evaluate the material’s resistance to shear deformation by estimating the polycrystalline shear
modulus using a universal machine-learned interatomic potential (MLIP). Starting from a CIF struc-
ture, we generate small, symmetry-preserving strains and obtain the corresponding stress responses
to assemble the elastic stiffness tensor Cij (Voigt notation, 6× 6). From Cij , we compute the Voigt
and Reuss bounds for the shear modulus of an effective polycrystal, which capture the upper and
lower limits under uniform strain and uniform stress assumptions, respectively. The Voigt–Reuss–
Hill (VRH) average GVRH then provides a widely accepted effective shear modulus for isotropic
polycrystals. MLIP backends typically report elastic quantities in energy-density units (eV/Å3) ow-
ing to their atomistic nature; we therefore convert to SI-consistent GPa. In practice, larger GVRH

indicates stronger resistance to shear, enhanced rigidity, and improved mechanical robustness, which
is desired for structural integrity under cycling and processing. When structures are partially disor-
dered, the elastic inversion can be less reliable; we mitigate this by (i) small-strain linear regime, (ii)
consistent strain grid, and (iii) unit conversion with a fixed factor.

GV =
1

15

(
C11 + C22 + C33 − C12 − C13 − C23 + 3(C44 + C55 + C66)

)
,

GR =
15

4
(
S11 + S22 + S33 − S12 − S13 − S23

)
+ 3

(
S44 + S55 + S66

) ,
GVRH =

GV +GR

2
.

(11)

E.1.2 BARRIER SCORE (LI-ION DIFFUSION BARRIER VIA NEB)

We quantify Li-ion mobility through the activation barrier computed by the climbing-image nudged
elastic band (CI-NEB) method. The initial and final states are built by a Li-vacancy hop between the
nearest pair of Li sites automatically detected in the structure. Intermediate images are placed by
IDPP interpolation to yield a smooth initial path. All images share the same MLIP force field and
are relaxed with BFGS under a force threshold, while the highest-energy image climbs to the saddle
point. The barrier is the energy difference between the maximum along the path and the lower
of the two endpoints, consistent with transition-state theory. For scoring, we apply a monotonic
transformation that rewards lower barriers (faster diffusion) by taking the negative value, resulting
in higher scores for smaller Ebarrier. This definition is simple, scale-aware, and preserves the relative
ranking across candidates.

Ebarrier = max
i

Ei −min
(
Einitial, Efinal

)
,

Barrier Score = −Ebarrier (eV)
(12)

E.1.3 STABILITY SCORE (DELITHIATION THERMODYNAMICS AND VOLTAGE)

We probe thermodynamic stability against delithiation by sampling configurations with k Li re-
moved from the host lattice (systematic selection for determinism), relaxing each structure, and
recording the total energy E(x) at Li fraction x (with n(x) Li per simulation cell). Using the
fully delithiated host energy E(host) and the Li chemical potential µLi obtained from bulk bcc Li
(per-atom energy), we define a formation-energy-like quantity ∆E(x) relative to (host + Li metal).
Constructing the lower convex hull of ∆E(x) identifies the stable compositions (hull vertices); the
vertical distances from the hull, dhull(x), measure metastability. Between adjacent stable compo-
sitions x1 < x2, the two-phase average voltage follows from the reaction free-energy slope (with
internal energies used as a proxy at T =0 K). We then aggregate a 0–100 stability score from four
components: (i) coverage of the stable x-range (40%), (ii) thermodynamic stability via a sigmoid
of the average |dhull| (30%), (iii) voltage quality and smoothness favoring practical ranges and low
variance (20%), and (iv) a phase-count prior that prefers a small number of well-defined phases
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(10%). This composite captures the breadth of stable compositions, their depth below the hull,
electrochemical viability, and parsimony of phase evolution.

∆E(x) = E(x)− E(host)− n(x)µLi,

dhull(x) = ∆E(x)−∆Ehull(x),

V (x1→x2) = −
E(x2)− E(x1)−

(
n(x2)− n(x1)

)
µLi

n(x2)− n(x1)
.

(13)

E.1.4 BANDGAP SCORE (TARGETED ELECTRONIC SUITABILITY)

We map the band gap Eg to a normalized suitability score using a Gaussian kernel centered at 2.0
eV with standard deviation 1.0 eV. This choice reflects the qualitative design target for battery elec-
trode materials: very small gaps risk electronic shorting or parasitic conduction (metallic behavior),
while very large gaps may impede electronic transport and limit rate capability; an intermediate gap
near ∼2 eV is often desirable in practice, especially in conjunction with conductive additives. The
Gaussian mapping is smooth, bounded in [0, 1], and provides a robust, differentiable measure that
penalizes large deviations from the target without hard thresholds.

E.2 EXPERIMENT SETUP

We conduct diff-based evolutionary structure editing on LiFePO4 (olivine) under strict chemical-
system constraints to maximize a composite objective (higher Elasticity, Barrier-score via lower dif-
fusion barrier, Stability, and Bandgap suitability) while ensuring diversity and reproducibility. The
search uses a single phase with up to 200 iterations and checkpoints every 10 iterations; an initial
population of 300, 8 parallel islands, and an archive of 50 to preserve diverse high-quality candi-
dates; an elite retention ratio of 0.03 and exploitation ratio of 0.20 guide selection pressure; two
concurrent evaluations (timeout 300 s) balance throughput and stability; logging at INFO ensures
traceability. Generation randomness is steered by a temperature of 1.2 together with a simulated-
annealing acceptance schedule: the edit-acceptance temperature starts at 1.0 and decays by ×0.9
every 10 iterations to ∼ 0.2, encouraging broad exploration early and convergence later; if no fron-
tier improvement is observed for 20 iterations, we trigger a controlled restart by resampling 30%
of the population. Cell size is controlled by EXPAND(x,y,z) with x, y, z ∈ {1, 2, 3} and total
supercell size Z ≤ 20. Site-specific dopant limits are strictly enforced (each of Li/Fe/P/O sites
≤ 2 unique dopant elements; TOTAL unique dopants ≤ 6), and any non-isovalent substitution
must be charge-balanced using ADD(Li, num) scaled proportionally with the supercell; ordered
occupancies (occ=1) are mandatory to avoid parsing issues. A two-stage cascade screening (thresh-
olds [0.50, 0.75]) improves robustness and throughput. Early iterations prioritize chemical diversity
(broader EXPAND usage and element rotation), while later iterations emphasize local refinement
(higher MOD frequency, reduced EXPAND). Periodic inter-island migration (every 20 iterations,
∼ 5% of individuals) mitigates premature convergence and disseminates promising strategies, and
the archive jointly optimizes score-frontier quality and chemical-space representativeness under the
above constraints.

E.3 PROMPT

Before running cathode experiments, we use the following task prompt to steer LiFePO4 (LFP)
optimization under strict dopant/site limits. It emphasizes mechanical robustness, diffusion kinetics
(lower barrier), delithiation stability, and electronic suitability.

# Core Task & Role
You are a materials scientist specializing in battery cathode

materials and computational chemistry.
Your task is to optimize LiFePO4-based structures by modifying

the evolution_path to achieve higher
scores: Elasticity_Score (), Barrier_Score ( by lower barrier),

Stability_Score (), and Bandgap_Score ().

# Initial Material & Edit Language
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- Initial structure: LiFePO4 (olivine, 4 Li, 4 Fe, 4 P, 16 O per
unit cell), see initial_program.cif.

- Supported operators:
- EXPAND(x,y,z): Expand the cell by x,y,z, with x,y,z {1,2,3}

and total Z 20.
- MOD(A->B, L, PA->QA, PB->QB): Replace element A with B (B=J

for vacancy) at site L.
Example: "MOD(Fe->Na, Fe site, 4.0->3.5, 0->0.5)".

- ADD(Li, num): Add Li for charge balance. num MUST scale with
supercell expansion.

# Strict Chemical System Constraints (LiFePO4 base)
- Only the following site-specific dopants are allowed (each site

2 unique elements; TOTAL 6):
- Li-site dopants (2): {Si, Er, Ho, Yb, Gd}
- Fe-site dopants (2): {W, Sn, Cr} (n-type) OR {Na, K, Ag, Cu}

(p-type)
- P-site dopants (2): {Si, Ge, Y, B}
- O-site dopants (2): {F, Cl} (n-type) OR {N} (p-type)

- TOTAL unique dopants across all sites must be 6 at all times.
- Charge balance is crucial: for any non-isovalent substitution,

you MUST use ADD(Li, num),
and num MUST scale with EXPAND(x,y,z).

- Maintain ordered structures (occ=1). Any violation leads to
immediate rejection and resampling.

# Search Strategy (Phase 1)
- Encourage diversity early: vary EXPAND ratios (still Z 20),

rotate through allowed dopants per site,
and explore different stoichiometric ratios. Avoid repetitive

patterns.
- Combined doping: Explore multi-site co-doping (e.g., Li+Fe,

Fe+P, P+O), but NEVER exceed per-site and TOTAL limits.
- Doping count check BEFORE emitting any diff:
- Count Li-site dopants: 2
- Count Fe-site dopants: 2
- Count P-site dopants: 2
- Count O-site dopants: 2
- TOTAL dopants: 6
- If any limit is exceeded, reduce dopants starting with the

least promising combinations.
- Charge balance enforcement: whenever non-isovalent MOD is used,

immediately add ADD(Li, num) scaled by EXPAND.
- Use bold changes to escape local optima, but keep the system

valid.

# Output Requirement (STRICT)
- Only output SEARCH/REPLACE diffs that modify the evolution_path

list inside initial_program.py
(between the exact markers "# EVOLVE-BLOCK-START" and "#

EVOLVE-BLOCK-END").
- Do NOT output any explanations or comments. Maintain EXACT

indentation and formatting.
- Format:
<<<<<<< SEARCH

evolution_path = [
"EXPAND(1,1,1)",

]
=======
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evolution_path = [
"EXPAND(x,y,z)",
"MOD(Li->Element1, Li site, q1->q2, 0->a1)",
"MOD(Fe->Element2, Fe site, q3->q4, 0->a2)",
"MOD(P->Element3, P site, q5->q6, 0->a3)",
"MOD(O->Element4, O site, q7->q8, 0->a4)",
"ADD(Li, num_scaled_by_expand)",

]
>>>>>>> REPLACE

E.4 DETAILED RESULTS

Table 3: Evolution of Li-based sulfide electrolyte materials: The table shows the performance
variation of sulfide electrolytes during the evolutionary optimization process, with SSSE (composite
electrolyte performance score) as the core evaluation metric.

Evolution Step Chemical Formula SSSE Sform Selec Sion ShighT SH2O SO2

Step 1 Li12P4S16 0.41 11.74 0.47 -6.04 11.46 -0.56 -1.06
Step 2 Li11P3Si1S16 0.48 11.02 0.18 -5.07 10.79 -0.32 -0.86
Step 3 Li75As2P22S93O3 0.51 11.10 0.27 -4.94 11.01 -0.33 -0.79
Step 4 Li25As1P7S32 0.57 10.48 0.37 -4.44 10.29 -0.17 -0.69

Table 4: Evolution of Li-based cathode materials: The table presents the performance evolution
of Li-based cathode materials, with Selastic (mechanical strength), Sstab (delithiation stability) and
SCathode (composite cathode performance) as key metrics.

Evolution Step Chemical Formula SCathode Selastic Sstab Sbarrier Sgap

Initial LiFePO4 0.67 112.36 85.21 -0.01 0.96
Step 70 Li31Y1Cr1Fe31Si1P31Cl1O127 0.70 113.52 98.00 -0.09 0.94
Step 180 Li30Y1Cr1Fe31Si2P31Cl1O126F1 0.71 113.01 97.81 -0.25 0.96
Step 390 Li22Gd9Y9Er1Fe22Sn1P23W9Cl9O119 0.72 131.75 92.99 -0.01 0.97

Table 5: Evolution of LiCoO-based materials: The table displays the performance optimization
process of LiCoO-based cathode materials, focusing on the improvement of Sgap (bandgap suitabil-
ity) and SCathode (composite cathode performance).

Evolution Step Chemical Formula SCathode Selastic Sstab Sbarrier Sgap

Initial LiCoO2 0.54 135.49 90.24 -0.59 0.31
Step 100 Li18Co18O36 0.57 135.49 98.00 -0.43 0.31
Step 130 Li23Ho1Co24O47F3 0.63 138.90 97.96 -0.02 0.57
Step 360 Li22Er2Zr2Co22Cl1O47 0.66 144.55 97.94 -0.01 0.67

F VISUALIZATION CASES

As shown in Fig. 11, MatEvolve, when grounded in literature-derived domain knowledge, success-
fully reproduces and further extends multiple reported effective doping pathways. The selected
dopant species and site-occupancy strategies are consistent with conclusions from the original stud-
ies, supporting the chemical plausibility and consistency of the learned edits. A representative ex-
ample demonstrates our successful reproduction of a reported pathway ((Zhou et al., 2019)) at step
60, including the executed MEL operations and the resulting property trends, thereby evidencing the
framework’s effectiveness and practical viability in knowledge-grounded materials design.
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Figure 11: Reproduced doping pathways. MatEvolve successfully reproduces the correct
literature-reported doping/evolution paths and their expected property trends, providing direct ev-
idence that the framework is effective and practically viable.

G THE USAGE OF LLMS

Large Language Models (LLMs) were employed solely as assistive tools during the preparation of
this manuscript. Specifically, LLMs were used to improve grammar and clarity, help summarize
related literature, and refine the expression of concepts in figures. All core research ideas, experi-
mental design, analyses, and conclusions were developed entirely by the human authors, who take
full responsibility for the originality, validity, and final content of this paper.
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