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ABSTRACT

Flow matching (FM) is a general framework for defining probability paths via Or-
dinary Differential Equations (ODEs) to transform between noise and data sam-
ples. Recent approaches attempt to straighten these flow trajectories to generate
high-quality samples with fewer function evaluations, typically through iterative
rectification methods or optimal transport solutions. In this paper, we introduce
Consistency Flow Matching (Consistency-FM), a novel FM method that explicitly
enforces self-consistency in the velocity field. Consistency-FM directly defines
straight flows starting from different times to the same endpoint, imposing con-
straints on their velocity values. Additionally, we propose a multi-segment train-
ing approach for Consistency-FM to enhance expressiveness, achieving a better
trade-off between sampling quality and speed. Extensive experiments demonstrate
that our Consistency-FM significantly improves training efficiency by converging
4.4x faster than consistency models and 1.7x faster than rectified flow models
while achieving better generation quality.

1 INTRODUCTION

In recent years, deep generative models have provide an attractive family of paradigms that can
produce high-quality samples by modeling a data distribution, achieving promising results in many
generative scenarios, such as image generation (Ho et al., 2020; Yang et al., 2023; 2024a;b). As a
general and deterministic framework, Continuous Normalizing Flows (CNFs) (Chen et al., 2018) are
capable of modeling arbitrary probability paths, specifically including the probability paths repre-
sented by diffusion processes (Song et al., 2021). To scale up the training of CNFs, many works pro-
pose efficient simulation-free approaches (Lipman et al., 2022; Albergo & Vanden-Eijnden, 2022;
Liu et al., 2022) by parameterizing a vector field which flows from noise samples to data samples.
Lipman et al. (2022) proposes Flow Matching (FM) to train CNFs based on constructing explicit
conditional probability paths between the noise distribution and each data sample. Taking inspira-
tion from denoising score matching (Song & Ermon, 2019), FM further shows that a per-example
training objective can provide equivalent gradients without requiring explicit knowledge of the in-
tractable target vector field, thus incorporating existing diffusion paths as special instances.

Straightness is one particularly-desired property of the trajectory induced by FM (Liu et al., 2022;
2023; Kornilov et al., 2024; Tong et al., 2023), because the straight path are not only the shortest
path between two end points, but also can be exactly simulated without time discretization. To learn
straight line paths which transport distribution π0 to π1, Liu et al. (2022) learn a rectified flow from
data by turning an arbitrary coupling of π0 and π1 to a new deterministic coupling, and iteratively
train new rectified flows with the data simulated from the previously obtained rectified flow. Some
works resort to optimizing with an optimal transport plan by considering non-independent couplings
of k-sample empirical distributions (Pooladian et al., 2023; Tong et al., 2023). For example, OT-
CFM (Tong et al., 2023) attempts to approximate dynamic OT, creating simpler flows that are more
stable to train and lead to faster inference.

However, despite their impressive generation quality, they still lack an effective trade-off between
sampling quality and computational cost in straightening flows. To be more specifically, iterative
rectification would suffer from accumulation error, and approximating an optimal transport plan
in each training batch is computationally expensive. Therefore, a question naturally arises, can one
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Figure 1: Comparison on CIFAR-10 dataset regarding the trade-off between generation quality and
training efficiency. Our Consistency-FM demonstrates the best trade-off compared to consistency
models (Song et al., 2023) and rectified flow models (Liu et al., 2022; Nguyen et al., 2024), con-
verging 4.4 times faster than consistency models and 1.7 times faster than rectified flow models
while achieving better generation quality

learn an effective ODE model that maximally straightens the trajectories of probability flows without
increasing training complexity?

In this work, we propose a new fundamental FM method, namely Consistency Flow Matching
(Consistency-FM), to straighten the flows by explicitly enforcing self-consistency property in the
velocity field. More specifically, Consistency-FM directly defines straight flows that start from dif-
ferent times to the same endpoint, and further constrains on their velocity values. To enhance the
model expressiveness and enable better transporting between complex distributions, we resort to
training Consistency-FM in a multi-segment approach, which constructs a piece-wise linear trajec-
tory. Moreover, this flexible time-to-time jump allows Consistency-FM to perform distillation on
pre-trained FM models for better trade-off between sampling speed and quality.

Comparison with Consistency Models Consistency Models (CMs) (Song et al., 2023) learn a set
of consistency functions that directly map noise to data. While CMs can generate sample with one
NFE, they fail to provide a satisfying trade-off between generation quality and computational cost
(Kim et al., 2023). Moreover, enforcing consistency property at arbitrary points is redundant and po-
tentially slows down the training process. In contrast, our Consistency-FM enforces the consistency
property over the space of velocity field instead of sample space, which can be viewed as a high-level
regularization for straightening ODE trajectory. While CMs are able to learn consistency functions
in a general form, Consistency-FM parameterizes the consistency functions as straight flows, which
enables faster training convergence without the need for approximating the entire probability path.

Main Contributions We summarize our contributions as follows: (i) We propose a new funda-
mental class of FM models that explicitly enforces the self-consistency in the space of velocity field
instead of sample space. (ii) We conduct sufficient theoretical analysis for our proposed Consistency-
FM, and enhance its expressiveness with multi-segment optimization. (iii) Extensive experiments on
three classical image datasets demonstrate the superior generation quality and training efficiency of
our Consistency-FM (e.g., 4.4 times and 1.7 times faster than consistency model and rectified flow).
Further text-to-image experiments sufficiently prove our effectiveness and generalization ability.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

FM CM Consistency-FM (Ours)

Tr
ai

ni
ng

Sa
m

pl
in

g

CTM

Discretization errors Approximation errors Simulation with Straight Flows

Consistent 
velocity

Figure 2: Training and sampling comparisons between flow matching (FM) (Lipman et al., 2022),
consistency model (CM) (Song et al., 2023) and consistency trajectory model (CTM) (Kim et al.,
2023) and our Consistency-FM. While previous methods can cause discretization errors or approxi-
mation errors, Consistency-FM mitigates these issues by defining straight flows in simulation.

2 RELATED WORK AND DISCUSSIONS

Flow Matching for Generative Modeling Flow Matching (FM) aims to (implicitly) learn a vec-
tor field {vt}t∈[0,1], which generates an ODE that admits to the desired probability path {pt}t∈[0,1]

(Lipman et al., 2022). The training of FM does not require any computational challenging simu-
lation, as it directly estimate the vector field using a regression objective which can be efficiently
estimated (Lipman et al., 2022). By the construction of FM, it allows general trajectory of ODE
and probability path, thus many effort have been dedicated to design better trajectory with certain
properties(Pooladian et al., 2023; Tong et al., 2023; Klein et al., 2023; Stark et al., 2024; Campbell
et al., 2024). One particularly desired property is the straightness of the trajectory, as a straight
trajectory can be efficiently simulated with few steps of Euler integration. Concurrent works Multi-
sample FM (Pooladian et al., 2023) and Minibatch OT (Tong et al., 2023) propose to generalize the
independent coupling of data distribution p0(x0) and prior distribution p1(x1) to optimal transport
coupling plan π(x0, x1). Under the optimal transport plan, the learned trajectory of ODE will tend
to be straight. However, their methods require constructing the approximated optimal transport plan
in each training batch, which is computationally prohibitive.

Rectified Flow (Liu et al., 2022; 2023) can be viewed as a FM with specific trajectory. Rectified
Flow proposes to rewire and straighten the trajectory by iterative distillation, which requires multiple
round of training and may suffer from accumulation error. A recent work, Optimal FM (Kornilov
et al., 2024) proposes to directly learn the optimal transport map from p1 to p0 and use it to calculate
the vector field and straight trajectory. However, computing the optimal transport map in high
dimension is a challenging task (Makkuva et al., 2020), and Optimal FM (Kornilov et al., 2024)
only provides experiments on toy datasets. In this paper, we propose to straighten the trajectory in a
more flexible and effective approach by enforcing the self-consistency property in the velocity field.

Learning Efficient Generative Models GANs (Arjovsky et al., 2017; Goodfellow et al., 2014),
VAEs (Kingma & Welling, 2013), Diffusion Models (Song et al., 2020b;a; Ho et al., 2020) and
Normalizing Flows (Rezende & Mohamed, 2015; Dinh et al., 2016) have been four classical deep
generative models. Among them, GANs and VAEs are efficient one-step models. However, GANs
usually suffer from the training instability and mode collapse issues, and VAEs may struggle to gen-
erate high-quality examples. Therefore, recent works begin to utilize diffusion models and contin-
uous normalizing flows (Chen et al., 2018) for better training stability and high-fidelity generation,
which are based on a sequence of expressive transformations for generative sampling.
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To achieve a better trade-off between sampling quality and speed, many efforts have been made
to accelerate diffusion models, either by modifying the diffusion process (Song et al., 2020a; Bao
et al., 2021; Dockhorn et al., 2021; Xiao et al., 2021; Yang et al., 2024b; Wang et al., 2024), with
an efficient ODE solver (Lu et al., 2022; Dockhorn et al., 2022; Zheng et al., 2023), or perform-
ing distillation between pre-trained diffusion models and their more efficient versions (e.g., with
less sampling steps) (Salimans & Ho, 2022; Liu et al., 2022; Luo et al., 2024; Luo, 2023). How-
ever, most distillation methods require multiple training rounds and are susceptible to accumulation
errors. Recent Consistency Models (Song et al., 2023; Song & Dhariwal, 2024) distill the entire
sampling process of diffusion model into one-step generation, while maintaining good sample qual-
ity. Consistency Trajectory Models (CTMs)(Kim et al., 2023) further mitigate the issues about the
accumulated errors in multi-step sampling. However, these methods must learn to integrate the full
ODE integral, which are difficult to learn when it jumps between modes of the target distribution. In
this paper, we propose a new concept of velocity consistency with defined straight probability flows,
achieving most competitive results on both one- and multi-step generation.

3 CONSISTENCY FLOW MATCHING

3.1 PRELIMINARIES ON FLOW MATCHING

Let Rd denote the data space with data point x0 ∈ Rd, FMs aim to the learn a vector field vθ(t, x) :
[0, 1]×Rd −→ Rd, such that the solution of the following ODE can transport noise x0 ∼ p0 to data
x1 ∼ p1: 

dγx(t)

dt
= vθ(t, γx(t)),

γx(0) = x
(1)

The solution of Eq. (1) is denoted by γx(·), which is also called a flow, describing the trajectory of
the ODE from starting point x. Given the ground truth vector field u(t, x) that generates probability
path pt under the two marginal constraints that pt=0 = p0 and pt=1 = p1, FMs seek to optimize the
simple regression objective

Et,pt ||vθ(t, xt)− u(t, xt)||22 (2)

However, it is computational intractable to find such u, since u and pt are governed by the following
continuity equation (Villani et al., 2009):

∂tpt(x) = −∇ · (u(t, x)pt(x)) (3)

Instead of directly optimizing Eq. (2), Conditional Flow Matching (Lipman et al., 2022) regress
vθ(t, x) on the conditional vector filed u(t, xt|x1) and probability path pt(xt|x1) :

Et,q(x1)Ept(xt|x1)||vθ(t, xt)− u(t, xt|x1)||22 (4)

Two objectives Eq. (2) and Eq. (4) share the same gradient with respect to θ, while Eq. (4) can be
efficiently estimated as long as the conditional pair u(t, xt|x1), pt(xt|x1) is tractable. Note that re-
covering the marginal vector field and probability path from the conditioned one remains a complex
challenge (Lipman et al., 2022).

3.2 DEFINING STRAIGHT FLOWS WITH CONSISTENT VELOCITY

Motivation Recent FM methods for learning straight flows typically necessitate the approxima-
tion the probability path pt and its marginal distributions p0 and p1 (Liu et al., 2022; 2023; Pooladian
et al., 2023; Lee et al., 2023) , which are computational intensive and introduce additional approx-
imation error. To address these challenges, we introduce Consistency-FM, a general method to
efficiently learn straight flows without the need for approximating the entire probability path.

A straightforward approach to learn straight flows is to identify a consistent ground truth vector field
and then use objective in Eq. (2) for training. The definition of consistent velocity is v(t, γx(t)) =
v(0, x), indicating the velocity along the solution of Eq. (1) remains constant. However, due to the
intractability of original data distribution, it is also intractable to find such a vector field, or to design
a conditional vector field such that the corresponding marginal velocity is consistent (Lipman et al.,
2022; Pooladian et al., 2023).
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Figure 3: Ilustration of training our consistency-FM.

Instead of directly regressing on the ground truth vector field, Consistency-FM directly defines
straight flows with consistent velocity that start from different times to the same endpoint. Specifi-
cally, we have the following lemma (prove in Appendix A.1):

Lemma 1. Assuming the vector field is Lipschitz with respect to x and uniform in t, and are differ-
entiable in both input, then these two conditions are equivalent:

Condition 1. v(t, γx(t)) = v(s, γx(s)), ∀t, s ∈ [0, 1]

Condition 2. γx(t) + (1− t) ∗ v(t, γx(t)) = γx(s) + (1− s) ∗ v(s, γx(s)), ∀t, s ∈ [0, 1],
(5)

where γx(t) represents the solution of Eq. (1) at time t. Condition 2 specifies that starting from an
arbitrary time t with data point γx(t), and moving in the direction of current velocity for a duration
of 1− t, the resulting data will be consistent and independent with respect to t.

Velocity Consistency Loss While Condition 1 directly constraints the vector field to be consistent,
learning vector fields that only satisfy Condition 1 may lead to trivial solutions. On the other hand,
Condition 2 ensures the consistency of the vector field from a trajectory viewpoint, offering a way to
directly define straight flows. Motivated by this, Consistency-FM learns a consistency vector field
to satisfy both conditions:

Lθ = Et∼UExt,xt+∆t
||fθ(t, xt)− fθ−(t+∆t, xt+∆t)||22 + α||vθ(t, xt)− vθ−(t+∆t, xt+∆t)||22,

fθ(t, xt) = xt + (1− t) ∗ vθ(t, xt),
(6)

where U is the uniform distribution on [0, 1−∆t], α is a positive scalar, ∆t denotes a time interval
which is a small and positive scalar. θ− denotes the running average of past values of θ using
exponential moving average (EMA), xt and xt+∆t follows a pre-defined distribution which can
be efficiently sampled, for example, VP-SDE (Ho et al., 2020) or OT path (Lipman et al., 2022).
Note that by setting t = 1, Condition 2 implies that γx(t) + (1 − t) ∗ v(t, γx(t)) = γx(1) ∼ p1,
and thus training with Lθ can not only regularize the velocity but also learn the data distribution.
Furthermore, if Condition 2 is met, then the straight flows γx(t) + (1− t) ∗ v(t, γx(t)) can directly
predict x1 from each time point t (Song et al., 2023).

Below we provide a theoretical justification for the objective based on asymptotic analysis (proof in
Appendix A.3).

Theorem 1. Consider no exponential moving average, i.e., θ− = θ. Assume there exists ground
truth velocity field ut that generates pt and satisfies the continuity Eq. (3). Furthermore we assume
vθ is bounded and twice continuously differentiable with bounded first and second derivatives, the
ground truth velocity ut is bounded. Then we have:

E||fθ(t, xt)−fθ(t+∆t, xt+∆t)||22 = (∆t)2E||vθ(t, xt)−u(t, xt)−(1−t)(∂tvθ+u·∇xvθ)||22+o((∆t)2)
(7)
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Remark 1. The objective in Eq. (7),
E||vθ(t, xt)− u(t, xt)− (1− t)(∂tvθ + u · ∇xvθ)||22,

can be seen as striking a balance between exact velocity estimation and adhering to consistent ve-
locity constraints. On the one hand, the objective aims to minimize the discrepancy between learned
and ground truth velocity vθ(t, xt)−u(t, xt), aligning with the goal of FM-based methods (Lipman
et al., 2022). On the other hand, it also considers the consistency of the velocity. By Lemma 2 in
the Appendix, ∂tvθ + u · ∇xvθ serves as a constraint for velocity consistency, which measures the
changes of the velocity after taking a infinitesimal step along the direction of ground truth velocity.
Given the ground truth velocity may not be consistent, this objective provides a trade-off between
the sampling quality and computational cost with straight flow.

3.3 MULTI-SEGMENT CONSISTENCY-FM

To enhance the expressiveness of Consistency-FM for transporting distributions in general probabil-
ity path, we introduce Multi-Segment Consistency-FM. This approach relaxes the requirement for
consistent velocity throughout the flow, allowing for more flexible adaptations to diverse distribu-
tion characteristics. Multi-Segment Consistency-FM divides the time interval into equal segments,
learning a consistent vector field viθ within each segment. After recombining these segments, it
constructs a piece-wise linear trajectory to transport noise to data distribution. Specifically, given a
segment number K, the time interval [0, 1] is divided with [0, 1] = ΣK−1

i=0 [i/K, (i + 1)/K]. Then
the training objective is defined as
Lθ = Et∼UiλiExt,xt+∆t

||f i
θ(t, xt)− f i

θ−(t+∆t, xt+∆t)||22 + α||viθ(t, xt)− viθ−(t+∆t, xt+∆t)||22,
f i
θ(t, xt) = xt + ((i+ 1)/k − t) ∗ viθ(t, xt),

(8)
where i denotes the ith segment, U i is the uniform distribution on [i/K, (i+1)/K−∆t], xt, xt+∆t

follow a pre-defined distribution, ∆t is a small and positive constant . viθ(t, xt) are the flow and
the consistent vector field in segment i, respectively. λi is a positive weighting scalar for different
segment, as vector field in the middle of [0, 1] is more difficult to train (Esser et al., 2024).

Below we provide a theoretical justification for multi-segment training. First, we analyse the optimal
solution for objective Eq. (8) and provide an explicit formula for the estimation error in Multi-
Segment Consistency-FM (proof in Appendix Appendix A.4):
Theorem 2. Consider training consistency-FM on segment i which is defined in time interval [S, T ].
Assume there exists ground truth velocity field ut that generates pt and satisfies the continuity equa-
tion Eq. (3), let v∗(t, x) denote the oracle consistent velocity such that

xT = xt + (T − t)v∗(t, xt). (9)
Then the learned viθ(t, xt) that minimize Eq. (8) in segment i at time t ∈ [S, T−∆t] has the following
error:
viθ(t, xt)− v∗(t, xt) =

α

(T − t)2 + α
(v∗(t+∆t, xt+∆t)− v∗(t, xt))

+
(T − t−∆t)(T − t) + α

(T − t)2 + α
(viθ(t+∆t, xt+∆t)− v∗(t+∆t, xt+∆t))

(10)

Remark 2. The mismatch between the learned velocity viθ(t, xt) and oracle velocity v∗(t, x) is
composed of two parts. The first part is the inconsistency of the oracle v∗(t+∆t, xt+∆t)−v∗(t, xt),
which is due to the fact that the ground truth velocity u(t, xt) might not be consistent. If u(t, xt)
is consistent within the time interval [S, T ], then the oracle velocity is the ground truth velocity
v∗(t, x) = u(t, xt) and v∗(t, x) is consistent, and thus the error in the first part will vanish. The
second part is the accumulated error from prior time step t +∆t, and by induction, we can deduce
that this part will also vanish if the u(t, xt) is consistent. As a result, Consistency-FM can learn
the ground truth velocity with objective Eq. (4) on any time interval [S, T ] where the ground truth
velocity is consistent.
Corollary 2.1. Consider training consistency-FM on segment i which is defined in time interval
[S, T ]. Assume there exists ground truth velocity field ut that generates pt and satisfies the continuity
equation Eq. (3). If the ground truth velocity u is consistent within [S, T ], then Consistency-FM can
learn the ground truth velocity, i.e., the learned vθ(t, xt) = u(t, xt) almost everywhere.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance comparisons on CIFAR-10.

Method NFE (↓) FID (↓)

Score SDE (Song et al., 2020b) 2000 2.20
DDPM (Ho et al., 2020) 1000 3.17
LSGM (Vahdat et al., 2021) 147 2.10
PFGM (Xu et al., 2022) 110 2.35
EDM (Karras et al., 2022) 35 2.04
Direct Training
1-Rectified Flow (Liu et al., 2022) 1 378
Glow (Kingma & Dhariwal, 2018) 1 48.9
Residual Flow (Chen et al., 2019) 1 46.4
GLFlow (Xiao et al., 2019) 1 44.6
DenseFlow (Grcić et al., 2021) 1 34.9
Consistency Training (Song et al., 2023) 2 5.83
Consistency-FM 2 5.34
iCT-deep (Song & Dhariwal, 2024) 2 2.24
TRACT (Berthelot et al., 2023) 2 3.32
MultiStep-CT (Heek et al., 2024) 2 -
CTM (GAN loss) (Kim et al., 2023) 2 1.93
Consistency-FM (GAN loss) 2 1.75

Diffusion Models - Distillation Sampling
Consistency Distillation (Song et al., 2023) 2 2.93
CTM (GAN loss) (Song et al., 2023) 2 1.87
Consistency-FM (GAN loss) 2 1.69

Table 2: Performance comparisons on Ima-
geNet 64× 64.

Model NFE FID↓ Rec↑

Validation Data 1.41 0.67

ADM (Dhariwal & Nichol, 2021) 250 2.07 0.63
EDM (Karras et al., 2022) 79 2.44 0.67
BigGAN-deep (Brock et al., 2018) 1 4.06 0.48
StyleGAN-XL (Sauer et al., 2022) 1 2.09 0.52

Diffusion Models – Distillation Sampling
PD (Salimans & Ho, 2022) 1 15.39 0.62
BOOT (Gu et al., 2023) 1 16.3 0.36
TRACT (Berthelot et al., 2023) 1 7.43 -
CD (Song et al., 2023) 1 6.20 0.63
Consistency-FM 1 5.43 0.61
PD (Salimans & Ho, 2022) 2 8.95 0.65
TRACT (Berthelot et al., 2023) 2 4.97 -
CD (Song et al., 2023) 2 4.70 0.64
iCT-deep (Song & Dhariwal, 2024) 2 2.77 0.62
MultiStep-CD (Heek et al., 2024) 2 1.90 -
CTM (GAN loss) 2 1.73 0.57
Consistency-FM (GAN loss) 2 1.62 0.56

Direct Training
Consistency Training (Song et al., 2023) 2 11.1 0.56
Consistency-FM (GAN loss) 2 9.58 0.54

Distillation with Consistency-FM Consistency-FM can also be trained with pre-trained FMs. For
distillation from a pre-trained FM uϕ(t, xt), the consistency distillation loss for Consistency-FM is
defined as

Lθ,ϕ = Et∼UExt ||fθ(t, xt)− fθ−(t+∆t, x̂ϕ
t+∆t)||

2
2 + α||vθ(t, xt)− vθ−(t+∆t, x̂ϕ

t+∆t)||
2
2,

fθ(t, xt) = xt + (1− t) ∗ vθ(t, xt),

x̂ϕ
t+∆t = xt +∆t ∗ uϕ(t, xt),

(11)
where U [0, 1 − ∆t] is the uniform distribution, uϕ(t, x) is the pre-trained FM, xt follows the dis-
tribution from which uϕ is trained, x̂ϕ

t+∆t is the one-step prediction using pre-trained model. For
distillation from a pre-trained FMs, we set the segment number K = 1, as evidences show that the
flows in pre-trained FMs are relatively straight (Liu et al., 2022; Pooladian et al., 2023).

Sampling with Consistency-FM Consistency-FM facilitates both one-step and multi-step gener-
ation. With a well-trained Consistency FM vθ(·, ·) , we can generate sample by sampling from prior
distribution x0 = p0 and then evaluating the model to transport the data through k segments:

xi/k = x(i−1)/k + 1/k ∗ viθ((i− 1)/k, x(i−1)/k), i = 1, 2, . . . k − 1 (12)

This approach offers a versatile framework that facilitates a balanced trade-off between sample qual-
ity and sampling efficiency.

4 EXPERIMENTS

Implementation Details We evaluate our Consistency-FM on both unconditional and conditional
image generation tasks. Following previous methods (Liu et al., 2022; 2023; Yan et al., 2024), we
use the CIFAR-10 (Alex, 2009), ImageNet (Deng et al., 2009), CelebA-HQ (Karras et al., 2017)
and AFHQ-Cat (Choi et al., 2020), and MS-COCO dataset (Lin et al., 2014) for comprehensive
evaluations, and we calculate the FID and CLIP scores for measurements. In distillation experi-
ments, we follow previous methods (Liu et al., 2023; Yan et al., 2024) to use Stable Diffusion v1.5
(Rombach et al., 2022) as the backbone model. We set ∆t = 0.001 in all experiments. Multi-
segment consistency-FM is applied only for experiments where the number of function evaluations
(NFE) is greater than 1. And the NFE is equivalent to the number of segments for the multi-segment
Consistency-FM. We employ Consistency-FM based distillation training with a batch size of 128 for
200,000 iterations, consuming a total of 25 A100 GPU days. In comparison, the distillation process
of InstaFlow (Liu et al., 2023) requires 110 A100 GPU days. Thus our training cost is only 23% of
that of InstaFlow’s distillation process. More experimental settings can be found in Table 5 of the
Appendix B, and we also provide our code in the supplementary materials.
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Table 3: Comparing Consistency-FM with previous flow matching models.

Method AFHQ-Cat 256× 256 CelebA-HQ 256× 256

NFE (↓) FID (↓) NFE (↓) FID (↓)
Rectified Flow (Liu et al., 2022) 8 57.0 8 109.4
Rectified Flow + Bellman Sampling (Nguyen et al., 2024) 8 33.9 8 49.8
Rectified Flow (Liu et al., 2022) 6 61.5 6 127.0
Rectified Flow + Bellman Sampling (Nguyen et al., 2024) 6 36.2 6 72.5
Consistency-FM 6 22.5 6 36.4

Baseline Methods To demonstrate the effectiveness of our Consistency-FM, we follow previous
work (Song et al., 2023) and compare Consistency-FM with some representative diffusion models
and flow models, such as Consistency Model (Song et al., 2023) and Rectified Flow (Liu et al., 2022).
In the experiments on AFHQ-Cat and CelebA-HQ datasets, we also add recent Bellman Sampling
(Nguyen et al., 2024) for flow matching models as the baseline. In distillation experiments, we
mainly compare our method with InstaFlow (Liu et al., 2023) and PeRFlow (Yan et al., 2024),
which are all flow matching based methods.

4.1 CONSISTENCY-FM BEATS RECTIFIED FLOW AND CONSISTENCY MODEL

As demonstrated in Table 1 and Table 2, on CIFAR-10 and ImageNet dataset, our Consistency-FM
not only surpasses representative efficient generative models like Consistency Model and Rectified
Flow, but also outperforms the powerful CTM (Kim et al., 2023) equipped with the same GAN
loss as CTM. Notably, in Fig. 1, our Consistency-FM significantly advances training efficiency,
converging 4.4 times faster than consistency model and 1.7 times faster than rectified flow while
achieving superior sampling quality. These evaluation results sufficiently show that our Consistency-
FM provides a more efficient way to model data distribution, proving the efficacy of our proposed
learning paradigm of velocity consistency for FM models.

Table 3 shows the quantitative result of FM models and our Consistency-FM on high-resolution
(256 × 256) image generation, including AFHQ-Cat and CelebA-HQ. We can observe that our
Consistency-FM also outperform existing SOTA FM methods like rectified flow and rectified flow +
Bellman sampling (Nguyen et al., 2024) by a significant margin with same NFEs. Furthermore, com-
pared to CIFAR-10, Consistency-FM shows a greater improvement in generating high-resolution
images. This phenomenon demonstrates that our Consistency-FM can potentially learn straighter
flows for modeling more complex data distribution, enabling faster and better sampling.

4.2 DISTILLATION FOR ACCELERATING TEXT-TO-IMAGE GENERATION

We perform evaluations on few-step text-to-image generation to demonstrate our generalization abil-
ity. As shown in Table 7 and Table 6, our Consistency-FM demonstrates best trade-off between
generation quality and sampling efficiency. More specifically, compared to previous FM-based ac-
celeration methods, our Consistency-FM can achieve higher FID and CLIP scores, which means our
velocity consistency loss can enable the model to better fit complex data distribution and improve its
controllability. The results in the Table 6 of Appendix B further show that our Consistency-FM can
also surpass previous diffusion-based acceleration methods, such as DMD (Yin et al., 2024). These
surprising results prove the effectiveness and efficiency of our Consistency-FM, demonstrating great
potential more challenging conditional generation tasks.

Table 4: Comparison of FID on MS COCO 2017 following the evaluation setup in Liu et al. (2023).

Method Inference Time FID-5k CLIP
PD-SD (1 step) (Salimans & Ho, 2022) 0.09s 37.2 0.275
PD-SD (2 step) (Salimans & Ho, 2022) 0.13s 26.0 0.297
PD-SD (4 step) (Salimans & Ho, 2022) 0.21s 26.4 0.300
PeRFlow (4 step) (Yan et al., 2024) 0.21s 23.0 0.294
2-RF (2 step) (Liu et al., 2022) 0.13s 31.3 0.296
2-RF (1 step) (Liu et al., 2022) 0.09s 47.0 0.271
InstaFlow (Liu et al., 2023) 0.09s 23.4 0.304
Consistency-FM 0.09s 22.7 0.307
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Figure 4: Demonstration of training convergence on three datasets.

Figure 5: Sampling comparison between Rectified Flow (Liu et al., 2022) and our Consistency-FM.

4.3 QUALITATIVE ANALYSIS

We provide three convergence processes of training our Consistency-FM in Fig. 4. We observe
that Consistency-FM converges faster on CIFAR-10 than on AFHQ-Cat and CelebA-HQ because
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Many skyscrapers stand 
in a bustling port city, 
illuminated by vibrant 
neon lights.

An astronaut standing on 
the surface of a red alien 
planet, with a distant 
ringed star and unusual 
rock formations in the 
backdrop.

A floating library in the 
lake with a magical aura 
surrounding the space.

A futuristic metropolis 
with golden whales 
swimming beneath 
transparent domes, while 
the city's buildings and 
transportation devices 
drift gracefully in the 
water.

An ancient underground 
city with a glowing river of 
life winding through it, 
surrounded by mysterious 
stone carvings and 
sparkling gemstones.

InstaFlow

PeRFlow

Ours

Figure 6: Qualitative comparison on complex text-to-image generation between InstaFlow (Liu
et al., 2023), PeRFlow (Yan et al., 2024) and our Consistency-FM. We use red texts to denote critical
semantics, and our Consistency-FM demonstrates superior generation qualities.

the latter two high-resolution datasets are more complex to model their data distributions. Overall,
Consistency-FM consistently converges fast, proving the efficacy of defining straight flows for gen-
erative modeling. Additionally, we qualitatively compare our method with rectified flow in Fig. 5.
From the generation results, we can observe that our Consistency-FM is capable of generating more
realistic images than rectified flow with the same NFEs, revealing our Consistency-FM models data
distribution more effectively.

In Fig. 6, We present a comparison of the images generated by InstaFlow (Liu et al., 2023) and
PeRFlow (Yan et al., 2024) across different complex text-to-image generation scenarios. From the
results, we can find that our Consistency-FM consistently outperforms previous methods, especially
in complex semantics. We attribute this to our velocity consistency functions and multi-segment
strategies, greatly enhancing the expressiveness and controllability of our Consistency-FM.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce a new fundamental class of FM models, namely Consistency Flow Match-
ing (Consistency-FM), to explicitly enforces self-consistency in the velocity field. Consistency-FM
directly defines straight flows starting from different times to the same endpoint, and is optimized by
a multi-segment training approach for enhancing expressiveness. This work theoretically and empir-
ically presents our new fundamental flow matching model. Extensive experiments demonstrate that
our Consistency-FM significantly improves training efficiency by converging 4.4x faster than con-
sistency models and 1.7x faster than rectified flow models while achieving better generation quality.
Based on our Consistency-FM, we here propose two potential future research directions:

• Compositional Text-to-Image Generation: Our Consistency-FM demonstrates superior
text-to-image results, especially in conveying complex textual semantics. By applying
Consistency-FM to existing compositional T2I models (Yang et al., 2024a), we believe
this would significantly improve both efficiency and quality of existing methods.

• Efficient Video Generation: Training video diffusion models is a time-consuming proce-
dure (Blattmann et al., 2023; Tian et al., 2024), and accelerating training process is a critical
challenge. Employing our Consistency-FM on training video diffusion models would ef-
fectively reduce training costs while keeping high-quality generation.
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A THEORETICAL SUPPORTS AND PROOFS

A.1 PROOF OF LEMMA 1

Proof of Lemma 1. If Condition 1 is meet, then ODE Eq. (1) associated with v becomes

dγx(t)

dt
= v(t, γx(t)) = v(0, x),

and the solution of which is γx(t) = x+ t ∗ v(0, x). Specifically, we have

γx(1) = x+ 1 ∗ v(0, x)
= γx(t) + (1− t) ∗ v(0, γx(0)) = γx(t) + (1− t) ∗ v(t, γx(t))
= γx(s) + (1− s) ∗ v(0, γx(0)) = γx(s) + (1− s) ∗ v(t, γx(s))

and thus Condition 2 is meet.

On the other hand, if Condition 2 is meet, then we have

γx(t)− γx(s) = (1− s)v(s, γx(s))− (1− t)v(t, γx(t))

=

∫ t

s

v(u, γx(u))du

Divide both hands in the above equation with t− s and let t approaches s, we have:

v(s, γx(s)) = lim
t→s

∫ t

s
v(u, γx(u))du

t− s
,

= lim
t→s

(1− s)v(s, γx(s))− (1− t)v(t, γx(t))

t− s

= lim
t→s

v(t, γx(t)) + (1− s) ∗ v(s, γx(s))− v(t, γx(t))

t− s
= v(s, γx(s))− (1− s)

dv(s, γs)

ds

(13)

Comparing the both sides in the above equation, we have dv(s,γs)
ds = 0, and thus Condition 1 is

meet.

A.2 PROOF OF LEMMA 2

We provide an another lemma which describes the consistency constraint as partial differential equa-
tions and supports the connection bewteen Consistency-FM with FMs.

Lemma 2. Assume v is continuously differentiable and consistent, then v satisfies the following
equation:

∂tv(t, x) + v · ∇xv = 0 (14)

Proof of Lemma 2. By Lemma 1, if v is consistent then it can be written as:

v(t+∆t, xt +∆t ∗ v(t, xt)) = v(t, xt) (15)

Since v is differentiable, we can take derivatives with respect to t:

dv

dt
= ∂tv + v · ∇xv (16)

Then by definition, if v is consistent we have

dv

dt
= ∂tv + v · ∇xv = 0 (17)
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A.3 PROOF OF THEOREM 1

Proof of Theorem 1. By the first mean value theorem, there exist a t
′ ∈ [t, t+∆t], such that

xt+∆t − xt =

∫ t+∆t

t

u(s, xs)du = ∆t ∗ u(t
′
, xt′ ) (18)

Then by the definition of fθ(t, xt) = xt + (1− t) ∗ vθ(t, xt), we have:

fθ(t, xt)− fθ(t+∆t, xt+∆t) = xt + (1− t) ∗ vθ(t, xt)− (xt+∆t + (1− t−∆t) ∗ vθ(t+∆t, xt+∆t))

= xt − xt+∆t + (1− t) ∗ vθ(t, xt)− (1− t−∆t) ∗ vθ(t+∆t, xt+∆t)

= −
∫ t+∆t

t

u(s, xs)ds+∆t ∗ vθ(t+∆t, xt+∆t) + (1− t) ∗ (vθ(t, xt)− vθ(t+∆t, xt+∆t))

=1 ∆t ∗ (vθ(t+∆t, xt+∆t)− u(t
′
, xt′ )) + (1− t) ∗ (vθ(t, xt)− vθ(t+∆t, xt+∆t))

=2 ∆t ∗ (vθ(t+∆t, xt+∆t)− u(t
′
, xt′ ))− (1− t) ∗∆t ∗ (∂tvθ(t, xt)− u(t, xt)∂xvθ(t, xt)) +O((∆t)2)

=3 ∆t ∗ (vθ(t+∆t, xt+∆t)− u(t, xt) +O(∆t))− (1− t) ∗∆t ∗ (∂tvθ(t, xt)− u(t, xt)∂xvθ(t, xt)) +O((∆t)2)

= ∆t ∗ (vθ(t+∆t, xt+∆t)− u(t, xt)− (1− t) ∗ (∂tvθ(t, xt)− u(t, xt)∂xvθ(t, xt))) +O((∆t)2)
(19)

where in (1) we used the first mean value theorem, in (2) we used first-order Taylor approximation
and the boundedness of u, vθ and their derivatives, in (3) we used first-order Taylor approximation
again and the boundedness of derivative of u. Then the objective can be written as:

E||fθ(t, xt)− fθ(t+∆t, xt+∆t)||22,
= E||∆t ∗ (vθ(t, xt)− u(t, xt)− (1− t)(∂tvθ + u · ∇xvθ)) +O((∆t)2)||22
= (∆t)2 ∗ E||vθ(t, xt)− u(t, xt)− (1− t)(∂tvθ + u · ∇xvθ)||22 + o((∆t)2)

A.4 PROOF OF THEOREM 2

Proof of Theorem 2. As viθ(t, xt) is the minimizer of Eq. (8) with respect to segment i, it must
satisfies the first-order condition:

0 = ∂θ(E||f i
θ(t, xt)− f i

θ−(t+∆t, xt+∆t)||22 + α||viθ(t, xt)− viθ−(t+∆t, xt+∆t)||22)
= E((T − t)(f i

θ(t, xt)− f i
θ−(t+∆t, xt+∆t)) + α(viθ(t, xt)− viθ−(t+∆t, xt+∆t))) · ∂θviθ(t, xt),

(20)
where f i

θ(t, xt) = xt + (T − t)viθ(t, xt) Note that in our assumption, xt+∆t is generated by an
ODE and thus is a deterministic function of (t, xt), then the non-trivial solution to 20 satisfies the
following equation almost everywhere:

0 = (T − t)(f i
θ(t, xt)− f i

θ−(t+∆t, xt+∆t)) + α(viθ(t, xt)− viθ−(t+∆t, xt+∆t)), (21)

As the gradient at θ is zero, then θ = θ−, thus the learned velocity can be derived from 21:

viθ(t, xt) =
(T − t)(xt+∆t − xt)

(T − t)2 + α
+

(T − t−∆t)(T − t) + α

(T − t)2 + α
viθ(t+∆t, xt+∆t) (22)
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Furthermore, we have:

viθ(t, xt)

=
(T − t)(xt+∆t − xt)

(T − t)2 + α
+

(T − t−∆t)(T − t) + α

(T − t)2 + α
v∗(t+∆t, xt+∆t)

+
(T − t−∆t)(T − t) + α

(T − t)2 + α
viθ(t+∆t, xt+∆t)−

(T − t−∆t)(T − t) + α

(T − t)2 + α
v∗(t+∆t, xt+∆t)

=
(T − t)((T − (t+∆t))v∗(t+∆t, xt+∆t) + xt+∆t − xt)

(T − t)2 + α
+

αv∗(t+∆t, xt+∆t)

(T − t)2 + α

+
(T − t−∆t)(T − t) + α

(T − t)2 + α
(viθ(t+∆t, xt+∆t)− v∗(t+∆t, xt+∆t))

=1 (T − t)(xT − xt)

(T − t)2 + α
+

αv∗(t+∆t, xt+∆t)

(T − t)2 + α

+
(T − t−∆t)(T − t) + α

(T − t)2 + α
(viθ(t+∆t, xt+∆t)− v∗(t+∆t, xt+∆t))

=2 (T − t)2v∗(t, xt)

(T − t)2 + α
+

αv∗(t+∆t, xt+∆t)

(T − t)2 + α

+
(T − t−∆t)(T − t) + α

(T − t)2 + α
(viθ(t+∆t, xt+∆t)− v∗(t+∆t, xt+∆t))

= v∗(t, xt) +
α(v∗(t+∆t, xt+∆t)− v∗(t, xt))

(T − t)2 + α

+
(T − t−∆t)(T − t) + α

(T − t)2 + α
(viθ(t+∆t, xt+∆t)− v∗(t+∆t, xt+∆t))

(23)
where in (1) and (2) we have use the assumption of oracle v∗ that xT = xt + (T − t)v∗(t, xt)

A.5 PROOF OF COROLLARY 2.1

Proof for Corollary 2.1. Note that xT = xT + 0 ∗ viθ(T, xT ), and thus we can set arbitrary value
for viθ(T, xT ) without affecting the model. Specifically, we set viθ(T, xT ) = v∗(T, xT ). Then by
Theorem 2, the error at T −∆t is:

viθ(T −∆t, xT−∆t)− v∗(T −∆t, xT−∆t)

=
α

(∆t)2 + α
(v∗(T, xT )− v∗(T −∆t, xT−∆t))

+
(∆t−∆t)(T − t) + α

(∆t)2 + α
(viθ(T, xT )− v∗(T, xT ))

=
α

(∆t)2 + α
(v∗(T, xT )− v∗(T −∆t, xT−∆t))

(24)

Furthermore, as u is consistent within [S, T ], by Lemma 1 we have :

xT = xt + (T − t) ∗ u(t, xt),

⇒ v∗(t, xt) = u(t, xt) ≡ u(T, xT ),

⇒ v∗(t, xt) = v∗(t+∆t, xt+∆t),∀t ∈ [S, T −∆t].

And thus viθ(T −∆t, xT−∆t)− v∗(T −∆t, xT−∆t) = 0.

By Theorem 2, we can deduce by induction that

viθ(t+∆t, xt+∆t) = v∗(t+∆t, xt+∆t) & v∗(t, xt) = v∗(t+∆t, xt+∆t)

⇒ viθ(t, xt) = v∗(t, xt) = u(t, xt),∀t ∈ [S, T −∆t].
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A.6 NEW THEOREM BASED ON CONSISTENCY MODEL THM. 2

Here we provide an intuition why training Consistency-FM from scratch works. In the following
result, we show that training Consistency-FM from scratch using conditional trajectory xt, xt+∆t

is equivalent to training with a perfectly pre-trained FM trajectory, as ∆t ≈ 0. As a result,
Consistency-FM can learn from the underlying probability path without accessing the ground truth
velocity. Without loss of generality, we only consider one-segment setting. Let

Lθ = E||fθ(t, xt)− fθ−(t+∆t, xt+∆t)||22,

which is the first part of Consistency-FM’s loss function at time t, and xt = tx1 + (1 − t)x0 and
xt+∆t = (t+∆t)x1 +(1− t−∆t)x0. And then we define the loss function that utilize pre-trained
FM:

LFM = E||fθ(t, xt)− fθ−(t+∆t, xFM
t+∆t)||22,

where xFM
t+∆t is generated by an perfectly pre-trained FM model: uϕ(xt, t) = E(x1 − x0|xt), and

thus xFM
t+∆t = xt +

∫ t+∆t

t
uϕ(xs, s)ds. Then we have:

Theorem 3. Assume fθ, fθ− and uϕ(xt, t) are bounded, fθ− is twice-continuous differentiable and
has bounded second derivatives, then

LFM = Lθ + o(∆t) (25)

Proof. We expand LFM using first-order Taylor expansion with respect to ∆t:

LFM = E||fθ(t, xt)− fθ−(t+∆t, xFM
t+∆t)||22

= E(fθ(t, xt)− fθ−(t, xt)
T (fθ(t, xt)− ∂tfθ−(t, xt)∆t+ ∂xfθ−(t, xt)uϕ(xt, t)∆t+ o(∆t))

=1 E(fθ(t, xt)− fθ−(t, xt)
T (fθ(t, xt)− ∂tfθ−(t, xt)∆t+ ∂xfθ−(t, xt)uϕ(xt, t)∆t) + o(∆t)

= E(fθ(t, xt)− fθ−(t, xt)
T (fθ(t, xt)− ∂tfθ−(t, xt)∆t+ ∂xfθ−(t, xt)E(x1 − x0|xt)∆t) + o(∆t)

=2 E(fθ(t, xt)− fθ−(t, xt)
T (fθ(t, xt)− ∂tfθ−(t, xt)∆t+ ∂xfθ−(t, xt)(x1 − x0)∆t) + o(∆t)

=3 E||fθ(t, xt)− fθ−(t+∆t, xt + (x1 − x0)∆t)||22 + o(∆t)

= E||fθ(t, xt)− fθ−(t+∆t, xt+∆t)||22 + o(∆t)

= Lθ + o(∆t),
(26)

where in (1) we used the boundedness, in (2) we used the law of total expectation, and in (3) we
used the first-order Taylor expansion again.

B MORE IMPLEMENTATION DETAILS AND COMPARISON RESULTS

Table 5: Experimental details for training Consistency-FM.

Training Details CIFAR-10 AFHQ-Cat CelebA-HQ ImageNet
Training iterations 180k 250k 250k 30K
Batch size 512 64 64 128
Optimizer Adam Adam Adam Adam
Learning rate 2e-4 2e-4 2e-4 8e-6
∆t 0.001 0.001 0.001 0.001
EMA decay rate 0.999999 0.999 0.999 0.999
ODE solver Euler Euler Euler Euler
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Table 6: Comparison of FID on MS COCO 2014 following the evaluation setup in (Liu et al., 2023).

Cat. Res. Method Inference Time # Param. FID-30k
AR 256 Parti-750M (Yu et al., 2022) - 750M 10.71
AR 256 Parti-3B (Yu et al., 2022) 6.4s 3B 8.10
AR 256 Parti-20B (Yu et al., 2022) - 20B 7.23
AR 256 Make-A-Scene (Gafni et al., 2022) 25.0s - 11.84
Diff 256 GLIDE (Nichol et al., 2022) 15.0s 5B 12.24
Diff 256 LDM (Rombach et al., 2022) 3.7s 0.27B 12.63
Diff 256 DALL-E 2 (Ramesh et al., 2022) - 5.5B 10.39
Diff 256 Imagen (Saharia et al., 2022) 9.1s 3B 7.27
Diff 256 eDiff-I (Balaji et al., 2022) 32.0s 9B 6.95

- 512 Muse-3B (Chang et al., 2023) 1.3s 0.5B 7.88
GAN 512 StyleGAN-T (Sauer et al., 2023) 0.10s 1B 13.90
GAN 512 GigaGAN (Kang et al., 2023) 0.13s 1B 9.09
Diff 512 SD (Rombach et al., 2022) 2.9s 0.9B 9.62
Diff 512 DMD (Yin et al., 2024) 0.09s 0.9B 11.49
FM 512 Rectified-Flow (Liu et al., 2022) 0.09s 0.9B 13.67
FM 512 InstaFlow (Liu et al., 2023) 0.09s 0.9B 13.10
FM 512 PeRFlow (Yan et al., 2024) 0.09s 0.9B 18.59
FM 512 Consistency-FM 0.09s 0.9B 11.02

Table 7: We measure the generation diversity as Sadat et al. (2024) for more comprehensive evalu-
ations. Specifically, given a set of input conditions, we first compute the pairwise cosine similarity
matrix K among generated images with the same condition, using SSCD (Pizzi et al., 2022) as the
pretrained feature extractor. The results are then aggregated for different conditions using two meth-
ods: the Mean Similarity Score (MSS), which is a simple average over the similarity matrix K , and
the Vendi Score (Friedman & Dieng, 2022), which is based on the Von Neumann entropy of K.

Diversity Metric MSS ↓ Vendi Score ↑
Rectified Flow (Liu et al., 2022) 0.35 3.21
Consistency Model (Song et al., 2023) 0.24 4.87
Consistency-FM (Ours) 0.19 5.33
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