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Abstract

Reinforcement learning is time-consuming for
complex tasks due to the need for large amounts
of training data. Recent advances in GPU-based
simulation, such as Isaac Gym, have sped up
data collection thousands of times on a com-
modity GPU. Most prior works have used on-
policy methods like PPO due to their simplic-
ity and easy-to-scale nature. Off-policy meth-
ods are more sample-efficient, but challenging
to scale, resulting in a longer wall-clock train-
ing time. This paper presents a novel Parallel
Q-Learning (PQL) scheme that outperforms PPO
in terms of wall-clock time and maintains supe-
rior sample efficiency. The driving force lies
in the parallelization of data collection, policy
function learning, and value function learning.
Different from prior works on distributed off-
policy learning, such as Apex, our scheme is de-
signed specifically for massively parallel GPU-
based simulation and optimized to work on a sin-
gle workstation. In experiments, we demonstrate
the capability of scaling up Q-learning methods
to tens of thousands of parallel environments
and investigate important factors that can affect
learning speed, including the number of paral-
lel environments, exploration strategies, batch
size, GPU models, etc. The code is available
at https://github.com/Improbable-AI/pql.

1. Introduction
Reinforcement learning (RL) has achieved impressive re-
sults on many real-world problems, such as robotics (Kober
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et al., 2013; Miki et al., 2022) and drug discovery (Popova
et al., 2018). A primary challenge in using RL is the need
for large amounts of real-world data. There are two main
strategies to tackle this problem. One is to improve the sam-
ple efficiency of RL algorithms (Mnih et al., 2015; Lillicrap
et al., 2015) to make better use of available data. The other
is to reduce the need for real-world data collection by train-
ing policies in simulation and deploying them in the real
world (Hwangbo et al., 2019; OpenAI et al., 2020; Margolis
et al., 2022; Miki et al., 2022; Chen et al., 2022a). In sim-
to-real pipelines, the training wall-clock time matters more
than the sample efficiency — faster training can speed up
the experiment cycle and unlock the potential for addressing
a broader range of complex problems.

The community has widely recognized the need for faster
training, leading to the development of several distributed
frameworks (Horgan et al., 2018; Espeholt et al., 2018).
However, these frameworks usually operate at a server scale
that requires hundreds or thousands of computers in a cluster,
making them impractical for most researchers and practi-
tioners. Specifically, most of these computers are used to
run multiple simulator instances in parallel to speed up data
collection. Recent advance in GPU-based simulation, such
as Isaac Gym (Makoviychuk et al., 2021), has mitigated
the need for a large number of machines as it enables the
parallel simulation of tens of thousands of environments
on one GPU. A natural question that arises in this mas-
sively parallel setting is: what RL algorithm is suitable to
achieve better wall-clock time? Many prior works (Allshire
et al., 2021; Rudin et al., 2022; Chen et al., 2022b) use
on-policy algorithms like PPO (Schulman et al., 2017) for
training policies in Isaac Gym due to their simplicity and
easy-to-scale nature. However, they suffer from low sample
efficiency, in which data collection can still take most of the
total wall-clock time.

Intuitively, by virtue of requiring less data than on-policy
algorithms, off-policy algorithms (Q-learning methods, in
particular) should reduce the wall-clock time of training.
However, better sample efficiency will not lead to shorter
training time if the algorithm cannot make good use of par-
allel environments. Some prior works (Nair et al., 2015;
Horgan et al., 2018) have developed distributed frameworks
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for off-policy methods to leverage parallel environments.
However, these frameworks have only shown successful
scaling with hundreds of parallel environments (for exam-
ple, maximumly 256 environments in (Horgan et al., 2018)).
Now that GPU-based simulation enables tens of thousands
of parallel environments on a single GPU, it remains un-
clear whether off-policy methods can work efficiently in
this case. For instance, if there are 10, 000 parallel envi-
ronments and we still use the typical replay buffer capacity
(say 1M samples), the entire replay buffer is refreshed every
100 environment steps, making the data in the replay buffer
more like on-policy samples. Do off-policy methods still
work in this scenario? One can also increase the replay
buffer capacity, but this is limited by the memory size of the
hardware.

In this work, we investigate how to scale up Q-learning to
tens of thousands of environments. We present our approach,
Parallel Q-Learning (PQL), which can be deployed on
a workstation. The learning speed in PQL is boosted by
parallelizing the data collection, policy function learning,
and value function learning on a single workstation. This
allows for collecting more simulation data and updating
value/policy functions more times in a given time window,
leading to an improvement in the training wall-clock time.
Achieving such parallelization would be non-trivial for on-
policy algorithms, as the policy update requires on-policy
interaction data, which means that data collection and policy
updates need to happen in sequence.

Our main contributions are summarized as follows:

• We present a scheme for time-efficient reinforcement
learning, PQL, that can efficiently leverage tens of
thousands of parallel environments on a workstation.

• We thoroughly investigate the effect of important hy-
perparameters such as the speed ratio on different pro-
cesses that control the resource allocation and provide
empirical guidelines for tuning these values to scale up
Q-learning.

• We deploy different exploration strategies in parallel
environments, which leads to robust exploration and
mitigates the hassle of tuning the exploration noise.

• We demonstrate the effectiveness of our method on
six Isaac Gym benchmark tasks (Makoviychuk et al.,
2021) and show its superiority over state-of-the-art
(SOTA) on-/off-policy algorithms. Our method PQL
achieves both faster learning in wall-clock time and
better sample efficiency. Empirically, we also found
that DDPG performs better than SAC with massively
parallel environments.

2. Related Work
Massively Parallel Simulation Simulation has been an
important tool in various research fields, such as robotics,
drug discovery, and physics. In the past, researchers have
used simulators like MuJoCo (Todorov et al., 2012) and
PyBullet (Coumans & Bai, 2016) for rigid body simulation.
Recently, there has been a new wave of development in
GPU-based simulation, e.g., Isaac Gym (Makoviychuk et al.,
2021). GPU-based simulation has substantially improved
simulation speed by allowing massive amounts of parallel
simulation on a single commodity GPU. It has been used
in various challenging robotics control problems, including
quadruped locomotion (Rudin et al., 2022; Margolis et al.,
2022) and dexterous manipulation (Allshire et al., 2021;
Chen et al., 2022b;a). With fast simulation, one can obtain
much more environment interaction data in the same training
time as before. This poses a challenge to RL algorithms
in making the best use of the massive amount of data. A
straightforward way is to use on-policy algorithms such as
PPO, which can be easily scaled up and is also the default
algorithm used by researchers in Isaac Gym. However, on-
policy algorithms are less data-efficient. In our work, we
investigate how to scale up off-policy algorithms to achieve
higher sample efficiency and shorter wall-clock training
time under massively parallel simulation.

Distributed Reinforcement Learning There have been
numerous distributed reinforcement learning frameworks to
speed up learning. One line of work focuses on Q-learning
methods. Gorila (Nair et al., 2015) distributes DQN agents
to many machines where each machine has its local envi-
ronment, replay buffer, and value learning, and uses asyn-
chronous SGD for a centralized Q function learning. Simi-
larly, Popov et al. (2017) apply asynchronous SGD to the
DDPG algorithm (Lillicrap et al., 2015). Combining with
prioritized replay (Schaul et al., 2015), n-step returns (Sut-
ton, 1988), and double-Q learning (Hasselt, 2010), Horgan
et al. (2018) (Ape-X) parallelize the actor thread (environ-
ment interactions) for data collection and use a centralized
learner thread for policy and value function learning. Built
upon Ape-X, Kapturowski et al. (2018) adapt the distributed
prioritized experience replay for RNN-based DQN agents.

Another line of work improves the training speed on pol-
icy gradient methods. A3C (Mnih et al., 2016) uses asyn-
chronous SGD across many CPU cores, with each run-
ning an actor learner on a single machine. Babaeizadeh
et al. (2016) develop a hybrid CPU/GPU implementation of
A3C, but it can have poor convergence due to the stale off-
policy data being used for the on-policy update. Espeholt
et al. (2018) (IMPALA) introduce an off-policy correction
scheme (V-trace) to mitigate the lagging issue between the
actors and learners in distributed on-policy settings. Es-
peholt et al. (2019) further improve the IMPALA training
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Figure 1. Overview of Parallel Q Learning (PQL). We have three
concurrent processes running: Actor, P-learner, V-learner. Actor
collects interaction data. P-learner updates the policy network.
V-learner updates the Q functions.

speed by moving the policy inference from the actor to the
learner. Clemente et al. (2017) parallelize the environments
for synchronous advantage actor-critic. Heess et al. (2017)
propose a distributed version of PPO (Schulman et al., 2017)
for training various locomotion skills in a diverse set of en-
vironments. Wijmans et al. (2019) develop a decentralized
version of distributed PPO to mitigate the synchronization
overhead between different actor processes and applies it to
a point-goal navigation task.

Our scheme is most closely related to Ape-X (Horgan et al.,
2018) but has a number of key differences. First, our
scheme is specifically designed for massively (>> 1000)
parallel GPU-based simulation. Our scheme is optimized
for a single-machine setup, which can help democratize
large-scale RL research. Second, we further decouple and
parallelize the learning with two separate learners for pol-
icy function learning and Q-function learning, respectively.
Third, we allocate a local replay buffer for each learner.
This can reduce the communication cost between the re-
play buffer and the learners. Fourth, working with a single
machine presents new challenges in balancing the com-
puting resource between different parallel processes. Our
scheme offers a mechanism to balance the computing re-
source among different processes.

3. Method
We developed a parallel off-policy training scheme, Parallel
Q-Learning (PQL), for massively parallel GPU-based sim-
ulation, where thousands of environments can be simulated
simultaneously on a single GPU. In a typical actor-critic
Q-learning method, three components run sequentially: a
policy function, a Q-value function, and an environment.
Agents roll out the policy in the environments and collect
interaction data, which is added to a replay buffer; then, the
value function is updated to minimize the Bellman error,

after which the policy function is updated to maximize the
Q values. This sequential scheme slows down the training,
as each component needs to wait for the other two to finish
before proceeding. To maximize the learning speed and
reduce the waiting time, we parallelize the computation of
all three components. This allows for more network updates
per data collection, which can improve the utilization of the
massive amount of data and lead to better training speed, as
demonstrated in the experiments. Off-policy RL methods
are well-suited for parallelization as the interaction data in
a replay buffer does not need to come from the latest policy.
In contrast, on-policy methods such as PPO require using
the rollout data from the latest policy (on-policy data) to
update the policy, thus making it non-trivial to parallelize
the data collection and policy/value function update.

Our scheme is optimized for training speed in terms of
wall-clock time and can be readily applied on a worksta-
tion. It is built upon DDPG (Lillicrap et al., 2015), but can
be easily extended to other off-policy algorithms such as
SAC (Haarnoja et al., 2018) (see Appendix C). Our scheme
also incorporates common techniques used to improve Q
learning performance, such as double Q learning (Hasselt,
2010) and n-step returns (Sutton, 1988). Furthermore, we
experimented with adding distributional RL (Bellemare
et al., 2017) to PQL, which we refer to as PQL-D. While it
improves performance on challenging manipulation tasks, it
leads to a slight decrease in the convergence speed of the RL
agent. In this paper, we use the following notation: at time
step t, st represents observation data, at represents action
command, rt represents the reward, dt represents whether
the environment terminates, π(st) represents the policy net-
work, Q(st, at) represents the Q network, Q′(st, at) repre-
sents the target Q network, and N represents the number of
parallel environments.

3.1. Scheme Overview

PQL parallelizes data collection, policy learning, and value
learning into three processes, as shown in Figure 1. We refer
to them as Actor, P-learner, and V-learner, respectively.

• Actor: We collect a batch of interaction data using par-
allel environments. We use Isaac Gym (Makoviychuk
et al., 2021) as our simulation engine, which supports
massively parallel simulation. Note that we do not
make any Isaac-Gym-specific assumptions, and PQL is
optimized for any GPU-based simulator that supports
a large number of parallel environments. In the Ac-
tor process, the agent interacts with tens of thousands
of environments according to an exploration policy.
Therefore, we maintain a local policy network πa(st),
which is periodically synchronized with the policy net-
work πp(st) in P-learner (which we explain below).
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• V-learner: We create a dedicated process for training
value functions, which allows for continuous updates
without being interrupted by data collection or policy
network updates. To compute the Bellman error, we
need to have a policy network to estimate the optimal
action to take and a replay buffer to sample a batch
of I.I.D. training data. Since we use a dedicated pro-
cess to keep updating value functions, V-learner must
frequently query the policy network and sample data
from the replay buffer. To reduce the communication
overhead of network and data across processes, we
maintain a local policy network πv(st) and a local
replay buffer ({(st, at, st+1, rt, dt+1)}) in V-learner.
πv(st) gets synced with πp(st) in P-learner periodi-
cally. When the GPU memory is sufficiently large to
host the entire replay buffer, which is usually the case
when the observation is not images, we allocate the re-
play buffer directly on the GPU to avoid the CPU-GPU
data transfer bottleneck.

• P-learner: We use another dedicated process for up-
dating the policy network πp(st). The policy network
πp(st) is optimized to maximize the Qp(st, π

p(st)).
Similarly, we keep a replay buffer of {(st)} and a lo-
cal value function Qp(st, at) in P-learner to reduce
communication overhead across processes. Qp(st, at)
is periodically updated with Qv

1(st, at) in V-learner.

We use Ray (Moritz et al., 2017) for parallelization. The
pseudo-code for the scheme is shown in Algorithm 1, 2, and
3 in the appendix.

Data Transfer Suppose there are N parallel environ-
ments in the Actor process. At each rollout step, the
Actor rolls out the policy πa(st) and generates N pairs
of (st, at, st+1, rt, dt+1). Then the Actor sends the entire
batch of interaction data {(st, at, st+1, rt, dt+1)} to the V-
learner (as shown in Figure 1). Since policy update in
P-learner only needs state information, Actor only needs
to send {(st)} to the P-learner.

Network Transfer The V-learner periodically sends the
parameters of the Qv

1(st, at) to P-learner, which updates
the local Qp(st, at) in P-learner. The P-learner sends the
policy network πp(st) to both the Actor and V-learner.

Both the data transfer and network transfer happen concur-
rently.

3.2. Balance between Actor, P-learner, and V-learner

Our scheme allows the Actor, P-learner, and V-learner
to run concurrently. However, we need to appropriately
constrain the frequency of data collection, policy network
update, and value network update. In other words, each

process should not run on its own as fast as possible. Thus,
we add explicit control on these three frequencies and define
two ratios as follows:

βa:v :=
fa
fv

and βp:v :=
fp
fv

,

where fa is the number of rollout steps per environment in
Actor per unit time, fv is the number of Q function updates
in V-learner per unit time, fp is the number of policy up-
dates in P-learner per unit time. βa:v determines how many
Q function updates are performed in the V-learner when
Actor rolls out the policy for one step with N environments.
βp:v decides how many Q function updates are performed
in V-learner when P-learner updates the policy once. Once
the ratios are set, we monitor the progress of each process
and dynamically adjust the speed of Actor and P-learner
by letting the process wait if necessary.

Controlling the three processes via βa:v, βp:v provides three
major advantages. First, it allows us to balance the resource
allocation of each process and reduce the variance of our
scheme’s performance. Given a fixed amount of computing
resources, the ability to let some of the processes wait en-
ables other processes to use the GPU resource more. This is
particularly important when working with limited resources.
If there is only one GPU, and all three processes run freely
on it, simulation with a large number of environments can
cause very high GPU utilization, which slows down the
P-learner and V-learner and leads to worse performance.
Note that such control was not examined in prior studies,
such as Ape-X (Horgan et al., 2018), where a computer
cluster was used for both the simulation and network train-
ing — the phenomenon of competing for limited computing
resources (all three processes on one GPU) did not occur.
On the other hand, leaving each process running freely
creates more variance in the training speed and learning
performance as the simulation speed and network training
speed are heavily dependent on the task complexity, net-
work size, computer hardware, etc. For example, simulation
for contact-rich tasks can be slower than others; some tasks
might require a deeper policy network or Q networks; even
the GPUs on a machine might have different running con-
ditions at different times, leading to different speeds across
processes and further leading to different learning perfor-
mances. Second, ratio control can improve convergence
speed. For example, prior works (Fujimoto et al., 2018)
have shown that updating the policy network less frequently
than the Q functions leads to better learning. We show
similar ratios in our experiments, but our findings are in
the context of parallel training of policy and value function.
Third, the ratio βp:v can be interpreted as the frequency of
the target policy network update. One may notice that we
use a lagged policy to update the Q function and synchro-
nize it according to the above ratio. Therefore, we do not
create a target policy network explicitly, but every synchro-
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Figure 2. We experiment on six Isaac Gym tasks: Ant, Humanoid,
ANYmal, Shadow Hand, Allegro Hand, Franka Cube Stacking.

nization can be considered as a hard update of the policy
network.

3.3. Mixed Exploration

We can achieve improvement in convergence by having
a good exploration strategy. Too much exploration can
make agents fail to latch onto useful experience and learn
a good policy quickly, while too little exploration does
not give the agent enough good interaction data to im-
prove the policy. Balancing the exploration and exploita-
tion often requires extensive hyper-parameter tuning or
complex scheduling mechanisms. In DDPG, one com-
mon practice to control exploration is to set the standard
deviation σ of the uncorrelated and zero-mean Gaussian
noise that is being added to the deterministic policy output
(at = max(min(π(st) +N (0, σ), au), al) (Achiam, 2018;
Fujita et al., 2021; Yang et al., 2022) where at ∈ [al, au]).
Since it is difficult to predict how much exploration noise
is appropriate, one typically needs to tune σ for each task.
Can we mitigate the hassle of tuning σ? Our idea is that
instead of finding the best σ value, we can try out differ-
ent σ values altogether, which we call mixed exploration.
Even if some σ values lead to bad exploration at a certain
training stage, others can still generate good exploration
data. This strategy is easily implemented thanks to the
massively parallel simulation, as we can use different σ val-
ues in different parallel environments. Similar ideas have
been used in prior works (Horgan et al., 2018; Mnih et al.,
2016). In our work, we uniformly generate the noise levels
in the range of [σmin, σmax]. For the ith environment out of
N environments, σi = σmin + i−1

N−1 (σmax − σmin) where
i ∈ {1, 2, ..., N}. We use σmin = 0.05, σmax = 0.8 for all
the tasks in our experiments.

4. Experiments
In this section, we demonstrate the effectiveness of our
method compared to SOTA baselines, show the effects of
key hyper-parameters that affect learning, and provide em-
pirical guidelines for setting these values. All experiments
are carried out on a single workstation with a few GPUs.

We run each experiment with five random seeds and plot
their mean and standard error.

4.1. Setup

Tasks We evaluate our method on six Isaac Gym bench-
mark tasks (Makoviychuk et al., 2021): Ant, Humanoid,
ANYmal, Shadow Hand, Allegro Hand, and Franka Cube
Stacking (see Figure 2). For more details about these tasks,
please refer to (Makoviychuk et al., 2021). Additionally, we
provide two more tasks in Section 4.5: (1) a vision-based
Ball Balancing task and (2) a contact-rich dexterous ma-
nipulation task that requires learning to reorient hundreds
of different objects using a DClaw Hand with a single pol-
icy (Chen et al., 2022a).

Baselines We consider the following baselines: (1)
PPO (Schulman et al., 2017), which is the default algo-
rithm used by many prior works (Makoviychuk et al., 2021;
Chen et al., 2022b; Allshire et al., 2021) that use Isaac Gym
for simulation, (2) DDPG(n): DDPG (Lillicrap et al., 2015)
implementation with double Q learning and n-step returns,
(3) SAC(n): SAC (Haarnoja et al., 2018) implementation
with n-step returns.

Hardware We use NVIDIA GeForce RTX 3090 GPUs as
our default GPUs for the experiments unless otherwise spec-
ified. More details are shown in Table B.3 in the appendix.

4.2. PQL learns faster than baselines

The first and most important question to answer is whether
PQL leads to faster learning than SOTA baselines. To an-
swer this, we compared the learning curves of PQL and
PQL-D (PQL with distributional RL) with baselines on six
benchmark tasks. As shown in Figure 3, our method (PQL,
PQL-D) achieves the fastest policy learning in five out of
six tasks compared to all baselines. Moreover, we observed
that adding distributional RL to PQL can further boost learn-
ing speed. Figure 3 shows that in five out of six tasks,
PQL-D achieves wall-clock time faster than, or at least on
par with, PQL. The improvements are most salient on the
two challenging contact-rich manipulation tasks (Shadow
Hand and Allegro Hand). Additionally, the faster learning
of PQL than DDPG(n) demonstrates the advantage of using
a parallel scheme for data collection and network updates.
We also found that DDPG(n) outperforms SAC(n) in all
tasks. This could be due to the fact that the exploration
scheme in DDPG can scale up better than the one in SAC.
In DDPG, we apply the same mixed exploration as in PQL,
while the exploration of SAC solely comes from sampling
in the stochastic policy distribution, which can be heavily
affected by the quality of the policy distribution.
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Figure 3. We compare our methods to the SOTA RL algorithms
(PPO, SAC with n-step returns, DDPG with n-step returns). We
use 4096 environments for training in all tasks except the PPO
baseline on Shadow Hand and Allegro Hand tasks, where we use
16384 as it gives the best performance for PPO on these two tasks
as shown in Figure 5(c). Our methods achieve the fastest learning
speed in almost all tasks.

4.3. How well does mixed exploration perform?

As discussed in Section 3.3, massively parallel simulation
enables us to deploy different exploration strategies in dif-
ferent environments to generate more diverse exploration
trajectories. We use a simple mixed exploration strategy,
as described in Section 3.3, and compare its effectiveness
to cases where all the environments use the same explo-
ration capacity (the same σ values). We experimented with
σ ∈ {0.2, 0.4, 0.6, 0.8}. As shown in Figure 4, the learn-
ing performance is significantly affected by the choice of σ
value. If we use the same σ value for all parallel environ-
ments, then we need to tune σ for each task. In contrast, the
mixed exploration strategy, where each environment uses
a different σ value, outperforms (learns faster or at least
as fast as) all other fixed σ values. This implies that using
the mixed exploration strategy can reduce the tuning effort
needed for σ values per task.

4.4. Effects of different hyper-parameters

In this section, we investigate the effects of the number
of environments, βp:v, βa:v, batch size, replay buffer size,
and the number of GPUs. These hyper-parameters are of
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Figure 4. We compared our proposed mixed exploration scheme
by applying different constant maximum noise values. We can see
that the mixed exploration scheme either outperforms or is on par
with other schemes, which can save the tuning effort on the noise
level.

particular interest given the massively parallel simulation
(N >> 1000) and our parallel scheme. Lastly, GPU hard-
ware can also impact learning speed. To explore this, we
conduct experiments using four different GPU models and
analyze the effect of GPU hardware on performance in Ap-
pendix C.

4.4.1. HOW DOES THE NUMBER OF ENVIRONMENTS N
AFFECT POLICY LEARNING?

Previous works on distributed frameworks for RL (Horgan
et al., 2018; Espeholt et al., 2018) have shown how the
learning performance is affected by the number of parallel
environments N , with N in the order of hundreds. GPU
simulation enables running thousands of environments in
parallel on a single workstation, and we anticipate that this
will only improve with time. However, more parallel en-
vironments will only be beneficial if RL algorithms can
exploit such data, i.e. if performance scales with more data.
We, therefore, investigated how different algorithms scale
with the number of environments (N >> 1000, the biggest
N we experimented with is 16, 384). As shown in Figure 5,
both PQL and PPO benefit from using more environments
in parallel. Moreover, the learning performance of PQL is
relatively less sensitive to N on the simple task (Ant), while
on the hard task (Shadow Hand), PPO’s learning perfor-
mance substantially drops as we decrease the number of
environments. In contrast, our method (PQL) demonstrates
stable and similar learning with all the different numbers
of environments except when N is very small (N = 256)
on Shadow Hand, suggesting that PQL is more robust to
changes in N .
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Figure 5. We sweep over different numbers of environments (N )
on both PPO and PQL (our method). Overall, PQL is less sensitive
to the number of environments than PPO on both tasks.

4.4.2. EFFECT OF βp:v AND βa:v

As discussed in Section 3.2, explicitly controlling the βa:v

and βp:v can help improve the learning performance and
reduce the variance under different training conditions, such
as fluctuated hardware utilization. If βp:v is larger, the
policy updates more frequently than the value functions,
potentially leading to policy overfitting to the stale value
function, which in turn leads to poor exploration. If the
policy updates much slower than the value function, the
policy might lag behind the value function a lot, which hurts
the learning speed. Similarly, if βa:v is larger, the V-learner
might need to wait for Actor to collect enough data, since
the simulation speed cannot be changed, leading to slower
learning. If βa:v is smaller, the value function updates more
given the generated rollout data.

To qualitatively assess the effects of different βa:v and
βp:v, we sweep over a range of values for these two hyper-
parameters and compare them in Figure 6 and Figure 7.
Figure 6 shows that PQL is relatively robust to a wide range
of βp:v values, which means this hyper-parameter would
require little tuning. We use βp:v = 1 : 2 as the default
value in our experiments shown in the paper. This ratio
value is consistent with prior works (Fujimoto et al., 2018;
Yang et al., 2022), but our findings are in the context of
parallel training of policy and value function. Figure 7
shows that βa:v has a greater impact on the learning per-
formance. An overall trend is that if we increase the num-
ber of environments, then we need to have V-learner up-
date the Q functions more times. For example, on Shadow
Hand, βa:v = 1 : 4 performs the best when N = 2048
and N = 4096. But when N = 8192 and N = 16384,
βa:v = 1 : 12 performs the best. We use βa:v = 1 : 8 by
default as it achieves a good performance across different N
values. In summary, Figure 6 and Figure 7 show that βp:v
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Figure 6. We show the averaged returns in evaluation after a fixed
amount of training time ∆T . Across the set of different numbers of
environments we experimented with (2048, 4096, 8192, 16384),
we found that setting βp:v = 1 : 2 generally works well. ∆T = 60
mins for Ant, and ∆T = 80 mins for Shadow Hand. The complete
learning curves are in Figure C.6.
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Figure 7. Given different values of N , we show the effect of dif-
ferent βa:v . An overall trend we observe is that as N gets bigger,
it’s more beneficial to update the critic more frequently. We also
found that βa:v = 1 : 8 generally works well given different N
values. So one can set βa:v = 1 : 8 as a good initial value, and
tune it if necessary on new tasks.

and βa:v do affect the performance with a varied number of
environments. We suggest setting βp:v = 1 : 2, βa:v = 1 : 8
as a good starting point for new tasks and tune them if nec-
essary, as these are the values we found work well on six
different tasks with different numbers of environments. In
addition, in Section C, we show that adding the speed ratio
control (βa:v and βp:v) is beneficial for balancing the com-
puting resources used by each process when resources are
limited.

4.4.3. EFFECT OF BATCH SIZE

With many parallel environments (N ), a significant amount
of data is generated quickly. While it is easy to increase
N from hundreds to tens of thousands in Isaac Gym on a
single GPU, it is infeasible to increase the replay buffer size
by 100 times due to limited GPU memory or CPU RAM
(if the data is stored on the CPU). Consequently, the replay
buffer is frequently overwritten, meaning that each collected
sample may not be used efficiently. One way to efficiently
utilize large amounts of changing data is to increase the
batch size. To determine how much increase in batch size
is necessary for Q-learning with a limited-capacity replay
buffer to take advantage of the large amounts of incoming
data, we investigated the relationship between performance
and batch size. Many prior works have shown that using
a large batch size can improve network performance, such
as in contrastive learning settings (Grill et al., 2020; Chen

7



Parallel Q-Learning: Scaling Off-policy Reinforcement Learning under Massively Parallel Simulation

0 10 20 30 40 50
0

2k
4k
6k
8k

10k
12k
14k

512 1024 2048 4096 8192 16384 32768

Ant

Wall clock time (min)

R
et

ur
n

(a)

0 10 20 30 40 50 60 70
0

1000
2000
3000
4000
5000
6000
7000
8000

512 1024 2048 4096 8192 16834 32768

Shadow Hand

Wall clock time (min)

R
et

ur
n

(b)

Figure 8. Effect of different batch sizes. Small batch size usually
leads to slower learning. If the batch size is too big, the policy
learning can get slowed down because GPUs have a limited amount
of cores and it takes more time to process a very big batch of data.
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Figure 9. (a) and (b): effect of different replay buffer size. (c) and
(d): effect of number of GPUs used for running PQL. PQL can be
deployed on a flexible number of GPUs. In complex tasks such as
Shadow Hand, it is beneficial to have at least 2 GPUs where the
Actor runs on a separate GPU as the simulation itself consumes
more GPU compute as the task complexity increases.

et al., 2020). In our work, we found that large-batch training
can notably improve the learning speed in off-policy RL
for massively parallel simulations, as shown in Figure 10.
However, if the batch size is too big, the learning speed
can be slowed down. This is because GPUs have a limited
number of CUDA cores, and it takes more time to process
a very big batch of data once the batch size is above some
threshold value, which is another underlying trade-off.

4.4.4. EFFECT OF REPLAY BUFFER SIZE

As discussed in Section 1, when dealing with tens of thou-
sands of parallel environments, the replay buffer with nor-
mal capacity (e.g. 1M) gets a full refresh for every several
hundreds of environment steps. This means that the replay
buffer will not contain too much historical data. Apriori,
one might think off-policy methods will fail in this case and
that we need to proportionally increase the replay buffer
size to store more experience data. However, surprisingly,
we empirically found that even with thousands of parallel
environments, having a ”small” replay buffer (1M or 5M)

can still lead to good performance. In Figure 9, we show
how the learning curves change as we vary the buffer ca-
pacity. We can see that, in all cases, the policies learn well.
We hypothesize that PQL still works well in this case be-
cause a large number of parallel environments can generate
diverse enough data in a few environment steps. Moreover,
|B| ∈ {1, 5}M leads to faster policy learning at the begin-
ning of the training than |B| = {10, 20}M. We hypothesize
that this is because a smaller replay buffer allows the old
and less informative samples to be replaced much faster,
which is more important in the early stages of training.

4.4.5. NUMBER OF GPUS

Nowadays, it is common to have workstations with multiple
GPUs. Running different processes on separate GPUs can
potentially speed up learning. Our PQL scheme can adapt
to different numbers of GPUs available on a workstation.
Specifically, Actor, P-learner, and V-learner can be placed
on any GPU. To investigate the performance variation when
we distribute the three components across different numbers
of GPUs, we conducted experiments with three scenarios
on Tesla A100 GPUs: (1) place all three processes on the
same GPU, (2) place the Actor on one GPU, P-learner and
V-learner on another GPU, (3) place the Actor, P-learner,
V-learner on a different GPU respectively. In the two-
GPU case, we allocate Actor to a dedicated GPU because
simulating many tasks with a large number of environments
can cause high GPU utilization. As shown in Figure 9, our
PQL scheme works well in all three scenarios with one, two,
or three GPUs. When the task becomes more complex like
Shadow Hand, the simulation takes much more computation
and time. Putting all three processes will slow down each
one of them due to full GPU utilization, which is why we see
a bigger gap between the 2-GPU or 3-GPU training and 1-
GPU training on Shadow Hand. Therefore, it is beneficial to
place the Actor on one GPU and P-learner and V-learner
on other GPUs.

4.5. Additional Tasks

Vision-based Ball Balancing task Simulating vision-
based tasks is much slower and more demanding on the
GPU as each simulation step involves both the physics sim-
ulation and image rendering. To demonstrate the generality
of our scheme in operating in this practical setting of vision-
based training, we consider a vision-based Ball Balancing
task (Makoviychuk et al., 2021).

Since directly learning a vision-based policy with RL is
time-consuming, we use the idea of asymmetric actor-critic
learning (Pinto et al., 2017) to speed up vision policy learn-
ing. Image data is compressed using the lz4 library to reduce
the bandwidth requirement and communication overhead.
More setup details are in Appendix B.3. As shown in Fig-
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Figure 10. (a): DClaw Hand task. (b): We compared our proposed
PQL-D method with PPO.

ure B.1, PQL achieves better sample efficiency and higher
final performance than PPO with N = 1024 parallel envi-
ronments.

Reorient hundreds of objects with a DClaw Hand We
conducted further experiments on a contact-rich dexterous
manipulation task (Chen et al., 2022a), DClaw Hand, as
shown in Figure 10(a). This task is much more challenging
than the Shadow Hand task and Allegro Hand task because it
needs to learn to reorient hundreds of different objects with
a single policy. Furthermore, the control frequency (12Hz)
is much lower than the default control frequency (60Hz)
used in all six proposed benchmark tasks. This means that
the simulation takes much longer to run between each policy
command step, and the Actor process will be much slower.
In Figure 10(b), we observe that our method reaches 70%
success rate around 200 minutes, which is approximately 3
times faster than PPO.

5. Discussion and Future Work
We present a scheme PQL for scaling up off-policy methods
with tens of thousands of parallel environments on a single
workstation. Our method achieves state-of-the-art results
on the Isaac Gym benchmark tasks in terms of the training
wall clock time. The driving force behind this success is the
parallelization of data collection, policy function learning,
and value function learning. We provide a mechanism to
balance and control the speed in different processes, which
leads to better and more stable performance across different
hardware conditions or when the GPU resource is limited.
Although PPO requires a large number of environments to
work on complex tasks such as Shadow Hand, PQL is more
lenient on the number of environments and works well on
a wide range of different numbers of environments. With a
large number of parallel environments, it is beneficial to use
a big batch size for training agents, with the caveat that if
the batch size is too big, it might take the GPU more time
to process the batch data and lead to a slowdown in policy
learning. We also found using different exploration scales
in different environments achieves better or similar perfor-
mance compared to a carefully-tuned exploration scale in
all parallel environments, which means we need less hyper-

parameter tuning. Even though the number of environments
is 1000× more, we did not find it necessary to use a replay
buffer that is 1000× bigger. In fact, a replay buffer with a
capacity of 5M transitions is sufficient for our experiments
even with 16843 parallel environments. Our scheme’s hard-
ware requirements are flexible and work well with different
numbers of GPUs and various GPU models.

For future work, it would be interesting to investigate the
sampling strategy for the replay buffer. In PQL, we do not
use techniques such as prioritized experience replay (Schaul
et al., 2015). The sampling process can take a very long time
due to the massive amount of collected data, thus such tech-
niques could improve the sample efficiency but significantly
hurt wall-clock time efficiency. Therefore, new strategies
should be considered, e.g., one can consider rejecting sam-
ples given the massive amount of data. It would also be
practically interesting to study different exploration strate-
gies that can take advantage of parallel environments. Lastly,
one may notice that our scheme can be easily extended to a
system with multiple parallel P-learner or V-learner given
the decoupling of policy and value learning. In this case, an-
other interesting direction is to apply ensemble methods or
evolutionary strategies to further exploit the massive amount
of data.
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A. Pseudo Code

Algorithm 1 Actor Process (main process)
for n = 1 : Wa do
π ← policy network from P-learner process
Initialize an empty buffer B = ϕ
for t = 1 : H do
at ← π(st) with mixed exploration noise
(rt, st+1)← envs.step(at)
B = B ∪ {st,at, rt, st+1}

end for
Q1, Q2 ← Q functions from V-learner process
send B, π to V-learner, send {st} in B, Q1, Q2 to P-learner
sleep for ta seconds to satisfy βa:v

end for

Algorithm 2 P-learner Process
Initialize an empty buffer Bp = ϕ
for n = 1 : Wp do

if new data received then
{st} ← from Actor process
Q1, Q2 ← from Actor process
B = B ∪ {st}

end if
sample a batch of {st}
update π by maximizing the mini=1,2 Qi(st, π(st))
sleep for tp seconds to satisfy βp:v

end for

Algorithm 3 V-learner Process
Initialize an empty buffer Bv = ϕ
for n = 1 : Wv do

if new data received then
{st, at, rt, st+1} ← from Actor process
π ← from Actor process
Q1, Q2 ← from Actor process
B = B ∪ {st}

end if
sample a batch of {st, at, rt, st+1}
update Q1, Q2 by minimizing the mean-squared Bellman error (with Double Q-learning)
sleep for tv seconds to satisfy βp:v, βa:v

end for

B. Training setups
B.1. Hyper-parameters

We use the hyper-parameter values shown in Table B.1 and the reward scaling shown in Table B.2 for all the experiments
unless otherwise specified. As for PPO, we use the same hyperparameter setup in Makoviychuk et al. (2021).
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Table B.1. Hyper-parameter setup for six Isaac Gym benchmark tasks

Hyper-parameter PQL(ours) DDPG SAC

Num. Environments 4,096 4,096 4,096
Critic Learning Rate 5× 10−4 5× 10−4 5× 10−4

Actor Learning Rate 5× 10−4 5× 10−4 5× 10−4

Learnable Entropy Coefficient - - True
Optimizer Adam Adam Adam
Target Update Rate (τ ) 5× 10−2 5× 10−2 5× 10−2

Batch Size 8,192 8,192 8,192
Num. Epochs (βa:v) 8 8 8
Discount Factor(γ) 0.99 0.99 0.99
Normalized Observations True True True
Gradient Clipping 0.5 0.5 0.5
Exploration Policy Mix Mix -
N -step target 3 3 3
Warm-up Steps 32 32 32
Replay Buffer Size 5× 106 5× 106 5× 106

Table B.2. Reward scale
Reward scale

Ant 0.01
Humanoid 0.01
ANYmal 1.0

Franka Cube Stacking 0.1
Allegro Hand 0.01
Shadow Hand 0.01
Ball Balance 0.1
DClaw Hand 0.01

B.2. Hardware Configurations

Table B.3 lists the hardware configurations of the workstations we used for the experiments. We use the machines with
GeForce RTX 3090 for experiments by default. We also measure how much time it takes for the simulator to generate
1M interaction data with 4096 parallel environments on Ant and Shadow Hand. We generate 1M data via the following
command.

for i in range(244):
action = torch.randn((4096,

envs.action_space.shape[0]),
device=’cuda’)

out = envs.step(action)

B.3. Vision experiment setup

We render the RGB camera image in a resolution of 48× 48. The CNN part of our vision network g(ot) is as follows:

Conv(3,32,3,2)-BN(32)-ReLU-3x(Conv(32,32,3,2)-BN(32)-ReLU)

where Conv(a,b,k,s) is a Convolutional layer with input channels a, output channels b, kernel size k, stride s.

Since our policy input contains a history of observations (ot−2, ot−1, ot), we use the same CNN to extract the feature of each
observation and then concatenate all the embeddings. Then, the concatenated embedding goes through an MLP network h:

FC(256)-ReLU-FC(63)-ReLU-FC(3)
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Table B.3. Hareware configurations on different workstations

Workstation 1 Workstation 2 Workstation 3 Workstation 4

CPU AMD Threadripper 3990X Intel Xeon Gold 6248 AMD Rome 7742 Intel Xeon W-2195

GPU GeForce RTX 3090 Tesla V100 Tesla A100 GeForce RTX 2080 Ti

GPU CUDA Cores 10496 5120 6912 4352

GPU FP32 TFLOPs 35.58 16.4 19.5 13.45

Time for generating

1M data (N = 4096) (s)

Ant 1.678± 0.006 2.117± 0.038 1.999± 0.004 3.397± 0.014

Shadow Hand 6.706± 0.028 9.051± 0.035 8.653± 0.101 10.885± 0.025

In summary, at each time step t, the policy output is h[cat(g(ot−2), g(ot−1), g(ot))]. Storing images in a replay buffer
can take up a lot of memory. Therefore, we experiment with different placements of the replay buffer: (1) put the replay
buffer on a GPU with a big memory, (2) put the replay buffer on CPU RAM. We use the same A100 GPUs for all these
image-based experiments. Figure B.1 shows that our method (PQL) works with either the replay buffer on the GPU or CPU,
and it achieves much faster learning and better performance than PPO.
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Figure B.1. (a): the Ball Balancing task in Isaac Gym. (b): the rendered RGB image from the simulated camera. (c) shows the learning
curves regarding the number of environment steps. (d) shows the training wall-clock time. We can see that PQL achieves both better
sample efficiency and higher final performance than PPO.

Table B.4. Hyper-parameter setup for the Ball Balancing task.

Hyper-parameter PQL(ours) PPO

Num. Environments 1,024 1,024
Critic Learning Rate 5× 10−4 5× 10−4

Actor Learning Rate 5× 10−4 5× 10−4

Optimizer Adam Adam
Target Update Rate (τ ) 5× 10−2 -
Batch Size 4,096 4,096
Horizon length 1 16
Num. Epochs 12 5
Discount Factor(γ) 0.99 0.99
Normalized Observations True True
Gradient Clipping True True
Exploration Policy Mix -
N -step target 3 -
Warm-up Steps 32 -
Replay Buffer Size 106 -
Clip Ratio - 0.2
GAE - True
λ - 0.95
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C. Additional Experiments
n-step returns We investigate how much does n-step returns help for PQL. As shown in Figure C.3, adding n-step return
leads to faster learning than not using n-step return (n = 1). However, using a big n value hurt the learning. Empirically we
found that n = 3 gives us the best performance.

Benefit of adding speed control (βp:v, βa:v) on different processes As we mentioned in Section 3.2, adding speed
control using βp:v, βa : v can help reduce the variance of training when the amount of computation resources changes. To
provide more insights, we ran experiments without speed control, i.e., each process could run as fast as possible without any
waiting. As shown in Figure C.2, when there are sufficient compute resources available (with two GPUs), the benefit of
having the speed ratio control is not significant. However, when only one GPU is available for running all three processes
(Actor, P-learner, V-learner), we can see that without the ratio control, the learning curves on all six benchmark tasks slow
down. We believe this is because all three processes are trying to run as fast as possible, resulting in competition for GPU
utilization, which slows overall learning. Adding the ratio control helps balance GPU resource utilization among the three
processes. Thus, even with one GPU, the learning performance with ratio control is quite similar to that with two GPUs.
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Figure C.2. Comparison of the learning performance with and without the speed ratio control (βp:v, βa:v) on two RTX3090 GPUs and on
1 RTX3090 GPU, respectively.

GPU hardware The simulation speed and network training speed vary across different GPU models. In Table B.3, we
list how much time it takes for the simulator to generate 1M environment interaction data with 4096 parallel environments
on four machines with different GPU models. In our test, the simulation speed on different GPU models is as follows:
GeForce 3090 > Tesla A100 > Tesla V100 > GeForce 2080Ti. We test PQL performance on all these four different machine
configurations (Table B.3). We can see that different GPU models affect the policy learning speed, especially on complex
tasks like Shadow Hand which takes more simulation time.

PQL for SAC As discussed above, PQL framework is flexible and can be combined with different Q-learning methods.
Here, we show that PQL can be combined with SAC as well. Figure C.4 shows that adding the PQL framework to SAC
substantially speeds up the learning speed of SAC.

Sample efficiency compared to baselines Figure C.5 shows the sample efficiency of each algorithm on different
environments. Overall, we see that PQL achieves the best sample efficiency. In addition, DDPG(n) also outperforms SAC(n)
in terms of sample efficiency on these tasks.
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Figure C.3. (a) and (b): effect of n-step return. n = 3 performs the best. (c) and (d): effect of GPU models used for running PQL.
Overall, we see that PQL works robustly across different GPU models, and running on newer GPUs tends to give a faster learning.
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Figure C.4. We apply our parallel Q-learning to SAC. PQL + SAC achieves faster learning than SAC itself.
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Figure C.5. Similar to Figure 3, we show that our method (PQL) also achieves better sample efficiency than baselines.

Sweep over different βa:v and βp:v Figure C.6 shows the complete learning curves with different βp:v values and different
number of environments. Similarly, Figure C.7 shows the learning curves for different βa:v .

Comparison of our implementation with RL-games In this work, we implemented all the algorithms (PQL and all
the baselines) from scratch, as it gives us the most flexibility in exploring different design choices that can affect learning
performance. To show that our codebase provides good performance, we compare it against the most commonly used RL
codebase used for Isaac Gym, which is RL-games (Makoviichuk & Makoviychuk, 2022). However, RL-games only support
PPO and SAC. Hence, we compare our implementations of PPO and SAC against the ones in RL-games.

Distributional critic update We investigate how a distributional version of the critic update affects the policy learning
performance. Here, we utilize categorical parameterization that outputs a discrete-value distribution defined over a fixed set
of atoms zi (Bellemare et al., 2017). We use the same hyper-parameters across the six tasks, where the number of atoms
l = 51 and the bounds on the support from (−10, 10). To make sure the values lie on the support defined by the atoms, we
scale the reward into a similar range via different scaling factors shown in Table B.2 and apply the categorical projection
operator before minimizing the cross-entropy.
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Figure C.6. Learning curves for different βp:v .
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Figure C.7. Learning curves for different βa:v .
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Figure C.8. Comparison between our implementations of PPO and SAC against the ones provided in RL-games. We can see that both
codebases provide similar performance, showing that our implementation is good and reliable. On Shadow Hand, our PPO learns even
faster and better than the PPO in RL-games.
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