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Abstract

We provide quantitative bounds on the length of sequences required to be observed during training for a transformer
to length generalize, e.g., to continue to perform well on sequences unseen during training. Our results improve
on Huang et al. (2024), who show that there is a finite training length beyond which length generalization is
guaranteed, but for which they do not provide quantitative bounds.

1. Introduction

An important problem that has arisen in the training of large language models (LLMs) is length generalization, which is the
ability to generalize to input sequences longer than those encountered during training. Prior works have studied the ability
of transformers to length generalize on simple testbed tasks (Anil et al., 2022; Kazemnejad et al., 2023), yet the success of
length-generalization varies widely from task to task. Recent theoretical work has thus sought to characterize which tasks
admit length generalization.

In particular, Zhou et al. (2023) introduced the RASP-L conjecture, which states that transformers can length generalize
on tasks which are expressible by a “simple” RASP-L program (a variant of the RASP language introduced in Weiss et al.
(2021)). Huang et al. (2024) later formalized and partially proved the conjecture, showing that tasks expressible by a limiting
object called a “limit transformer,” which includes tasks expressible by a C-RASP program (Yang & Chiang, 2024), admit
length generalization at some finite training length. However, the results in Huang et al. (2024) are asymptotic in nature; for
a fixed task f on which length generalization is possible, it is not specified what the minimum training length is for length
generalization to occur.

In this paper, we aim to characterize how long training sequences need to be in order for a transformer to generalize to
sequences of arbitrary length. Specifically, we adopt the limit transformer formulation from Huang et al. (2024), and aim to
understand the minimum N such that two limit transformers f, g which agree on inputs of length < N approximately agree
on inputs of arbitrary length. Our main result, Theorem 4.1, is that for one-layer limit transformers, the minimum such NV
scales monotonically with the parameter norms L, positional embedding periodicity A, “locality” parameter 7, and inverse

€rror 671.

Our results rely on the use of finite precision calculations in the attention patterns for the transformer. It is known that finite
precision is necessary for the transformer to be identifiable from finite input sequences (Huang et al., 2024). This assumption
results in a hard attention pattern mechanism for sequences past a certain length. A careful analysis of the possible hard
attention patterns allows us to construct auxiliary shorter input sequences on which the two transformers match and whose
output must be similar to the output on the original input, leading to the length generalization result.

Altogether, our results make progress towards both characterizing a natural hierarchy of “difficulty” among length-
generalizable tasks, and more practically speaking, developing a better understanding of how to scale training context length
for LLMs.
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2. Related Work

A number of works have empirically studied the ability of transformers to length generalize on various tasks. Bhattamishra
et al. (2020) studies the ability of transformers to length generalize on various formal language tasks. Anil et al. (2022)
show that transformers fail to generalize on certain reasoning tasks, unless certain scratchpad prompting techniques are used.
Kazemnejad et al. (2023) study the role of various positional encoding schemes on length generalization. Zhou et al. (2023)
study length generalization on various algorithmic tasks, and observe that tasks with a short RASP program (Weiss et al.,
2021) have better length generalization, leading to their RASP-L conjecture. This is supported by works such as Jelassi et al.
(2024), who observe that for the string copying task, transformers can length generalize when there are no repeated tokens,
but fail once the string has repeats.

In light of these length generalization challenges, recent works have designed specific positional encoding schemes, such
as Alibi (Press et al., 2021) or Abacus (McLeish et al., 2024) to improve length generalization. Prior works have also
considered modifying the input with a scratchpad or extra positional information to improve length generalization on
arithmetic tasks (Lee et al., 2023; Shen et al., 2023). Most recently, architectural modifications such as looping (Fan et al.,
2024) or recurrence (McLeish et al., 2024) have led to length generalization improvements.

Theoretically, Huang et al. (2024) partially resolves the RASP-L conjecture for tasks expressible by limit transformers.
Wang et al. (2024) proves that 1-layer transformers trained with GD length generalize on a sparse token selection task. Ahuja
& Mansouri (2024) show that a model resembling a self-attention head can length generalize. Golowich et al. (2025) show
that an abstraction of the self-attention head can length generalize on tasks which depend on a sparse subset of input tokens.

3. Problem Formulation
3.1. Limit Transformers

We are interested in considering the ability of transformers to generalize to sequences of arbitrary length, but real transformer
architectures are limited by a bounded context length. To address this issue, (Huang et al., 2024) introduced the concept of a
limit transformer. These objects have an infinite context length and generalized positional embeddings, allowing them to
distinguish between arbitrarily many positions in their context. The computation of a limit transformer proceeds as follows:
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Here 1 is the input sequence of tokens in a finite vocabulary ¥ with token z; € ¥ in the i-th position, E,, € R? is the
embedding of the i-th token, p; is the i-th (absolute) positional embedding vector. The super- and sub-scripts (I, k) denote
the [-th layer of the transformer and the h-th attention head. ag’l}-h) is the (I, h) attention logit between token  and j, K p,
Q, 1, and V' j, are the the ([, h) key, query, and value embedding matrices, respectively. The functions ¢; 5 (j, ) allow for

)

(L)

)

modifications to the attention pattern which cannot be captured by positional embedding vectors alone. Ygl denote the

pre-activation features for layer [ at position 7, and ygl) denote the post-activation features which have been passed through a
single-hidden-layer MLP with activation 1, plus a residual connection; A; and b; denote the hidden layer weights and bias
term for this MLP, and B; denotes the output layer weights. Finally, T'(x); denotes the output logits at position ¢ which are
computed via the unembedding matrix U

Without additional constraints, a limit transformer cannot be recovered without seeing arbitrarily long input sequences.
Thus, (Huang et al., 2024) also make two additional assumptions. First, the limit transformers in question are assumed to
be A-periodic, defined as p; = p;, A for all i. Second, the limit transformers are also translation-invariant, defined as
G114y 7) = @up(j +t,7+t) for all t and 7-local, defined as ¢; 5,(j,7) = 0 whenever ¢ > j + 7.

3.2. Finite-Precision Attention

The final assumption placed on limit transformers is also the key tool for simplifying our analysis. Specifically, (Huang
et al., 2024) assume that all of the transformer parameters, as well as the softmax attention, are computed at p finite bits of
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precision. This is motivated by (Merrill & Sabharwal, 2023).

The precise instantiation of this assumption that we will assume that all quantities of absolute value < 277 are rounded to 0
during each intermediate computation of the limit transformer. Even this definition requires further clarification, particularly
for the computation of the softmax. This is because the softmax (at infinite precision) is invariant to a constant shift in all of
the logits; thus, in principal, the softmax may be computed as a collection of terms each of which has absolute value less
than 277, in which case it is unclear what to do. To avoid this problem, we take the usual step for improving the numerical
stability of softmax and perform computations with the largest logit shifted to 0. Equivalently, we subtract the largest logit
from every logit in the softmax. After this standardization, all terms in the softmax (post exponentiation) with absolute value
at most 277 are rounded to 0, then the computation proceeds as usual.

The impact of this assumption is as follows. Let f be a single-layer limit transformer which is 7-local, A-periodic, and
translation invariant as defined above. We can define the attention matrix A € R2IZIXA=l indexed by pairs (y,i) fory € &
and i € Z/A, where

Fory € Y andi € Z/A, define
Ay = {Awi, ik +o(LE+1)[2€ X, k=0,...,7}.

Note that A, contains all of the possible attention logits that we can observe when processing a token x; = y. We then
define the logit margin y(f) of f by

v(f) := min min  a—ad,
YED  a,a’ €Ay,
ZGZ/A afa/>0

where the minimum over an empty set is defined as +oo. The quantity y(f) is the smallest nonzero gap we can observe
between a maximal attention logit and any non-maximal logit.

Now let = be any input sequence and suppose that N = |z| > 2p/7(f) " Consider an individual term in the softmax,
post-exponentiation but before the rounding procedure. These have the form

5j = exp (logN N(An Ny, @y5) + 00 N)) = (An,N), a0 ,5%) + S0 N))])

= exp (logN (A ) o)+ SN =G+ 1)) = (A vy (o) + SN = %+ 1))])
=exp(log N - (a —a")),

where j* € argmax; _; ; A(IN,N),(%,,J/) + ¢(j’, N) is an index with the largest attention logit and a,a* € A, n)
are simply a renaming of the logits to emphasize that these are quantities in A, ). The second equation follows by the
translation invariance of ¢.

There are now two cases. If a = a* (i.e., the j-th position attains maximal attention for the input sequence), then
sj; = exp(0) = 1 and this contribution to the softmax will not be affected by the rounding procedure. On the other hand,
if a # a* (i.e., the j-th position attains strictly sub-maximal attention for the input sequence), then by definition of ( f),
a —a* < —~(f) and we have

sy =expllog V- (a = o) < exp(~LE25(p) ) — 2.

Thus, this term will be rounded to 0. It follows that for sequences z of length N > 2°/7(f) | softmax attention acts as a
hardmax and the computation is performed as a uniform average over the tokens with argmax attention.

As can be seen from this analysis, while these design choices may seem like minutiae, they have outsized effects on the
analysis, and this fact has been observed in previous work (Jerad et al., 2025). There is also empirical evidence that attention
does indeed concentrate on only a few tokens (Bietti et al., 2023; Rogers et al., 2021).
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Figure 1. Experiments on SimpleTask. Left: For fixed training length, as test length increases, the test loss plateaus at a finite value.
Middle: The value the test loss plateaus at decreases monotonically with training length. Right: As the frequency w increases (and
consequently, the value of L for the equivalent limit transformer increases as L = ©(w)), the minimum training length N needed to
obtain fixed test loss € (here ¢ = 10~ 2) increases linearly with w. Results are averaged over 8 random seeds.
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Figure 2. Experiments on ModPTask. Left: For fixed training length, as test length increases, the test loss plateaus at a finite value.
Middle: The value the test loss plateaus at decreases monotonically with training length. Right: We plot the limiting test loss as a function
of train length for varying values of A = p. We observe that the different curves approximately overlap, implying that the training length
needed for the limiting test loss to reach some fixed quantity € scales linearly with A. Results are averaged over 8 random seeds.

4. Main Results

Our main result is the following bound on the length of sequences required to appear in training in order for the resulting
transformer to length generalize.

Let f and g be two single-layer limit transformers which are 7-local, A-periodic, translation invariant, and operate at p finite
bits of precision as described in Section 3. Let V¢, Ef: , (Ay, By) be the value matrix, token embedding, and MLP weights
for f (and analogously defined for g), and define L = max{HAf||F||Bf\|F||VfE£H, |Agll 2| Bgll oV EY| = s € £}
Finally, let v = min{~y(f),v(g)}, with v(f) and y(g) as defined in Section 3.2.

'|I‘lze(;rem(4.)1|. The(re exis;ts an N = O(max{2?/7, %ZLQ}) such that |f(x) — g(x)| < 8 for all |x| < N implies that
f(x) —g(x)| = O(0 + €) for any sequence x.

Remarks. Theorem 4.1 shows that, assuming that the input sequences are sufficiently long (N 2 2P/7), the desired
training length scales polynomially in the periodicity parameter A, the parameter norms L, and the inverse accuracy €. The
N 2 2P/7 constraint is to ensure that the softmax in the self-attention behaves as a “hardmax,” i.e. uniform attention over a
subset of tokens, as discussed in Section 3.2. Indeed, it is possible for this hardmax behavior to occur at smaller training
lengths, implying that the training length N need only scale with TAL?/e~2. See Section 5 for empirical support of this
claim.

Proof Sketch. To prove this result, given any input string = with |z| > N, we construct an auxiliary string z of length
|z| < N which simultaneously approximates the attention patterns of f and g on . Since f(z) =~ g(z) by assumption, this
in turn implies that f(z) =~ g(x). The complete proof is given in Appendix A.1.

5. Experiments

We next provide empirical support for the conclusions of Theorem 4.1 on two synthetic tasks:
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Figure 3. For the ModPTask, the softmax attention weight approximates uniform attention on all positions = £ mod p.

 SimpleTask: The vocabulary is ¥ = {0,1,2}. Given an input sequence z1.7 = (z1,...,27) € 27T, define
cs(x) = Zf:l 1(x; = s) to count the number of tokens equal to s. For some function o : R — R, the output is

f(x1r)=0 (%) . We will specifically consider the link function o(z) = sin(wz) for some w € R. One

observes that f* is expressible by a one-layer limit transformer with no positional embeddings and L = ©(w).

* ModPTask: The vocabulary is ¥ = {0, 1}. Given a period p and index k, the output is defined to be the average of all
tokens in positions which are k& mod p: f*(z1.7) = (Zle 1(x; =1,t =k mod p))/(ZiF:1 1(t = k mod p)).
One observes that f* is expressible by a limit transformer with A = p and L = O(1).

We show that these tasks are expressible by a single-layer limit transformer in Appendix A.2. We train depth 1 transformers
(consisting of a single self-attention layer followed by an MLP layer) on SimpleTask for varying frequencies w and
ModPTask for varying periods p. For a fixed training length IV, we train models on sequences of length 7" < N, and
compute the test loss on sequences of length 77 > N. For more details, see Appendix B.

Results for SimpleTask and ModPTask are presented in Figures 1 and 2 respectively. In the left panes of both figures, we
observe that the test loss plateaus as the test length increases. In the middle panes of both figures, we see that the value at
which the test loss plateaus at decreases monotonically with the training length. This provides qualitative support for the
conclusions of Theorem 4.1, in particular that (i) given a target accuracy ¢, tasks expressible by a one-layer limit transformer
have a finite /V such that a model which fits the task on sequences up to length N achieves ¢ error on sequences of all length
and (ii) the value of this N increases monotonically as ¢ increases. Moreover, the rightmost pane in Figure 1 shows that N
scales with the parameter norm L, while the right pane in Figure 2 shows that IV scales with the periodicity parameter A.

The proof of Theorem 4.1 relies on the assumption that the softmax attention acts as a “hardmax”, uniformly attending
to a subset of tokens. To check the validity of this assumption, we consider models trained on the ModPTask with p = 5
for varying training lengths. For each trained model, we look at the post-softmax attention probabilities on a batch of test
sequences of length 80. In Figure 3, we plot the mean and standard deviation of these probabilities for tokens in the &
mod p position and tokens not in the & mod p position. The positions not equal to & mod p receive near zero attention
probabilities while those in positions equal to £ mod p receive nearly the same attention probability of 1/16 (the dashed
black line). This is evidence that the models are indeed operating in the hardmax regime, given sufficient training length.

6. Conclusion

In this work, we made quantitative the results of Huang et al. (2024) for single-layer transformers. Our main result,
Theorem 4.1, shows that the minimum training length to acheive length generalization scales as TAL? /2, for parameter
norm L, error ¢, and periodicity A. Qualitative support for these scalings is presented in Figure 1 and Figure 2.

One interesting direction of future work is to extend our results to transformers with larger depth. In particular, it would be
interesting to relate the minimum training length N to other notions of complexity such as the length of the corresponding
C-RASP program. Moreover, the results in Huang et al. (2024) and our main theorem assume that we have a limit transformer
that agrees with the target task on all sequences of length < N. An important direction is to extend our analysis to functions
which have training error on average over some input distribution.
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A. Proofs
A.1. Proof of Theorem 4.1

In this section, we give the proof of our main theorem, which we restate for convenience.

'|I‘lze(;rem(4.)1|. The(re ele;ts an N = O(max{2?/7, %QLZ}) such that | f(z) — g(x)| < 6 for all |z| < N implies that
f(x) —g(x)| = O(0 + €) for any sequence x.

Proof. Consider two limit transformers f and g and an input string z. Let Lip(MLP ) be the Lipschitz constant of the
MLP in f. One can bound Lip(MLP;) < ||By|||[Af|| . where (B, Ay) are the MLP weights for f; the analogous
result holds for g.

Let Ay be the positions attended to by f and A, be the positions attended to by g in the T-prefix of v and assume WLOG
that |[A;| < |Ay|. Let Sy = {x; : ¢ € Ay} be the set of tokens which f attends to and similarly S, = {z; : i € A4}. For
any s € X, let n, be the number of times s occurs in the 7-prefix of x. We construct the auxiliary string z as follows. The
T-suffix of z is always equal to the 7-suffix of z. If |A¢|,|A4| < 7/, then the attention pattern in the 7-prefix of = can be
directly recreated simultaneously for f and g using at most 27 /¢ tokens by just copying the union of the tokens in attention
for f and g into z, then we must have | f(z) — g(z)| = |f(z) — g(z)| < 0. Thus, we will assume that at least |A,4| > 7 /e.

We first recreate the attention pattern of f. Let mg denote the number of times a token s occurs in the 7-prefix of z. If
|Ay| < 7/e, then we simply set 21,14, = 7, (i.e., we set the first | A| tokens of 2 equal to the attention pattern of f on
the 7-prefix of ). The tokens which we will add later do not belong to A ; thus, we will clearly have f(x) = f(z).

P
LAyl el

For each m, we have IZ;\E —1<my < |Zf}‘ Z. Since Zsesf ns = |Ay|, it follows that

T T

T8, < <.

5 EESY ms < -
SESf

If |Af| > 7/e, then for each s € Sy we define

Here we have used the fact that r — 1 < |r| < r for any real number r. We will make use of this inequality repeatedly
throughout the proof. Thus, for each s € S, we have

Ns T _ Ns T
ns € _ TAsd« M [Asl e s + 2| Sy|
[Apl T T/e T Yees,ms — T/e—ISfl T Al T

provided that |Sy|e/7 < 1/2, which will hold for small enough ¢. In particular, we have

< 22 _ o), )

T

‘ Ms s

ZS’ESf msr |Af|

We can use these inequalities to bound the difference between f(x) and f(z). Since the 7-suffix contributes at most 7 O(L)
terms to the computation of f(x) and f(z), and [Ay|and ) _ g, M are both Q(7/e) terms, the T-suffix terms contribute at

most O(Le)-sized terms to each of f(z) and f(z). Thus we have

. > ses sV E] > ses msV Bl
1£2) = F(I < Lip(MLPy) | S=5 s = S22 4 O(Le)
s'eSy s’
n m
< 1Byl 6114y == |V Bl + 0L
F Fsgf [Apl Yyes, mh

L|X|e
T

)+ O(Le) = o<(@ +1)Le)

=0
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since we have assumed HBf||F||AfHF||VfE£|| = O(L) and |Sy| < |X] = O(1). We will refer to the portion of z which
has been defined up to now as the f-prefix of z.

It now remains to extend z so that it can simulate the behavior of g without adding any tokens in S so as to preserve the
previous calculations. There are now two cases. If |4y N Ay|/|A,4| < e, then we for each s € S, \ Sy we can set

me = | 2. T
S |Ag] e2]’

Now, observe that

> m= 3 |fE)

SGSg\Sf SGSQ\SJP
nNg T
> Z m7—|5g\5f|
seS\Sp I
Ag\ A
S AT
|[Ag| = |Ag N Ay| T
= g|A—|f* —|Sg \ Syl
g
-
We also have
Z ms — Z 2 = 27
5€8,\Sy s€S, |A"|€ <

SO . S\8; Ms =T /22 up to lower-order terms. From this we can also deduce that

Ms s

Esfesg\sf my Al

by roughly the same logic which we used to deduce (1). Since there are at most 7 terms from the 7-suffix of z and at most
7 /e terms from the f-prefix of z, these will contribute an O(Le) term to the computation of g(z) (as by the computations
we have just completed, the denominator for g(z) is roughly 7/£2). Since |[A; N Ay|/|4y| < € and |4,| > 7 /e, the tokens
in Ay N A, and the tokens in the T-suffix together contribute at most O(Le) to the computations of g(x). Thus we have

= 0(=)

mg
Zs’esg\sf my A

lg(x) = g(2)|| < Lip(MLPy) >

s€Sg\S¢

IV, B2 + O(e) = O(Le?) + O(Le) = O(Le).

This completes the case when |Af N A,|/|Ag| < e.

Otherwise we have [Ay N Ag|/[A,4| > €. In this case, we have [Ag| < |[Af N Ag|/e < [Af|/e. Let s* = argmax,¢ 4, 1.
For s € A, \ Ay, we define m; by
o]
ms = ‘ng | -
Mg

Note that since |Af| > 7 /¢ and |A¢| < ||, we must have ng- > 7/|X|e. This now allows us to bound the scaling ratio

Mg [Nge. We have mg« = HX;\ Z],s0
Ng* T Ns*x T
r/e _elfl _TAge Tl _me TAge  7/e
| Ayl T Mg T Mg | Ayl
First, we have
M+ T/e |Afl o
Do mes 3o TEng = A\ Agf < TR A < R = e
SESQ\Sf SESQ\Sf
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In particular, this implies that this construction can be completed by adding at most 7/ tokens to z, so in all cases the
length of z is O(7/?) as desired.

Next, for s € Sy \ Sy, we have the following bounds on = = Lm*ﬁ#
ns  |X[e < Ms 1 < [ms=ns/ngx | o Ns
ng-  T—|3le T ng  mg T Mg T N

The leftmost inequality uses the fact that mg« = Lﬁ;f*l Il > Lﬁl‘ﬂ > 15z — L. In particular, this means that [ng/nge —
=0(e)fors € S, \ Sy.

For s € S, NSy, we have m/mg« = le-;‘ vl \le;l T ] and a similar bound can be established. For the lower bound, we

Mg /Mg

have

Ns T ns T _ 1
\\:AfE S Ale — 0 ms [Ze

- Ng* T - «
J [Af] e s T

For the upper bound, we have

IN

ns,  2|X|e
< +—

Ngx T

for € small enough (7/|X|e > 2 suffices). Thus we have |n;/ng — ms/mg+| = O(e) for s € S, NSy as well (in fact

O(%)). Observe that this means, for any s € Sg:

Ms s

ZS’ESQ My ZS/ESQ Tt

B Mg /Mg Ng /Mg

B D sres, Mt /M a Dsres, N [Tse

_ ns/ns + O(e) ns /Mg
Pses, (s /ns- +0(€))  Fieg, M /N5t

= 0(e).

Now we compare g(z) and g(z). As before, the effect of the 7-prefix contributes at most O(Le) to ||g(x) — g(2)]|, so we

have
Mg n

lg(x) — g(2)|| < Lip(MLPy) - - IV E{| + O(Le) = O(Le).
! S;q Zs’esg Mg Zs/esg N !

In all cases, we have constructed z such that || f(z) — f(2)|| = O(Le) and ||g(x) — g(2)|| = O(Le), and the length of z is
O(7/€?). Thus, provided that f and g differ by at most & on inputs up to a length Ny = O(7/?), we have

1 (@) = g(@)I <1 (z) = g + 1f () = ) + llg(z) = 9(2)]| <+ O(Le).

The proof is completed by substituting ¢ — /L, whereby we see that we can obtain error O(8 + €) with Ng = O(7L?/&?)
as desired.

Including positional embedding vectors The setting with positional embedding vectors can be reduced to the general
vocabulary case at the cost of an additional factor of A by considering each possible (token, position mod A) combination
as its own token without positional embedding vectors. O
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A.2. Expressivity of Synthetic Tasks
We sketch the constructions for each of the synthetic tasks in Section 5.

SimpleTask: Set p; = 0, and let Eq, E1, E5 be orthogonal. Choose K, ) so that a; ; = co when j =0,1and a; ; = 0
when j = 2. The attention probabilities will then be uniform over all 0 and 1 tokens, and thus the output of self-attention
becomes Y = E,, + %VEO + MVEL We can then set VEy = —V E;. It suffices to approximate
the one-dimensional function z +— sin(wz) with an MLP; it is well known (Barron, 1993) that this can be done with weight
norms ©(w), as desired.

ModPTask: Let {q;};c[a] be some fixed set of orthogonal embeddings, and let p; be equal to q;, where i # j mod p.
These are periodic embeddings with periodicity A = p. Choose K, Q so that a; ; equals co if j = k mod p and 0
otherwise. The attention probabilities will then be uniform over all positions which are & mod p. Choosing V' so that
Vq; = 0 for all j, the output of self-attention becomes Y1 = yp + f*(x1.7)VE1 + (1 — f*(x1.7)V Eo. Choosing the
readout layer appropriately, we can ensure that T'(x)r = f*(z1.7), as desired.

B. Experimental Methodology

Training Procedure: The model architecture is one layer of a single self-attention head followed by an MLP. The embedding
dimension is d = 16 and the MLP width is 256. We use the P initialization (Yang et al., 2022), and train using the Adam
optimizer with learning rate n = 10~2/d for the hidden layers and » = 102 for the embedding layers. We train all of the
models using online SGD (sampling a fresh batch of size 1024 at each step), until the training loss crosses below 1072,

Data Generation:
+ SimpleTask: Each sequence x1.7 is generated by first sampling a probability vector p € R? uniformly at random over
the simplex, then sampling each x; i.i.d, where x; = s with probability ps. This ensures that Var(f*) = O(1).

* ModPTask: Each sequence x1.7 is generated by first generating qo, . . ., ¢p—1 i.i.d uniformly from [0, 1]. Then, each
x; is sampled from Bernoulli(py, ), where K = ¢ mod p. This ensures that Var(f*) = ©(1), and also that attending to
incorrect positions mod p cannot help the model.
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