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ABSTRACT

Spiking neural networks (SNNs), attributed to the binary, event-driven nature of spikes,
possess heightened biological plausibility and enhanced energy efficiency on neuromorphic
hardware compared to analog neural networks (ANNs). Mainstream SNN training schemes
apply backpropagation-through-time (BPTT) with surrogate gradients to replace the non-
differentiable spike emitting process during backpropagation. While achieving competitive
performance, the requirement for storing intermediate information at all time-steps incurs
higher memory consumption and fails to fulfill the online property crucial to biological
brains. Our work focuses on online training techniques, aiming for memory efficiency
while preserving biological plausibility. The limitation of not having access to future
information in early time steps in online training has constrained previous efforts to
incorporate advantageous modules such as batch normalization. To address this problem, we
propose Online Spiking Renormalization (OSR) to ensure consistent parameters between
testing and training, and Online Threshold Stabilizer (OTS) to stabilize neuron firing
rates across time steps. Furthermore, we design a novel online approach to compute the
variable mean and variance over time for OSR. Experiments conducted on various datasets
demonstrate the proposed method’s superior performance among SNN online training
algorithms.

1 INTRODUCTION

Regarded as the third generation of neural networks, spiking neural networks (SNNs) possess a greater
level of biological plausibility (Zenke et al., 2021) than their second generation counterparts – analog neural
networks (ANNs) due to the binary and event-driven nature of spikes. The binary nature of spikes in SNNs
eliminates the need for multiplication during inference, leading to improved energy efficiency when deployed
on neuromorphic hardware (Furber et al., 2014; Merolla et al., 2014; Shen et al., 2016; Davies et al., 2018;
Pei et al., 2019). However, the discontinuity of binary spikes also poses challenges in the training of SNNs.

To address the non-differentiable issue associated with the spike emitting process in SNN training, various
approaches have been proposed. The mainstream direct training techniques use surrogate gradients to address
this problem, which replaces the non-differentiable Heaviside function during the spike firing process with a
differentiable surrogate function (Neftci et al., 2019). In addition to this, they just regard SNNs as binary
recurrent neural networks (RNNs) and use backpropagation-through-time (BPTT) for SNN training (Bellec
et al., 2018; Zenke & Ganguli, 2018; Wu et al., 2018). Although competitive performances are achieved on the
CIFAR-10/100 and ImageNet datasets (Deng et al., 2021; Fang et al., 2021) with a relatively short simulation
time, these methods require storing intermediate information of all time-steps for gradient backpropagation.
An alternative approach to training SNNs is to use the assistance of ANNs. Several works first train ANNs
and then convert them to SNNs (Cao et al., 2015; Rueckauer et al., 2017; Han et al., 2020; Bu et al., 2022a;
Deng & Gu, 2021; Bu et al., 2022b). However, these methods often require a longer simulation time and
result in more fired spikes. The long simulation time will lead to high latency, while more fired spikes will
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consume more energy. Overall, these approaches bring about extra expenses either in the training phases or in
the testing phases while not satisfying the online property of the learning process in biological brains.

Recently, online training techniques have been developed to save memory costs while maintaining the
biologically-plausible online property during the training process. However, the limitation of not having
access to future information in the early time steps has constrained previous efforts to incorporate advantageous
modules such as batch normalization (BN). In this work, we design a mechanism that bypasses the need for
future information while maintaining consistency across time-steps, thereby reducing the overfitting problem
associated with BN. Our main contributions can be summarized as follows:

1. We propose Online Spiking Renormalization (OSR), ensuring consistent scale and shift parameters
between testing and training. This helps mitigate the difference between the normalization parameters
used in standard batch normalization. In addition, we introduce an online approach for computing a
variable’s all-time mean and variance that dynamically changes over time for OSR.

2. We devise Online Threshold Stabilizer (OTS), aiming at stabilizing neuron firing rates across varying
time steps, which also effectively regulates the overall firing rate.

3. We conduct experiments on CIFAR10, CIFAR100, CIFAR10-DVS, DVS-Gesture, and Imagenet
datasets and demonstrate that our proposed method achieves state-of-the-art performance among
SNN online training algorithms.

2 RELATED WORK

2.1 ONLINE TRAINING APPROACHES

Online training allows real-time parameter updates as new data arrives, especially useful for RNNs and SNNs
spanning multiple time-steps. This mechanism serves to curtail memory usage, a particularly advantageous
feature when dealing with many time-steps.

Existing literature on RNNs has delved into various approaches to online learning. Real-time recurrent
learning (RTRL), introduced by Williams & Zipser (1989), propagates partial derivatives of hidden states
across parameters throughout time, enabling the computation of gradients in a forward-in-time manner.
A number of contemporary research endeavors, exemplified by UORO (Tallec & Ollivier, 2017), KF-
RTRL (Mujika et al., 2018), and SnAp (Menick et al., 2020), have explored enhancing the memory and
time efficiency of RTRL through tailored approximations for more pragmatic utilization. Another work put
forward a proposition to update parameters in an online fashion, utilizing decoupled gradients coupled with
regularization at each time-step (Kag & Saligrama, 2021).

In the domain of SNNs, numerous studies have drawn inspiration from online training techniques developed
for RNNs. Some of these works adopt the fundamental principles of RTRL and tailor them to streamline
the training process for SNNs (Zenke & Ganguli, 2018; Bellec et al., 2020; Bohnstingl et al., 2022). Yin
et al. (2022) directly applied the approach proposed by Kag & Saligrama (2021) to train SNNs. Zenke &
Ganguli (2018) connected the online learning rule for leaky integrate-and-fire (LIF) neurons with the nonlinear
Hebbian three-factor rule, and Kaiser et al. (2020) extended the neuron model to a double-exponential spike-
response model. Xiao et al. (2022) successfully extended online training methodologies to accommodate
large-scale tasks such as the ImageNet classification. However, all these works did not consider incorporating
network modules like batch normalization to enhance the network performance. As a result, they suffer from
a performance disadvantage compared to their BPTT counterparts.
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2.2 NORMALIZATION MECHANISMS

Normalization mechanisms are commonly used in neural networks to stabilize network training, which
speeds up convergence and enhances network performance. Typical normalization techniques include batch
normalization (BN) (Ioffe & Szegedy, 2015), instance normalization (IN) (Ulyanov et al., 2016), group
normalization (GN) (Wu & He, 2018), and layer normalization (LN) (Ba et al., 2016). A subsequent work,
batch renormalization (Ioffe, 2017), improves BN by eliminating the difference between the batch mean and
variance between the training and testing phases.

In spiking neural networks, researchers have also tried to incorporate normalization techniques to enhance
SNN performance. For instance, Kim & Panda (2021) proposed BNTT to regulate firing rates by utilizing
separate BN parameters at different time steps. Zheng et al. (2021) proposed threshold-dependent batch
normalization (tdBN), which extends the scope of BN to the additional temporal dimension and takes into
account the impact of threshold on firing rates. TEBN (Duan et al., 2022) combined elements from both
of these approaches by applying BN across the spatial-temporal dimension, while utilizing separate scale
and shift parameters at different time steps. Although most works apply normalization to the input current,
some studies explore normalization for other variables. For example, PSP-BN (Ikegawa et al., 2022) used
unique statistics, specifically the second raw moment, as the denominator for normalization, which can be
inserted right after the spiking functions. This approach leads to a higher complexity of BN parameters and
the potential risk of breaking the temporal coherence of information. Among the aforementioned works, the
most successful ones (Duan et al., 2022; Zheng et al., 2021) used information from all time-steps for BN.
However, these methods cannot be directly applied to online learning.

3 PRELIMINARIES

3.1 LEAKY INTEGRATE AND FIRE NEURON

Spiking neurons are the basic building blocks of SNNs, with the LIF neuron model being the most commonly
used (Gerstner et al., 2014). The dynamic of the LIF neuron before firing can be described by:

τ
du(t)

dt
= −(u(t)− urest) + I(t), (1)

where u(t) is the membrane potential of the neuron at time t, I(t) is the input current received by the neuron,
τ is the membrane time constant, and urest is the resting potential. When membrane potential u(t) reaches a
certain threshold θ, the neuron will emit a spike, and u(t) will be suddenly reset to a value ureset. In practice,
we often use a discrete form of Eq. 1, which can be represented as:

ul[t] =(1− 1

τ l
)ul[t− 0.5] +W lsl−1[t], (2)

sl[t] =Θ(ul[t]− θ), (3)

ul[t+ 0.5] =ul[t]⊙ (1− sl[t]). (4)

Here, we use a tensor form that ul, W l, and sl denote the membrane potential tensor, weight matrix between
layers l − 1 and l, output spike tensor of layer l, respectively. Among them, ul[t] is the membrane potential
after decay and adding input but before the reset, and ul[t+ 1

2 ] is the membrane potential after reset. Θ is a
Heaviside step function. The element of sl[t] equals 1 if the neuron fires and 0 otherwise.

4 METHODS

Our holistic method is illustrated in Figure 1. In the following parts, we first briefly introduce the forward and
backward propagation processes of our algorithm and then elaborate on the modules we add to the network.
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Figure 1: Illustration of online stabilization techniques for SNN. Our method uses online spiking renormal-
ization to improve the generalization and an online threshold stabilizer to regulate the firing rate within the
framework of online SNN training, which requires less memory usage than BPTT training. OTTT (Xiao et al.,
2022) adopts normalization-free networks and thus has no BN modules.

These modules include online calculation of all-time mean and variance, online spiking renormalization
(OSR), and online threshold stabilizer (OTS).

4.1 FORWARD AND BACKWARD PROPAGATION

In the forward stage, our method uses the LIF formulas (Eqs. 2-4). The OSR replaces sl−1[t]W l with
renorm(sl−1[t]W l) in Eq. 2, and the OTS changes θ in Eq. 3 over time-steps.

In the backward stage, we select the TET loss (Deng et al., 2021) as our loss function since the loss function
needs to provide feedback at each time-step:

L =
1

T

T∑
t=1

(1− ϵ)

n∑
i=1

yi log oi[t] + ϵ

n∑
i=1

(oi[t]− ϕ(yi))
2

 , (5)

where T is the total simulation time, yi denotes whether the label is equal to i, and ϕ(yi) is the target value of
yi set in MSE loss. oi[t] is the spikes of output neuron i at time t in the output layer, and ϵ is a small value to
introduce MSE loss as a regularization term as proposed by Deng et al. (2021).

For the online gradient propagation, we remove the propagation path of neuron membrane potential decay
and reset (from the next time step to the last time step) for membrane potential (as shown in Figure 1). Then
the gradients received by membrane potential and weights become:

∂L
∂ul

y[t]
=

∂Lt

∂sly[t]

∂sly[t]

∂ul
y[t]

, (6)

∂L
∂wl

xy

=

T∑
t=1

∂Lt

∂sly[t]

∂sly[t]

∂ul
y[t]

∂ul
y[t]

∂wl
xy

. (7)
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Note that Eq. 7 just sums up the derivative of Lt to wl
xy at all time-steps, so there is no backward or forward

temporal dependency both in Eqs. 6 and 7)

4.2 INCORPORATING BATCH NORMALIZATION INTO ONLINE ALGORITHMS

In Zheng et al. (2021); Kim & Panda (2021); Duan et al. (2022), it is shown that applying BN once across all
time-steps, rather than separately on each time-step, yields superior performance. However, in online training,
it is impractical as we need normalization before having information on all time-steps. As per Duan et al.
(2022), using mean and variance across all time-steps is crucial for reducing temporal covariate shift and
enhancing performance.

Online Calculation of All-time Mean and Variance. As a result, we want to calculate the mean and variance
of the input current (denoted as Ix[t] for the x-th dimension at time t) among all time-steps (denoted as µ and
σ2) in training for the running_mean and running_var (denoted as µ̂ and σ̂2, the detailed usages of them are
illustrated in the next paragraph, Online Spiking Renormalization). To keep the memory cost low, we have to
calculate them from the mean and variance of each time-step: µ[1], · · · , µ[T ] and σ2[1], · · · , σ2[T ]. Their
relationship can be described as the following equation:

µ[t] =
1

m

m∑
x=1

Ix[t], σ2[t] =
1

m

m∑
x=1

(Ix[t]− µ[t])2, (8)

µ =
1

mT

T∑
t=1

m∑
x=1

Ix[t] =
1

T

T∑
t=1

µ[t], (9)

σ2 =
1

mT

T∑
t=1

m∑
x=1

(Ix[t]− µ)2 =
1

T

T∑
t=1

σ2[t] +
1

T

T∑
t=1

µ[t]2 − µ2. (10)

Hence, we can initialize µ and σ2 as 0 for each batch, add 1
T µ[t] to µ and add 1

T (σ
2[t] + µ[t]2) at each time

step, and subtract µ2 from σ2 at the last time step.

Online Spiking Renormalization (OSR). In the testing phase, the BN will give the input current at all
time-steps the same linear transformation: subtracting µ̂ (running_mean) followed by dividing σ̂2 (run-
ning_var). However, in the training phase, information at different time-steps will go through different linear
transformations in the forward stage under the vanilla BN. To eliminate this difference between the training
phase and the testing phase, we use the same transformation in the forward stage for the training stage as the
testing stage. Specifically, we apply the transformation

Ĩ[t] = γ · I[t]− µ̂√
σ̂2 + ϵ

+ β (11)

during the forward step in training, where I[t] is the input current to be normalized.

The next question is: How to compute gradients in the backward stage if we use this forward transformation?
The µ̂ and σ̂2 are not the real mean and variance of a batch, and actually they do not come from the current
batch data. As a result, if no additional mechanisms are involved, this ‘standardization’ just plays the role
of linear transformation instead of real normalization. Our solution for this is to first go through a real
normalization and then apply a linear transform to the normalized tensor. To be specific, we first normalize
I[t] to Î[t] = I[t]−µ[t]√

σ2[t]+ϵ
and then linearly transform it twice to Ĩ[t] = γ · I[t]−µ̂√

σ̂2+ϵ
+ β:

Ĩ[t] =γ · I[t]− µ̂√
σ̂2 + ϵ

+ β = γ ·

(
Î[t] ·

√
σ2[t] + ϵ√
σ̂2 + ϵ

+
µ[t]− µ̂√
σ̂2 + ϵ

)
+ β. (12)
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Eq. 12 denotes the normalization followed by a linear transformation. The gradients for I[t], γ, β are:

∂L
∂I[t]

=
∂L
∂Ĩ[t]

· ∂Î[t]
∂I[t]

· γ ·
√
σ2[t] + ϵ√
σ̂2 + ϵ

, (13)

∂L
∂γ

=
∑
x

∂L
∂Ĩx[t]

(
Îx[t] ·

√
σ2[t] + ϵ√
σ̂2 + ϵ

+
µ[t]− µ̂√
σ̂2 + ϵ

)
, (14)

∂L
∂β

=
∑
x

∂L
∂Ĩx[t]

. (15)

Online Threshold Stabilizer (OTS). To enhance the stability of mean and variance in the OSR process
during training, we introduce the OTS mechanism. The variable subject to normalization is the input current
of neurons, and our objective is to ensure the mean and variance of it remain stable across all time-steps. This
raises the crucial question: When should we intervene to stabilize the mean and variance of input currents?

The mean and variance of the input current in a layer are significantly influenced by the output spikes from the
preceding layer, making it essential to stabilize the firing rate of each layer. The firing rate is determined by
the proportion of membrane potential surpassing the firing threshold within discrete time-steps. Consequently,
we can adjust either the membrane potential or the firing threshold to regulate the firing rate. Between these
options, regulating the firing threshold stands out as a judicious choice: it leaves the neuronal dynamics
unchanged and only impacts backward propagation by altering the values of the surrogate function.

Specifically, we assume the membrane potential of neurons in one layer at time t follows a normal distribution
N(µmem[t], σ

2
mem[t]) (where we denote θ[t], µmem[t], and σmem[t] are the threshold, mean of membrane

potential, and variance of membrane potential at time t), then the firing rate of this layer at time t is

1− Φ−1

(
θ[t]− µmem[t]

σmem[t]

)
, (16)

where Φ(x) = 1√
2π

∫ x

−∞ e−
y2

2 dy is the cumulative distribution function of normal distribution. To keep this

ratio constant among time-steps, we need to keep the quantile θ[t]−µmem[t]
σmem[t]

constant. Under this control, the

adjusted threshold at time t, θ[t] = µmem[t] + σmem[t] · θ[1]−µmem[1]
σmem[1]

.

4.3 THEORETICAL ANALYSIS

In this section, we discuss how our online threshold stabilizer (OTS) helps stabilize online spiking renormal-
ization (OSR). The process involves three stages: adjusting the firing threshold of layer l − 1; corresponding
adjustment of the firing rate of layer l− 1; and regulating the mean and variance before normalization in layer
l to ensure stability. This involves two crucial aspects: adjusting the threshold for a stable firing rate, which
subsequently stabilizes the mean and variance. For the step from threshold to firing rate, existing research has
shown that when a LIF neuron receives constant input with Gaussian noise, the membrane potential will have
a Gaussian distribution (Hohn & Burkitt, 2001). This implies the reasonableness of our Gaussian distribution
assumption of membrane potential, further supporting the process of OTS. For the step from firing rate to
mean and variance, studying the property of the all-time sample variance σ2 is a good choice: In Eq. 10,
σ2 can be split into two parts: The first part is 1

T

∑T
t=1 σ

2[t], which stands for the average variance inside
each time-step. The second part is 1

T

∑T
t=1 µ[t]

2 − µ2, which is the variance of the mean at each time-step
(variance of µ[1], · · · , µ[T ]). To stabilize the whole training process, we want the mean among different
time-steps to vary as little as possible. In other words, we want the variance of the mean among time-steps to
be low. However, for variance inside each time-step, we do not need it to be low.
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Denote p[t] to be the firing probability of each neuron at time-step t and gross firing rate p = 1
T

∑T
i=1 p[t].

To proceed with the theoretical derivation, we must establish the following assumptions:
Assumption 4.1. Assume all entries of sl−1[t] (of size B ·Cin) and W l (of size Cin ·Cout) are independent
for 1 ≤ t ≤ T , all sl−1

i [t] obey i.i.d Bernoulli(p[t]) distribution, and all wl
ji obey any i.i.d distribution.

Under the above assumptions, we have the following conclusions (note we only discuss the expectation of the
target variables since both the sample mean µ and the sample variance σ2 are estimated statistics):
Theorem 4.2. When Assumption 4.1 holds and the gross firing rate p holds constant, then the expectation of
sample variance of µ[t] among time-steps E

[
1
T

∑T
t=1 µ[t]

2 − µ2
]

increases when the variance of firing rate

among time-steps 1
T

∑T
t=1 p[t]

2 − p2 increases.

Theorem 4.3. When Assumption 4.1 holds and the gross firing rate p keeps constant, then the expectation of
variance within time-steps E[ 1T

∑T
t=1 σ

2[t]] keeps constant.

These results indicate that given the gross firing rate (p) constant, reducing the firing probability (p[t]) among
time-steps will reduce the variance of the mean (µ[t]) among time-steps (Theorem. 4.2) but will not affect
the variance inside time-steps (

∑
σ2[t]) (Theorem. 4.3). Thus, a steady firing rate helps stabilize the sample

mean, which further indicates that our OTS mechanism helps our OSR mechanism. Related experimental
results are shown in the ablation study in experiments (Table 1).

5 EXPERIMENTS

To show the effectiveness of our proposed method, we conduct experiments on CIFAR10, CIFAR100
(Krizhevsky et al., 2009), DVS-Gesture (Amir et al., 2017), CIFAR10-DVS (Li et al., 2017), and Imagenet
(Deng et al., 2009) datasets to evaluate the performance of our method. The model we choose is consistent
with OTTT (Xiao et al., 2022) to conduct a fair comparison. All experiments are run on Nvidia RTX 4090
GPUs with Pytorch 2.0. The implementation details are provided in the Appendix.

5.1 COMPARISON WITH OTHER WORKS

Here we compare our approach with previous SNN training methods. We select the BPTT-based algorithms
tdBN (Zheng et al., 2021), SEW (Fang et al., 2021), TET (Deng et al., 2021), TEBN (Duan et al., 2022),
and an online algorithm OTTT (Xiao et al., 2022). The results have shown that our algorithm performs well
on all datasets. For the CIFAR10 dataset, we have achieved similar accuracy with TET and outperformed
tdBN and OTTT. For the CIFAR100 dataset, we have outperformed TET and OTTT. For the DVS-Gesture
dataset, we have outperformed all listed methods, including tdBN and OTTT. For the CIFAR10-DVS dataset,
we have outperformed tdBN and OTTT. For the Imagenet dataset, we have outperformed tdBN and OTTT.
Note that the network that OTTT uses (NF-Resnet-34) adds membrane potential in the shortcut connection,
which enhances its overall performance over SEW-Resnet-34 and Resnet-34. We test our method for the
same architecture (the last line) and achieve better performance with fewer time-steps. Note that among the
online algorithms, we have outperformed OTTT on all datasets with fewer time-steps (T = 4 vs T = 6).
In addition, although the overall performance of state-of-the-art BPTT-based algorithms outperforms the
online ones in Table 1, they require more memory, especially when the number of total time steps is large (the
detailed information is provided in Section 5.2).

Ablation experiments. We also conduct ablation experiments on the Imagenet dataset with SEW-Resnet-
34. The ablation involves two of our proposed modules: online spiking renormalization (OSR) and online
threshold stabilizer (OTS). When both OTS and OSR are applied, the network’s performance has improved
by over 3%. However, individually adding these modules (especially OSR) worsens the network performance
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Table 1: Performance comparison on CIFAR-10/100, DVS-Gesture, CIFAR10-DVS, and Imagenet

Dataset Model Online or not Architecture Time steps Accuracy

CIFAR10

tdBN (Zheng et al., 2021) % Resnet-19 4 92.92%
TET (Deng et al., 2021) % Resnet-19 4 94.44%

TEBN (Duan et al., 2022) % Resnet-19 4 95.58%
OTTT (Xiao et al., 2022) " VGGSNN 6 93.58%

Ours " VGGSNN 4 94.35%

CIFAR100

TET (Deng et al., 2021) % Resnet-19 4 74.47%
TEBN (Duan et al., 2022) % Resnet-19 4 78.71%
OTTT (Xiao et al., 2022) " VGGSNN 6 71.11%

Ours " VGGSNN 4 76.48%

DVS-Gesture
tdBN (Zheng et al., 2021) % Resnet-17 40 96.88%
OTTT (Xiao et al., 2022) " VGGSNN 20 96.88%

Ours " VGGSNN 20 97.57%

CIFAR10-DVS

tdBN (Zheng et al., 2021) % Resnet-19 10 67.80%
TET (Deng et al., 2021) % VGG-11 10 83.17%

TEBN (Duan et al., 2022) % VGGSNN 10 84.90%
OTTT (Xiao et al., 2022) " VGGSNN 10 76.30%

Ours " VGGSNN 10 82.40%

Imagenet

tdBN (Zheng et al., 2021) % Resnet-34 6 63.72%
SEW (Fang et al., 2021) % SEW-Resnet-34 4 67.04%
TET (Deng et al., 2021) % SEW-Resnet-34 4 68.00%

TEBN (Duan et al., 2022) % SEW-Resnet-34 4 68.28%
OTTT (Xiao et al., 2022) " NF-Resnet-34 6 65.15%

BN(Vanilla) " SEW-Resnet-34 4 60.48%
BN(OSR) " SEW-Resnet-34 4 54.97%
BN(OTS) " SEW-Resnet-34 4 60.31%

BN(OSR+OTS)(Ours) " SEW-Resnet-34 4 64.14%
BN(OSR+OTS)(Ours) " NF-Resnet-34 4 67.54%

on Imagenet, indicating their complementary nature. A reasonable explanation is that adding OTS alone does
not perfectly align the mean and variance of BN between the training and testing phases. Conversely, adding
OSR alone leads to uneven firing rates among time-steps, causing instability in OSR’s linear transform step.

5.2 QUALITATIVE RESULTS

A. Memory Usage: We compare the training memory usage between online algorithms and BPTT algorithms
here. We test the case where T = 2, 4, 6, 8, 10, 15, 20, 25, 30 on the CIFAR10 dataset with VGGSNN
architecture and a batch size of 128. The memory usage statistics are plotted in Figure 2 (a). We can see that
our method maintains a constant memory requirement irrespective of time-steps, whereas BPTT approaches
scale memory usage linearly with the number of time-steps. In addition, even when the number of time-steps
is as low as 2, the memory cost of our algorithm is still lower than that of its BPTT counterpart.

B. Firing Rate Statistics: We compare the firing rate (probability) statistics among different configurations
of our proposed modules. We test these statistics on Imagenet, using the SEW-Resnet-34 architecture with
total time-steps T = 4. The gross firing rate statistics are listed in Table 2 and the per-time-step firing rates
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Figure 2: (a) Comparison of memory usage between our method and BPTT. BPTT incurs memory costs
linearly proportional to time-steps, whereas our approach maintains constant memory usage regardless of
time-steps. (b) Firing rate statistics of different configurations. From the figures, we know that the online
threshold stabilizer indeed stabilizes the firing rate among time-steps.

Table 2: Gross firing rate

Configuration OTTT (Xiao et al., 2022) Vanilla BN OSR OTS OSR+OTS
Gross firing rate 24% 22.39% 27.34% 19.16% 16.06%

are plotted in Figure 2 (b). Results have shown that OTS successfully decreases the gross firing rate, which
meets our expectations since it raises the thresholds in the latter time-steps. The effect of OSR on firing rates
is more interesting: When OTS is not added, it increases the gross firing rate. However, it decreases the
total firing rate when OTS is added. For per-time-step firing rates, when the OTS mechanism is not added,
the neurons fire far fewer spikes in the first time-step compared with later time-steps, while the firing rate
is relatively stable from the second time-step to the last time-step. Besides, our OTS mechanism has not
perfectly eliminated the firing rate variation among time-steps. Actually, it slightly over-lifts the firing rate of
the first time-step, which might be caused by the firing rate distribution difference among time-steps.

6 CONCLUSION AND FUTURE WORK

In this paper, we investigate online training for spiking neural networks, aiming to reduce training memory
costs. We integrate essential batch normalization into the online training process by introducing online spiking
renormalization and online threshold stabilizers to enhance training stability. Experiments on diverse datasets
demonstrate the effectiveness of our proposed modules, showcasing the superior performance of our holistic
approach among SNN online training algorithms. However, our approach currently falls short of BPTT in
performance, primarily due to the absence of inner-layer and inter-layer reverse-in-time dependencies during
backpropagation. Addressing the inner-layer dependency might involve incorporating eligibility traces, but
effectively managing the significant inter-layer dependency in online learning remains a challenge. Moreover,
achieving biologically plausible learning necessitates local (Journé et al., 2022) and event-driven (Zhu et al.,
2022) properties in addition to online behavior—areas we haven’t extensively explored in this work. These
shortcomings present promising avenues for future research and deeper investigation.
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A THEORETICAL DERIVATION

To make it easy to follow, We rewrite Assumption. 4.1 as follows:

Assumption A.1. Assume all entries of sl−1[t] (of size B ·Cin) and W l (of size Cin ·Cout) are independent
for 1 ≤ t ≤ T , all sl−1

i [t] obey i.i.d Bernoulli(p[t]) distribution, and all wl
ji obey any i.i.d distribution.

For simplicity, we omit the superscript l and l − 1 in the following derivation. Before proving the theorems,
we derive the mean and variance of variable Ibi[t] in Lemma. A.2 and Lemma. A.3:

Lemma A.2. When Assumption 4.1 holds, all Ibi[t] will share the identical distribution, and E[Ibi[t]] =
Cinp[t]E[wji], VAR[Ibi[t]] = Cin(p[t]VAR[wji] + (p[t]− p[t]2)E2[wji]).

Proof. Since Ibi[t] =
∑Cin

j=1 sbj [t]wji are all sum of products of independent variables with identical distri-
butions (sbj [t] and wji), they share the identical distribution. We calculate the mean and variance of Ibi[t] as
follows:

E[Ibi[t]] =
Cin∑
j=1

E(sbj [t])E(wji) = Cinp[t]E[wji] (17)

E[I2bi[t]] = E


Cin∑

j=1

sbj [t]wji

2
 = E

Cin∑
j=1

(
sbj [t]wji

)2+ Cin(Cin − 1)p[t]2E2[wji]

=

Cin∑
j=1

E[sbj [t]2]E[w2
ji] + Cin(Cin − 1)p[t]2E2[wji]

= Cinp[t]E[w2
ji] + Cin(Cin − 1)p[t]2E2[wji] (18)

VAR(Ibi[t]) = E[I2bi[t]]− E2[Ibi[t]] = Cin(p[t]E[w2
ji]− p[t]2E2[wji])

= Cin(p[t]VAR[wji] + (p[t]− p[t]2)E2[wji]) (19)

Lemma A.3. When Assumption 4.1 holds, for all 1 ≤ b1, b2 ≤ B, 1 ≤ i1, i2 ≤ Cout, and 1 ≤ t1, t2 ≤ T ,
Ib1i1 [t1] and Ib2i2 [t2] are uncorrelated when (b1, t1) ̸= (b2, t2) and i1 ̸= i2. When (b1, t1) = (b2, t2)
and i1 ̸= i2, COV(Ibi1 [t], Ibi2 [t]) = CinE2[wji](p[t] − p[t]2); When (b1, t1) ̸= (b2, t2) and i1 = i2,
COV(Ib1i[t1], Ib2i[t2]) = Cinp[t1]p[t2]VAR[wji].

Proof. Since Ibi[t] =
∑Cin

j=1 sbj [t]wji,

COV(Ib1i1 [t1], Ib2i2 [t2]) = COV(
Cin∑
j=1

sb1j [t1]wji1 ,

Cin∑
j=1

sb2j [t2]wji2) (20)
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When (b1, t1) ̸= (b2, t2) and i1 ̸= i2, the lemma is trivial since the entries in the summation are all
uncorrelated. For the case when (b1, t1) = (b2, t2), we have:

COV(Ibi1 [t], Ibi2 [t]) = E


Cin∑

j=1

sbj [t]wji1

Cin∑
j=1

sbj [t]wji2)


− E[Ibi1 [t]]E[Ibi2 [t]]

=

Cin∑
j=1

(
E(sbj [t]2wji1wji2)− E(sbj [t]wji1)E(sbj [t]wji2)

)

=

Cin∑
j=1

(
p[t]E2[wji1 ]− p[t]2E2[wji1 ]

)
= CinE2[wji](p[t]− p[t]2) (21)

For the case when i1 = i2, we have:

COV(Ib1i[t1], Ib2i[t2]) = E


Cin∑

j=1

sb1j [t1]wji

Cin∑
j=1

sb2j [t2]wji)


− E[Ib1i[t1]]E[Ib2i[t2]]

=

Cin∑
j=1

(
E(sb1j [t1]sb2j [t2]w2

ji)− E(sb1j [t1]wji)E(sb2j [t2]wji)
)

=

Cin∑
j=1

(
p[t]2E[w2

ji]− p[t1]p[t2]E2[wji]
)

= Cinp[t1]p[t2]VAR[wji] (22)

After getting the mean, variance, and covariance of Ibi[t], we can prove the following theorems by calculating
the coefficient before the variance of p[t]:

Theorem A.4. When Assumption 4.1 holds and the gross firing rate p holds constant, then the expectation of
sample variance of µ[t] among time-steps E

[
1
T

∑T
t=1 µ[t]

2 − µ2
]

increases when the variance of firing rate

among time-steps 1
T

∑T
t=1 p[t]

2 − p2 increases.

Proof. Here we omit the subscript b (the batch dimension) for Ibi[t]. First we calculate the expectation of
µ[t] and µ:

E[µ[t]] = E[Ibi[t]] = Cinp[t]E[wji] (23)

E[µ] =
1

T

T∑
t=1

E[µ[t]] = CinpE[wji] (24)

14



Under review as a conference paper at ICLR 2024

Then we calculate the second moment, including E[µ[t]2] and E[µ[t1]µ[t2]]:

E[µ[t]2] = E2[µ[t]] + VAR[µ[t]] = C2
inp[t]

2E2[wji] +
1

C2
out

VAR

Cout∑
i=1

Ii[t]


=C2

inp[t]
2E2[wji] +

1

C2
out

Cout∑
i=1

VAR(Ii[t]) + 2
∑

1≤i1<i2≤Cout

COV(Ii1[t], Ii2[t])


=C2

inp[t]
2E2[wji] +

1

C2
out

(
CoutCin(p[t]E[w2

ji]− p[t]2E2[wji]) + Cout(Cout − 1)CinE2[wji](p[t]− p[t]2)
)

=C2
inp[t]

2E2[wji] +
Cin

Cout

(
p[t]VAR[wji] + Cout(p[t]− p[t]2)E2[wji]

)
. (25)

E[µ[t1]µ[t2]] = E[µ[t1]]E[µ[t2]] + COV[µ[t1], µ[t2]]

=C2
inp[t1]p[t2]E2[wji] +

1

C2
out

COV

Cout∑
i=1

Ii[t1],

Cout∑
i=1

Ii[t2]


=C2

inp[t1]p[t2]E2[wji] +
1

C2
out

Cout∑
i=1

COV
(
Ii[t1], Ii[t2]

)
=C2

inp[t1]p[t2]E2[wji] +
Cin

Cout
p[t1]p[t2]VAR[wji]. (26)

Finally, we can calculate the target function:

E

 1

T

T∑
t=1

µ[t]2 − µ2

 =E

 1

T

T∑
t=1

µ[t]2 −

 1

T

T∑
t=1

µ[t]

2


=
T − 1

T 2

T∑
t=1

E[µ[t]2]− 2

T 2

∑
1≤t1<t2≤T

E[µ[t1]µ[t2]]

=
T − 1

T 2

T∑
t=1

(
C2

inp[t]
2E2[wji] +

Cin

Cout

(
p[t]VAR[wji] + Cout(p[t]− p[t]2)E2[wji]

))
− 2

T 2

∑
1≤t1<t2≤T

(
C2

inp[t1]p[t2]E2[wji] +
Cin

Cout
p[t1]p[t2]VAR[wji]

)

=C2
inE2[wji]

 1

T

T∑
t=1

p[t]2 − p2

+ CinE2[wji]

T − 1

T
p− T − 1

T 2

T∑
t=1

p[t]2


+

Cin

Cout
VAR[wji]

T − 1

T
p+

1

T 2

T∑
t=1

p[t]2 − p2

 (27)

When p is constant, the variance among time-steps only depends on
∑T

t=1 p[t]
2. In the last equation of

Eq. 27, the only thing that can vary is
∑T

t=1 p[t]
2, and the coefficient in front of it is always positive

(C2
inE2[wji] · 1

T ≥ CinE2[wji] · 1
T ≥ CinE2[wji] · T−1

T 2 ). Therefore, the conclusion holds.
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Theorem A.5. When Assumption 4.1 holds and the gross firing rate p keeps constant, then the expectation of
variance within time-steps E[ 1T

∑T
t=1 σ

2[t]] keeps constant.

Proof. We first calculate E[σ2[t]] and then sum them up. The E[σ2[t]] can be split into calculating E[Ii[t]2]
and E[µ[t]2], which have been calculated before.

E[σ2[t]] = E

 1

Cout

Cout∑
i=1

Ii[t]
2 − µ[t]2

 =
1

Cout

Cout∑
i=1

E[Ii[t]2]− E[µ[t]2]

=Cinp[t]E[w2
ji] + Cin(Cin − 1)p[t]2E2[wji]− C2

inp[t]
2E2[wji]−

Cin

Cout

(
p[t]VAR[wji] + Cout(p[t]− p[t]2)E2[wji]

)
=Cinp[t]E[w2

ji]− Cinp[t]
2E2[wji]−

Cin

Cout

(
p[t]VAR[wji] + Cout(p[t]− p[t]2)E2[wji]

)
=Cin(p[t]VAR[wji] + (p[t]− p[t]2)E2[wji])−

Cin

Cout

(
p[t]VAR[wji] + Cout(p[t]− p[t]2)E2[wji]

)
=
Cin(Cout − 1)

Cout
p[t]VAR[wji] (28)

E

 1

T

T∑
t=1

σ2[t]

 =
1

T

T∑
t=1

Cin(Cout − 1)

Cout
p[t]VAR[wji] =

Cin(Cout − 1)

Cout
· p · VAR[wji] (29)

As a result, the variance of p[t] will not affect E
[
1
T

∑T
t=1 σ

2[t]
]
, which means it keeps constant.

B IMPLEMENTATION DETAILS

We conduct experiments on CIFAR10, CIFAR100, DVS-Gesture, CIFAR10DVS, and Imagenet datasets. The
network structure of VGGSNN we use for the CIFAR10, CIFAR100, DVS-Gesture, CIFAR10-DVS datasets is
consistent with OTTT (64C3-128C3-AP2-256C3-256C3-AP2-512C3-512C3-AP2-512C3-512C3-GAP-FC),
where 64C3 denotes convolution layer with 3× 3 convolution kernel and 64 output channels, AP2 means
2×2 average pooling, GAP means global average pooling, and FC means fully connected layer. For Imagenet
classification, we just use standard Resnet-34 architecture.

In all experiments, we use an SGD optimizer with a momentum of 0.9 with a cosine annealing scheduler.
The data augmentation we use for each dataset is listed as follows: For CIFAR10 and CIFAR100, we use
RandomCrop(4) + Cutout() + RandomHorizontalFlip() + Normalize(); For DVS-Gesture, we use RandomRe-
sizedCrop(128, scale=(0.7, 1.0)) + Resize(48) + RandomRotation(20) + RandomTemporalDelete(14) (recall
the total time-step is 20, and the random temporal delete drops 6 time-steps (30%)). For CIFAR10-DVS, we
use the neuromorphic data augmentation (NDA) which comes from (Li et al., 2022). For Imagenet, we use
RandomResizedCrop(224) + RandomHorizontalFlip() + Normalize() during training. During testing, the
image is first resized to 256× 256 and center-cropped to 224× 224 and then normalized. Other hyperparam-
eters we use are provided in Table 3, including total training epochs, batch size, learning rate, weight decay,
weight of MSE loss in Eq. 5 ϵ, and dropout rate.

C MEMBRANE POTENTIAL VISUALIZATION

To see whether the Gaussian assumption in OTS is reasonable, we collect the membrane potential of a VGG
network trained with OSR and OTS on the CIFAR-10 dataset and visualize the distribution of membrane
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Table 3: Experimental configurations

CIFAR10 CIFAR100 DVS-Gesture CIFAR10-DVS Imagenet

Epochs 300 300 300 300 100
Batch size 128 128 128 128 256

Learning rate 0.1 0.1 0.01 0.1 0.1
Weight decay 5e-4 5e-4 5e-4 5e-4 2e-5
MSE weight ϵ 0.05 0.05 0.001 0.001 0.05
Dropout rate 0 0 0.05 0.1 0

potentials for each layer and each time step. The results are shown in Fig. 3. These distributions display the
shape of bell curves, which indicate the similarity between these distributions and Gaussian distributions.
Most of the distributions take the mean value around zero. Our proposed algorithm can exploit the adaptation
of batch normalization and can cope with the varied distributions during online learning of spiking neural
networks.
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(c) Layer 3
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(e) Layer 5
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(f) Layer 6
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(g) Layer 7
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(h) Layer 8

Figure 3: Visualization of the distributions of membrane potentials for each layer and each time step.
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