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Abstract

We study the problem of PAC learning γ-margin halfspaces in the presence of
Massart noise. Without computational considerations, the sample complexity of
this learning problem is known to be Θ̃(1/(γ2ϵ)). Prior computationally efficient
algorithms for the problem incur sample complexity Õ(1/(γ4ϵ3)) and achieve 0-1
error of η + ϵ, where η < 1/2 is the upper bound on the noise rate. Recent work
gave evidence of an information-computation tradeoff, suggesting that a quadratic
dependence on 1/ϵ is required for computationally efficient algorithms. Our main
result is a computationally efficient learner with sample complexity Θ̃(1/(γ2ϵ2)),
nearly matching this lower bound. In addition, our algorithm is simple and practical,
relying on online SGD on a carefully selected sequence of convex losses.

1 Introduction

This work studies the algorithmic task of learning margin halfspaces in the presence of Massart noise
(aka bounded label noise) [MN06] with a focus on fine-grained complexity analysis. A halfspace
or Linear Threshold Function (LTF) is any Boolean-valued function h : Rd → {±1} of the form
h(x) = sign (w · x− θ), where w ∈ Rd is the weight vector and θ ∈ R is the threshold. The
function sign : R → {±1} is defined as sign(t) = 1 if t ≥ 0 and sign(t) = −1 otherwise. The
problem of learning halfspaces with a margin — i.e., under the assumption that no example lies too
close to the separating hyperplane — is one of the earliest algorithmic problems studied in machine
learning, going back to the Perceptron algorithm [Ros58].

In the realizable PAC model [Val84] (i.e., with clean labels), the sample complexity of learning
γ-margin halfspaces on the unit ball in Rd is Θ(1/(γ2ϵ)), where ϵ > 0 is the desired 0-1 error; see,
e.g., [SSBD14]1. Moreover, the Perceptron algorithm is a computationally efficient learner achieving
this sample complexity. That is, without label noise, there is a sample-optimal and computationally
efficient learner for margin halfspaces.

In this paper, we study the same problem in the Massart noise model that we now define.

Definition 1.1 (PAC Learning with Massart Noise). Let D be a distribution over X × {±1}, and
let C be a class of Boolean-valued functions over X . We say that D satisfies the η-Massart noise
condition with respect to C, for some η < 1/2, if there exists a concept f ∈ C and an unknown
noise function η(x) : X 7→ [0, η] such that for (x, y) ∼ D, the label y satisfies: with probability
1 − η(x), y = f(x); and y = −f(x) otherwise. Given i.i.d. samples from D, the goal of the

1As is standard, we are assuming that d = Ω(1/γ2); otherwise, a sample complexity bound of Õ(d/ϵ)
follows from standard VC-dimension arguments.
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learner is to output a hypothesis h : X → {±1} such that with high probability the 0-1 error
errD(h)

def
= Pr(x,y)∼D[h(x) ̸= y] is small.

The concept class of halfspaces with a margin is defined as follows.

Definition 1.2 (γ-Margin Halfspaces). Let D be a distribution over Sd−1 × {±1}, where Sd−1 is
the unit sphere in Rd. Let w∗ ∈ Sd−1 and γ ∈ (0, 1). We say that the distribution D satisfies the
γ-margin condition with respect the halfspace sign(w∗ · x)2, if (i) for (x, y) ∼ D, we have that
y = sign(w∗ · x), and (ii) Pr(x,y)∼D [|w∗ · x| < γ] = 0. The parameter γ is called the margin of
the halfspace sign(w∗ · x).

Information-theoretically, the best possible 0-1 error attainable for learning a concept class with
Massart noise is opt := Ex∼Dx [η(x)]. Since η(x) is uniformly bounded above by η, it follows
that opt ≤ η; also note that it may well be the case that opt ≪ η. Focusing on the class of γ-
margin halfspaces, it follows from [MN06] that there exists a (computationally inefficient) estimator
achieving error opt + ϵ with sample complexity Õ(1/((1− 2η)γ2ϵ)); and moreover that this sample
upper bound is nearly best possible (within a logarithmic factor) for any estimator. (That is, the
sample complexity of the Massart learning problem is essentially the same as in the realizable case,
as long as η is bounded from 1/2.)

Taking computational considerations into account, the feasibility landscape of the problem changes.
Prior work [DK22, NT22, DKMR22] has provided strong evidence that achieving error better than
η + ϵ is not possible in polynomial time. Consequently, algorithmic research has been focusing on
achieving the qualitatively weaker error guarantee of η + ϵ. We note that efficiently obtaining any
non-trivial guarantee had remained open since the 80s; see Appendix A.1 for a discussion. The first
algorithmic progress for this problem is due to [DGT19], who gave a polynomial-time algorithm
achieving error of η + ϵ with sample complexity poly(1/γ, 1/ϵ). Subsequent work [CKMY20] gave
an efficient algorithm with improved sample complexity of Õ(1/(γ4ϵ3)). Prior to the current work,
this remained the best known sample upper bound for efficient algorithms.

In summary, known computationally efficient algorithms for learning margin halfspaces with Massart
noise require significantly more samples—namely, Ω̃(1/(γ4ϵ3))—than the information-theoretic
minimum of Θ̃η(1/(γ

2ϵ)). It is thus natural to ask whether a polynomial-time algorithm with optimal
(or near-optimal, i.e., within logarithmic factors) sample complexity exists. Recall that the answer
to this question is affirmative in the realizable setting, where the Perceptron algorithm is optimal.
Perhaps surprisingly, recent work [DDK+23a] (see also [DDK+23b]) gave evidence for the existence
of inherent information-computation tradeoffs in the Massart noise model—in fact, even in the simpler
model of Random Classification Noise (RCN) [AL88]3. Specifically, they showed that any efficient
Statistical Query (SQ) algorithm or low-degree polynomial tasks requires Ω(1/ϵ2) samples—a near
quadratic blow-up compared to the Õ(1/ϵ) information-theoretic upper bound. This discussion serves
as the motivation for the following question:

What is the optimal computational sample complexity of the problem of
learning γ-margin halfspaces with Massart noise?

By the term “computational sample complexity” above, we mean the sample complexity of
polynomial-time algorithms for the problem. Given the fundamental nature of this learning problem,
we believe that a fine-grained sample complexity versus computational complexity analysis is inter-
esting on its own merits. In this work, we develop a computationally efficient algorithm with sample
complexity of Õ(1/(γ2ϵ2)). Given the aforementioned information-computation tradeoffs, there is
evidence that this upper bound is close to best possible. As a bonus, our algorithm is also simple and
practical, relying on online SGD. (In fact, our algorithm runs in sample linear time, excluding a final
testing step that slightly increases the runtime.)

1.1 Our Result and Techniques

Our main result is the following:

2We will henceforth assume that the threshold is θ = 0, which is well-known to be no loss of generality.
3The RCN model is the special case of Massart noise, where η(x) = η for all points x in the domain.
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Theorem 1.3 (Main Result, Informal). Let D be a distribution on Sd−1 × {±1} that satisfies the
η-Massart noise condition with respect to an unknown γ-margin halfspace f(x) = sign(w∗ · x).
There is algorithm that draws n = Õ(1/(ϵ2γ2)) samples from D, runs in time Õ(dn/ϵ), and with
probability at least 9/10 returns a vector ŵ such that errD(ŵ) ≤ η + ϵ.

The sample upper bound of Theorem 1.3 nearly matches the computational sample complexity of the
problem (for SQ algorithms and low-degree polynomial tests), which was shown to be Ω(1/(ϵ2γ) +
1/(ϵγ2)) [MN06, DDK+23a, DDK+23b]. That is, Theorem 1.3 comes close to resolving the fine-
grained complexity of this basic task. Moreover, it matches known algorithmic guarantees for the
easier case of Random Classification Noise [DDK+23a, KIT+23].

Brief Overview of Techniques Here we provide a brief summary of our approach in tandem with a
comparison to prior work. The algorithm of [DGT19] adaptively partitions the space into polyhedral
regions and uses a different linear classifier in each region, each achieving error η + ϵ within the
corresponding region. Their approach leverages the LeakyReLU loss (see (1)) as a convex proxy to
the 0-1 loss. At a high-level, their approach reweights the samples in order to accurately classify a
non-trivial fraction of points. [CKMY20] uses the LeakyReLU loss to efficiently identify a region
where the value of the loss conditioned on this region is sub-optimal; they then use this procedure as
a separation oracle along with online convex optimization (see also [DKTZ20b, DKK+21]) to output
a linear classifier with 0-1 error at most η + ϵ. Both of these approaches inherently require Ω(1/ϵ3)
samples for the following reason: they both need to condition on a region where the probability mass
of the distribution can be as small as Θ(ϵ). Thus, even estimating the error of the loss would require at
least Ω(1/ϵ2) conditional samples. Beyond the dependence on 1/ϵ, the sample complexity achieved
in these prior works is also suboptimal in the margin parameter γ; namely, Ω(1/γ4). This dependence
follows from the facts that both of these works require estimating the loss in each iteration within
error of at most γϵ, and that their algorithmic approaches require Ω(1/γ2) iterations.

To circumvent these issues, novel ideas are required. At a high-level, we design a uniform approach
to decrease the “global” error, as opposed to the local error (as was done in prior work). Specifically,
we construct a different sequence of convex loss functions, each of which attempts to accurately
simulate the 0-1 objective. We note that a similar sequence of loss functions was used in the recent
work [DKTZ24] in a related, but significantly different, adversarial online setting. Interestingly, a
similar reweighting scheme was used in [CKMY20] for learning general Massart halfspaces. Beyond
this similarity, these works have no implications for the sample complexity of our problem. (See
Appendix A.2 for a detailed comparison.) Via this approach, we obtain an iterative algorithm which
uses only Oγ(1/ϵ

2) samples in order to estimate the loss in each iterative step.

In more detail, note that the 0-1 loss can be written in the form −E[y w·x
|w·x| ]. We convexify this

objective by considering, in each step, the loss ℓ(w,u) = −E[y w·x
|u·x| ], where u is independent of w;

this loss is convex with respect to w. Observe that ℓ(w,w) is proportional to the zero-one loss of w.
Unfortunately, it is possible that no optimal vector w∗ (under 0-1 loss) minimizes ℓ(w∗,w). For this
reason, we consider the objective ℓη(w,u) = E[(1{y ̸= sign(w · x)} − η − ϵ)|w · x|/|u · x|]. This
new objective satisfies the following: ℓη(w∗,u) < −ϵγ for any vector u and any w∗ that minimizes
the 0-1 objective; and ℓη(w,w) ≥ ϵ as long as w incurs 0-1 error at least η + ϵ. By the convexity
of ℓη(w,u), this allows us to construct a separation oracle. Namely, we draw enough samples so
that ℓ̂η(w,w)− ℓ̂η(w

∗,w) ≥ ϵ/2, where ℓ̂ is the emprical version of the loss. Due to the nature of
these objectives, Oγ(1/ϵ

2) samples per iteration suffice for this purpose. This in turn implies that the
cutting planes method efficiently finds a near-optimal weight vector after O(log(1/ϵ)/γ2) iterations.
Overall, this approach leads to an efficient algorithm with sample complexity Õγ(1/ϵ

2). To get the
desired sample complexity of Õ(1/(ϵ2γ2)), more ideas are needed.

In the previous paragraph, we hid an obstacle that makes the above approach fail. Specifically, it
may be possible that, for many points x, the value of |u · x| is arbitrarily small. To fix this issue, we
consider a clipped reweighting as follows: ℓ′η(w,u) = E[(1{y ̸= sign(w ·x)}− η− ϵ) |w·x|

max(|u·x|,γ) ].
This clipping step is not a problem for us, because the target halfspace sign(w∗ · x) was assumed to
have margin γ. This guarantees that the difference between the expected (over y) pointwise losses
at (w,w) and (w∗,w) is at least ϵ on the points x where |u · x| ≤ γ. Indeed, when this is the case,
then |w∗ · x|/|u · x| ≥ 1. Overall, this suffices to guarantee that ℓ′η(w,w)− ℓ′η(w

∗,w) ≥ ϵ.
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1.2 Notation
For n ∈ Z+, let [n] def

= {1, . . . , n}. We use small boldface characters for vectors. For x ∈ Rd

and i ∈ [d], xi denotes the i-th coordinate of x, and ∥x∥2
def
= (

∑d
i=1 x

2
i )

1/2 denotes the ℓ2-norm
of x. We will use x · y for the inner product of x,y ∈ Rd. For a subset S ⊆ Rd, we define the
projS operator that maps a point x ∈ Rd to the closest point in the set S. For a, b ∈ R, we denote
W (a, b)

def
= 1/max(a, b). We will use 1A to denote the characteristic function of the set A, i.e.,

1{x ∈ A} = 1 if x ∈ A, and 1{x ∈ A} = 0 if x /∈ A. For A,B ∈ R, we write A ≳ B (resp.
A ≲ B) to denote that there exists a universal constant C > 0, such that A ≥ CB (resp. A ≤ CB).

We use Ex∼D[x] for the expectation of the random variable x with respect to the distribution D
and Pr[E ] for the probability of event E . For simplicity, we may omit the distribution when it
is clear from the context. For (x, y) ∼ D, we use Dx for the marginal distribution of x and
Dy(x) for the distribution of y conditioned on x. We use D̂N to denote the empirical distribution
obtained by drawing N i.i.d. samples from D. We use errD(w) to denote the 0-1 error of the
halfspace defined by the weight vector w with respect to the distribution D, i.e., errD(w)

def
=

Pr(x,y)∼D[sign(w · x) ̸= y]. We will use err(w,x) for the 0-1 error of sign(w · x) conditioned on
x, i.e., err(w,x) := Pry∼Dy(x)[sign(w · x) ̸= y]. Note that errD(w) = Ex∼Dx [err(w,x)]. If D
satisfies the η-Massart noise condition with respect to the halfspace sign(w · x), then err(w,x) =
η(x)1{sign(w · x) = sign(w∗ · x)}+ (1− η(x))1{sign(w · x) ̸= sign(w∗ · x)} .

2 Our Algorithm and its Analysis: Proof of Theorem 1.3

In this section, we prove our main result. Algorithm 1 efficiently learns the class of margin halfspaces
on the unit ball, in the presence of Massart noise, with sample complexity nearly matching the
information-computation limit. Additionally, its runtime is linear in the sample size, excluding a final
testing step to select the best hypothesis.

At a high-level, our algorithm leverages a carefully selected convex loss (or, more precisely, a sequence
of convex losses) — serving as a proxy to the 0-1 error. A common loss function, introduced in
this context by [DGT19] and leveraged in [DGT19, CKMY20], is the LeakyReLU function. This
is the univariate function LeakyReLUλ(t) = (1− λ)1{t ≥ 0}t+ λ1{t < 0}t, where λ ∈ (0, 1) is
the leakage parameter (that needs to be selected carefully). Roughly speaking, the convex function
ℓλ(w,x, y) = LeakyReLUλ(−y(w · x)) can be viewed as a reasonable proxy to the 0-1 loss of the
halfspace sign(w · x) on the point (x, y). To see this, note that (see, e.g., Claim C.1)

ℓλ(w,x, y) = (1{sign(w · x) ̸= y} − λ)|w · x| . (1)

Observe that a point x that is classified correctly by the halfspace sign(w · x) will satisfy(
Ey∼Dy(x)[1{sign(w · x) ̸= y}]− λ

)
|w · x| = (η(x)− λ)|w · x|

which is non-positive for λ ≥ η(x). Since the only guarantee we have is that η(x) ≤ η, this suggests
that we need to select λ ≥ η. It turns out that λ := η is the optimal choice. We fix the choice of
λ := η throughout. On the other hand, if (the halfspace defined by) w misclassifies the point x, this
term becomes non-negative.

The factor |w·x| in Equation (1) reweights the 0-1 error so that points x for which |w·x| is sufficiently
large (i.e., close to 1) have to be classified correctly by a minimizer of E(x,y)∼D[ℓλ(w,x, y)]. On
the other hand, points closer to the separating hyperplane defined by w, or points where η(x) is close
to λ = η, are not guaranteed to be classified correctly by the minimizer of this loss. We leverage
this insight to construct a sequence of loss functions that reweight the points so that, to minimize
the regret, we need to classify a large fraction of points; this leads to the desired error of η + ϵ with
near-optimal sample complexity.

We now provide some intuition justifying our choice of surrogate loss functions. Observe that if we
instead could minimize the function

E
(x,y)∼D

[ℓλ(w,x, y)/|w · x|] = E
(x,y)∼D

[(1{sign(w · x) ̸= y} − λ)] , (2)

with respect to w, we would obtain a halfspace with minimum 0-1 error; unfortunately, this reweighted
loss is just a shift of the 0-1 loss, hence non-convex. To fix this issue, instead of reweighting by
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1/|w · x|, we will reweight by W (v · x, γ) def
= 1/max(|v · x|, γ), where γ is the margin parameter

and v is an appropriately chosen vector that is independent of w. The new loss is defined as follows:

Lλ,v(w)
def
= E

(x,y)∼D
[ℓλ(w,x, y)W (v · x, γ/2)] , (3)

where for technical reasons we use γ/2 instead of γ in the maximum.

Since the parameter v is independent of w, the loss Lλ,v(w) remains convex in w. At the same
time, by carefully choosing v, we can accurately simulate the non-convex 0-1 loss. Note that our
reweighting term is a maximum over two terms. The reason for this choice is that, for some points x,
the quantity |v · x| can be arbitrarily small; taking the maximum avoids the loss becoming very large.
In particular, the loss Lλ,v(w) will be guaranteed to remain in a bounded length interval.

Our algorithm proceeds in a sequence of iterations. In the (t+1)-st iteration, it sets v to be wt, where
wt is the weight vector of step t. This choice attempts to simulate the 0-1 error at wt, as is suggested
by Equation (2). Assume for simplicity that our current hypothesis is the halfspace defined by w
and is such that Ex∼Dx [1{|w · x| ≤ γ/2}] = 0. Note this implies that W (w · x, γ/2) = 1/|w · x|.
By combining Equations (2) and (3), we get that Lλ,w(w) = errD(w) − λ; note that as long as
errD(w) ≥ λ+ ϵ, we have that Lλ,w(w) ≥ ϵ. On the other hand, the optimal halfspace w∗ achieves
a non-positive loss; from Equations (1) and (2), we have that

Lλ,w(w∗) = E
(x,y)∼D

[(1{sign(w∗ · x) ̸= y} − λ)|w∗ · x|W (w · x, γ/2)]

= E
x∼Dx

[(η(x)− λ)|w∗ · x|W (w · x, γ/2)] ≤ 0 ,

where the inequality follows from the fact that η(x) ≤ η. Recalling that Lλ,v(w) is convex, if we run
an Online Convex Optimization (OCO) algorithm, after T steps we are guaranteed to find a vector w
such that Lλ,w(w) − Lλ,w(w∗) ≤ O(1/

√
T ). For T = O(1/ϵ2), this gives that Lλ,w(w) < ϵ/2;

and therefore we would have errD(w) < λ + ϵ. We provide an approach using this idea and the
cutting planes algorithm in Appendix B that achieves sample complexity Õ(1/(ϵ2γ4)).

Our algorithm and its analysis work only with the gradient of Lλ,v(w). The key novelty is the
analysis of the sample complexity. The gradient of ℓλ(w,x, y)W (v · x, γ) with respect to w has the
following explicit form:

gλ,γ(w,v,x, y)
def
= ((1− 2λ)sign(w · x)− y)W (v · x, γ)x =

((1− 2λ)sign(w · x)− y)

max(|v · x|, γ)
x .

Furthermore, we denote by GD(w,v, η, γ) = E(x,y)∼D[gη,γ(w,v,x, y)].

Before describing our algorithm and proving Theorem 2.1, we simplify our notation. We will
omit the parameters η, γ from the function input (as they are fixed throughout). Therefore, we use
GD̂t

N
(w,v) ≡ GD̂t

N
(w,v, η, γ) and g(w,v,x, y) ≡ gη,γ/2(w,v,x, y).

Our algorithm is described in pseudocode below.

Algorithm 1 employs online SGD applied to a sequence of convex loss functions. We show that,
after a certain number of iterations, the algorithm will find a weight vector achieving 0-1 error at
most η + ϵ. Since the desired vector may not be the last iterate, in the end, our algorithm returns the
halfspace that achieves the smallest empirical 0-1 error.

We establish the following result, which implies Theorem 1.3.

Theorem 2.1 (Main Result). Let D be a distribution on Sd−1 × {±1} satisfying the η-Massart
noise condition with respect to the γ-margin halfspace f(x) = sign(w∗ · x). Given N =
Θ(log(1/(γδ))/ϵ(1 − 2η)) and T = Θ(log(1/δ)/(ϵ2γ2)), Algorithm 1 returns a vector ŵ such
that errD(ŵ) ≤ η + ϵ with probability at least 1− δ. The algorithm draws n = O(N + T ) samples
from D and runs in O(dNT ) time.

The rest of this section is devoted to the proof of Theorem 2.1.

Our algorithm sets v = wt in each round, therefore for the rest of the section we proceed by setting
v = w as arguments of g and G.
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Input: Sample access to a distribution D supported in Sd−1 × {±1} corrupted with η-Massart
noise with respect to a halfspace sign(w∗ · x) that satisfies the γ-margin condition; parameters
ϵ, δ ∈ (0, 1), and N,T ∈ Z+.
Output: Weight vector ŵ such that errD(ŵ) ≤ η + ϵ with probability at least 1− δ.

1. Let c > 0 be a sufficiently small universal constant.
2. t← 0, w0 ← e1 = (1, 0, . . . , 0), and T = (1/c) log(1/δ)/(ϵ2γ2).
3. While t ≤ T do

(a) Draw (x(t), y(t)) sample from D.
(b) Set λt ← cγ2ϵ.
(c) Update wt as follows: ▷ Update and project in the unit ball

vt+1 ← wt − λtg(w
t,wt,x(t), y(t)) wt+1 ← vt+1

max(∥vt+1∥2, 1)

(d) t← t+ 1.

4. Draw N samples from D and construct the empirical distribution D̂N .
5. Return ŵ = argmint∈[T+1] errD̂N

(wt).

Algorithm 1: Learning Margin Halfspaces with Massart Noise

We decompose the stochastic gradient g(w,w,x, y) into two parts: g(w,w,x, y) = g1(w,x) +
g2(w,x, y), where

g1(w,x) =

(
(1− 2η)sign(w · x)− E

y∼Dy(x)
[y]

)
W (w · x, γ/2)x

and

g2(w,x, y) =

(
E

y∼Dy(x)
[y]− y

)
W (w · x, γ/2)x .

We also use G1
D̂N

(w) and G2
D̂N

(w) for the same decomposition after taking the empirical expecta-
tion, i.e., G1

D̂N
(w) = Ex∼(D̂x)N

[g1(w,x)] and G2
D̂N

(w) = E(x,y)∼D̂N
[g2(w,x, y)].

This serves to decompose the gradient into two parts: one containing the population expectation
over the random variable y, and the other containing the error between the empirical estimation of y
and the population version of y. The vector G1

D̂N
(w) contains the direction that will decrease the

distance between w and w∗, while G2
D̂N

(w) contains the estimation error. To see this, observe that
if we take the population expectation of g2(w,x, y), we will have:

E
(x,y)∼D

[g2(w,x, y)] = E
x∼Dx

[(
(1− 2η(x))sign(w∗ · x)− E

y∼Dy(x)
[y]

)
W (w · x, γ/2)x

]
= 0 ,

where we used that Ey∼Dy(x)[y] = (1− 2η(x))sign(w∗ · x).

We start by bounding the contribution of G1
D̂N

(w) in the direction w −w∗. We show that if instead
of the corrupted label y at the point x, we had access to Ey∼Dy(x)[y] = (1 − 2η(x))sign(w∗ · x),
then the gradient has a large component in the direction of w −w∗. This effectively implies that
G1

D̂N
(w) can be used as a separation oracle, separating all the halfspaces with 0-1 error more than

η + ϵ from the ones with smaller error.

Lemma 2.2 (Structural Lemma). Let N ∈ Z+ and let D be a distribution on Sd−1×{±1} satisfying
the η-Massart condition with respect to the optimal classifier f(x) = sign(w∗ · x). Let w ∈ Rd

be such that ∥w∥2 ≤ 1 and let {x(i)}Ni=1 be a multiset of N i.i.d. samples from Dx. Then, it holds
G1

D̂N
(w) · (w −w∗) ≥ 2(errD̂N

(w)− η) , where D̂N is the corresponding empirical distribution.
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Proof. We partition Rd into two subsets R1, R2 as follows: R1 contains the points that lie sufficiently
far away from the separating hyperplane w · x = 0, i.e., R1

def
= {x ∈ Rd : |w · x| ≥ γ/2}. R2

contains the remaining points, i.e., R2
def
= {x ∈ Rd : |w · x| < γ/2}.

We first show that for any x ∈ R1, the vector g1(w,x) has a large component parallel to the direction
w −w∗. The proof of the claim below can be found in Appendix C.

Claim 2.3. For any x(i) ∈ R1, we have that g1(w,x(i)) · (w −w∗) ≥ 2(err(w,x(i))− η) .

It remains to show that the same holds for all the points in R2. The proof of the claim below can be
found in Appendix C.

Claim 2.4. For any x(i) ∈ R2, we have that g1(w,x(i)) · (w −w∗) ≥ 2(err(w,x(i))− η) .

Applying Claim 2.3 and Claim 2.4 for each sample in the set {x(i)}Ni=1, we get that

1

N

N∑
i=1

g1(w,x(i)) · (w −w∗) ≥ 2

N

N∑
i=1

(err(w,x(i))− η) .

This completes the proof of Lemma 2.2.

By Lemma 2.2, the gradient points towards the direction wt −w∗, in the t-th iteration. This means
that, in fact, the gradient is a subgradient of the potential loss Φ(w) = ∥w −w∗∥22. This allows us
to show convergence, even though it is generally not possible in a sequence of loss functions in the
stochastic setting. We are now ready to prove our main result.

Proof of Theorem 2.1. Let T be the maximum number of iterations of Algorithm 1. Denote by
Zt := {(x(t), y(t))} the i.i.d. sample drawn from D in the t-th iteration, t ∈ [T ]. Furthermore, let
F1, . . . ,FT be the filtration with respect to the σ-algebra generated by Z1, . . . ,ZT . We denote by
Ht the event that errD(wt) ≥ η + ϵ.

Recall that Algorithm 1 uses the following update rule (see Step (3c)):

wt+1 = proj{w∈Rd:∥w∥2≤1}(w
t − λtg(w

t,wt,x(t), y(t))) ,

with λt = cγ2ϵ , for some sufficiently small absolute constant c > 0.

We begin by bounding from above the distance between wt+1 and w∗ from the previous distance
between wt and w∗. We have that

∥wt+1 −w∗∥22 = ∥proj{w∈Rd:∥w∥2≤1}(w
t − λtg(w

t,wt,x(t), y(t))−w∗∥22
≤ ∥wt − λtg(w

t,wt,x(t), y(t))−w∗∥22
= ∥wt −w∗∥22 − 2λtg(w

t,wt,x(t), y(t)) · (wt −w∗) + λ2
t∥g(wt,wt,x(t), y(t))∥22 ,

(4)

where in the first inequality we used the projection inequality, i.e., ∥projB(v) − projB(u)∥2 ≤
∥v − u∥2 for any set B. We will decouple the mean of the random variable g(wt,wt,x, y) and
make it zero-mean.

To simplify the notation, we denote by ξt :=

(
g(wt,wt,x(t), y(t))−G1

D(wt)

)
· (wt −w∗) and

note that ξt is a zero-mean random variable over the sample (x(t), y(t)). Adding and subtracting
G1

D(wt) onto Inequality (4) a we get that

∥wt+1 −w∗∥22 ≤ ∥wt −w∗∥22−2λtG
1
D(wt) · (wt −w∗) + λ2

t∥g(wt,wt,x(t), y(t))∥22︸ ︷︷ ︸
I

−2λtξt︸ ︷︷ ︸
V̂t

.

(5)

We now outline the main steps of our analysis. Instead of accurately estimating the gradients in each
round, we denote by V̂t the estimation error from which we bound above their sum. We first add and
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subtract the population gradient to obtain the I term, which is the decreasing direction. In this way,
we decouple the expected decrease and the error of the approximation (see Claim 2.5). After that, we
bound the contribution of the estimation error in Lemma 2.8. Observe that V̂t is a random variable
that corresponds to the estimation error of the gradient. We will argue that with high probability the
contribution of

∑T
t=1 V̂t is bounded; therefore, our algorithm will converge to an accurate solution.

Lemma 2.2 shows that G1
D̂t

N

(wt) (and therefore the same holds for G1
D(wt)) contains substantial

contribution towards to the direction wt −w∗, depending of the current error. We show that our
choice of step size guarantees a decreasing direction. To this end, we prove the following:

Claim 2.5. Assume that the event Ht happens, i.e., errD(wt) ≥ η + ϵ. If λt ≤ γ2ϵ/8, then
I ≤ −λt(errD(wt)− η).

Proof of Claim 2.5. Recall that I = −2λtG
1
D(wt) · (wt −w∗) + λ2

t∥g(wt,wt,x(t), y(t))∥22. By
Lemma 2.2, we get that G1

D̂N
(wt) · (wt −w∗) ≥ 2(errD̂N

(wt)− η); hence, by taking expectations
over the samples, we also have G1

D(wt) · (wt −w∗) ≥ 2(errD(wt) − η). Furthermore, we have
that ∥g(wt,wt,x(t), y(t))∥22 ≤ 8/γ2. Hence,

I ≤ −2λt(errD(wt)− η) + 8(λ2
t/γ

2) .

The claim follows by noting that if λt ≤ γ2ϵ/8, then−λt(errD(wt)−η)+8(λ2
t/γ

2) ≤ 0. Therefore,
we obtain

I ≤ −λt(errD(wt)− η) .

This completes the proof of Claim 2.5.

Therefore, our choice of parameters guarantees that λt ≤ γ2ϵ/8. Using Claim 2.5 onto Inequality (5),
we have that

∥wt+1 −w∗∥22 ≤ ∥wt −w∗∥22 − λt(errD(wt)− η) + V̂t . (6)

Using Claim 2.5 and Inequality (6), we have that

∥wT+1 −w∗∥22 ≤ ∥wT −w∗∥22 − λT (errD(wT )− η) + V̂T

≤ ∥w0 −w∗∥22 −
T∑

t=0

λt(errD(wt)− η) +

T∑
t=0

V̂t . (7)

To complete the proof of Theorem 2.1, we need to bound the estimation error that corresponds to the
random variable V̂t. We show that V̂t does not increase the error by a lot. Recall that V̂t = −2λtξt .

Before proceeding, we provide some basic background on subgaussian random variables.

Definition 2.6 (Subgaussian Random Variable). For σ > 0, a zero-mean random variable X ∈ R is
called σ-subgaussian, if for any λ ∈ R it holds log(E[exp(λX)]) ≤ λ2σ2 .

Note that any zero-mean bounded random variable is subgaussian. Specifically, we have the following:

Fact 2.7 (Hoeffding’s lemma, see, e.g., [Ver18]). Let X ∈ R be a zero-mean random variable such
that |X| ≤ σ for some σ > 0. Then X is Cσ-subgaussian, where C > 0 is a universal constant.

Equipped with the above context, we show the following:

Lemma 2.8. With probability at least 1 − δ over the random samples, it holds that
∑T

t=0 V̂t ≤
Cγ2ϵ2T + log(1/δ), where C > 0 is an absolute constant.

Proof. We first show that ξt is a subgaussian random variable.

Claim 2.9. The random vector ξt is (16/γ)-subgaussian.
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Proof of Claim 2.9. Note that ξt = (g(wt,wt,x(t), y(t))−E(x,y)∼D[g(wt,wt,x, y)]) · (wt−w∗)

and that by construction ∥g(wt,wt,x, y)∥2 ≤ 4/γ. Therefore, it holds that |g(wt,wt,x(t), y(t)) ·
(wt −w∗)| ≤ 8/γ, where we used that ∥wt −w∗∥2 ≤ 2 as both of these vectors lie in the unit ball.
Hence, by Fact 2.7, we have that ξt is (16/γ)-subgaussian.

Using Claim 2.9 and Definition 2.6 with parameter λ = −2λt and X = ξt, we have that

logE[exp(V̂t)] = logE[exp(−2λtξt)] ≤ C(λ2
t/γ

2) ,

where C > 0 is a universal constant. To bound the contribution of
∑T

t=0 V̂t, we use Markov’s
inequality with respect to the filtration F1, . . . ,FT . We have that for any Z ∈ R, it holds that

Pr
Z1,...,ZT∼D

[
T∑

t=0

V̂t ≥ Z

]
= Pr

Z1,...,ZT∼D

[
exp

(
T∑

t=0

V̂t

)
≥ exp(Z)

]

≤ E
Z1,...,ZT∼D

[
exp

(
T∑

t=0

V̂t

)]
exp(−Z)

=

T∏
t=1

E
Zt∼D

[
exp V̂t | Ft

]
exp(−Z) ≤ exp

(
C

T∑
t=0

λ2
t

γ2
− Z

)
,

where in the second inequality we use the independence of V̂t with {V̂k}t−1
k=1 with respect to the

filtration Ft. Recalling that λt = cγ2ϵ, where c > 0 is a sufficiently small universal constant, we
have that

Pr
Z1,...,ZT∼D

[
T∑

t=0

V̂t ≥ Z

]
≤ exp

(
Cc2γ2ϵ2T − Z

)
≤ exp

(
Cc2γ2ϵ2T − Z

)
.

Setting Z = Cc2γ2ϵ2T + log(1/δ) and taking c to be a sufficiently small absolute constant (as is
done in our algorithm), we get that PrZ1,...,ZT∼D

[∑T
t=0 V̂t ≥ Z

]
≤ δ. This completes the proof

of Lemma 2.8.

Assume that until the round T the event HT holds, i.e., for all i ∈ [T ] we have that errD(wi) ≥ η+ ϵ.
Using Lemma 2.8 onto Inequality (7), with probability at least 1− δ, we have that:

∥wT+1 −w∗∥22 ≤ ∥w0 −w∗∥22 −
T∑

t=0

λt(errD(wt)− η) +

T∑
t=0

V̂t

≤ ∥w0 −w∗∥22 − cT ϵ2γ2 + log(1/δ) .

Running the algorithm for T = Θ(log(1/δ)/(ϵ2γ2)) iterations guarantees that with probability
at least 1 − δ, we will have that ∥wT+1 − w∗∥22 ≤ 0, which means wT+1 = w∗. In that case,
i.e., in the case where all the events Hi for i ∈ [T ] hold, wT+1 achieves the same error as the
optimal halfspace, thus it has 0-1 error of at most η + ϵ. Therefore, at least one vector wt′ with
t′ ∈ [T + 1] achieves 0-1 error of at most η + ϵ. The algorithm, in Step (5), returns a vector
ŵ that has 0-1 error at most errD(ŵ) ≤ mint∈[T+1] errD(wt) + ϵ ≤ η + 2ϵ. The algorithm
requires N = O(log(T/δ)/(ϵ(1 − 2η))) samples for Step (5), due to [MN06]. The algorithm
draws a sample in each round and runs for at most T rounds. Therefore, Algorithm 1 draws
n = N + T = Õ(log(1/δ)/(ϵ2γ2)) samples. The algorithm needs to test each of the T hypotheses
with N samples to find the closest one. Therefore, the total runtime is O(dTN) (as in the other
subroutines the algorithm uses the samples only to estimate the gradients g, which requires O(1)
additions of d-dimenional vectors). This completes the proof of Theorem 2.1.

3 Conclusions and Open Problems

In this paper, we give the first sample near-optimal and computationally efficient algorithm for learning
margin halfspaces in the presence of Massart noise. Specifically, the sample complexity of our
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algorithm nearly matches the computational sample complexity of the problem and its computational
complexity is polynomial in the sample size. An interesting direction for future work is to develop a
sample near-optimal and computationally efficient learner for general halfspaces (i.e., without the
margin assumption). While our approach can likely be leveraged to obtain an efficient algorithm with
sample complexity poly(d)/ϵ2, the sample dependence on the dimension d would be suboptimal.
Obtaining the right dependence on the dimension seems to require novel ideas, as prior works rely on
fairly sophisticated methods [DV04, DKT21, DTK23] to effectively reduce to the large margin case.
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Supplementary Material

Organization The structure of this appendix is as follows: In Appendix A, we provide additional
summary and comparison with related and prior work. In Appendix B, we provide a polynomial time
cutting-planes based algorithm with sample complexity Õ(1/(ϵ2γ4)). Finally, in Appendix C, we
provide the proofs omitted from Section 2.

A Related and Prior Work

A.1 Additional Related Work

The computational problem of learning halfspaces with Massart noise has been extensively studied,
both in the distribution-specific and the distribution-free settings.

In the distribution-specific setting, the first efficient algorithm for homogeneous Massart halfspaces
was given in [ABHU15]. Subsequent work generalized this result in various directions [ABHZ16,
ZLC17, YZ17, DKTZ20a, DKTZ20b, DKK+20, DKK+21, DKK+22].

The first algorithmic progress in the distribution-free setting was made by [DGT19], answering a
longstanding open problem [Slo88, Slo92, Blu03]. Subsequent work gave an algorithm with improved
sample complexity [CKMY20] and provided strong evidence that an error of η+ ϵ is the best to hope
for in polynomial time [DK22, NT22, DKMR22] (in both the Statistical Query model and under
plausible cryptographic assumptions). In a related direction, [DIK+21] gave the first efficient boosting
algorithm in the presence of Massart noise, which can boost a weak learner to one with error η + ϵ.
Finally, we note that natural generalizations of the Massart model to learning real-valued functions
(in an essentially distribution-free setting) have also been studied [CKMY21, DPT21, DKRS22].

Very recent work [DDK+23a] gave SQ (and low-degree polynomial testing) lower bounds for
learning γ-margin halfspaces with RCN [AL88], which is a special case of Massart noise. Specifi-
cally, [DDK+23a] showed that any efficient SQ algorithm for the problem requires sample complexity
Ω(1/(γ1/2ϵ2)). Subsequently, [DDK+23b] showed a related SQ lower bound under the Gaussian
distribution, which can be adapted to obtain a lower bound of Ω(1/(γϵ2)) for the margin setting.

A.2 Comparison with [DKTZ24]

The work [DKTZ24] uses a similar sequence of loss functions for the problem of “online learning”
Massart margin halfspaces. Intuitively, their goal is to minimize regret in an adversarial online
setting. In their online setting, the adversary in each round commits to covariates x1,x2 ∈ Rd

and distribution Dt over R+ × R+. Then the algorithm observes the covariates, chooses an action
a ∈ {1, 2}, and observes a reward ra ∈ R+. It is only guaranteed that there exists a unit vector w∗

so that E(r1,r2)∼Dt [sign(w∗ · x1 −w∗ · x2)(ra − rb)] ≥ ∆ for some ∆ > 0.

Despite this superficial similarity, the work of [DKTZ24] has no new implications on the sample
complexity of PAC learning Massart halfspaces with a margin. Specifically, they achieve a regret
bound of O(T 3/4/γ). If one translates this bound to a sample complexity upper bound for PAC
learning, one would obtain a bound of Ω(1/(ϵ4γ8)) — which is quantitatively worse than prior work
of [DGT19, CKMY20].

At a technical level, our work leverages this sequence of loss functions as subgradients of the potential
function Φ(w) = ∥w −w∗∥22. Via a novel analysis, we show that these subgradients Ω(ϵ)-correlate
with the direction of w −w∗. This in turn means that we can expect a decrease of order Ω(λϵ) in
each iteration, where λ is the corresponding step-size, as long as we get 0-1 error more than η + ϵ.
This structural understanding suffices for obtaining an algorithm, based on a separation oracle, that
achieves a sample complexity of Õ(1/(γ4ϵ2)). In order to obtain an algorithm with near-optimal
sample complexity (and runtime), we required additional new ideas as elaborated in the body of the
paper.
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B Learning Margin Massart Halfspaces via Cutting Planes

In this section, we show how to use the cutting-planes method along with Lemma 2.2 to efficiently
learning margin Massart Halfspaces using Õ(1/(γ4ϵ2)) samples.

Specifically, we establish the following result:

Theorem B.1 (Learning Margin Massart Halfspaces with Cutting Planes). Let D be a distribution on
Sd−1 × {±1} which satisfies the η-Massart noise condition with respect to the γ-margin halfspace
f(x) = sign(w∗ ·x). Given N = Θ(log(1/(γδ)/(γ4ϵ2)) i.i.d. samples from D, there is a poly(d,N)
time algorithm that returns a vector ŵ such that errD(ŵ) ≤ η + ϵ with probability at least 1− δ.

Remark B.2. We can always assume that d = Õ(1/γ2). This holds since we can efficiently
preprocess the data, using the Johnson-Lindenstrauss transform [JL84]. Similar dimension-reduction
steps have been use in prior work, e.g., [CKMY20, DDK+23a].

Given the above remark, it suffices to establish the following:

Theorem B.3. Let D be a distribution on Sd−1×{±1} which satisfies the η-Massart noise condition
with respect to the γ-margin halfspace f(x) = sign(w∗ · x). Given N = Θ(d log(1/(γδ)/(γ2ϵ2))
i.i.d. samples from D, there is a poly(d,N) time algorithm that returns a vector ŵ such that
errD(ŵ) ≤ η + ϵ with probability at least 1− δ.

The idea of using the cutting plane method is slightly adapted from [CKMY20]. Given access to a
separation oracle for a convex set K, we can find a point inside the set K by querying the separation
oracle O(d log d) times. The difference with [CKMY20] is that we are using a more sophisticated
(and sample efficient) separation oracle. This allows us to use O(1/ϵ2) samples, instead of O(1/ϵ3)
samples, and leads to the optimal sample complexity as a function of ϵ (but not γ).

Fact B.4. Suppose that K is an (unknown) convex body in Rd which contains a Euclidean ball of
radius r > 0 and contained in a Euclidean ball centered at the origin of radius R > 0. There exists
an algorithm which, given access to a separation oracle for K, finds a point x∗ ∈ K, runs in time
poly(log(R/r), d), and makes O(d log(Rd/r)) calls to the separation oracle.

We first show that if we get enough samples, we can efficiently approximate the gradients G(w,w).
Formally, we have:

Proposition B.5 (Separation Oracle). Let ϵ, δ ∈ (0, 1) and let D be a distribution on Sd−1 × {±1}
satisfying the η-Massart noise condition with respect to the halfspace f(x) = sign(w∗ · x). Fix
w ∈ Rd with ∥w∥2 ≤ 1. Let N ≳ log(1/(γδ))/(ϵ2γ2)) and D̂N be the corresponding empirical
distribution. Then, with probability at least 1− δ, it holds that

GD̂N
(w,w) · (w −w∗) ≥ 2(errD(w)− η)− ϵ .

Proof. By construction, GD̂N
(w,w) = G1

D̂N
(w) + G2

D̂N
(w) and by Lemma 2.2 we

have that G1
D̂N

(w) · (w − w∗) ≥ 2(errD̂N
(w) − η). By definition, we have

E(x(1),y(1)),...,(x(N),y(N))∼D[G2
D̂N

(w)] = 0, where the expectation is taken with respect to the sam-
ple set. Note that the norm of g1(w,x),g2(w,x, y), i.e., ∥g1(w,x)∥2, ∥g2(w,x, y)∥2, is bounded
pointwise from above by 4/γ for all w ∈ Rd. This can be seen as ∥x∥2 ≤ 1, W (·, γ/2) ≤ 2/γ, and
(1− 2η), (1− 2η(x)) ≤ 1.

We use the following concentration inequality to show that our sample size is enough to guarantee
that the estimated gradient is close to its population version.

Fact B.6 ([SZ07], Lemma 1). Let Z1, . . . ,Zn ∈ Rd be random vectors such that for each i ∈ [n]
it holds ∥Zi∥2 ≤M <∞ almost surely and let σ2 =

∑n
i=1 E[∥Zi∥22]. Then, we have that for any

ϵ > 0,

Pr

[∥∥∥∥∥ 1n
n∑

i=1

(Zi −E[Zi])

∥∥∥∥∥
2

≥ ϵ

]
≤ 2 exp

(
− nϵ

2M
log

(
1 +

nMϵ

σ2

))
.
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Using Fact B.6, along with the inequality log(1 + z) ≥ z/2, for z ∈ (0, 1), we get that if N ≥
Θ( log(1/δ)(ϵγ)2 ), with probability at least 1− δ, we have∥∥∥∥G1

D̂N
(w)− E

(x,y)∼D
[g1(w,x)]

∥∥∥∥
2

≤ ϵ , (8)

and ∥∥∥∥G2
D̂N

(w)− E
(x,y)∼D

[g2(w,x, y)]

∥∥∥∥
2

≤ ϵ . (9)

To complete the proof, recall that by Lemma 2.2 it holds G1
D̂N

(w)·(w−w∗) ≥ 2(errD̂N
(w)−η)−ϵ.

Therefore, by taking the expectation over Dx, we get that

G1
D(w) · (w −w∗) ≥ 2(errD(w)− η) .

The proof is completed by recalling that ∥G1
D̂N

(w)−E(x,y)∼D[g1(w,x)]∥2 ≤ ϵ from Inequality (8)
and that E(x,y)∼D[g2(w,x, y)] = 0.

Equipped with Proposition B.5, we are ready to prove a weaker version of Theorem 2.1 using
separation oracles and the cutting plane algorithm. Formally, we show that

Proof of Theorem B.3. Our convex set K is a Euclidean ball of radius γ/2 centered at w∗. To see
that, note that for any v such that ∥w∗ − v∥2 ≤ γ/2, we have that |(w∗ − v) · x| ≤ γ/2 for any x
with ∥x∥2 = 1. This implies that γ/2 +w∗ · x ≥ v · x ≥ w∗ · x− γ/2. Moreover, by definition we
have that w∗ · x ≥ γ. Hence, if w∗ · x ≥ 0, we have that v · x ≥ γ/2; and if w∗ · x ≤ 0, we have
that v · x ≤ −γ/2. Therefore, this ball contains all the vectors w with margin γ/2 and separates the
points in the same way as w∗.

Therefore, as long as we are not in the set K or the 0-1 error is more than η + ϵ, we can use
Proposition B.5 to construct a new separation oracle. By Fact B.4, the maximum number of calls
to the separation oracle is T = O(d log(d/γ)). By Proposition B.5, in each round we need n =
O(log(T/δ))/(ϵ2γ2) samples from D to construct a separation oracle. Therefore, the maximum
number of samples is O(nT ) = O(d log(T/δ))/(ϵ2γ2). This completes the proof.

C Omitted Proofs from Section 2

C.1 Proof of Claim C.1

Claim C.1 (Claim 2.1 [DGT19]). For any w,x, we have that

ℓλ(w,x, y) =
(
1{y(w · x) ≤ 0} − λ

)
|w · x| .

Proof. Recall that

ℓλ(w,x, y) = LeakyReLUλ(−y(w·x)) = (1−λ)1{y(w·x) ≤ 0}(−yw·x)+λ1{y(w·x) > 0}(−yw·x) .

Therefore, we have that

ℓλ(w,x, y) = (1− λ)1{y(w · x) ≤ 0}|yw · x| − λ1{y(w · x) > 0}|yw · x|

= 1{y(w · x) ≤ 0}|w · x| − λ|w · x| =
(
1{y(w · x) ≤ 0} − λ

)
|w · x| ,

where we used that y ∈ {±1}.

C.2 Proof of Claim 2.3

We restate and prove the following claim:

Claim 2.3. For any x(i) ∈ R1, we have that g1(w,x(i)) · (w −w∗) ≥ 2(err(w,x(i))− η) .
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Proof of Claim 2.3. For any x(i) ∈ R1, we have that

g1(w,x(i)) ·w =

(
(1− 2η)sign(w · x(i))− (1− 2η(x(i)))sign(w∗ · x(i))

)
w · x(i)W (w · x(i))

=

(
(1− 2η)sign(w · x(i))− (1− 2η(x(i)))sign(w∗ · x(i))

)
sign(w · x(i))

= 2(err(w,x(i))− η) , (10)

where we used that for any x(i) ∈ R1, W (w · x(i)) = 1/|w · x(i)|, and hence W (w · x(i), γ/2)w ·
x(i) = sign(w · x(i)); and that err(w,x(i)) = η(x(i)) if sign(w · x(i)) = sign(w∗ · x(i)) and
1− η(x(i)) otherwise.

We now bound the contribution of w∗. Since η(x) ≤ η, we have

(1− 2η(x))− (1− 2η)sign(w · x)sign(w∗ · x)≥0 .

Therefore, we have that

g1(w,x(i)) ·w∗ =

(
(1− 2η)sign(w · x)− (1− 2η(x))sign(w∗ · x)

)
sign(w∗ · x)|w∗ · x|W (w · x(i))

= −
(
(1− 2η(x))− (1− 2η)sign(w · x)sign(w∗ · x)

)
|w∗ · x|W (w · x(i)) ≤ 0 ,

which gives that −g1(w,x(i)) ·w∗ ≥ 0. This completes the proof of Claim 2.3.

C.3 Proof of Claim 2.4

We restate and prove the following:

Claim 2.4. For any x(i) ∈ R2, we have that g1(w,x(i)) · (w −w∗) ≥ 2(err(w,x(i))− η) .

Proof of Claim 2.4. We have that

g1(w,x(i)) · (w −w∗) =

(
(1− 2η)sign(w · x(i))− (1− 2η(x(i)))sign(w∗ · x(i))

)(
w · x(i) −w∗ · x(i)

max(γ/2, |w · x(i)|)

)
=

(
(1− 2η)sign(w · x(i))− (1− 2η(x(i)))sign(w∗ · x(i))

)(
w · x(i) −w∗ · x(i)

γ/2

)
,

where we used that max(γ/2, |w · x(i)|) = γ/2 for any x(i) ∈ R2. Since sign(w∗ · x) has γ-
margin, we have that |w∗ · x(i)| ≥ γ. Since x(i) ∈ R2, it holds |w · x(i)| < γ/2. Therefore,
−sign(w∗ · x(i))(w · x(i) − w∗ · x(i)) =

(
|w∗ · x(i)| − sign(w∗ · x(i))w · x(i)

)
≥ γ/2. This in

turn implies that

g1(w,x(i)) · (w −w∗) ≥ (1− 2η(x(i))− (1− 2η)sign(w · x(i))sign(w∗ · x(i)))

= 2(err(w,x(i))− η) ,

completing the proof of Claim 2.4.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract summarizes the result provided in Theorem 1.3 (and Theorem 2.1).
The introduction describes how this contribution resolves an open problem in the literature
by summarizing the motivation for the model and describing prior work’s contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are clearly stated in the statements of each theorem and are
discussed in the introduction of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

17



Answer: [Yes]

Justification: Each theorem statement provides all the assumptions and we provide a com-
plete proof for all statements that is either in the main body of the paper or in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper is theoretical in nature and does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper is theoretical in nature and does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper is theoretical in nature and does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper is theoretical in nature and does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper is theoretical in nature and does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms in every respect with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The work is theoretical and we do not see any major or immediate implications
on society.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work is theoretical.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This work does not use any assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work does not use any assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve any crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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