

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MATEVOLVE: A SYNERGISTIC SYMBOLIC-LLM AGENT FOR MULTI-OBJECTIVE MATERIALS DESIGN

Anonymous authors

Paper under double-blind review

ABSTRACT

The design of novel materials is fundamentally constrained by the immense chemical space, which renders traditional **enumeration-screening** methodology computationally prohibitive and inefficient. This paper introduces a paradigm shift towards **insight-exploration-validation**, enabling an intelligent and evolutionary exploration of material design pathways. We actualize this paradigm through **MatEvolve**, a synergistic symbolic-LLM agent that reconceptualizes material design as a closed-loop, programmatic evolution task. Central to MatEvolve is a novel symbolic formalism, Material Edit Language, which empowers the agent to programmatically take chemical operations. The exploration trajectory is directed by a multifaceted guidance strategy, comprising a dynamic knowledge injection mechanism and a two-stage exploration strategy that balances broad exploration and deep optimization. Furthermore, a multi-objective fitness landscape ensures directional and efficient navigational guidance. These integrated strategies contribute to a **32.2%** improvement over direct material structure modification. Crucially, comparisons demonstrate that our insight-exploration-validation paradigm outperforms the traditional enumeration-screening approach by **33.6%**, highlighting its superior efficacy in navigating vast design spaces.

1 INTRODUCTION

The design and application of materials have always been a core driving force for the advancement of human civilization, positioning materials science as a cornerstone. Traditional materials research, which relies heavily on trial-and-error wet-lab experiments, is flawed by long cycles and high costs. Recently, deep learning has catalyzed a paradigm shift. The development of tools such as universal potential function prediction models has significantly accelerated materials screening, leading to a **enumeration-screening** paradigm. Merchant et al. (2023), based on graph neural networks, has efficiently predicted material stability, identifying millions of potential new crystals. Zeni et al. (2023) has enabled the *de novo* design of new materials with specific symmetries and chemical compositions through diffusion models, while Yang et al. (2024) provides a powerful tool for energy prediction with conditionally near-first-principles accuracy.

Despite its successes, the enumeration-screening paradigm faces three core limitations. First, the combinatorial explosion of elements, sites, and compositions creates a vast chemical space, which leads to algorithms getting stuck in local optima and poses a trade-off between predictive accuracy and exploration completeness. Second, its open-loop, funnel-like process lacks dynamic feedback for strategy adjustment, which allows errors to accumulate and prevents the system from correcting its exploration direction. Third, its reliance on scattered knowledge and expert heuristics restricts its generalization ability across different material systems. In contrast, work like Novikov et al. (2025) demonstrates that large language model (LLM) guided evolutionary approaches can solve complex optimization problems, offering a new methodological blueprint for materials design.

In this paper, we propose a novel closed-loop paradigm: **insight-exploration-validation**. Unlike **static** enumeration-screening, as shown in Fig. 1, this paradigm injects symbolic insights into an LLM-based agent to conduct a more efficient and chemically intuitive exploration. Each exploration step is instantly evaluated by multi-objective performance metrics, and the results serve as feedback to guide the agent’s subsequent decisions. This creates a closed-loop optimization mechanism, enabling the exploration process to **dynamically** converge on high-performance regions. To

implement this paradigm, we develop a LLM-friendly symbolic system, Material Editing Language (MEL), which maps comprehensive atom-level operations into code sequences that the LLM-based agent can fully parse and operate.

Building on this, we develop MatEvolve, a synergistic symbolic–LLM agent framework for materials design. MatEvolve consists of two core components: Material Editing Base (MEB) and Material Evolution Engine (MEE). MEB is a structured expert knowledge base which is constructed through an automated pipeline where LLM extracts material modification strategies from high-impact literature and converts them into the symbolic MEL format. During the design process, MatEvolve dynamically selects relevant knowledge from MEB as insights to guide the agent’s optimization pathways. MEE executes a insight–exploration–validation closed-loop. To efficiently navigate in the vast chemical space, the engine employs a two-stage exploration strategy, beginning with a breadth-first exploration to cover diverse chemical spaces, and then shifting to a depth-first exploration to accelerate convergence. Newly generated material candidates are instantly evaluated by surrogate models across general, multidimensional performance dimensions. The evaluation results are integrated as feedback to continuously optimize MatEvolve’s exploration strategy.

Applied to solid-state electrolytes and electrode materials, MatEvolve not only reproduces and extends known optimization pathways (Zhou et al., 2019) which can be found in Appendix F, but also uncovers chemically plausible, interpretable candidates at a fraction of the computational cost. More importantly, as a generalizable framework, it offers a methodological blueprint for LLM-guided, dynamic, closed-loop materials design beyond current expert-guided, static, open-loop enumeration–screening approaches.

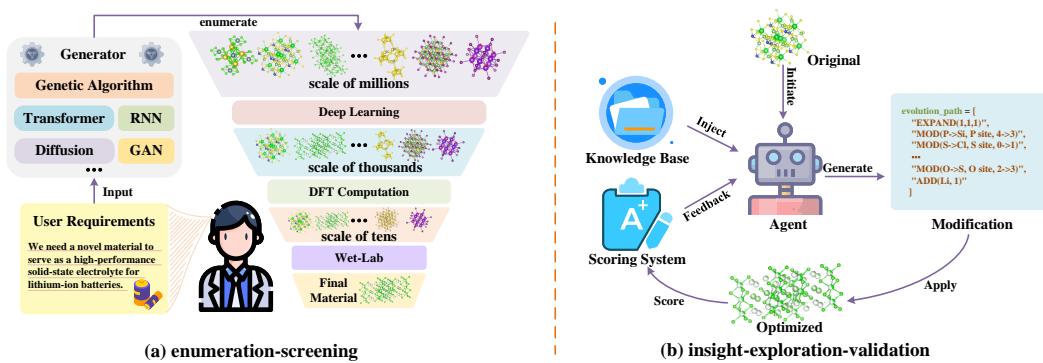


Figure 1: **Comparison of two paradigms:** (a) Enumeration-screening begins by generating millions of candidate molecules and then uses a funnel-like process, from fast deep learning models to precise DFT computations and finally wet-lab experiments, to filter them and identify the best material. (b) Insight-evaluation-validation starts with initial molecules and uses agents to apply targeted modifications. Guided by a knowledge base and a scoring system, the agent continuously refines materials in a feedback loop, evolving them towards a superior material.

In summary, the main contributions of this study are as follows:

- We propose an insight-exploration-validation paradigm and its accompanying MEL, which overcome the expert-guided, static, open-loop limitations of the enumeration-screening paradigm.
- We develop the MatEvolve framework and significantly enhance the efficiency and success rate through dynamic knowledge injection from MEB and a two-stage exploration strategy embedded in MEE which balances the breadth and depth of material design.
- Our experiments demonstrate the broad applicability and high performance of MatEvolve in designing solid-state electrolytes and electrode materials, achieving a performance improvement of 32.2% over direct modification of material structure and exhibiting 33.6% greater efficacy than enumeration-screening methods.

108

2 RELATED WORKS

109

2.1 MATERIALS DESIGN

110 Computational methods have advanced materials discovery, yet often rely on linear, open-loop work-
 111 flows. For instance, Zhang et al. (2019) pioneered an unsupervised learning scheme using modified
 112 X-ray diffraction patterns to screen for solid-state ion conductors like LLZO and LGPS in data-
 113 scarce scenarios. Subsequently, Choi et al. (2021) employed active learning to enhance the accuracy
 114 of machine learning models for predicting the mechanical properties of solid-state electrolytes. More
 115 recently, Chen et al. (2024) demonstrated a massive high-throughput screening pipeline, culminat-
 116 ing in the experimental synthesis of $\text{Na}_2\text{LiYCl}_6$ and successfully closing the prediction-synthesis
 117 loop. Jia et al. (2024) introduces a language-based framework enabling effective zero-shot design
 118 in low-data regimes. Despite these advancements, these approaches essentially remain open-loop
 119 workflows, lacking the dynamic, knowledge-guided feedback required for more efficient and adap-
 120 tive exploration.

121

2.2 LLM-BASED SCIENTIFIC AGENTS

122 Recent advancements in LLM have catalyzed sophisticated AI agents to accelerate scientific dis-
 123 covery(Bai et al., 2025; Wei et al., 2025; Hu et al., 2025). One strategy involves integrating expert
 124 tools: Bran et al. (2023); Kang & Kim (2024) enhance LLM performance in chemistry for tasks like
 125 synthesis and drug discovery, while Ruan et al. (2024) automates the entire synthesis workflow us-
 126 ing six specialized GPT-4 agents. Another approach emulates the scientific process itself; Gottweis
 127 et al. (2025) system collaboratively generates, critiques, and refines hypotheses. Concurrently, other
 128 projects build foundational capabilities: Chai et al. (2025) creates an agent architecture for diffi-
 129 cult general scientific benchmarks, and AlphaEvolve, an evolutionary agent, relies on an automated
 130 evaluator to guide LLM-driven code mutations. While these agents excel with fixed tools or general
 131 heuristics, they lack a symbolic framework for programmatic material design. MatEvolve addresses
 132 this gap by introducing MEL and MEB, enabling a efficient exploration of chemical space.

133

3 METHOD

134

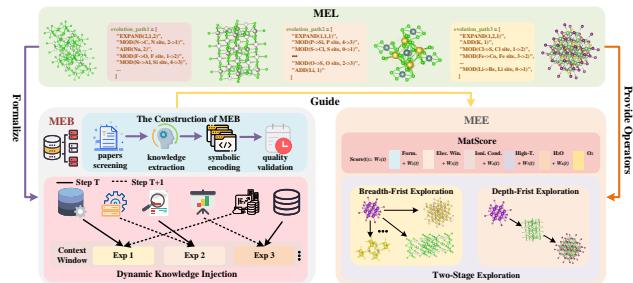
3.1 OVERALL ARCHITECTURE

135 MatEvolve is a synergistic sym-
 136 bolic-LLM framework that recon-
 137 ceptualizes the process of materials
 138 design. It replaces the conventional
 139 enumeration-screening method with
 140 an intelligent insight-exploration-
 141 validation paradigm. As depicted in
 142 Fig. 2, MatEvolve consists of three
 143 integral components: Materials Edit
 144 Language (MEL), Materials Edit
 145 Base (MEB), and Materials Edit
 146 Engine (MEE).

147 **MEL:** MEL is a domain-specific
 148 language designed to for-
 149 malize material design by encoding
 150 chemical operations (e.g. sub-
 151 stitution, doping) into a programmable
 152 format. This formalism effectively codifies and makes explicit the heuristics prevalent in expert-
 153 guided materials design.

154 **MEB:** A structured knowledge base contains proven modification strategies from scientific litera-
 155 ture, all represented in MEL. It provides the agent with validated insights to guide its exploration.

156 **MEE:** MEE is the core operational component that orchestrates the design process. It implements
 157 a closed-loop insight-exploration-validation to iteratively optimize material candidates. Guided



158 **Figure 2: Overall architecture:** MatEvolve framework op-
 159 erates on an iterative loop where the core MEE employs
 160 an AI agent to write MEL code, proposing precise material
 161 modifications. Guided by the MEB knowledge base, each
 162 new candidate is assessed by the MatScore fitness function,
 163 providing feedback to drive the next cycle of exploration.

162 by MEB and chemical principles, the agent writes MEL code to propose syntactically valid material
 163 modifications. A two-stage exploration strategy is then employed, which transitions from a
 164 breadth-first exploration of diverse chemical spaces to an intensive, depth-first exploration within
 165 high-potential regions. Each resulting candidate is scored by MatScore, a dynamic fitness func-
 166 tion that aggregates multi-objective metrics, including ionic conductivity, thermodynamic stability,
 167 and high-temperature stability. This score provides immediate feedback to guide MatEvolve’s next
 168 exploration step, effectively closing the optimization loop.

170 3.2 MATERIALS EDIT LANGUAGE

172 Current atomic-level material doping modifi-
 173 cations rely on operating directly on Crystallo-
 174 graphic Information Files (CIFs), as modifi-
 175 cations to chemical formulas cannot capture site-
 176 specific atomic occupancy. However, direct
 177 CIF manipulation is cumbersome and error-
 178 prone due to its data verbosity and complex
 179 symmetry constraints.

180 To address this challenge, as shown in Fig. 3,
 181 we introduce the **Composition Modification**
 182 (**MOD**) **operation** for the targeted, rule-based
 183 manipulation of CIFs. Its core functionalities
 184 include: 1) substitution of elemental species at
 185 designated crystallographic sites; 2) creation of
 186 vacancies to precisely control their concen-
 187 tration within the material; 3) automated adjust-
 188 ment of stoichiometry to maintain charge neu-
 189 trality, tracking of all compositional changes.

190 The MOD operation circumvents the complex-
 191 ities of direct CIF file manipulation, enabling
 192 precise compositional control when transform-
 193 ing a pristine material into a target doped structure. We further leverage the fact that the Wyckoff
 194 sites provide an efficient method for characterizing atomic coordinates(Wyckoff, 1922; Goodall et al.,
 195 2022; Song et al., 2025). As all atoms on an equivalent Wyckoff site are related by symmetry
 196 operations, their positions can be derived from a single representative, significantly reducing data
 197 redundancy. Building on this principle, we propose the Material String representation, which con-
 198 denses the crystal structure into a concise format: **Space group — Lattice — (Element – Wyckoff**
 199 **[Fractional Coordinate] Sequence**. This representation preserves all core structural information,
 200 including space group symmetry, lattice parameters, and atomic site occupancies. It also provides
 201 an unambiguous textual description of the crystal structure, laying a robust foundation for synergy
 202 with the MOD operation and for efficient interpretation by machine learning models.

203 3.3 MATERIALS EDIT BASE

204 3.3.1 THE CONSTRUCTION OF MEB

205 LLMs possess strong language understanding and generation capabilities in general domains but
 206 face two core limitations in vertical materials domains like solid-state electrolytes: first, a scarcity
 207 of domain knowledge, as pre-training data struggles to cover fine-grained materials design rules
 208 (e.g., dopant element selection, ratio control); second, high randomness in the generation process,
 209 prone to producing operation schemes that violate chemical principles without domain knowledge
 210 constraints. To address these issues, this study constructs the Materials Edit Base (MEB), using
 211 the MEL symbolic system as a unified carrier to achieve structured integration and precise reuse of
 212 domain knowledge, providing targeted knowledge guidance for the MEE evolution engine.

213 The construction of MEB follows a closed-loop process of ”data source screening → knowledge ex-
 214 traction → symbolic encoding → quality validation,” ensuring the authority, accuracy and usability
 215 of the knowledge base. Focusing on the design of solid-state electrolyte materials, it systematically
 collects approximately 2000 academic papers published in the last decade in top tier journals such as

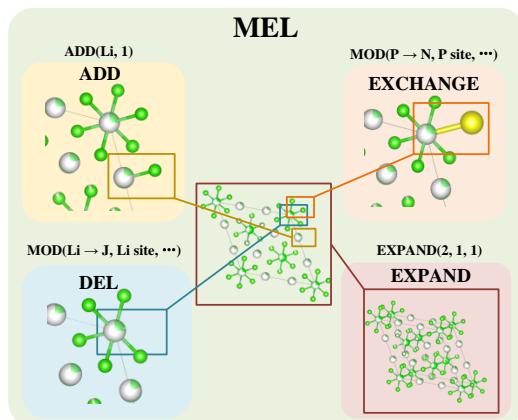


Figure 3: **MEL**: MEL achieves the precise modification of crystal structures using four fundamental operations: ADD, EXPAND, and the MOD operator, which performs both EXCHANGE and DEL.

precise compositional control when transforming a
 pristine material into a target doped structure. We further leverage the fact that the Wyckoff sites
 provide an efficient method for characterizing atomic coordinates(Wyckoff, 1922; Goodall et al.,
 2022; Song et al., 2025). As all atoms on an equivalent Wyckoff site are related by symmetry
 operations, their positions can be derived from a single representative, significantly reducing data
 redundancy. Building on this principle, we propose the Material String representation, which con-
 denses the crystal structure into a concise format: **Space group — Lattice — (Element – Wyckoff**
[Fractional Coordinate] Sequence. This representation preserves all core structural information,
 including space group symmetry, lattice parameters, and atomic site occupancies. It also provides
 an unambiguous textual description of the crystal structure, laying a robust foundation for synergy
 with the MOD operation and for efficient interpretation by machine learning models.

The MOD operation circumvents the complex-
 ities of direct CIF file manipulation, enabling
 precise compositional control when transform-
 ing a pristine material into a target doped structure. We further leverage the fact that the Wyckoff
 sites provide an efficient method for characterizing atomic coordinates(Wyckoff, 1922; Goodall et al.,
 2022; Song et al., 2025). As all atoms on an equivalent Wyckoff site are related by symmetry
 operations, their positions can be derived from a single representative, significantly reducing data
 redundancy. Building on this principle, we propose the Material String representation, which con-
 denses the crystal structure into a concise format: **Space group — Lattice — (Element – Wyckoff**
[Fractional Coordinate] Sequence. This representation preserves all core structural information,
 including space group symmetry, lattice parameters, and atomic site occupancies. It also provides
 an unambiguous textual description of the crystal structure, laying a robust foundation for synergy
 with the MOD operation and for efficient interpretation by machine learning models.

Advanced Materials, Energy & Environmental Science, and Chemistry of Materials. Next, a hybrid “automated initial screening + manual refinement” knowledge extraction scheme is designed to balance efficiency and precision, batch-extracting text snippets associating “operations–performance” from the papers. Finally, using the MEL symbolic system as a unified format, the extracted domain knowledge is converted into structured code parsable by LLMs.

Validation is performed on the symbolically encoded knowledge entries to ensure that the MEL code can be parsed by the decoder without grammatical errors. This results in approximately 200 high-quality domain knowledge entries, covering core design scenarios such as "dopant element selection," "ratio optimization," "vacancy control," and "lattice parameter adjustment."

3.3.2 DYNAMIC KNOWLEDGE INJECTION

A static knowledge injection approach, utilizing a initial selected subset of MEB, was found to be suboptimal as it fails to adapt to the shifting performance bottlenecks of a material candidate throughout its exploration trajectory. As shown in Fig. 4, We implement a Dynamic Knowledge Injection mechanism that provides adaptive, context-aware guidance to the agent. This mechanism operates by first identifying the most deficient performance metric of the current leading candidate. Subsequently, it retrieves a curated, task-relevant subset of the top 30 knowledge entries from MEB to ensure the agent's efforts are precisely targeted at the most critical aspects of the design challenge, significantly accelerating convergence towards a multi-objective optimum.

3.4 MATERIALS EDIT ENGINE

3.4.1 MATSCORE

To guide the design process, we developed MatScore, a unified multi-objective fitness function. MatScore provides rapid, quantitative feedback for the exploration by aggregating critical performance metrics.

Table 1: Material performance evaluation metrics reference.

Metric	Meaning
S_{val}	Proportion of valid CIF files
S_{form}	Thermodynamic stability score based on Mattersim potential
S_{elec}	Electrochemical window stability score
S_{ion}	Li-ion transport capability score
S_{highT}	Thermodynamic stability score at specified high temperatures
$S_{\text{H}_2\text{O}}$	Resistance to decomposition in water environments
S_{O_2}	Resistance to oxidation/decomposition in oxygen environments
S_{SSSE}	Composite score for electrolyte performance
S_{elastic}	Material deformation resistance and mechanical strength score
S_{barrier}	Ease of Li-ion diffusion score
S_{stab}	Structural and performance stability during delithiation
S_{gap}	Suitability of electronic bandgap for battery applications
S_{Cathode}	Composite score for cathode performance

Table 1 outlines key metrics to assess battery material performance. These metrics collectively evaluate structural, electrochemical, and mechanical properties of a material, guiding the selection and optimization of materials for enhanced battery performance and stability. All scores are z-normalized, sigmoid-mapped to [0,1], and integrated for a comprehensive material assessment.

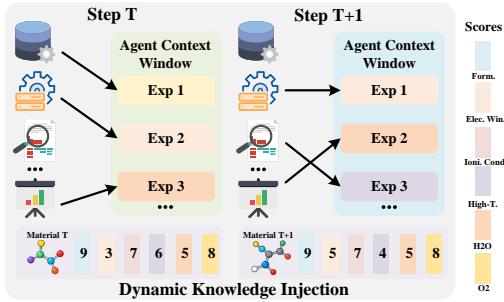


Figure 4: **Dynamic knowledge injection:** An adaptive mechanism that accelerates material optimization by identifying the most critical performance bottleneck at each step and injecting targeted knowledge to guide the agent in resolving it.

270

271

$$S_{\text{SSE}} = \frac{1}{6} \sum_i \frac{1}{1 + e^{-S_i}} \quad \text{where } i \in \{\text{form, elec, ion, highT, H}_2\text{O, O}_2\} \quad (1)$$

274

275

$$S_{\text{Cathode}} = \frac{1}{4} \sum_i \frac{1}{1 + e^{-S_i}} \quad \text{where } i \in \{\text{elastic, stab, gap, barrier}\} \quad (2)$$

276

3.4.2 EVOLUTION STRATEGY

279

280

281

282

To navigate the vast chemical space effectively, we designed a two-stage exploration strategy that explicitly balances global exploration with local exploitation. This approach addresses challenges where initial and broad modifications yield rapid diversification but often lead to premature convergence on performance plateaus. An overview is shown in Fig. 5.

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

The initial Breadth-First exploration phase is designed to rapidly map the viable design space. This is achieved by employing high-variance, stochastic MEL operators, such as random elemental substitutions and broad-range adjustments to doping ratios. The objective is not to pinpoint a local optimum, but to efficiently discover diverse and structurally stable material families, thereby pruning vast, non-viable regions of the exploration space and establishing promising territories for further investigation. Upon identifying these promising subspaces, the strategy transitions to a Depth-First Exploration phase. The focus shifts to targeted refinement using fine-grained, deterministic MEL operators, like precise elemental tuning and incremental adjustments to composition. This approach minimizes redundant computation and accelerates convergence toward superior material configurations within the identified high-potential regions.

299

300

301

302

303

304

To steer this process, we implement an adaptive steering mechanism. At each exploration step, the system analyzes the normalized components of the MatScore to identify the primary performance bottleneck of the current leading candidate. This information dynamically directs the agent’s generative focus, prompting it to prioritize operations that specifically address this weakness. This dynamic re-focusing ensures a balanced, multi-objective improvement path, creating a highly efficient and responsive closed-loop optimization process.

305

306

4 EXPERIMENTS

307

308

4.1 IMPLEMENTATION DETAILS

309

310

311

312

313

Our implementation centers on LLM-generated "SEARCH/REPLACE diff" targeting the evolution path sequence, using custom MEL operators (EXPAND, MOD, ADD) under stoichiometric/Wyckoff constraints—unlike AlphaEvolve, our implementation integrates a symbolic system for the materials domain, extra knowledge injection, and dynamic exploration.

314

315

316

317

We uniformly use GPT-3.5 (Ouyang et al., 2022) Turbo as the main LLM for our experiments. During **Breadth-First Exploration**, temperature is set to 0.8 and top- p =0.9 to enhance operational diversity, supporting broad exploration; **Depth-First Exploration** reduces temperature and top- p to 0.3 to improve generation determinism, facilitating precise convergence.

318

319

320

321

322

323

The evolutionary process adopts an island-based population structure with archive retention to regulate exploration. For **Breadth-First Exploration**, we set the population size to 200, archive size to 30, and number of islands to 6, with an elite ratio of 0.05 and an exploitation ratio of 0.3, enabling efficient exploration of large chemical spaces and parallel mining of diverse candidates. In contrast, **Depth-First Exploration** adjusts these parameters to a population size of 150, archive size of 20, and 3 islands, with an elite ratio of 0.1 and an exploitation ratio of 0.8, thereby focusing on fine-grained tuning in high-potential regions and achieving steady performance improvements.

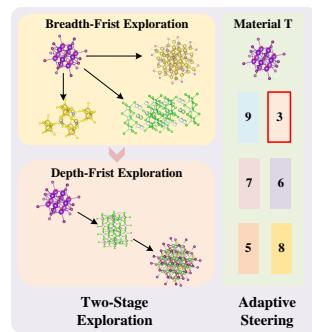


Figure 5: **Evolution strategy**: A two-stage exploration, balancing broad exploration with deep refinement, which is adaptively steered by the current material’s performance bottleneck.

We validate MatEvolve’s effectiveness on two prominent, well-established tasks: solid-state electrolytes (SSE) using representative $\text{Li}_6\text{PS}_5\text{Cl}$ (focusing on MatScore core properties) and cathode materials using commercial precursors LiCoO_2 and LiFePO_4 (emphasizing energy-density-related properties and structural stability). Both tasks reuse the same evolution framework and scoring strategy for reproducibility and cross-system comparability.

4.2 COMPARATIVE EXPERIMENTS

4.2.1 COMPARISON WITH EXISTING METHODS

To assess the advantage of MatEvolve over hierarchical screening pipelines, we instantiate a baseline that combines local enumeration with hierarchical screening using the surrogate models in MatScore (full configuration in Appendix A) and we also compare against LLMatDesign (Jia et al., 2024). As shown in Table 2, MatEvolve improves the combined score by 15.6% over the screening baseline. Compared to LLMatDesign, MatEvolve improves the combined score by 19.9% and yields a 57.8% increase in the fraction of usable structures. These gains stem from MatEvolve’s finer-grained symbolic interface (MEL) and its more flexible knowledge-injection (MEB) and exploration strategy (MEE).

Table 2: **Comparative experiment:** In the solid-state electrolyte (SSE) design task, S_{val} and S_{SSE} are the most critical metrics and also the key focus of this task. Results show that our proposed MatEvolve framework achieves the optimal performance, with the highest values in both S_{val} and S_{SSE} , significantly outperforming the traditional Screening method and LLMatDesign.

Config	Object	S_{val}	S_{SSE}	S_{form}	S_{elec}	S_{ion}	S_{highT}	$S_{\text{H}_2\text{O}}$	S_{O_2}
Screening	CIF	–	0.464	11.094	0.224	-4.662	10.701	-0.316	-1.611
LLMatDesign	Formula	29.5	0.421	10.136	0.043	-4.479	10.951	-0.141	-1.577
None	CIF	38.2	0.469	9.919	0.089	-4.004	9.934	-0.042	-1.582
+MEL	MOD	87.2	0.505	9.083	0.079	-4.123	9.098	-0.043	-1.187
+MEL+MEE	MOD	86.1	0.547	9.079	0.415	-4.676	9.094	-0.111	-0.748
MatEvolve	MOD	87.3	0.620	9.218	0.426	-4.663	9.214	-0.535	-0.736

4.2.2 COMPARISON BETWEEN LLMs

To evaluate the performance of different LLMs on materials design, we compare a range of closed-source models, e.g., GPT, Gemini (Team et al., 2023), Claude, and open-source models, e.g., DeepSeek (Liu et al., 2024), Qwen (Yang et al., 2025; Team, 2024), GLM (Zeng et al., 2025), on the SSE design task. As shown in Fig. 6, larger models such as GPT-5, Grok-4, and Qwen-3-MAX achieve combined scores above 0.6, indicating relatively strong performance. By contrast, models such as Gemini2.5-Flash, Claude-3.7 and DeepSeek-V3.1 show relatively weaker results on this task, suggesting that domain-specific knowledge plays a more decisive role than general coding capability. Notably, within our MatEvolve framework, the smaller GPT-3.5 Turbo (released in 2023) achieves unexpectedly strong performance, even outperforming GPT-5 in our evaluation. This observation indicates that, once a model has sufficient instruction-following capacity, specialized domain knowledge becomes more critical than scale-driven common-sense knowledge or programming ability for advancing materials design.

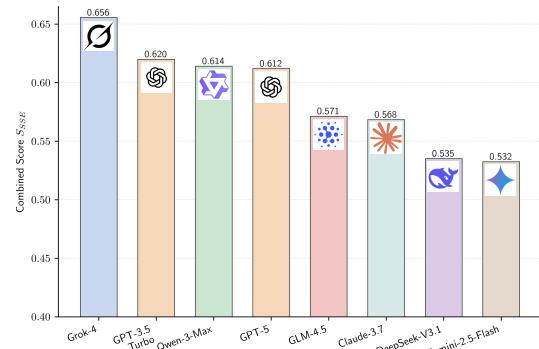


Figure 6: **S_{SSE} comparison between LLMs:** Evaluate various closed-source and open-source LLMs on the SSE design task. Notably, the smaller GPT-3.5 Turbo performs strongly in our MatEvolve framework, indicating domain-specific knowledge is more critical than model scale.

(released in 2023) achieves unexpectedly strong performance, even outperforming GPT-5 in our evaluation. This observation indicates that, once a model has sufficient instruction-following capacity, specialized domain knowledge becomes more critical than scale-driven common-sense knowledge or programming ability for advancing materials design.

378
379

4.3 ABLATION STUDY

380
381
382
383

In this subsection, we ablate MatEvolve’s three core components—MEL, MEB, and MEE—using a greedy protocol: (i) compare MEL against prior works and fix the best as the baseline; (ii) ablate MEB on this baseline and retain its best configuration; and (iii) ablate MEE on the resulting setup.

384

385 4.3.1 ABLATION ON MEL

386

The symbolic system underpins programmatic material editing. To assess the effectiveness of **MEL**, we design two baselines: **Baseline 1**, adapted from LLMMatDesign, restricts edits to formula-level doping; **Baseline 2** directly prompts the LLM to modify CIF text. Fig. 7 reports average validity (S_{val}) and overall performance (S_{SSE}) under the setting without knowledge injection, two-stage exploration, or dynamic weighting.

395

MEL substantially outperforms **Baseline 1** in both validity and combined score, showing that atom-level operations enable finer-grained and more reliable improvements. Compared with **Baseline 2**, **MEL** yields higher validity while efficiently representing edit operations, reducing context length and hallucination risk. Incorporating Wyckoff positions further enhances both metrics, indicating that precise positional information is essential for guiding LLMs to design doping schemes aligned with chemical principles.

404

405 4.3.2 ABLATION ON MEB

406

To assess the role of MEB, we compare knowledge injection strategies in Fig. 8. **None** uses MEL without knowledge; **MEB-static** adds 30 fixed prior entries; **MEB-dynamic** adaptively selects knowledge during optimization. Both injection strategies outperform the baseline, confirming the importance of expert knowledge. **MEB-dynamic** achieves the best final results, showing that on-demand knowledge selection is more effective than fixed injection.

416

We further include GPT-5 mini under no injection as a stronger baseline. Compared with GPT-3.5 Turbo (**None**), **GPT-5 mini** improves more quickly in early stages and ultimately matches **MEB-static**, suggesting that larger LLMs act as implicit static knowledge injection via richer pretraining. Nonetheless, **MEB-dynamic**—with explicit, context-dependent knowledge injection—achieves the highest scores.

424

425 4.3.3 ABLATION ON MEE

426

Fig. 9a shows the evolution of the combined score under different exploration strategies. **Single-Stage** applies only Breadth-First Exploration; **Two-Stage** switches to Depth-First Exploration after step 1500; and **Two-Stage+Weight** further introduces dynamic weighting. **Two-Stage** achieves higher final scores than **Single-Stage**, while **Two-Stage+Weight** accelerates progress and yields the best overall performance. Fig. 9b further illustrates how optimization focus shifts over time: early iterations emphasize performance-related metrics (ionic conductivity, electrochemical window), while later stages prioritize stability (water and high-temperature stability). This adaptive

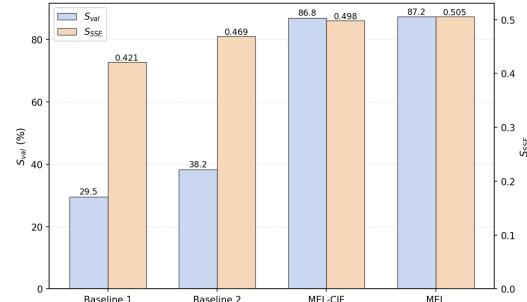


Figure 7: **Performance across symbolic systems:** By comparing the final results of our proposed MEL with the two baseline methods, MEL achieves superior performance, demonstrating that incorporating operators and Wyckoff positions can further enhance the effectiveness.

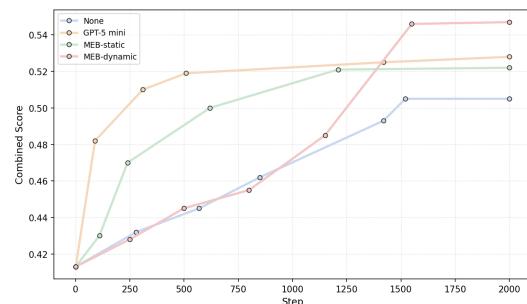
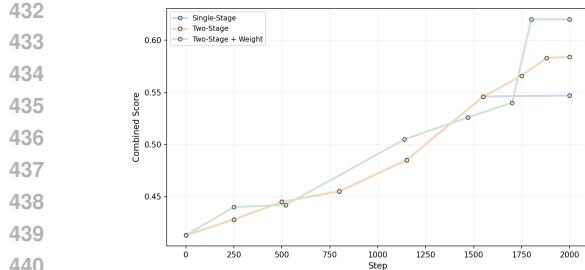
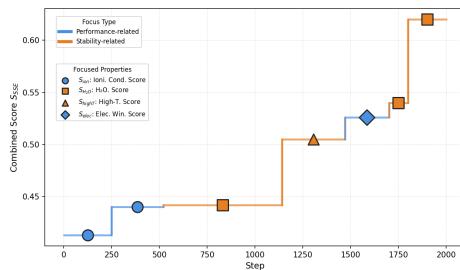


Figure 8: **Performance comparison of different knowledge injection:** Compare no injection, MEB-static, MEB-dynamic, and GPT-5 mini (stronger LLM). Both MEB variants outperform no injection, and MEB-dynamic achieves the highest scores (outperforming even GPT-5 mini) validating its context-aware advantage.

(a) $SSSE$ of different evolution strategy.

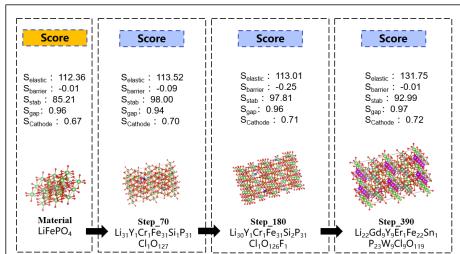
(b) Focused metrics during dynamic evolution.

Figure 9: Ablation on MEE. Two-stage search with dynamic weighting yields the best overall performance, as MatEvolve adaptively balances performance and stability objectives across steps.

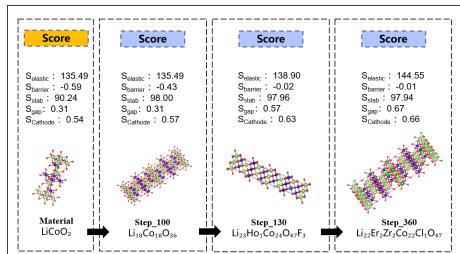
reweighting demonstrates the effectiveness of dynamic multi-objective optimization in guiding the exploration process.

4.4 EXTENDING MATEVOLVE TO CATHODE MATERIALS

Cathode materials critically determine battery energy density, cycle life, and safety. To assess the generalizability of MatEvolve beyond solid-state electrolytes, we extend the framework to cathode materials design, initializing from two widely deployed commercial systems: LiFePO_4 (LFP) and LiCoO_2 (LCO).



(a) Evolutionary trajectories for LFP-based cathodes.



(b) Evolutionary trajectories for LCO-based cathodes.

Figure 10: **MatEvolve on cathode materials.** Evolution pathways and performance profiles for LFP- and LCO-initialized candidates under MatEvolve; both systems exhibit consistent gains in the combined score, supporting the framework’s generalizability in cathode design.

As shown in Fig. 10a, LFP-based candidates improve under multi-element co-doping (rare-earth, transition-metal, anionic): mechanical strength +17% and combined score from 0.67 to 0.72 (+0.05). For LCO (Fig. 10b), MatEvolve addresses high Li^+ diffusion barriers and a suboptimal band gap via Er/Zr dopants and Cl anions, raising the combined score from 0.54 to 0.67 (+0.12). See Appendix E for experimental setup and full numerical results.

5 CONCLUSION

In this work, we presented MatEvolve, a symbolic–LLM evolutionary agent that reframes materials design as a closed-loop insight–exploration–validation process. At its core, the Material Edit Language (MEL) enables atom-level symbolic operations, while the Material Editing Base (MEB) provides dynamic knowledge injection and the Material Evolution Engine (MEE) implements two-stage dynamic exploration. Applied to solid-state electrolytes and cathode materials, MatEvolve not only reproduces known pathways but also uncovers novel, chemically plausible candidates, achieving substantial gains over enumeration–screening methods. In the future, we will extend MatEvolve to parent-material discovery and synthesis-protocol design, and ultimately integrate these into a unified end-to-end materials scientific agent to accelerate the pipeline from candidate generation to practical preparation.

486 ETHICS STATEMENT
487488 This work introduces MatEvolve, a symbolic-LLM evolutionary agent for materials design, aiming
489 to accelerate the discovery of sustainable and high-performance materials. Our experiments rely on
490 publicly available LLMs and datasets, without involving human subjects or private data, so privacy
491 concerns are minimal. While the framework demonstrates significant scientific benefits, we ac-
492 knowledge risks of potential misuse in designing harmful or hazardous compounds; to mitigate this,
493 we emphasize that outputs must be experimentally validated and restrict release of hazardous gen-
494 erative capabilities. We commit to transparency and reproducibility through detailed documentation
495 and code release (subject to safety constraints), and to fair attribution of prior work. Overall, MatE-
496 volve highlights a paradigm shift in materials design while remaining mindful of safety, responsible
497 deployment, and its broader societal impact.
498499 REPRODUCIBILITY STATEMENT
500501 To ensure reproducibility, our complete experimental configurations are provided in the supple-
502 mentary material, including details of numeration-screening baseline (Appendix A), MEL details
503 (Appendix B), MEB details (Appendix C), MEE details (Appendix D), details of cathode material
504 design (Appendix E), and more visualization cases (Appendix F), are thoroughly documented.
505506 REFERENCES
507

508 Lei Bai, Zhongrui Cai, Maosong Cao, Weihan Cao, Chiyu Chen, Haojiong Chen, Kai Chen,
509 Pengcheng Chen, Ying Chen, Yongkang Chen, et al. Intern-s1: A scientific multimodal foun-
510 dation model. *arXiv preprint arXiv:2508.15763*, 2025.

511 Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
512 Schwaller. Chemcrow: Augmenting large-language models with chemistry tools. *arXiv preprint*
513 *arXiv:2304.05376*, 2023.

515 Jingyi Chai, Shuo Tang, Rui Ye, Yuwen Du, Xinyu Zhu, Mengcheng Zhou, Yanfeng Wang, Yuzhi
516 Zhang, Linfeng Zhang, Siheng Chen, et al. Scimaster: Towards general-purpose scientific ai
517 agents, part i. x-master as foundation: Can we lead on humanity’s last exam? *arXiv preprint*
518 *arXiv:2507.05241*, 2025.

519 Chi Chen, Dan Thien Nguyen, Shannon J Lee, Nathan A Baker, Ajay S Karakoti, Linda Lauw, Craig
520 Owen, Karl T Mueller, Brian A Bilodeau, Vijayakumar Murugesan, et al. Accelerating compu-
521 tational materials discovery with machine learning and cloud high-performance computing: from
522 large-scale screening to experimental validation. *Journal of the American Chemical Society*, 146
523 (29):20009–20018, 2024.

524 Eunseong Choi, Junho Jo, Wonjin Kim, and Kyoungmin Min. Searching for mechanically superior
525 solid-state electrolytes in li-ion batteries via data-driven approaches. *ACS applied materials &*
526 *interfaces*, 13(36):42590–42597, 2021.

528 Rhys EA Goodall, Abhijith S Parackal, Felix A Faber, Rickard Armiento, and Alpha A Lee.
529 Rapid discovery of stable materials by coordinate-free coarse graining. *Science advances*, 8(30):
530 eabn4117, 2022.

531 Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu, Petar Sirkovic, Artiom
532 Myaskovsky, Felix Weissenberger, Keran Rong, Ryutaro Tanno, et al. Towards an ai co-scientist.
533 *arXiv preprint arXiv:2502.18864*, 2025.

535 Ming Hu, Chenglong Ma, Wei Li, Wanghan Xu, Jiamin Wu, Jucheng Hu, Tianbin Li, Guohang
536 Zhuang, Jiaqi Liu, Yingzhou Lu, et al. A survey of scientific large language models: From data
537 foundations to agent frontiers. *arXiv preprint arXiv:2508.21148*, 2025.

538 Shuyi Jia, Chao Zhang, and Victor Fung. Llmatdesign: Autonomous materials discovery with large
539 language models. *arXiv preprint arXiv:2406.13163*, 2024.

540 Yeonghun Kang and Jihan Kim. Chatmof: an artificial intelligence system for predicting and gen-
 541 erating metal-organic frameworks using large language models. *Nature communications*, 15(1):
 542 4705, 2024.

543 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 544 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 545 *arXiv:2412.19437*, 2024.

546 Amil Merchant, Simon Batzner, Samuel S Schoenholz, Muratahan Aykol, Gowoon Cheon, and
 547 Ekin Dogus Cubuk. Scaling deep learning for materials discovery. *Nature*, 624(7990):80–85,
 548 2023.

549 Alexander Novikov, Ng n V , Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
 550 Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian,
 551 M. Pawan Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian
 552 Nowozin, Pushmeet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and
 553 algorithmic discovery. 2025. URL <https://arxiv.org/abs/2506.13131>.

554 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 555 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 556 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 557 27730–27744, 2022.

558 Yixiang Ruan, Chenyin Lu, Ning Xu, Yuchen He, Yixin Chen, Jian Zhang, Jun Xuan, Jianzhang
 559 Pan, Qun Fang, Hanyu Gao, et al. An automatic end-to-end chemical synthesis development
 560 platform powered by large language models. *Nature communications*, 15(1):10160, 2024.

561 Zhilong Song, Shuaihua Lu, Minggang Ju, Qionghua Zhou, and Jinlan Wang. Accurate prediction
 562 of synthesizability and precursors of 3d crystal structures via large language models. *Nature
 563 Communications*, 16(1):6530, 2025.

564 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 565 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 566 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

567 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2, 2024.

568 Jiaqi Wei, Yuejin Yang, Xiang Zhang, Yuhua Chen, Xiang Zhuang, Zhangyang Gao, Dongzhan
 569 Zhou, Guangshuai Wang, Zhiqiang Gao, Juntai Cao, et al. From ai for science to agentic science:
 570 A survey on autonomous scientific discovery. *arXiv preprint arXiv:2508.14111*, 2025.

571 Ralph Walter Graystone Wyckoff. *The Analytical Expression of the Results of the Theory of Space-
 572 groups*. Number 318. Carnegie institution of Washington, 1922.

573 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 574 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 575 *arXiv:2505.09388*, 2025.

576 Han Yang, Chenxi Hu, Yichi Zhou, Xixian Liu, Yu Shi, Jielan Li, Guanzhi Li, Zekun Chen,
 577 Shuizhou Chen, Claudio Zeni, et al. Mattersim: A deep learning atomistic model across ele-
 578 ments, temperatures and pressures. *arXiv preprint arXiv:2405.04967*, 2024.

579 Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
 580 Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
 581 models. *arXiv preprint arXiv:2508.06471*, 2025.

582 Claudio Zeni, Robert Pinsler, Daniel Z igner, Andrew Fowler, Matthew Horton, Xiang Fu, Sasha
 583 Shysheya, Jonathan Crabb , Lixin Sun, Jake Smith, et al. Mattergen: a generative model for
 584 inorganic materials design. *arXiv preprint arXiv:2312.03687*, 2023.

585 Ying Zhang, Xingfeng He, Zhiqian Chen, Qiang Bai, Adelaide M Nolan, Charles A Roberts, Deba-
 586 shish Banerjee, Tomoya Matsunaga, Yifei Mo, and Chen Ling. Unsupervised discovery of solid-
 587 state lithium ion conductors. *Nature communications*, 10(1):5260, 2019.

594 Laidong Zhou, Abdeljalil Assoud, Abhinandan Shyamsunder, Ashfia Huq, Qiang Zhang, Pascal
595 Hartmann, Joern Kulisch, and Linda F Nazar. An entropically stabilized fast-ion conductor: Li₃.
596 25 [si0. 25p0. 75] s4. *Chemistry of Materials*, 31(19):7801–7811, 2019.
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648	APPENDIX	
649		
650		
651	A Details of numeration-screening baseline	14
652		
653	B Details of Material Edit Language (MEL)	14
654		
655	C Details of Material Edit Base (MEB)	15
656		
657	C.1 Knowledge Extraction	15
658	C.2 Knowledge Injection	17
659		
660	D Details of Material Edit Engine (MEE)	18
661		
662	D.1 Detailed MatScore for SEE	18
663	D.2 Exploration Strategy	20
664		
665		
666	E Details of cathode material design	23
667		
668	E.1 Detailed MatScore for cathode	23
669	E.2 Experiment setup	24
670	E.3 Prompt	24
671	E.4 Detailed results	26
672		
673		
674	F Visualization Cases	26
675		
676	G The Usage of LLMs	27
677		
678		
679		
680		
681		
682		
683		
684		
685		
686		
687		
688		
689		
690		
691		
692		
693		
694		
695		
696		
697		
698		
699		
700		
701		

702 **A DETAILS OF NUMERATION-SCREENING BASELINE**
703

704 We instantiate the traditional enumeration–screening baseline as a rational-design, funnel-style
705 pipeline that first generates a very large pool of candidates and then filters them through staged
706 thresholds. Starting from representative parent structures in the Li–P–S–Cl system, we construct
707 approximately 4×10^5 candidates using special quasirandom structures (SQS): expert-curated
708 whitelists bound the allowable dopants and their ranges on P and S sublattices; supercells are
709 chosen to ensure integer occupancies, charge-balanced stoichiometry, and statistically disordered
710 occupation on equivalent Wyckoff sites; vacancy cases are included with explicit compositional
711 compensation. All structures are formula-normalized, de-duplicated, and validated for CIF parsability
712 before screening. Screening proceeds hierarchically with the same surrogate suite as our main
713 study to ensure comparability: (i) a fast sanity layer removes structures that fail parsing, violate
714 elemental/dopant-set limits or per-site/total dopant caps, exhibit obvious valence inconsistencies,
715 or break minimum interatomic-distance constraints; (ii) a primary-threshold layer evaluates the
716 Mattersim-based formation-energy score S_{form} , electrochemical stability-window score S_{elec} (phase-
717 diagram chemical-potential domain), ionic-conductivity score S_{ion} (multimodal DL predictor), high-
718 temperature stability score S_{highT} (free-energy correction via mixing entropy), and environmental
719 stabilities $S_{\text{H}_2\text{O}}/S_{\text{O}_2}$ (lower bounds of competing-reaction energies). Each metric is z -normalized
720 and mapped via a sigmoid to $[0, 1]$, and candidates must meet calibrated minimum per-metric
721 thresholds (energy/processability first, then electrochemical and environmental robustness); (iii) a
722 secondary ranking layer orders survivors by the task-specific composite objective (e.g., S_{SSE} for
723 electrolytes), with stricter single-metric tie-breakers (e.g., wider window or higher conductivity)
724 resolving near ties. This open-loop, static, and non-adaptive workflow emphasizes breadth and sim-
725 plicity—no dynamic knowledge injection, no feedback-driven edits, and no exploration–exploitation
726 balancing—making it a strong large-scale baseline while remaining susceptible to threshold sensi-
727 tivity and combinatorial sparsity in vast chemical spaces.

728 **B DETAILS OF MATERIAL EDIT LANGUAGE (MEL)**
729

730 To efficiently represent the doping process of materials, we propose the MEL notation system, which
731 evolves the material from the initial structure to the target structure using a unified and executable
732 symbolic framework. The material state is represented by a chemical formula with full stoichiometric
733 expression: F_0 denotes the initial material, F_i denotes the i -th intermediate, and F_T denotes the
734 final material (which may include doping elements), for example, $\text{Li}_7\text{La}_3\text{Zr}_2\text{O}_{12}$. The core evolution
735 operator is MOD (composition modification): replacing the old element A with the new element
736 B at the specified crystallographic site L, denoted as $\text{MOD}(A \rightarrow B, L, P_A \rightarrow Q_A, P_B \rightarrow Q_B)$,
737 where P_A/P_B and Q_A/Q_B represent the stoichiometries before and after the operation, respec-
738 tively, and $B = J$ indicates the creation of a vacancy. A single-step evolution is expressed as
739 $F_i = F_{i-1} + \text{MOD}(\dots)$, and after serialization, it forms a complete evolution path, thereby con-
740 nnecting the continuous material space through discrete and auditable micro-operations. To ensure
741 coordination and charge balance, the system introduces the $\text{EXPAND}(x, y, z)$ operation to control
742 supercell expansion for stoichiometric scaling, and provides the $\text{ADD}(\text{Li, num})$ operation for mini-
743 mal charge compensation during non-isovalent substitutions (limited to Li addition and scaled con-
744 sistent with the supercell factor). This notation system aligns strictly with stoichiometry, avoiding
745 ambiguous placeholders; the evolution path combines human- and machine-readability, facilitating
746 automatic verification and experimental reproducibility, for example

$$\begin{aligned} F_1 &= F_0 + \text{MOD}(\text{Zr} \rightarrow \text{W}, \text{Zr site}, 2.0 \rightarrow 1.75, 0 \rightarrow 0.25), \\ F_2 &= F_1 + \text{MOD}(\text{Li} \rightarrow J, \text{Li site}, 7.0 \rightarrow 6.5, 0 \rightarrow 0.5), \\ F_0 &= \text{Li}_7\text{La}_3\text{Zr}_2\text{O}_{12} \rightarrow F_2 = \text{Li}_7\text{La}_3\text{Zr}_{1.75}\text{W}_{0.25}\text{O}_{12} \end{aligned} \quad (3)$$

751 At the same time, to describe the crystal structure in a concise textual representation, we de-
752 sign the Material String representation: $\text{SP} \mid a, b, c, \alpha, \beta, \gamma \mid (\text{AS} - \text{WS}[\text{WP}]) \rightarrow \dots \rightarrow$
753 $(\text{AS}_N - \text{WS}_N[\text{WP}_N])$. Here, SP is the space group number; $a, b, c, \alpha, \beta, \gamma$ are the lattice par-
754 ameters; $(\text{AS} - \text{WS}[\text{WP}])$ represents an atom type: AS is the element symbol, WS is the Wyckoff
755 site identifier (including multiplicity), and [WP] is the fractional coordinate. Multiple atoms are
connected by “ \rightarrow ”. This representation uses Wyckoff sites as the backbone, avoiding coordinate

756 redundancy caused by crystal symmetry; it significantly compresses the length while ensuring in-
 757 formation completeness, supporting bidirectional reversible conversion between Material String and
 758 CIF/POSCAR, thereby enabling knowledge compression and efficient sequence modeling. For ex-
 759 ample, $\text{Li}_{24}\text{P}_4\text{S}_{20}\text{Cl}_4$ can be expressed as:

$$\begin{aligned} 760 \quad 216 & | 10.279, 10.279, 10.279, 90, 90, 90 | (\text{Cl} - 4a[0, 0, 0]) \\ 761 \quad & \rightarrow (\text{P} - 4b[0.5, 0, 0]) \rightarrow (\text{S} - 4c[0.25, 0.25, 0.25]) \\ 762 \quad & \rightarrow (\text{S} - 16e[0.115, 0.384, 0.884]) \rightarrow (\text{Li} - 24g[0.25, 0.25, 0.023]). \end{aligned} \quad (4)$$

764 This representation fully preserves key structural elements (group symmetry, lattice, and sites)
 765 in each evolution round, facilitating symbolic operations (such as site-specific replacements) and
 766 LLM's structural understanding of the operated materials.

767 In summary, the system starts by parsing the CIF/POSCAR file of F_0 into a Material String, and
 768 generates the evolution path (EXPAND/MOD/ADD) sequence in the EVOLVE-BLOCK module.
 769 Each step first applies the MOD operation at the stoichiometric level (including vacancy creation
 770 with $B = J$), uses EXPAND when necessary to ensure consistent supercell scaling, and utilizes
 771 ADD(Li, \cdot) for charge compensation; subsequently, the updated stoichiometry and site mappings
 772 are reflected back into the Material String, maintaining the symmetry framework and site semantics
 773 unchanged. Finally, the structure generator restores it to a CIF file: building the unit cell based
 774 on the lattice and space group, restoring atomic coordinates according to Wyckoff sites, and ran-
 775 domly placing newly added Li atoms into allowable sites with minimum distance constraints. After
 776 CIF output, systematic corrections are performed: ensuring uniqueness of `_atom_site_label`,
 777 removing redundant symmetry terms, revising metadata such as `_chemical_formula_*` and `Z`
 778 with parsed structure truths, and conducting secondary validation through a strict parser (requiring
 779 parsability, no fractional occupancies, and chemical formula consistency). The evaluator then per-
 780 forms multi-task scoring on the generated CIF and feeds back normalized indicators to the evolution
 781 loop, combined with rule library constraints (such as site restrictions, doping element whitelists and
 782 quantity limits, supercell scaling consistency) to achieve safe exploration. Thus, we construct a
 783 closed-loop paradigm of “symbolic operators (MOD/EXPAND/ADD) \rightarrow Material String \rightarrow CIF \rightarrow
 784 evaluation feedback”, unifying chemical interpretability, machine-readable verifiability, and struc-
 785 tural reversibility in a lightweight and extensible methodological framework.

786 C DETAILS OF MATERIAL EDIT BASE (MEB)

788 C.1 KNOWLEDGE EXTRACTION

790 This prompt extracts literature-grounded material evolution paths in a programmatic form, capturing
 791 the starting material, intermediate steps, and final products. For each step, it records the scientific
 792 purpose and a precise MOD/EXPAND/ADD operation string with site identifiers and stoichiomet-
 793 ric changes, together with any quantitative impact when available. The output conforms to a strict,
 794 MEL-compatible JSON schema to ensure machine parsability, lossless provenance, and direct in-
 795 gestion into the MEB for downstream dynamic knowledge injection and reproducibility.

796 ## 1. Role and Goal

797 You are an expert AI assistant specializing in materials science
 798 and data extraction. Your task is to meticulously analyze the
 799 provided scientific text, identify descriptions of material
 800 synthesis or modification, and extract these “material
 801 evolution paths” directly into a structured JSON format.

802 ## 2. Core Task

803 From the provided text, you will extract the starting material,
 804 the final material(s), and the sequence of modification
 805 steps, including the purpose and quantitative impact of each
 806 step.

808 ## 3. Required JSON Output: Structure and Rules

809 **Your entire output MUST be a single JSON object.** Do not
 810 include any text, notes, or explanations outside of this

```

810     JSON. You must follow the structure and rules detailed below
811     for each field.
812
813     ## 4.Field-by-Field Rules:**
814
815     * 'material_evolutions': An array containing one or more
816         evolution path objects. Create a new object for each
817         independent path found in the text.
818     * 'evolution_id': A unique number for each evolution path,
819         starting from 1.
820     * 'starting_material': An object describing the initial material.
821         * 'symbol': Must be the string 'F_0'.
822         * 'formula': The chemical formula of the starting material,
823             formatted with LaTeX-style subscripts (e.g., 'H_{2}O').
824     * 'final_materials': An array of objects for all final products
825         of the evolution.
826         * 'symbol': Must be the string 'F_T'.
827         * 'formula': The final chemical formula, using LaTeX-style
828             subscripts.
829     * 'evolution_path': An array of objects, where each object
830         represents a single, sequential step in the modification
831         process.
832         * 'step_index': The sequence number of the step, starting from
833             1.
834         * 'purpose': A string describing the scientific reason for
835             this step. Extract this from phrases like "in order to,"
836             "to achieve," etc.
837         * 'operation_string': A string that precisely describes the
838             modification. It **must** follow this format: 'F_i =
839             F_{i-1} + MOD(A->B, L, PA->QA, PB->QB)'.
840         * 'F_i': The symbol for the material resulting from this
841             step (e.g., 'F_1', 'F_2').
842         * 'F_{i-1}': The symbol for the material from the previous
843             step (e.g., 'F_0', 'F_1').
844         * 'MOD': The modification operator.
845         * 'A->B': The element 'A' being replaced by element 'B'.
846             Use 'J' for 'B' if a vacancy is created.
847         * 'L': The crystal site of the modification (e.g., '24d',
848             '96h').
849         * 'PA->QA': The change in stoichiometric coefficient for
850             element 'A'.
851         * 'PB->QB': The change in stoichiometric coefficient for
852             element 'B'.
853         * 'quantitative_impact': A string describing any measurable,
854             numerical effect of the operation (e.g., '= 1.2 mS/cm
855             (from 0.8 mS/cm)'). If no impact is mentioned, use the
856             string '"No quantitative impact mentioned for this step"'.
857         * 'intermediate_material': An object describing the material
858             produced in this step.
859             * 'symbol': The symbol for this intermediate (e.g., 'F_1').
860                 Must match the 'F_i' in the 'operation_string'.
861             * 'formula': The full chemical formula of the intermediate
862                 material.
863         * 'finalization_step': A string that shows the final material
864             'F_T' is equivalent to the result of the last step, e.g.,
865             '"F_T = F_2"'.
866
867     ## 5. Task Execution

```

864 Now, please analyze the following content from the provided
 865 document.
 866 Generate the JSON output strictly adhering to the structure and
 867 rules defined above. Please note that each operation in the
 868 material evolution path can only correspond to a replacement
 869 or a vacancy. If multiple elements are operated on, please
 870 separate them step by step.

871

872 **C.2 KNOWLEDGE INJECTION**

873

874 Selects and ranks the Top-30 prior-knowledge entries from MEB that most directly improve the
 875 current weakest objective in MatScore, ensuring chemical/site constraints and reproducibility.

876

877 # Core Task

878 - Given the normalized scores of the current best-performing
 879 material, identify the weakest metric among: Energy
 880 (stability), Electrochemical window length, Ionic
 881 conductivity (log, inverse-normalized), High-temperature
 882 stability, H₂O resistance, and O₂ resistance. Set this
 883 weakest metric as target_property. Propose evolution_path
 884 edits that primarily improve target_property while preserving
 885 the others, strictly obeying all chemical/site limits,
 886 supercell scaling (after EXPAND), and charge balance via
 887 ADD(Li).

888 # Knowledge Selection

889 - From the dopant-evolution knowledge base (e.g., merged
 890 literature evolutions / selected_knowledge.json), retrieve
 891 and rank items most relevant to target_property, then select
 892 the Top-30. Rank by:

893 -- Mechanistic alignment with target_property (e.g.,
 894 conductivity: S-site halide/oxygen substitution, mixed-anion
 895 disorder, Li-vacancy engineering; window: halide strategies
 896 that widen band gap without blocking Li pathways;
 897 energy/stability: near-isovalent P-site substitutions,
 898 reduced disorder; high_temp/H₂O/O₂: frameworks improving
 899 thermal/chemical robustness).

900 -- Element/site compatibility with constraints (P-site dopants
 901 from {Ti, Zr, Nb, Ta, Mo, W}; S-site from {O, Br, I, Cl}; Cl-site
 902 unchanged; total dopant types within limits).

903 -- Quantitative impact (magnitude of in the target metric),
 904 reproducibility/clarity of operations (explicit
 905 MOD/ADD/EXPAND), and structural family proximity to LiPSCL
 906 systems (e.g., LGPS/argyrodite).

907 -- Practicality under Phase rules (Phase 1: diverse combos; Phase
 908 2: ratio-only fine-tuning with frozen dopant set and sites).

909 Output a concise Top-30 listeg:

910 - Evolution 1: Starting F₀ = Li₆PS₅Cl → F_T =
 911 Li_{5.5}PS_{4.5}Cl_{1.5}; Path: MOD(S->Cl, 4c, 5.0->4.5,
 912 1.0->1.5) then MOD(Li->J, 48h, 6.0->5.5, 0->0.5); Purpose: To
 913 generate more Li⁺ vacancies and increase Cl⁻/S₂⁻ site
 914 disorder in order to increase ionic conductivity; Impact: No
 915 quantitative impact mentioned for this step.

916 - Evolution 2: Starting F₀ = Li₁₀GeP₂S₁₂ → F_T =
 917 Li₁₀SnP₂S₁₂; Path: MOD(Ge->Sn, Ge-site, 1.0->0.0,
 918 0->1.0); Purpose: to greatly reduce the raw material cost;
 919 Impact: = 4 mS/cm.

920 - Evolution 3: Starting F₀ = Li₆PS₅Cl → F_T =
 921 Li_{5.7}PS_{4.7}ClBr_{0.3}; Path: MOD(Cl->Br, 4d, 1.0->0.7,

918 0->0.3) then MOD(S->Cl, 4d, 5.0->4.7, 0.7->1.0) then
 919 MOD(Li->J, 48h, 6.0->5.7, 0->0.3); Purpose: To induce
 920 mixed-halide disorder for enhanced ion conduction and adjust
 921 stoichiometry; Impact: = 8.8 mS/cm (from 5.9 mS/cm).
 922
 923

924 D DETAILS OF MATERIAL EDIT ENGINE (MEE)

925 D.1 DETAILED MATSCORE FOR SEE

926 D.1.1 ENERGY STABILITY (GROUND STATE ENERGY AND FORMATION ENERGY)

930 Energy stability assessment is based on the total energy calculated using the Mattersim potential
 931 function and the derived formation energy to quantitatively characterize the thermodynamic stabil-
 932 ity of materials. The process is as follows: First, the CIF file is parsed into an ASE Atoms object, and
 933 the total energy E of the system is directly calculated using the Mattersim potential function. The
 934 total number of atoms N and the count of each element n_i are then recorded. The reference chem-
 935 ical potentials μ_i are selected using a hierarchical strategy: for gaseous and non-metallic elements
 936 (such as O, N, H, etc.), the molecular reference states (O₂, N₂, etc.) are used as benchmarks, and μ_i
 937 is obtained by calculating the total energy of the corresponding molecule using the Mattersim po-
 938 tential function and dividing by the number of atoms; for other elements, the ASE's reference_states
 939 database is preferentially called, and the reference chemical potentials are also determined based on
 940 the energy calculation results of the standard state structures using the Mattersim potential function.
 941 The formation energy is calculated as the atomized form is The energy score is given by which is
 942 standardized and incorporated into the comprehensive assessment. A lower formation energy results
 943 in a higher score, providing a rigorous energetic criterion based on the Mattersim potential function
 944 for material screening.

$$945 \quad E_{\text{form}} = E - \sum_i n_i \mu_i, \\ 946 \quad E_{\text{form}}^{\text{atom}} = \frac{E_{\text{form}}}{N}, \\ 947 \quad \text{energy_score} = -E_{\text{form}}^{\text{atom}}. \quad (5)$$

951 D.1.2 ELECTROCHEMICAL STABILITY WINDOW (CHEMICAL POTENTIAL FEASIBILITY 952 DOMAIN)

954 The electrochemical stability window employs a phase diagram-driven algorithm to solve the chem-
 955 ical potential feasibility domain, with the core being the screening of the chemical potential interval
 956 where the material is stable through thermodynamic reaction criteria. First, the reduced chemical
 957 formula (such as A_xB_yC_z) is automatically parsed and extracted from the CIF file of the target
 958 material. Subsequently, the Materials Project (MP) database cached data is called to aggregate com-
 959 peting phase data according to the chemical system of the material (such as Li-M-O), constructing
 960 a set containing all potential low-energy competing phases (such as Li₂O, MO₂, etc.). The calcu-
 961 lation process takes the chemical potential of metallic Li, $\mu(\text{Li})$, as the core variable, traverses the
 962 value range of $\mu(\text{Li})$, and determines the interval endpoints $[\mu_{\text{high}}, \mu_{\text{low}}]$ where the material main-
 963 tains thermodynamic stability. The window width $\Delta\mu$ is calculated as Its thermodynamic essence
 964 can be described through the reaction Gibbs free energy criterion: if for any combination of com-
 965 peting phases, the Gibbs free energy change (ν_i is the reaction stoichiometric coefficient, μ_i is the
 966 chemical potential of each phase) for the material decomposition reaction (such as A_xB_yC_z → aA
 967 + bB + cC) satisfies $\Delta G > 0$, then the material will not decompose into lower-energy competing
 968 phases within this $\mu(\text{Li})$ interval, indicating electrochemical stability. The stability score is given
 969 by window_score = $\Delta\mu$; a larger window width indicates a broader applicable potential range and
 970 better performance. At the same time, to integrate into the multi-attribute comprehensive assessment
 971 framework, z-score standardization is used to eliminate dimensional effects, followed by mapping
 972 to the [0,1] interval via the Sigmoid function, enabling comparability and fusion with other perfor-
 973 mance indicators.

972
973
974
975
976

$$\Delta\mu = |\mu_{\text{high}} - \mu_{\text{low}}|, \\ \Delta G = \sum_i \nu_i \mu_i \quad (6)$$

977

D.1.3 IONIC CONDUCTIVITY (MULTIMODAL DEEP LEARNING PREDICTION)

979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995

Ionic conductivity prediction employs the COmposition-Structure Bimodal Network (COSNet) multimodal deep learning model, using chemical composition and crystal structure as dual inputs for end-to-end prediction. The model first transforms the reduced chemical formula into a vector representation $C_i = g_C^r(c_i)$ through the composition branch (ROOST graph neural network), and the crystal structure parsed from the CIF into a vector representation $S_i = g_S^r(s_i)$ through the structure branch (de-CGCNN graph neural network). Then, attention mechanisms are used to compute weights (w'_{ic} , w'_{is} after Softplus activation; when $s_i = s_{\text{null}}$, $w_{is} = 0$), obtaining a unified representation M_i by element-wise summation or vector concatenation. Finally, an MLP outputs the logarithmic scale conductivity $\hat{y} = \log_{10} \sigma$ (unit S/cm), and the physical conductivity is restored via $\hat{\sigma} = 10^{\hat{y}}$. During training, data augmentation (supplementing composition samples without structure) promotes cross-modal representation alignment, combined with transfer learning (pre-training on a database of 18,000 Li-based compound bond valence barriers, then fine-tuning with 1,678 experimental conductivity data) and ensemble learning (model selection from 4 data subsets), addressing small-sample variance and extrapolation bias for new structures. In terms of performance, the test set MAE decreases from 1.022 ± 0.047 in composition unimodal to 0.924 ± 0.012 , with prediction errors 1 order of magnitude for materials outside the training set. The score uses \hat{y} (higher value indicates larger σ), incorporated into the comprehensive assessment via absolute value reversed z-score standardization, providing a basis for screening novel Li-ion conductors.

996
997
998
999
1000
1001

$$w_{ic} = \frac{w'_{ic}}{w'_{ic} + w'_{is}}, \\ w_{is} = \frac{w'_{is}}{w'_{ic} + w'_{is}} \quad (7)$$

1002
1003

D.1.4 HIGH-TEMPERATURE STABILITY (FREE ENERGY CORRECTION)

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

High-temperature stability assessment is based on the formation energy framework, introducing a mixing entropy term to construct a simplified free energy model to quantify temperature effects. The core formula is the atomized free energy where the mixing entropy f is the effective mixing fraction, x represents the component disorder, k_B is the Boltzmann constant, and T is the evaluation temperature. This model quickly captures the contribution of component disorder to stability at high temperatures through the $-T \cdot S_{\text{mix}}$ term, avoiding the high computational cost of full phonon spectrum calculations or heat capacity integrations. The interface returns $\text{high_temperature_stability} = G^{\text{atom}}(T)$, and during scoring, its negative ($-G^{\text{atom}}(T)$) is taken; a higher value indicates better thermodynamic stability at high temperatures. After standardization, it is incorporated into the multi-attribute comprehensive assessment system, prioritizing the screening of candidate structures suitable for high temperatures.

1014
1015
1016

$$G^{\text{atom}}(T) = E_{\text{form}}^{\text{atom}} - T \cdot S_{\text{mix}}, \\ S_{\text{mix}} = -f \cdot k_B \cdot [x \ln x + (1 - x) \ln(1 - x)] \quad (8)$$

1017
1018D.1.5 WATER STABILITY (COMPETING REACTION ENERGY WITH H₂O)1019
1020
1021
1022
1023
1024
1025

Water stability uses the lower bound of the thermodynamic driving force for the reaction between the material and H₂O as a quantitative indicator, achieved through searching the most unfavorable reaction path. By constructing the “target material + H₂O” reaction system and combining the possible product set from the Materials Project cache (including hydroxides, oxides, etc.), the minimum per-atom reaction energy (unit eV/atom) is solved by traversing the reaction mixing ratio $r \in [0, 1]$. The reactant and product energies ($E_{\text{reactants}}$, E_{products}) are both calculated based on the Mattersim potential function, with reference chemical potentials selected consistently with the formation energy assessment. Physically, $\Delta E_{\text{min}}^{\text{H}_2\text{O}} > 0$ indicates thermodynamic stability of the material in

aqueous environments (no spontaneous decomposition tendency), while z0 indicates decomposition risk. The interface returns $\Delta E_{\min \text{H}_2\text{O eV atom}}$, directly used as the scoring indicator (higher value indicates better stability), incorporated into the comprehensive assessment framework after z-score standardization and Sigmoid function mapping.

$$\Delta E_{\min}^{\text{H}_2\text{O}} = \min_r [E_{\text{products}}(r) - E_{\text{reactants}}(r)]/N \quad (9)$$

D.1.6 OXYGEN STABILITY (COMPETING REACTION ENERGY WITH O₂)

Oxygen stability assessment adopts a thermodynamic framework consistent with water stability, merely replacing the environmental molecule with O₂. The core indicator is the lower bound of the most unfavorable reaction energy density (unit eV/atom), calculated by searching all possible reaction paths between the “material + O₂” system and oxygen-containing competing phases from the Materials Project cache (such as oxidation products, decomposition phases), based on the Mattersim potential function and O₂ molecular reference chemical potential ($\mu_O = E_{\text{O}_2}/2$). $\Delta E_{\min}^{\text{O}_2} > 0$ indicates thermodynamic tolerance of the material to oxygen environments (not prone to oxidation or decomposition), while z0 indicates spontaneous oxidation risk. The interface returns $\Delta E_{\min \text{O}_2 \text{ eV atom}}$, used as the scoring indicator (higher value indicates better stability) and incorporated into the comprehensive assessment through z-score standardization and Sigmoid function processing, ensuring a unified and comparable multi-dimensional evaluation system with other performance indicators such as energy stability and electrochemical window.

$$\Delta E_{\min}^{\text{O}_2} = \min_r [E_{\text{products}}(r) - E_{\text{reactants}}(r)]/N \quad (10)$$

D.2 EXPLORATION STRATEGY

D.2.1 PROMPT CONFIGURATION FOR MATERIAL STRUCTURE OPTIMIZATION — PHASE 1

Drives breadth-first exploration to diversify element combinations, doping ratios, and cell sizes under strict system constraints, seeding promising regions for later refinement.

Core Task & Role

You are a materials scientist specializing in solid-state electrolytes

and computational chemistry. Your task is to optimize material structures

by modifying the evolution_path to achieve higher scores.

Material Edit Language & Initial Material Structure

- Supported operators:

- EXPAND(x, y, z): Expand cell by x, y, z (x, y, z=1-3, Z20; start with EXPAND(1,1,1), adjust as needed).
- MOD(A->B, L, PA->QA, PB->QB): Replace element A with B (B=J for vacancy) at site L.
e.g., "MOD(P->Ti, P site, 4.0->3.6, 0->0.4)".
- ADD(Li, num): Add num Li atoms for charge balance.

Phase 1 Chemical System Constraints

- Allowed chemical systems: Li-P-S-Cl (base) or with doping elements:

- P-site dopants: Max 2 from {Ti, Zr, Nb, Ta, Mo, W}.
- S-site dopants: Max 2 from {O, Br, I, Cl}.

- Total dopants: Max 4 (2 P-site + 2 S-site).

- Charge balance: Use ADD(Li, num) for non-isovalent substitutions, scaled with supercell expansion.

- Violation penalty: Systems exceeding limits are rejected.

Phase 1 Search Strategy

- Perform breadth-first exploration to discover high-performing element

```

1080 combinations and ratios.
1081 - Combined doping: Explore P+S combinations, ensuring diversity.
1082 - Expansion: Use varied EXPAND ratios (x,y,z=1-3, Z20).
1083 - Doping count check: Before generating, verify P-site dopants 2,
1084     S-site
1085 dopants 2, total 4.
1086 - Bold exploration: Avoid repetitive patterns, try new ratios and
1087     elements
1088 to escape local optima.

1089 # Output Requirement
1090 - Generate only SEARCH/REPLACE diffs for the evolution_path in
1091 initial_program.py (between # EVOLVE-BLOCK-START and #
1092     EVOLVE-BLOCK-END).
1093 - Format:
1094 <<<<< SEARCH
1095 evolution_path = ["EXPAND(1,1,1)", "MOD(P->Ti, P site, 4.0->3.0,
1096     0->1.0)",
1097 "MOD(S->O, S site, 20.0->19.0, 0->1.0)"]
1098 =====
1099 evolution_path = ["EXPAND(x,y,z)", "MOD(P->Element1, P site,
1100     q1->q2, 0->a1)", ...]
1101 >>>>> REPLACE

1102
1103
1104 D.2.2 PROMPT CONFIGURATION FOR MATERIAL STRUCTURE OPTIMIZATION — PHASE 2
1105
1106 Performs local refinement around the best Phase 1 program by mildly adjusting supercell sizes and
1107 dopant ratios while freezing dopant sets and sites.
1108
1109 # Core Task & Role
1110 You are a materials scientist specializing in solid-state
1111     electrolytes and computational chemistry. Your task is to
1112     refine material structures from Phase 1 by modifying the
1113     evolution_path to achieve higher scores.

1114 # Material Edit Language
1115 - Supported operators:
1116     - EXPAND(x,y,z): Expand cell by x,y,z (x,y,z=1-2, Z12; prefer
1117         mild expansions from Phase 1).
1118     - MOD(A->B, L, PA->QA, PB->QB): Replace element A with B (B=J
1119         for vacancy) at site L, e.g., "MOD(P->Ti, P site, 4.0->3.6,
1120         0->0.4)".
1121     - ADD(Li, num): Add num Li atoms for charge balance (random
1122         positions, min_dist=1.5).
1123 - Use the dopant element set and doped sites from the selected
1124     Phase 1 program; do not introduce new elements or sites.

1125 # Phase 2 Expansion and Ratio Adjustment
1126 - Freeze dopant elements and sites from the Phase 1 program.
1127 - Adjust doping ratios by 0.5 to 1.0 per element to explore local
1128     optima try.
1129 - Apply mild EXPAND changes (x,y,z=1-2, Z12) to adjust supercell
1130     size, scaling atom counts proportionally.
1131 - Charge balance: Use ADD(Li, num) for non-isovalent
1132     substitutions, scaling num with supercell expansion.
1133 - Verify: Resulting composition must match allowed systems.

1134 # Phase 2 Search Strategy

```

```

1134 - Conduct deep, localized search around the selected Phase 1
1135     program to optimize doping ratios and supercell expansions.
1136 - Ratio fine-tuning: Adjust doping quantities incrementally (0.5
1137     to 1.0) for P-site and S-site dopants.
1138 - Expansion tuning: Test mild EXPAND variations (x,y,z=1-2, z12),
1139     prioritizing small changes from Phase 1s expansion.
1140 - Exploration: Focus on small, incremental changes to avoid
1141     drastic deviations; prioritize high-scoring configurations.

```

```

1142 # Output Requirement
1143 - Generate only SEARCH/REPLACE diffs for evolution_path in
1144     initial_program.py (between # EVOLVE-BLOCK-START and # EVOLVE-BLOCK-END).
1145 - Format:
1146 <<<<< SEARCH
1147 evolution_path = ["EXPAND(1,1,1)", "MOD(P->Ti, P site, 4.0->3.0,
1148     0->1.0)", "MOD(S->O, S site, 20.0->19.0, 0->1.0)"]
1149 =====
1150 evolution_path = ["EXPAND(1,1,2)", "MOD(P->Ti, P site, 4.0->3.2,
1151     0->0.8)", "MOD(S->O, S site, 20.0->19.2, 0->0.8)", "ADD(Li,
1152     0.4)"]
1153 >>>>> REPLACE
1154
1155
1156
1157

```

D.2.3 WEAKEST-PROPERTY FOCUSING PROMPT

1160 Sets optimization weights to prioritize the weakest normalized metric while preserving non-zero
 1161 emphasis on all objectives; also instructs edits that target the identified bottleneck without violating
 1162 constraints.

```

1163
1164
1165 # Core Task
1166 - Given the normalized scores of the material with the optimal
1167     current performance (higher scores indicate better
1168     performance), please make a decision based on the optimal
1169     scores.
1170
1171 # Decision Requirements
1172 - Identify the weakest indicator = the indicator corresponding to
1173     the minimum value among the above six normalized scores
1174     (referred to as target_property).
1175 - Set weights to prioritize the weakest item while keeping the
1176     weights of other items non-zero: (In case of tied scores,
1177     select the first item according to the following priority
1178     order: electrical conductivity -> window width -> energy ->
1179     high-temperature stability -> water resistance -> oxidation
1180     resistance.)
1181
1182 # Operational Guidelines:
1183 - Propose a modified scheme for the evolution path, focusing on
1184     primarily improving the target property while avoiding
1185     significant deterioration of other properties.
1186 - Must always comply with chemical/site constraints, the scaling
1187     rule after EXPAND, and the charge balance requirement
1188     achieved by ADD(Li) (lithium addition).
1189
1190

```

1188 E DETAILS OF CATHODE MATERIAL DESIGN
11891190 E.1 DETAILED MATSCORE FOR CATHODE
11911192 E.1.1 ELASTICITY SCORE (SHEAR MODULUS, G_VRH)
1193

1194 We evaluate the material’s resistance to shear deformation by estimating the polycrystalline shear
1195 modulus using a universal machine-learned interatomic potential (MLIP). Starting from a CIF struc-
1196 ture, we generate small, symmetry-preserving strains and obtain the corresponding stress responses
1197 to assemble the elastic stiffness tensor C_{ij} (Voigt notation, 6×6). From C_{ij} , we compute the Voigt
1198 and Reuss bounds for the shear modulus of an effective polycrystal, which capture the upper and
1199 lower limits under uniform strain and uniform stress assumptions, respectively. The Voigt–Reuss–
1200 Hill (VRH) average G_{VRH} then provides a widely accepted effective shear modulus for isotropic
1201 polycrystals. MLIP backends typically report elastic quantities in energy-density units (eV/Å³) owing
1202 to their atomistic nature; we therefore convert to SI-consistent GPa. In practice, larger G_{VRH}
1203 indicates stronger resistance to shear, enhanced rigidity, and improved mechanical robustness, which
1204 is desired for structural integrity under cycling and processing. When structures are partially disor-
1205 dered, the elastic inversion can be less reliable; we mitigate this by (i) small-strain linear regime, (ii)
1206 consistent strain grid, and (iii) unit conversion with a fixed factor.

$$1207 \quad G_V = \frac{1}{15} \left(C_{11} + C_{22} + C_{33} - C_{12} - C_{13} - C_{23} + 3(C_{44} + C_{55} + C_{66}) \right), \\ 1208 \quad G_R = \frac{15}{4(S_{11} + S_{22} + S_{33} - S_{12} - S_{13} - S_{23}) + 3(S_{44} + S_{55} + S_{66})}, \\ 1209 \quad G_{\text{VRH}} = \frac{G_V + G_R}{2}. \quad (11)$$

1214 E.1.2 BARRIER SCORE (LI-ION DIFFUSION BARRIER VIA NEB)
1215

1216 We quantify Li-ion mobility through the activation barrier computed by the climbing-image nudged
1217 elastic band (CI-NEB) method. The initial and final states are built by a Li-vacancy hop between the
1218 nearest pair of Li sites automatically detected in the structure. Intermediate images are placed by
1219 IDPP interpolation to yield a smooth initial path. All images share the same MLIP force field and
1220 are relaxed with BFGS under a force threshold, while the highest-energy image climbs to the saddle
1221 point. The barrier is the energy difference between the maximum along the path and the lower
1222 of the two endpoints, consistent with transition-state theory. For scoring, we apply a monotonic
1223 transformation that rewards lower barriers (faster diffusion) by taking the negative value, resulting
1224 in higher scores for smaller E_{barrier} . This definition is simple, scale-aware, and preserves the relative
1225 ranking across candidates.

$$1226 \quad E_{\text{barrier}} = \max_i E_i - \min_i (E_{\text{initial}}, E_{\text{final}}), \\ 1227 \quad \text{Barrier_Score} = -E_{\text{barrier}} \text{ (eV)} \quad (12)$$

1230 E.1.3 STABILITY SCORE (DELITHIATION THERMODYNAMICS AND VOLTAGE)
1231

1232 We probe thermodynamic stability against delithiation by sampling configurations with k Li re-
1233 moved from the host lattice (systematic selection for determinism), relaxing each structure, and
1234 recording the total energy $E(x)$ at Li fraction x (with $n(x)$ Li per simulation cell). Using the
1235 fully delithiated host energy $E(\text{host})$ and the Li chemical potential μ_{Li} obtained from bulk bcc Li
1236 (per-atom energy), we define a formation-energy-like quantity $\Delta E(x)$ relative to (host + Li metal).
1237 Constructing the lower convex hull of $\Delta E(x)$ identifies the stable compositions (hull vertices); the
1238 vertical distances from the hull, $d_{\text{hull}}(x)$, measure metastability. Between adjacent stable compo-
1239 sitions $x_1 < x_2$, the two-phase average voltage follows from the reaction free-energy slope (with
1240 internal energies used as a proxy at $T=0$ K). We then aggregate a 0–100 stability score from four
1241 components: (i) coverage of the stable x -range (40%), (ii) thermodynamic stability via a sigmoid
1242 of the average $|d_{\text{hull}}|$ (30%), (iii) voltage quality and smoothness favoring practical ranges and low
1243 variance (20%), and (iv) a phase-count prior that prefers a small number of well-defined phases

(10%). This composite captures the breadth of stable compositions, their depth below the hull, electrochemical viability, and parsimony of phase evolution.

$$\begin{aligned} \Delta E(x) &= E(x) - E(\text{host}) - n(x) \mu_{\text{Li}}, \\ d_{\text{hull}}(x) &= \Delta E(x) - \Delta E_{\text{hull}}(x), \\ V(x_1 \rightarrow x_2) &= -\frac{E(x_2) - E(x_1) - (n(x_2) - n(x_1)) \mu_{\text{Li}}}{n(x_2) - n(x_1)}. \end{aligned} \quad (13)$$

E.1.4 BANDGAP SCORE (TARGETED ELECTRONIC SUITABILITY)

We map the band gap E_g to a normalized suitability score using a Gaussian kernel centered at 2.0 eV with standard deviation 1.0 eV. This choice reflects the qualitative design target for battery electrode materials: very small gaps risk electronic shorting or parasitic conduction (metallic behavior), while very large gaps may impede electronic transport and limit rate capability; an intermediate gap near ~ 2 eV is often desirable in practice, especially in conjunction with conductive additives. The Gaussian mapping is smooth, bounded in $[0, 1]$, and provides a robust, differentiable measure that penalizes large deviations from the target without hard thresholds.

E.2 EXPERIMENT SETUP

We conduct diff-based evolutionary structure editing on LiFePO₄ (olivine) under strict chemical-system constraints to maximize a composite objective (higher Elasticity, Barrier-score via lower diffusion barrier, Stability, and Bandgap suitability) while ensuring diversity and reproducibility. The search uses a single phase with up to 200 iterations and checkpoints every 10 iterations; an initial population of 300, 8 parallel islands, and an archive of 50 to preserve diverse high-quality candidates; an elite retention ratio of 0.03 and exploitation ratio of 0.20 guide selection pressure; two concurrent evaluations (timeout 300 s) balance throughput and stability; logging at INFO ensures traceability. Generation randomness is steered by a temperature of 1.2 together with a simulated-annealing acceptance schedule: the edit-acceptance temperature starts at 1.0 and decays by $\times 0.9$ every 10 iterations to ~ 0.2 , encouraging broad exploration early and convergence later; if no frontier improvement is observed for 20 iterations, we trigger a controlled restart by resampling 30% of the population. Cell size is controlled by EXPAND(x, y, z) with $x, y, z \in \{1, 2, 3\}$ and total supercell size $Z \leq 20$. Site-specific dopant limits are strictly enforced (each of Li/Fe/P/O sites ≤ 2 unique dopant elements; TOTAL unique dopants ≤ 6), and any non-isovalent substitution must be charge-balanced using ADD(Li, num) scaled proportionally with the supercell; ordered occupancies (occ=1) are mandatory to avoid parsing issues. A two-stage cascade screening (thresholds [0.50, 0.75]) improves robustness and throughput. Early iterations prioritize chemical diversity (broader EXPAND usage and element rotation), while later iterations emphasize local refinement (higher MOD frequency, reduced EXPAND). Periodic inter-island migration (every 20 iterations, $\sim 5\%$ of individuals) mitigates premature convergence and disseminates promising strategies, and the archive jointly optimizes score-frontier quality and chemical-space representativeness under the above constraints.

E.3 PROMPT

Before running cathode experiments, we use the following task prompt to steer LiFePO₄ (LFP) optimization under strict dopant/site limits. It emphasizes mechanical robustness, diffusion kinetics (lower barrier), delithiation stability, and electronic suitability.

```
# Core Task & Role
You are a materials scientist specializing in battery cathode
materials and computational chemistry.
Your task is to optimize LiFePO4-based structures by modifying
the evolution_path to achieve higher
scores: Elasticity_Score (), Barrier_Score ( by lower barrier),
Stability_Score (), and Bandgap_Score ().

# Initial Material & Edit Language
```

```

1296 - Initial structure: LiFePO4 (olivine, 4 Li, 4 Fe, 4 P, 16 O per
1297   unit cell), see initial_program.cif.
1298 - Supported operators:
1299   - EXPAND(x,y,z): Expand the cell by x,y,z, with x,y,z {1,2,3}
1300     and total Z 20.
1301   - MOD(A->B, L, PA->QA, PB->QB): Replace element A with B (B=J
1302     for vacancy) at site L.
1303     Example: "MOD(Fe->Na, Fe site, 4.0->3.5, 0->0.5)".
1304   - ADD(Li, num): Add Li for charge balance. num MUST scale with
1305     supercell expansion.

1306 # Strict Chemical System Constraints (LiFePO4 base)
1307 - Only the following site-specific dopants are allowed (each site
1308   2 unique elements; TOTAL 6):
1309   - Li-site dopants (2): {Si, Er, Ho, Yb, Gd}
1310   - Fe-site dopants (2): {W, Sn, Cr} (n-type) OR {Na, K, Ag, Cu}
1311     (p-type)
1312   - P-site dopants (2): {Si, Ge, Y, B}
1313   - O-site dopants (2): {F, Cl} (n-type) OR {N} (p-type)
1314 - TOTAL unique dopants across all sites must be 6 at all times.
1315 - Charge balance is crucial: for any non-isovalent substitution,
1316   you MUST use ADD(Li, num),
1317   and num MUST scale with EXPAND(x,y,z).
1318 - Maintain ordered structures (occ=1). Any violation leads to
1319   immediate rejection and resampling.

1320 # Search Strategy (Phase 1)
1321 - Encourage diversity early: vary EXPAND ratios (still Z 20),
1322   rotate through allowed dopants per site,
1323   and explore different stoichiometric ratios. Avoid repetitive
1324   patterns.
1325 - Combined doping: Explore multi-site co-doping (e.g., Li+Fe,
1326   Fe+P, P+O), but NEVER exceed per-site and TOTAL limits.
1327 - Doping count check BEFORE emitting any diff:
1328   - Count Li-site dopants: 2
1329   - Count Fe-site dopants: 2
1330   - Count P-site dopants: 2
1331   - Count O-site dopants: 2
1332   - TOTAL dopants: 6
1333   - If any limit is exceeded, reduce dopants starting with the
1334     least promising combinations.
1335 - Charge balance enforcement: whenever non-isovalent MOD is used,
1336   immediately add ADD(Li, num) scaled by EXPAND.
1337 - Use bold changes to escape local optima, but keep the system
1338   valid.

1339 # Output Requirement (STRICT)
1340 - Only output SEARCH/REPLACE diffs that modify the evolution_path
1341   list inside initial_program.py
1342   (between the exact markers "# EVOLVE-BLOCK-START" and "#"
1343     EVOLVE-BLOCK-END").
1344 - Do NOT output any explanations or comments. Maintain EXACT
1345   indentation and formatting.
1346 - Format:
1347 <<<<< SEARCH
1348   evolution_path = [
1349     "EXPAND(1,1,1)",
1350   ]
1351 =====

```

```

1350     evolution_path = [
1351         "EXPAND(x,y,z)",
1352         "MOD(Li->Element1, Li site, q1->q2, 0->a1)",
1353         "MOD(Fe->Element2, Fe site, q3->q4, 0->a2)",
1354         "MOD(P->Element3, P site, q5->q6, 0->a3)",
1355         "MOD(O->Element4, O site, q7->q8, 0->a4)",
1356         "ADD(Li, num_scaled_by_expand)",
1357     ]
1358 >>>>> REPLACE

```

E.4 DETAILED RESULTS

Table 3: **Evolution of Li-based sulfide electrolyte materials:** The table shows the performance variation of sulfide electrolytes during the evolutionary optimization process, with S_{SSE} (composite electrolyte performance score) as the core evaluation metric.

Evolution Step	Chemical Formula	S_{SSSE}	S_{form}	S_{elec}	S_{ion}	S_{highT}	$S_{\text{H}_2\text{O}}$	S_{O_2}
Step 1	Li12P4S16	0.41	11.74	0.47	-6.04	11.46	-0.56	-1.06
Step 2	Li11P3S1S16	0.48	11.02	0.18	-5.07	10.79	-0.32	-0.86
Step 3	Li75As2P22S93O3	0.51	11.10	0.27	-4.94	11.01	-0.33	-0.79
Step 4	Li25As1P7S32	0.57	10.48	0.37	-4.44	10.29	-0.17	-0.69

Table 4: **Evolution of Li-based cathode materials:** The table presents the performance evolution of Li-based cathode materials, with S_{elastic} (mechanical strength), S_{stab} (delithiation stability) and S_{Cathode} (composite cathode performance) as key metrics.

Evolution Step	Chemical Formula	S_{Cathode}	S_{Elastic}	S_{stab}	S_{barrier}	S_{gap}
Initial	LiFePO4	0.67	112.36	85.21	-0.01	0.96
Step 70	Li31Y1Cr1Fe31Si1P31Cl1O127	0.70	113.52	98.00	-0.09	0.94
Step 180	Li30Y1Cr1Fe31Si2P31Cl1O126F1	0.71	113.01	97.81	-0.25	0.96
Step 390	Li22Gd9Y9Er1Fe22Sn1P23W9Cl9O119	0.72	131.75	92.99	-0.01	0.97

Table 5: **Evolution of LiCoO-based materials:** The table displays the performance optimization process of LiCoO-based cathode materials, focusing on the improvement of S_{gap} (bandgap suitability) and S_{Cathode} (composite cathode performance).

Evolution Step	Chemical Formula	S_{Cathode}	S_{elastic}	S_{stab}	S_{barrier}	S_{gap}
Initial	LiCoO ₂	0.54	135.49	90.24	-0.59	0.31
Step 100	Li ₁₈ Co ₁₈ O ₃₆	0.57	135.49	98.00	-0.43	0.31
Step 130	Li ₂₃ Ho ₁ Co ₂₄ O ₄₇ F ₃	0.63	138.90	97.96	-0.02	0.57
Step 360	Li ₂₂ Er ₂ Zr ₂ Co ₂₂ Cl ₁₀ O ₄₇	0.66	144.55	97.94	-0.01	0.67

E VISUALIZATION CASES

As shown in Fig. 11, MatEvolve, when grounded in literature-derived domain knowledge, successfully reproduces and further extends multiple reported effective doping pathways. The selected dopant species and site-occupancy strategies are consistent with conclusions from the original studies, supporting the chemical plausibility and consistency of the learned edits. A representative example demonstrates our successful reproduction of a reported pathway ((Zhou et al., 2019)) at step 60, including the executed MEL operations and the resulting property trends, thereby evidencing the framework’s effectiveness and practical viability in knowledge-grounded materials design.

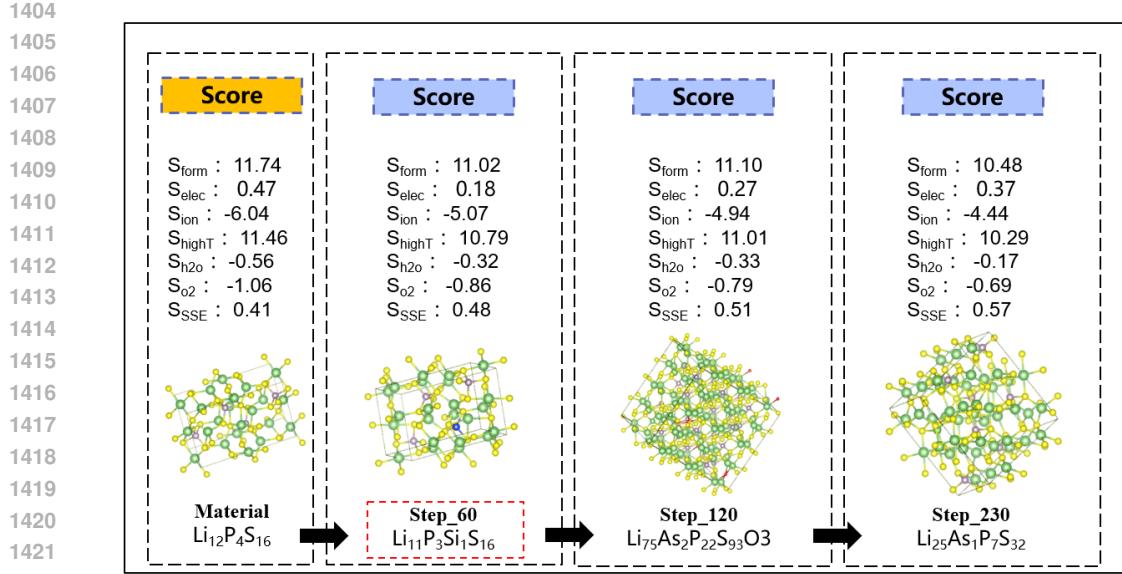


Figure 11: **Reproduced doping pathways.** MatEvolve successfully reproduces the correct literature-reported doping/evolution paths and their expected property trends, providing direct evidence that the framework is effective and practically viable.

G THE USAGE OF LLMs

Large Language Models (LLMs) were employed solely as assistive tools during the preparation of this manuscript. Specifically, LLMs were used to improve grammar and clarity, help summarize related literature, and refine the expression of concepts in figures. All core research ideas, experimental design, analyses, and conclusions were developed entirely by the human authors, who take full responsibility for the originality, validity, and final content of this paper.