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Abstract

Alignment of Large Language Models (LLMs) is crucial for ensuring their safety,
particularly in preventing unintended behaviors and harmful outputs. However,
aligning models using preference pair datasets does not always guarantee suc-
cessful results, as models can accidentally be optimized for superficial cues in
the data rather than genuinely desirable behaviors, an issue often referred to as
reward hacking. We study the core principles of alignment and find that (i) prefer-
ence data gives a more robust learning signal when the underlying responses are
contrastive, and (ii) alignment objectives lead to more robust optimization when
they specify more control over the model during training. Based on these insights,
we introduce Contrastive Learning from AI Revisions (CLAIR), a data-creation
method which leads to more contrastive preference pairs, and Anchored Preference
Optimization (APO), a controllable and more stable alignment objective. Both
our methods are designed to give AI practitioners precise control over how their
model should change during alignment training, allowing them to build safer and
more precise models. We align Llama-3-8B-Instruct using various compara-
ble datasets and alignment objectives and measure MixEval-Hard scores, which
correlate highly with human-produced rankings of models. The CLAIR prefer-
ences lead to the strongest performance out of all datasets, and APO consistently
outperforms less controllable objectives. Our best model, trained on 32K CLAIR
preferences with APO, improves Llama-3-8B-Instruct by 7.65%, closing the
gap with GPT4-turbo by 45%. The strong results of both our methods indicate their
ability to precisely control what a model learns during alignment, mitigating reward
hacking. Additionally, our experiments highlight how alignment can accidentally
deteriorate model performance, inadvertently introducing safety risks.

1 Introduction

Aligning language models with preferences is a critical component in LLM development, significantly
enhancing model capabilities, safety, and adherence to human values [Christiano et al., 2017, Ouyang
et al., 2022, Bai et al., 2022]. These preferences can be expressed through preference pairs (output
yl ≺ yw for input x), which offer a richer signal than individual outputs and enable more expressive
learning objectives. Recently, contrastive learning objectives have made alignment more accessible
by circumventing the need for auxiliary reward models [Rafailov et al., 2024b].

Despite these advantages, alignment outcomes can be suboptimal. For example, a model can
accidentally be optimized for superficial cues in the alignment data, an issue also referred to as
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Figure 1: Alignment is underspecified with regard to preferences and training objective. A:
Preference pairs can vary along irrelevant aspects, Contrastive Learning from AI Revisions (CLAIR)
creates a targeted preference signal instead. B: The quality of the model can impact alignment
training, Anchored Preference Optimization (APO) explicitly accounts for this.

reward hacking, leading to undesirable outcomes [Eisenstein et al., 2023, Feng et al., 2024, Park
et al., 2024]. Since alignment is a critical step towards achieving safe and ethical model behavior,
reward hacking poses significant risks. In this paper, we reason through the nature of alignment,
focusing on 1. the preference signal expressed by the data, and 2. the training dynamics of contrastive
alignment objectives. We find that across both these axes, conventional alignment methods are
underspecified, significantly contributing to the issue of reward hacking. To solve this, we argue that
1. preference data should be minimally contrastive, and 2. alignment objectives should account for
distinct alignment situations (see Figure 1). Our work sheds light on suboptimal alignment outcomes.
For example, we show in Section 5 how a model aligned using high-quality outputs can actually
degrade if the pairs differ in multiple uncontrolled aspects.

These insights lead to two new contributions. First, we introduce Contrastive Learning from AI
Revisions (CLAIR), a method for creating preference pairs which minimally revises one output
to express a preference. The pairs created by CLAIR result in a more precise learning signal, as
opposed to conventional methods which use a judge to select a preferred response. This more precise
signal leads to fewer undesirable side-effects during alignment. Second, we introduce Anchored
Preference Optimization (APO), a family of contrastive objectives which explicitly account for
distinct relationships between model and data during alignment. The tailored training dynamics of
APO results in more robust alignment compared to conventional objectives, again producing fewer
undesirable side-effects.

In order to study the role of both 1. minimally contrastive preference data, and 2. distinct alignment
training dynamics, we individually align a model across four comparable preference datasets using
five alignment objectives. One dataset is created through our CLAIR method. We compare this
with two conventional judge-based datasets (Reinforcement Learning from AI Feedback; Bai et al.
2022). Finally, we consider an ablated version of CLAIR created to directly assess the impact of
contrastiveness. We consider five distinct alignment objectives: DPO [Rafailov et al., 2024b], KTO
[Ethayarajh et al., 2024], continued Supervised Fine-Tuning on the preferred answer, and two variants
of our proposed APO. We measure MixEval-Hard accuracy [Ni et al., 2024] and length-controlled
AlpacaEval scores [Dubois et al., 2024] for each model, both benchmarks correlate highly with
model rankings produced by humans [Chiang et al., 2024].

We align Llama-3-8B-Instruct [Dubey et al., 2024] and use GPT4-turbo [Achiam et al., 2023]
for preference judgements / revisions. We find that our strongest model, aligned on 32K CLAIR
preferences with APO, improves Llama-3-8B-Instruct performance by 7.65% on MixEval-Hard,
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closing the performance gap with GPT4-turbo by 45%. Our analysis indicates that the contrastiveness
of CLAIR preferences is the major driver of performance. Across every alignment datasets considered,
APO objectives achieve the best performance. The superior performance of both our methods indicate
a tighter coupling between the intended and realised behavior of the model. Our techniques give AI
practitioners greater control over model alignment, significantly improving their ability to develop
safe and ethical models.

2 Underspecification in Alignment

The alignment procedure creates complex interactions between the target model, the preference
dataset, and the alignment objective. The present section reflects on failure cases of all alignment
efforts which start from preferences, and how this leads to reward hacking. The section discussed
data and objective respectively.

Given a collection of prompts X , a preference dataset is a set of triples (x, yw, yl) , where yw and
yl are, respectively, a winning (more preferred) and losing (less preferred) response to prompt x.
The preference signal in such a dataset is essentially expressed by the difference between winning
and losing outputs, illustrated in Figure 1 A. However, paired outputs can differ in many aspects,
some of which are spurious and thus irrelevant to the preference. These spurious differences will
generally create a challenging credit assignment problem. Outputs which are minimally contrastive
differ along fewer axes, resulting in less spurious differences. Thus, if preference pairs produce a
clearer minimal contrast, the alignment learning signal becomes more clear. Existing preference
datasets vary meaningfully in their contrastiveness. For example, in the Stanford Human Preferences
dataset [Ethayarajh et al., 2022], two outputs in a pair are simply responses to the same Reddit post,
and thus they are not guaranteed to be especially comparable. An ideal preference dataset would
consist of a very controlled difference between either example. Such a dataset would minimize the
risk of reward hacking, this insight leads us to CLAIR (Section 3).

Preference triples only specify that one output is better than another. This creates ambiguity, since it
is not known if the more preferred answer was actually good. To see how this can impact alignment,
suppose we have a dataset of triples where yw tends to score 8/10 on some quality scale and yl tends
to score 6/10. A target model that generally scores 9/10 may become worse if the likelihood of yw
would increase during training, as illustrated in Figure 1 B. Therefore, alignment training needs to
be aware of how desirable any individual answer is, regardless of its preference relationship.
To take a salient example, ≈80% of winning outputs in UltraFeedback [Cui et al., 2024] are
generated by a less performant model than Llama-3-8B-Instruct (as measured by Chatbot Arena
Elo; Chiang et al. 2024). Naively aligning Llama-3-8B-Instruct on this dataset may thus worsen
performance, since the model is optimized to prefer answers which are actually of lower quality,
again producing reward hacking. Examples like this one lead us to Anchored Preference Optimization
(APO; Section 4).

In summary, current alignment approaches are underspecified along two key axes: 1. preferences
may be weakly expressed due to non-contrastive data, and 2. alignment objectives need to account
for the model-data relation. Both underspecifications can cause reward hacking, i.e., situations where
the model is optimized for spurious or undesirable cues in the preference data instead of the desired
behavior. In what follows, we set out to improve alignment across both axes.

3 Contrastive Learning from Revisions

We now introduce Contrastive Learning from AI Revisions (CLAIR), a general procedure for creating
minimally contrasting preference pairs.

Let M be the target model we will align. Given a prompt x, we sample the losing output yl directly
from the model. Then, we use a Reviser to minimally revise and improve yl, resulting in the winning
output yw:

yl = M(x)

yw = Reviser(x, yl)
(1)

In this work, we use a stronger LLM to perform revisions, prompted to enhance the clarity, correctness,
and engagement of the output (prompts and dataset details given in Appendix A). Figure 2 shows an
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Figure 2: An answer produced by Llama-3-8B-Instruct for a prompt, and corresponding GPT4-
turbo revision of this answer. The differences between answer and revision are highlighted. The
revision generally follows the same outline as the answer but improves it where possible. For example,
the revision correctly alters the count of Parisian restaurants from 2 to 3 in the second line of the
answer.

example triple created using this method. The losing output was generated by Llama-3-8B-Instruct
and revised by GPT4-turbo. The revision keeps most of the initial output intact, while improving
details. Recently, Dubey et al. [2024] used human revisions in the development of the llama-3.1
model family, though their process seems oriented towards enhancing quality differences rather than
creating minimal contrasts.

CLAIR differs markedly from more familiar approaches to collecting preference data. For example,
in the on-policy judge paradigm (as used in Reinforcement Learning from AI Feedback; Bai et al.
2022), two generations are sampled from M(x), and a Judge (often another LLM) decides which is
the winner and which the loser:

y1, y2 = M(x),M(x)

yw, yl = Judge(x, y1, y2)
(2)

We use this approach as one of our baselines, with a prompt comparable to the revision prompt used
by CLAIR. Additionally, we consider an off-policy judge versions of (2) where the outputs are
generated by models other than the target model:

y1, y2 = M ′(x),M ′′(x)

yw, yl = Judge(x, y1, y2)
(3)

Both the on-policy and off-policy judge approaches provide useful comparison points for CLAIR. In
addition, we evaluate a baseline that helps us understand the role of contrastiveness in particular. For
CLAIR, the Reviser is generally a stronger model than the model we are aligning. This means that
the winning examples yw are always generated by a stronger model. To decouple this factor from the
contrastiveness induced by the revision process, we also evaluate a baseline that we call Stronger
Preferred, where the stronger model provides the winning example for each pair without revision:

yl = M(x)

yw = Stronger(x)
(4)

For the alignment experiments reported in Section 5, we created four preference datasets following
(1)–(4). Each dataset is created using the same 32K prompts uniformly sampled from UltraFeedback
[Cui et al., 2024], a widely used preference dataset with prompts spanning a broad range of domains.
We take the target model M to be Llama-3-8B-Instruct, one of the most competitive open source
models available at the time of writing. For the off-policy judge dataset, we use already judged
outputs available in UltraFeedback. Approximately 80% of these winning outputs are generated
by a model weaker than Llama-3-8B-Instruct (as measured by Chatbot Arena Elo; Chiang et al.
2024). Thus, this off-policy judge dataset generally contains lower quality outputs compared to the
model.
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4 Anchored Preference Optimization

A preference triple (x, yw, yl) expresses the belief that yw is a more preferred output than yl for
prompt x. Alignment objectives use this relationship to align a model. Different objectives achieve
this in very different ways, with deep consequences for the alignment process.

Direct Preference Optimization (DPO; Rafailov et al. 2024b) is a widely used and empirically
successful alignment objective. The core stipulation of DPO is that the likelihood change of winning
outputs during training needs to be greater than the likelihood change of losing outputs. This
likelihood change for a prompt and output is denoted as the reward rθ(x, y), which captures the
log-ratio of likelihoods between the model during training πθ(x | y) and the model before training,
also called reference, πref(x | y):

rθ(x, y) = β log
πθ(y | x)
πref(y | x)

(5)

Here, β is a hyperparameter which scales this log-ratio. This leads to the following DPO objective:

LDPO(x, yw, yl; θ) = − log σ
(
rθ(x, yw)− rθ(x, yl)

)
(6)

The DPO authors report that the gradient of this objective intuitively leads to an increased winning
likelihood and decreased losing likelihood. However, this is only one possibility out of three distinct
scenarios. Alternatively, DPO can increase the winning likelihood more than it increases the losing
likelihood, or decrease the winning likelihood less than it decreases the losing likelihood [Feng et al.,
2024]. These scenarios may end up producing vastly different models. As discussed in Section 2, a
winning output is not necessarily better than what the model produces before alignment. In this case,
DPO may hurt performance if it increases the likelihood of undesirable outputs.

To help researchers navigate these interactions, we introduce Anchored Preference Optimization
(APO). In essence, APO is a family of alignment objectives which offer fine-grained control over
each of the rewards, thus controlling the absolute increase or decrease in likelihood during training.
In this paper, we focus in particular on variants that we call APO-zero and APO-down:

LAPO
zero (x, yw, yl; θ) = −σ

(
rθ(x,yw)

)
+ σ

(
rθ(x, yl)

)
(7)

LAPO
down(x, yw, yl; θ) = σ

(
rθ(x, yw)

)
−σ

(
rθ(x, yw)− rθ(x, yl)

)
(8)

APO-zero explicitly pushes for an increased likelihood of winning outputs and decreased likelihood
of losing outputs during training. In contrast, APO-down decreases the likelihood of winning outputs
and decreases the likelihood of losing outputs even more. If the model is better than the winning
outputs (yw ≺ πθ), APO-down will intuitively be a better objective. If winning outputs are better
than the model (yw ≻ πθ), APO-zero will be better.

One can define additional APO objectives. In general, any contrastive objective (i.e., greater reward
for winning outputs) which specifies additional constraints on either reward to achieve a tighter link
between model and data (e.g., winning rewards should be positive) can be seen as a form of Anchored
Preference Optimization. In Section 6 we consider different alignment objectives and discuss how
they relate to APO.

One interesting variant of APO can be derived from the Kahneman–Tversky Optimization (KTO)
objective of Ethayarajh et al. [2024]. As originally defined, KTO does not operate on preference pairs,
but rather requires only one unpaired answer and a label indicating if it was preferred or not; the goal
of KTO is to push the winning / losing reward above / below the Kullback–Leibler (KL) divergence
between the model during training and the reference model. The APO perspective helps us see that
there is a natural paired variant of KTO in which the KL-divergence functions as the anchor:

LKTO-pair(x, yw, yl; θ) = −σ
(
rθ(x, yw)− β KL

)
− σ

(
β KL − rθ(x, yl)

)
(9)

This KL term is non-negative, and thus the winning reward is pushed to be positive; the losing reward
can still be either positive or negative.
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ME-Hard 2024-06-01 ME-Hard 2024-08-11
Dataset Objective Max ∆ Mean ∆ Max ∆ Mean ∆

Judge DPO 1.10 −0.74 (1.15) 4.30 2.85 (0.75)
off-policy KTO-pair −1.00 −2.89 (0.96) 4.05 1.18 (1.67)

SFT −1.95 −1.63 (1.06) 2.85 0.42 (1.20)
APO-zero 0.80 −1.99 (1.23) 4.65 1.26 (1.62)
APO-down 2.70 0.64 (0.98) 4.80 3.52 (0.85)

Judge DPO 4.00 0.56 (1.61) 5.20 2.71 (1.41)
on-policy KTO-pair 2.45 −0.51 (1.26) 5.05 1.13 (1.70)

SFT 0.65 −0.91 (1.01) 4.20 2.55 (0.70)
APO-zero 4.65 0.02 (1.66) 5.35 2.19 (1.28)
APO-down 3.65 1.60 (0.95) 4.25 3.06 (0.76)

CLAIR DPO 0.55 −1.68 (1.73) 5.05 2.77 (1.40)
KTO-pair 2.15 0.79 (0.98) 4.65 2.92 (0.86)
SFT 0.65 −0.91 (1.01) 2.70 0.92 (1.21)
APO-zero 7.65 2.93 (1.98) 5.95 4.39 (0.89)
APO-down −1.05 −5.22 (1.55) −1.20 −3.61 (1.05)

Stronger DPO −5.00 −6.94 (1.03) −3.10 −4.40 (0.98)
Preferred KTO-pair −1.20 −5.21 (1.27) 2.25 0.50 (1.13)

SFT 2.45 0.49 (1.31) 5.05 2.73 (1.21)
APO-zero −1.70 −2.72 (1.40) −4.85 −12.02 (5.38)
APO-down −6.50 −12.51 (4.97) 1.65 0.16 (1.22)

Table 1: Max and mean MixEval-Hard improvements for the 2024-06-01 and 2024-08-11 splits,
aggregated over 18 epochs of aligning Llama-3-8B-Instruct. Best overall performance bold, best
performance per dataset underlined, standard deviation in parentheses. CLAIR leads to the greatest
overall performance improvement on MixEval-Hard. APO methods achieve the best performance
across both Judged and CLAIR datasets.

5 Alignment Experiments

To study the effectiveness of CLAIR and APO, we align Llama-3-8B-Instruct across the four
comparable preference datasets described in Section 3, created from 32K UltraFeedback prompts.
We use GPT4-turbo to act as Judge or Reviser when creating these datasets. For every dataset, we
align the model using the four different objectives described in Section 4. Additionally, we consider
Supervised Fine-Tuning (SFT) on only the winning outputs as a baseline alignment objective.

We consider the downstream performance change of the model to be indicative of reward hacking.
The more the model improved, the more the optimization realized the intended behavior. If the model
actually worsens during training, we consider this a clear example of reward hacking.

5.1 Evaluation Methodology

Human judgments are ultimately the best indicator of how well a model is aligned with human
preferences. Chatbot Arena [Chiang et al., 2024] uses thousands of pairwise human judgements to
produce a ranking of model performance. However, collecting these judgments can be prohibitively
expensive. To overcome this obstacle, we measure model performance through benchmarks which
correlate highly with this Chatbot Arena ranking.

MixEval-Hard [Ni et al., 2024] is a benchmark with very high Chatbot Arena correlation (0.96
rank correlation). MixEval-Hard features hard queries with known answers across a wide range of
domains and uses a GPT3.5-turbo [Brown et al., 2020, Ouyang et al., 2022] model to evaluate if
predicted answers correspond with this ground-truth. This makes MixEval-Hard more grounded in
human knowledge and significantly cheaper to run compared to other popular evaluation frameworks
such as AlpacaEval [Li et al., 2023, Dubois et al., 2024].

Our evaluation of Llama-3-8B-Instruct before any additional alignment achieves a score of 41.45%
on the 2024-06-01 version of MixEval-Hard. The gap between Llama-3-8B-Instruct and GPT4-
turbo is 17%. On the 2024-08-11 split, Llama-3-8B-Instruct achieves 40.5%.
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5.2 Training Specifications

Llama-3-8B-Instruct is trained for a total of 18 epochs on each preference dataset and alignment
objective, with a checkpoint saved every single epoch. The β hyperparameter, common to all
alignment objectives except SFT, is set to 0.1. Prompt and responses are truncated to 512 tokens
each. Each model is trained using an effective batch size of 16 across one node of 8 NVIDIA H100
GPUs, using the RMSProp optimizer with a learning rate of 2× 10−7, linearly decaying to 0 over the
18 epochs. All training is implemented using the TRL library [von Werra et al., 2020].

5.3 Results

We report the maximal and mean MixEval-Hard improvement over all checkpoints from the same
training run. This helps us understand both the best-case and average impact of alignment across
the entire training procedure. We use both 2024-06-01 and 2024-08-11 versions of MixEval-Hard,
which each feature a distinct set of queries. We use no system prompt. Our analysis is summarized in
Table 1 for every dataset and objective; we now discuss these results in more detail.

5.3.1 Preference Data

To assess the quality of a particular dataset, we consider the performance of that dataset when paired
with its best objective. Using the APO-zero objective, the contrastive CLAIR dataset leads to the
greatest improvement, signalling the least amount of reward hacking. On the 2024-06-01 split
of MixEval-Hard, CLAIR leads to the greatest maximal improvement of +7.65% and the greatest
average improvement of +2.93% out of all our experiments. This improvement of +7.65% closes the
relative gap with GPT4-turbo by 45% using only 32K pairs.

We noted in Section 1 that uncontrolled contrastiveness can degrade model performance. We see
this dramatically in the results for the Stronger Preferred dataset, which can heavily degrade model
performance. Like CLAIR, this dataset has all winning outputs produced by a stronger model.
Unlike CLAIR, though, its examples provide no guarantee of relevant minimal contrasts. Thus, the
contrastiveness induced by the CLAIR revision process is a major driver of performance.

Both on-policy judge and off-policy judge datasets lead to improved performance when paired with
their best alignment objective, but on-policy preferences lead to better performance compared to
off-policy preferences. This is intuitive; judgments about the target model’s outputs are in general
more relevant.

5.3.2 Alignment Objectives

On MixEval-Hard, Anchored Preference Optimization (APO) consistently leads to the greatest
performance increase for every preference dataset, with the exception of the Stronger Preferred
dataset, where all contrastive objectives underperform SFT. The relation between the preference
dataset and the target model controls which variant of APO is best for any dataset, as predicted
in Section 2. APO-down results in the best performance when winning outputs are generally
worse than the target model, as is the case for the off-policy judge dataset. APO-zero is the best
objective when winning outputs are generally better than the target model, as is the case for
CLAIR and on-policy judge datasets. The difference between alignment objectives is less salient
for the on-policy judge dataset as compared to CLAIR, since winning on-policy judge outputs are
only slightly better than Llama-3-8B-Instruct on average. Winning CLAIR outputs may be vastly
better than Llama-3-8B-Instruct since they are produced by a stronger model, making the different
in alignment objectives more noticeable.

6 Related Work

We now characterize relevant alignment efforts and outline how they relate to Contrastive Learning
from AI Revisions (CLAIR), Anchored Preference Optimization (APO), and reward hacking.

Reinforcement Learning from Human or AI Feedback (RLHF / RLAIF; Ouyang et al. 2022, Bai et al.
2022, Yuan et al. 2024) is a technique used to align models with human preferences. Fundamentally,
these approaches first train a reward model using preference judgments and subsequently optimize a
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Language Model for this reward using Reinforcement Learning [Schulman et al., 2017]. To side-step
the need for an explicit reward model, Direct Preference Optimization (DPO; Rafailov et al. 2024b)
aligns an LM directly using a contrastive training objective.

We articulated two core insights concerning alignment and reward hacking, specifically 1. the role of
contrastive preference data, and 2. the need to anchor alignment depending on model and data. These
insights translate to any alignment effort which uses comparative preferences. For example, a reward
model trained on spurious preference signals may be a less accurate proxy for real rewards, directly
causing reward hacking [Gao et al., 2023, Rafailov et al., 2024a].

For the remainder of this review, we first focus on contrastive alignment methods and their variants
(of which Wang et al. 2024 provide a detailed overview). Finally, we discuss related preference
datasets and how they were created.

Controlling training dynamics: The tendency of DPO to decrease the winning likelihood has
been remarked and analyzed in several works [Feng et al., 2024, Pal et al., 2024]. Some works use
an additional loss term to explicitly increasing the likelihood of winning outputs [Hong et al., 2024,
Pentyala et al., 2024, Adolphs et al., 2023, Zhao et al., 2023, Xu et al., 2024]. While these methods
can be seen as variants of Anchored Preference Optimization, they do not recognize the need to
anchor the objective differently depending on dataset and model, and they do not offer methods that
explicitly decrease the winning likelihood when required. Both Rafailov et al. [2024a] and Azar et al.
[2024] generalize a set of alignment methods, but neither allow for any anchoring. We have found
that this anchoring is crucial to mitigate reward hacking across several situations.

Length-controlled optimization: Preference pairs created through a judging paradigm can be
biased towards preferring more verbose answers Saito et al. [2023]. This can be seen as a clear
example of reward hacking. To prevent aligned models from inheriting this bias, Meng et al. [2024]
and Park et al. [2024] explicitly control for the length of generations during training. These constraints
on generation length can be seamlessly integrated into APO methods as well. In addition, CLAIR
revisions could further help with these efforts to reduce the verbosity bias. For example, the Reviser
could be designed to not increase length.

Preference Datasets: Chiang et al. [2024] release a dataset of human preference judgements across
conversations between humans and several AI assistants. To alleviate the need for human judges,
some efforts focus on scaling preference annotations with LLM-based judges [Cui et al., 2024, Zhu
et al., 2023] or metric-based judges [Jiang et al., 2023]. Unlike our CLAIR method, these works do
not create preferences through revisions. Bai et al. [2022] use a set of predetermined criteria (called
a constitution) to prompt an LLM to revise answers and make them safer (see also Lambert et al.
2024). Dubey et al. [2024] used human revisions in the development of the llama-3.1 model family.
While both efforts create preferences through revisions, we particularly focus on revisions that create
a minimal contrast and we studied the effect of this contrastiveness on alignment outcomes. We have
found that preferences with less spurious correlations lead to significantly less reward hacking, in
turn producing more performant models.

7 Conclusion

Language Model alignment is one of the primary tools used to develop safe and ethical models.
Significant safety issues may occur when alignment training does not realize its intended behavior. In
this work, we found that alignment performance is significantly impacted by 1. the contrastiveness of
the preference pairs and 2. the relationship between target model and alignment data. We introduced
Contrastive Learning from AI Revisions (CLAIR), a data-creation method which produces contrasting
preference pairs with minimal spurious differences, and Anchored Preference Optimization (APO), a
family of alignment objectives with tailored and more controlled training dynamics. Our experiments
aligning Llama-3-8B-Instruct show that CLAIR preferences lead to the highest performance
improvement out of four comparable preference datasets, and APO methods consistently outperform
conventional alignment objectives. The improved performance of our methods indicates a more
robust training procedure, better realizing the intended behavior of the alignment procedure.
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A Preference Dataset Creation

A.1 Prompts

The prompts we use for the Reviser and Judge function of Equation 1 and 2 are given in Table ??.
Both prompts contain instructions to prefer more clear, more correct, and more engaging outputs. The
Reviser prompt creates a preference pair by minimally revising and improving an output according to
these preferences. Instead, the Judge prompt selects a more preferred output given two candidate
answers.

A.2 Preference Pair Filtering

We reject revisions or judgments if the LLM failed to follow formatting guidelines specified in the
revising or judging prompt. Additionally, we reject revisions if they altered the length of the original
output too much; we found this mainly happens when the LLM misunderstands the revision prompt.
Starting from the same 32K instructions sampled from UltraFeedback, this procedure creates 29K
CLAIR pairs, 29K Stronger Preferred pairs, 29K off-policy Judge pairs, and 32k on-policy Judge
pairs. We adapted the code by Williams [2023] to efficiently query closed-source LLMs in parallel
over API.

B MixEval-Hard Performance Breakdown

MixEval-Hard features queries from a wide range of established benchmarks. Under the hood,
MixEval-Hard utilizes queries sampled from MATH [Hendrycks et al., 2021], BBH [Suzgun et al.,
2023], DROP [Dua et al., 2019], GSM8k [Cobbe et al., 2021], AGIEval [Zhong et al., 2024], TriviaQA
[Joshi et al., 2017], MBPP [Austin et al., 2021], MMLU, [Hendrycks et al., 2020], HellaSwag [Zellers
et al., 2019], BoolQ [Clark et al., 2019], GPQA [Rein et al., 2023], PIQA [Bisk et al., 2020], OpenBookQA
[Mihaylov et al., 2018], ARC [Clark et al., 2018], CommonsenseQA [Talmor et al., 2019], and SIQA
[Sap et al., 2019]. Previously, we reported on the overall MixEval-Hard performance. Table 2 breaks
down this overall performance in function of these different benchmarks. While MixEval-Hard often
incorporates only a few queries from any given benchmark, the overall performance correlates highly
with human judgements.
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MixEval-Hard split # query Llama-3-8B + CLAIR + Judge + Judge + Stronger
-Instruct (on-policy) (off-policy) Preferred

Overall score 988 41.45 49.10 46.10 44.15 43.90

TriviaQA 267 34.30 49.20 42.40 43.70 39.80
MMLU 231 43.70 39.00 42.00 36.80 34.60
DROP 167 50.20 58.70 64.30 64.90 58.90
AGIEval 71 31.00 38.00 38.00 39.40 38.00
HellaSwag 61 29.50 37.70 26.20 29.50 27.90
CommonsenseQA 50 60.00 72.00 60.00 48.00 58.00
BoolQ 37 40.50 45.90 32.40 21.60 27.00
GSM8k 22 60.00 80.00 69.50 63.20 84.10
SIQA 20 45.00 50.00 40.00 15.00 40.00
MATH 16 47.50 63.70 51.30 58.80 73.10
BBH 16 51.30 68.80 57.50 60.60 66.90
OpenBookQA 8 62.50 62.50 50.00 62.50 75.00
GPQA 8 12.50 25.00 25.00 25.00 37.50
PIQA 8 50.00 62.50 62.50 62.50 75.00
ARC 4 0.00 0.00 0.00 0.00 0.00
MBPP 2 0.00 0.00 0.00 0.00 0.00
Objective used: / APO-zero APO-zero APO-down SFT

Table 2: Breakdown of MixEval-Hard performance (version 2024-06-01) in function of which
dataset the queries originate from. Analysis given for Llama-3-8B-Instruct and our best models on
the CLAIR, Judge (on-policy), Judge (off-policy), and Stronger Preferred datasets. While individual
splits may not always indicate the best model (particularly when the amount of queries is low), the
overall score correlates highly with human judgments about model performance (Chatbot Arena Elo;
Chiang et al. 2024). MixEval-Hard uses a GPT3.5-turbo model to rate if a response to a query agrees
with a known gold-truth response.
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