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ABSTRACT

Large-scale conditional diffusion models (DMs) have demonstrated exceptional
ability in generating high-quality images from textual descriptions, gaining
widespread use across various domains. However, these models also carry the
risk of producing harmful, sensitive, or copyrighted content, creating a pressing
need to remove such information from their generation capabilities. While retrain-
ing from scratch is prohibitively expensive, machine unlearning provides a more
efficient solution by selectively removing undesirable knowledge while preserving
utility. In this paper, we introduce COncept REconditioning (CORE), a simple
yet effective approach for unlearning diffusion models. Similar to some existing
approaches, CORE guides the noise predictor conditioned on forget concepts to-
wards an anchor generated from alternative concepts. However, CORE introduces
key differences in the choice of anchor and retain loss, which contribute to its
enhanced performance. We evaluate the unlearning effectiveness and retainabil-
ity of CORE on UnlearnCanvas. Extensive experiments demonstrate that CORE
surpasses state-of-the-art methods including its close variants and achieves near-
perfect performance, especially when we aim to forget multiple concepts. More
ablation studies show that CORE’s careful selection of the anchor and retain loss
is critical to its superior performance.

1 INTRODUCTION

In recent years, large-scale text-to-image generative models, especially Diffusion Models (DM),
have made remarkable advancements in artificial intelligence by exhibiting an unprecedented ability
to create high-resolution, high-quality images from text descriptions (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Rombach et al., 2022). The versatility and accessibility of diffusion models have led
to their widespread adoption across various industries (Croitoru et al., 2023; Kazerouni et al., 2023;
Yang & Hong, 2022; Xu et al., 2022).

Despite their broad utility, diffusion models come with inherent risks due to their extensive training
on diverse datasets. These models have the potential to generate inappropriate, harmful, or legally
sensitive content. For example, Stable Diffusion can produce images that involve pornography, ma-
lign stereotypes, and gender and race biases based on the embedded prejudices in their training
data, even conditional on non-harmful prompts (Birhane et al., 2021; Schramowski et al., 2023;
Larrazabal et al., 2020). They can memorize and reproduce realistic yet inappropriate depictions
of individuals without their consent, posing huge privacy risks (Somepalli et al., 2023a;b; Carlini
et al., 2023). They can also create misleading or harmful media involving real individuals, such as
deepfakes (Mirsky & Lee, 2021). Moreover, they can mimic potentially copyrighted content and
replicate styles of real artists, raising legal concerns related to copyright infringement and intellec-
tual property rights, as well as undermining artistic originality (Shan et al., 2023; Roose, 2022; Liu,
2022; Popli, 2022; Scenario, 2022; Brittan, 2023).

To address these concerns, legislative frameworks such as the European Union’s General Data Pro-
tection Regulation (GDPR) (Mantelero, 2013; Voigt & Von dem Bussche, 2017) and the US’s Cal-
ifornia Consumer Privacy Act (CCPA) (CCPA, 2018) have established the Right to be Forgotten.
These laws mandate that applications must support the deletion of personal information contained
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Figure 1: Overview of Concept Reconditioning. pf , pr, pa are the concepts targeted to be forgotten
(i.e., forget concepts), to be remembered (i.e., retain concepts), and to guide unlearning (i.e., alter-
native concepts), respectively. t is the number of steps in the denoising process and is uniformly
sampled within [0, T ], where T denotes the total number of denoising steps in diffusion models. εθ
is the noise predictor function we aim to optimize, while εθ∗ is the noise predictor in the pre-trained
diffusion models.

in training samples upon user request. Consequently, there is a pressing need for effective methods
to mitigate these risks by enabling diffusion models to unlearn such undesirable content, ensuring
that their deployment is both responsible and aligned with societal values.

A straightforward method is to retrain the model from scratch using a filtered dataset devoid of in-
appropriate content. However, this approach is computationally intensive and often impractical due
to the enormous resources required. For instance, training Stable Diffusion 2.0 on a filtered image
set (Schuhmann et al., 2022; Rombach & Esser, 2022) demands approximately 150,000 GPU hours
on 256 A100 GPUs. Early attempts to unlearn large-scale generative models include decoding-time
guidance and post-generation filtering (Rando et al., 2022; Schramowski et al., 2023); however,
these methods do not modify the model weights and can be easily bypassed during deployment. Re-
cent research has pivoted towards more robust fine-tuning-based unlearning approaches that modify
a model’s weights to effectively forget specific undesirable elements (Gandikota et al., 2023; Fan
et al., 2023; Heng & Soh, 2024; Kumari et al., 2023; Wu et al., 2024; Zhang et al., 2024a; Wu &
Harandi, 2024; Li et al., 2024b). These methods aim to steer the noise predictor in diffusion models
away from the target concepts intended to be forgotten by efficiently fine-tuning a small fraction of
parameters.

In this work, we propose COncept REconditioning (CORE), a novel, simple, but effective un-
learning method for diffusion model. This method leverages a fixed, non-trainable noise to guide
the unlearning process, circumventing the need for dual noise predictors or the use of Gaussian noise
as a target. CORE specifically alters the noise prediction mechanism for the target images condi-
tioned on concepts in the forget set (i.e., forget concepts), aligning them closer to concepts in the
retain set (i.e., retain concepts), thereby blurring the distinction between correctly generated images
from forget concepts and incorrectly generated ones from retain concepts. We position CORE within
a more general framework of Concept Erasing, and compare our method with other baselines that fit
into this framework. Despite its simplicity, we demonstrate its superiority over existing methodolo-
gies through rigorous testing on the UnlearnCanvas framework, and show CORE excels in overall
performance including unlearning ability, retainability, and generalization ability, especially when
we aim to forget multiple concepts.

Our contributions are summarized as follows.

• We introduce COncept REconditioning (CORE) as a new efficient and effective unlearn-
ing method on diffusion models, and position it in a broader conceptual framework of
concept erasing.

• Extensive empirical validations on UnlearnCanvas showcase that CORE significantly out-
performs existing baselines, achieving nearly perfect scores and setting new state-of-the-
arts for the overall performance in unlearning diffusion models on UnlearnCanvas. CORE
also shows strong capabilities of generalization in unlearning styles.
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• Ablation studies highlight the benefits of using a fixed, non-trainable target noise over
other methods. Additionally, our findings emphasize the superiority of one-to-one concept
reconditioning over other schemes of selecting reconditioning concepts.

1.1 RELATED WORKS

Malicious Behavior of Diffusion Models. Diffusion models have demonstrated impressive ca-
pabilities in generating high-quality, efficient text-to-image outputs (Ho et al., 2020; Song et al.,
2020; Rombach et al., 2022). However, these large-scale trained models can pose significant pri-
vacy and ethical risks. They are capable of memorizing private images and reproducing objection-
able content, such as pornography, private personal photos, malign stereotypes, gender and race
biases (Schramowski et al., 2023; Larrazabal et al., 2020; Carlini et al., 2023; Somepalli et al.,
2023a; Rando et al., 2022). This mainly stems from the contaminated data sources which involves
problematic image-text pairs (Birhane et al., 2021). Furthermore, diffusion models can cause po-
tential issues about copyright infringement by mimicking, or even replicatiing the styles of some
specific artistic and their copyrighted work (Shan et al., 2023). Reports showed that AI-generated
arts can sometimes be published commercially (Liu, 2022; Popli, 2022; Scenario, 2022) and even
awarded prizes (Roose, 2022), raising more serious social concerns about intellectual property vio-
lations (Brittan, 2023; Somepalli et al., 2023b; Shan et al., 2023).

Diffusion Model Unlearning. The goal of unlearning diffusion models is to eliminate unwanted
concepts and their influence on model outputs. Directly retraining a model to remove such concepts
is highly resource-intensive and thus inefficient for large diffusion models (Nichol et al., 2021; Rom-
bach et al., 2022; Schuhmann et al., 2022). Recent research has explored more efficient unlearning
techniques. One approach focuses on inference-time methods, which attempt to filter or steer the
model away from undesirable outputs during generation (Rando et al., 2022; Schramowski et al.,
2023). However, these methods are often limited in effectiveness and can be bypassed, particu-
larly in open-source models (SmithMano, 2023). A more robust alternative involves fine-tuning the
model’s parameters to actively remove undesirable concepts from its learned representations (Zhang
et al., 2024a; Li et al., 2024b; Lyu et al., 2024; Heng & Soh, 2023; Vyas et al., 2023; Gandikota
et al., 2024). Some methods are similar to ours: Gandikota et al. (2023); Wu et al. (2024) match the
denoising network of correct images given a target concept to another distribution. Fan et al. (2023)
additionally adds a saliency map to fine-tune only a small fraction of parameters. Heng & Soh
(2024) does gradient ascent on the training loss of diffusion models. Kumari et al. (2023) minimizes
the distribution mismatch between the target concept and another anchor concept. We will discuss
the difference between our algorithm and theirs in more detail in Section 3.2. Effective though,
achieving robust unlearning on complex tasks still remains challenging (Zhang et al., 2024c;d). For
a comprehensive review of unlearning techniques in generative models, see Liu et al. (2024a).

Machine Unlearning. Machine unlearning has been extensively explored within classification
tasks (Cao & Yang, 2015; Bourtoule et al., 2021; Sekhari et al., 2021; Izzo et al., 2021; Thudi
et al., 2022) and is now being applied to large generative models. One popular class of unlearn-
ing methods stems from Gradient Ascent(GA) (Jang et al., 2022; Yao et al., 2023; Chen & Yang,
2023; Zhang et al., 2024b). More methods include preference optimization (Zhang et al., 2024b;
Maini et al., 2024; Park et al., 2024), model-editing (Meng et al., 2022; Mitchell et al., 2022; El-
dan & Russinovich, 2023), knowledge negation (Liu et al., 2024b), representation control (Li et al.,
2024a), logits difference method (Ji et al., 2024), random labeling, saliency map (Dou et al., 2024;
Tian et al., 2024), and in-context unlearning approaches (Pawelczyk et al., 2023), etc. Some other
methods are developed for adversarial unlearning or sequential unlearning tasks (Zhang et al., 2024e;
Yuan et al., 2024; Gao et al., 2024). These unlearning methods for language models are orthogonal
to our proposed method for unlearning diffusion models.

2 PRELIMINARIES

Machine Unlearning. Machine Unlearning (MU) refers to the process of systematically removing
the influence of specific data points from a trained machine learning model, ensuring that the model
forgets information as if the data points were never included in its training set. In this context, let
D represent the training dataset, and let Df ⊂ D denote the forget set, the subset of data that needs
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to be unlearned. The retain set, denoted as Dr ⊂ D, is the complement of the forget set. The
goal of machine unlearning is to produce a new model that closely approximates the performance
of retraining from scratch on Dr while also ensuring that the model does not retain any knowledge
of Df . Unlearning has traditionally been explored in the context of classification models, where
the model aims to either forget the influence of specific classes of data or forget some random
samples (Cao & Yang, 2015; Bourtoule et al., 2021). In recent developments, machine unlearning
has been extended to large generative models, where the model must unlearn specific objectives to
ensure that certain generated outputs, such as sensitive, private, copyrighted, or harmful content,
will not be generated. Traditionally, the most straightforward method of unlearning is to retrain the
model from scratch solely with the retain set. However, for large generative models, this approach
is practically infeasible due to the huge computational costs involved. Alternative methods, such as
prompt-based methods or post-generation filtering, have been explored. Yet, these techniques are
easily circumvented since they do not modify the internal model weights. As a result, they fail to
truly “forget” the data. In this paper, we focus on efficient fine-tuning techniques, which allow for
effective unlearning while maintaining computational feasibility by directly updating only a subset
of the model’s parameters.

Unlearning Diffusion Models. Diffusion models are a class of generative models that have gained
significant attention for their ability to generate high-quality images. They work by transforming
data distributions through T forward and reverse steps, gradually adding noise to the data and then
learning to reverse this process to generate new samples. Mathematically, this can be described by a
series of noisy images x0,x1, ...,xT ∈ Rd, where x0 is the original image, and xT is the Gaussian
noise. Latent Diffusion Model (LDM) (Rombach et al., 2022) first compresses high-dimensional
pixel-based data into a low-dimensional latent space using an encoder E . It then simulates the diffu-
sion process on the space of latent variables z = E(x) and reconstructs the image through a decoder
D. For notational simplicity, we do not differentiate between latent variables and pixel-based data,
denoting both as x. In this context, let εθ (xt, p) represent the noise estimator parameterized by θ,
where xt is the noisy observation at step t, and p is a conditioning variable such as a class label or
text description. The training objective of latent diffusion models is the mean squared error (MSE)
between the predicted noise and the true noise across all diffusion steps, expressed as:

LMSE(θ) = Ep,t,ε∼N (0,I)

[
∥ε− εθ (xt, p)∥22

]
, (1)

where p is sampled from a distribution over all prompts and t is sampled uniformly from [0, T ].
Given a pre-trained latent diffusion model, the objective of unlearning this diffusion model is to
ensure that harmful or sensitive content, such as depictions of nudity or violence, can no longer be
produced by the model when prompted with the corresponding text descriptions. The challenge lies
in balancing the removal of unwanted generations while preserving the model’s ability to generate
high-quality, appropriate content for normal prompts. The most common unlearning process in
diffusion models involves updating the noise estimator to ensure that harmful concepts associated
with Df are no longer learned or reinforced during the reverse diffusion process. This form of
unlearning, often referred to as “concept erasure”, is critical for ensuring the safe deployment of
generative models in real-world applications. More details are included in Section 3.2.

3 CONCEPT RECONDITIONING

In this section, we propose COncept REconditionng (CORE), a simple yet effective algorithm
for unlearning in diffusion models. Our approach focuses on reconditioning the model’s learned
representations by substituting concepts from the forget set with selected alternative concepts from
the retain set. First, we introduce the objective function and key designs within. Then, we position
it within the broader framework of Concept Erasing and compare it with similar algorithms in prior
works to showcase its advantage.

3.1 PROPOSED METHOD

Unlearn objective. In the context of unlearning in diffusion models, we denote the noise predictor
in Latent Diffusion Models by εθ(xt, p), where xt is the noisy version of the input image x0 at time
step t generated during the forward diffusion process, p is the prompt associated with the image
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(e.g., “A cat in the style of Van Gogh”), and θ represents the model parameters. We use εθ∗(xt, p)
and θ∗ to denote the pre-trained diffusion model and its parameter. In CORE, we aim to recondition
images from the forget set onto alternative concepts. This is achieved by aligning the noise estimator
for images in the forget set, conditioned on their original concepts pf ∈ Df , toward the ground truth
noise estimator for the same image but conditioned on an alternative concept pa. Mathematically,
the unlearn objective function is formulated as

Lf (θ) := E(pf ,x0)∼Df ,pa ̸=pf ,t

[
∥εθ (xt, pf )− εθ∗ (xt, pa) ∥22

]
, (2)

where the expectation is taken over the concept-image pairs (pf ,x0) from the forget set, alternative
concepts pa different from pf , and time steps t uniformly sampled from [0, T ]. Intuitively, this
process effectively weakens the association between the images and their original concepts in the
model, steering it away from the initial pre-trained associations.

Alternative concepts. A key design choice in CORE is the selection of alternative concepts pa in
equation (2). In the unlearning objective, pa acts as an anchor concept, and we recondition images
from the forget set onto the anchor concepts. Previous works typically use an empty string or a single
base concept for pa consistently across all concepts to be unlearned (Zhang et al., 2024c; Gandikota
et al., 2023). In contrast, CORE adopts a different approach by pairing each forget concept pf with
a specific alternative concept pa. Our pairing scheme imposes minimal restrictions: the alternative
concept pa does not necessarily have to come from the retain set; it can even be another forget
concept different from pf . In our implementation, when the number of concepts to forget is smaller
than the number of retain concepts, we map each forget concept to a unique concept in the retain set,
rather than using a single base concept for all forget concepts. Meanwhile, when the retain concepts
are limited and there are more concepts to forget, we create a one-to-one mapping among the forget
concepts themselves. This means that each forget concept pf is paired with another forget concept
pa (where pa ̸= pf ) to serve as its alternative concept during unlearning. Empirically, we show
that this one-to-one mapping strategy significantly outperforms methods that consistently use a base
concept or randomly sample alternative concepts at each step.

Retain objective and the full loss function. To ensure the model continues generating high-
quality images for the retain concepts, we introduce a retain loss to regularize the unlearning process.
Traditionally, the retain loss is defined as the Mean Squared Error (MSE) between the noise predic-
tion for the retain set and the Gaussian noise vector used to generate the noisy images, similar to the
objective used in training a diffusion model (see equation 1). However, in CORE, rather than fine-
tuning the noise predictions to match a Gaussian random vector, we instead align them with those
generated by the pre-trained diffusion model itself. Mathematically, the retain objective is defined
as

Lr(θ) := E(pr,x0)∼Dr,t

[
∥εθ (xt, pr)− εθ∗ (xt, pr) ∥22

]
, (3)

where t is uniformly sampled in [0, T ] and (pr,x0) are concept-image pairs sampled from the retain
set. Using εθ∗ (xt, pr) as the target helps ensure the model does not deviate too far from its original
capabilities, as it leverages the pre-trained model’s learned knowledge. Empirical results (see Sec-
tion 4) demonstrate that aligning the noise predictions with εθ∗ (xt, pr), rather than the Gaussian
noise, yields better performance. This improvement arises potentially because using the estimated
noise from the pre-trained model reduces variance in the unlearned model and stabilize the training
process. Interestingly, this phenomenon, where using estimated signals outperforms true signals,
has also been observed in other domains in statistics (Robins et al., 1992; Henmi & Eguchi, 2004;
Hitomi et al., 2008; Su et al., 2023).

Finally, the complete loss function in CORE combines both the unlearn and retain objectives:

L(θ) := Lf (θ) + α · Lr(θ), (4)

where α > 0 controls the regularization strength. Intuitively, CORE ensures that the model is
steered away from generating images associated with forget concepts while preserving its overall
performance on other concepts.

3.2 RETHINKING CONCEPT ERASING AND RECONDITIONING

At first glance, our proposed objective might seem similar to existing methods for unlearning in
diffusion models, as it also involves steering the error predictor on the forget set while keeping it
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unchanged on the retain set. However, under closer scrutiny, Concept Reconditioning introduces
several key distinctions that set it apart and enable it to outperform previous approaches. Take a
broader view of the framework of unlearning diffusion models: unlearning methods for diffusion
models that are based on fine-tuning the error predictor εθ(x, p) can generally be categorized into
two classes:

• Concept Erasing (CE): This method works by shifting the noise prediction network for
images corresponding to the forget concepts towards an alternative noise distribution. In-
tuitively, by doing so, it directly acts on εθ(x

f
t , pf ), where xf

t is the noisy observation for
images in the forget set, and misleads them away.

• Image Relabeling (IR): In this approach, alternative images that do not match the forget
concepts are selected, and the model is fine-tuned on the forget concepts paired with these
mismatched images. The model directly acts on εθ(x

r
t , pf ) where xr

t is the noisy images
constructed from the retain set, and effectively overwrites the old knowledge with new
associations, forcing it to forget by learning new, incorrect pairings.

Mathematically, these two classes can be formulated as

LCE(θ) := λ · E(pf ,x0)∼Df ,t

[
∥εθ (xt, pf )− yCE∥22

]
, (5)

LIR(θ) := λ · Epf∼Df ,x0∼Dr,t

[
∥εθ (xt, pf )− yIR∥22

]
. (6)

Here, λ ∈ {±1} controls the direction of the objective function. In the CE method, images are
drawn from the forget set, while in IR, images come from the retain set. The target noises yCE

and yIR can be either random vectors (e.g., Gaussian or Uniform) or derived from a trainable noise
predictor.

Many existing unlearning methods fit within this framework. For example, Heng & Soh (2024)
suggests λ = −1 and yCE ∼ N (0, Id) in equation (5) in the unlearning objective, while proposing
a surrogate objective with λ = 1 and yIR ∼ N (0, Id) in equation (6). The former corresponds to
a gradient ascent loss applied to the pre-training objective on forget concepts, while the surrogate
objective simply mirrors the standard training loss applied to the forget concepts with retain images.
Fan et al. (2023) takes yCE in equation (5) as a trainable noise predictor εθ(xt, pa) where pa ̸= pf
is an alternative concept coming from the retain set. Wu et al. (2024) also proposes this target noise,
as well as suggesting an alternative with yCE as a uniformly distributed random vector. Kumari et al.
(2023) takes yIR in equation (6) to be either a standard Gaussian random vector or the error predictor
at the last iterate, evaluated at retain images paired with corresponding retain concepts. Even when
the objective function appears divergent from this framework, as seen in Gandikota et al. (2023),
it can still be decomposed into a linear combination of objective functions in the framework above
(see Appendix B).

Although these prior works often include additional techniques such as weight decay (Heng &
Soh, 2024), saliency map (Fan et al., 2023), or even applying a monotonic function to the squared
loss (Park et al., 2024), the backbone of their unlearning objectives can be positioned into this simple
framework or its simple variants. Our method distinguishes itself from prior approaches by its sim-
plicity. Unlike previous methods, CORE requires no auxiliary techniques, and simply optimizing
the objective L(θ) in equation (4) achieves state-of-the-art results.

Another key distinction is that CORE uses a fixed, non-trainable noise predictor from the pre-trained
diffusion model as the target noise. This fixed anchor provides a clearer target noise compared to a
trainable network or a random vector with a fixed distribution (e.g., a uniformly distributed random
vector). Let us compare the three types of target noises. With a random vector from a fixed distri-
bution (Kumari et al., 2023; Heng & Soh, 2024), there is no guarantee that this manually designed
random vector will effectively disrupt the noise predictor conditioned on the forget concepts. A
trainable, non-fixed noise (Fan et al., 2023; Kumari et al., 2023; Wu et al., 2024) is unstable during
the unlearning process, particularly when aiming to forget many concepts over a long training pe-
riod, since this target may drift towards an undesired direction. While methods using trainable target
noises include a retain term in their loss function, this retain objective directly influences εθ(xr

t , pr)

but not εθ(x
f
t , pr), where xr

t and xf
t are noisy observations from the retain and forget sets, respec-

tively. In contrast, CORE’s use of a non-trainable target noise ensures that the noise predictor always
learns from a reference “incorrect” noise estimator derived from the pre-trained model.

6
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Abstractionism Bird
(Forget)

Original CORE (ours) CA-model CA-noise EDiff ESD SalUn

Artistic Sketch Dogs
(Forget)

Surrealism Butterfly
(Retain)

Van Gogh Cat
(Retain)

Figure 2: Generated images from the unlearned model. The first column is generated by the fine-
tuned Stable Diffusion model before any unlearning. Other columns are generated by the model
unlearned by our proposed method and five baseline methods. More images are included in Ap-
pendix C.

4 EXPERIMENTS

In this section, we show CORE outperforms baseline methods on UnlearnCanvas (Zhang et al.,
2024c).

4.1 EXPERIMENT SETUP

Dataset and Tasks. UnlearnCanvas is a high-resolution stylized image dataset designed to evalu-
ate diffusion model unlearning methods (Zhang et al., 2024c). The dataset consists of images across
50 unique styles and 20 distinct objects, with 20 images for each style-object combination. Each
image is labeled with both a style and an object, making it particularly well-suited for measuring the
unlearning effectiveness and the retainability both within a single domain and across domains. In
this paper, we mainly focus on style unlearning within the UnlearnCanvas dataset. We define three
unlearning tasks, each progressively forgetting more styles: Forget01 (forgetting 1 style), Forget06
(forgetting 6 styles), and Forget25 (forgetting 25 styles).

Models and Baselines. We use a Stable Diffusion v1.5 model (Rombach et al., 2022) to perform
the fine-tuning and unlearning, and we also use a vision Transformer (ViT-Large) (Dosovitskiy,
2020) on UnlearnCanvas for style and object classification. Before unlearning the model, the base
Stable Diffusion model is fine-tuned on all images from UnlearnCanvas. After completing the un-
learning phase, we prompt the unlearned model to generate images conditioned on concepts from
both forget and retain sets. The vision Transformer is then used to classify the generated images and
calculate the relevant metrics. We compare CORE with several state-of-the-art unlearning methods
for diffusion models, including ESD (Gandikota et al., 2023), SalUn (Fan et al., 2023), Ediff (Wu
et al., 2024), CA-model and CA-noise (Kumari et al., 2023). See Appendix B for more details.

Metrics. Following Zhang et al. (2024c), we use Unlearning Accuracy (UA) to assess the unlearn-
ing effectiveness. UA is the percentage of images generated by the unlearned model, conditioned
on the forget concepts, which are incorrectly classified by the vision Transformer. A higher UA
indicates stronger unlearning capabilities. We measure retainability using two metrics: In-domain

1There are 60 styles in UnlearnCanvas dataset, but in its latest codebase only 50 styles are used. See
https://github.com/OPTML-Group/UnlearnCanvas.
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Retain Accuracy (IRA) and Cross-domain Retain Accuracy (CRA). IRA refers to the classifica-
tion accuracy of generated images prompted with retain concepts, within the same domain (e.g.,
when forgetting “Van Gogh’s style”, an in-domain prompt might be “A painting in crayon style”).
CRA measures accuracy for retain prompts across domains (e.g., for the same task, a cross-domain
prompt might be “A painting of a cat,” specifying the object). Additionally, we evaluate the quality
of generated images using the scaled FID (SFID) score, which maps the original FID score (Heusel
et al., 2017) onto a 0–100 scale, where higher SFID values indicate better generation quality. We
also present the summation of all four scores on a scale of 0-100, as a comprehensive measurement
of the unlearning capacity and retainability. For more experimental details, see Appendix A.

4.2 RESULTS

Algorithm UA (↑) IRA (↑) CRA (↑) SFID (↑) Total (↑)

Forget01

Original 0.00 100.00 96.67 100.00 296.67
Ediff 93.33 84.00 98.33 100.00 375.66

CA-model 96.67 80.00 92.78 100.00 369.45
CA-noise 100.00 100.00 96.11 100.00 396.11

SalUn 53.33 98.67 92.78 95.74 340.52
ESD 100.00 66.00 96.11 96.95 359.06

CORE (ours) 93.33 98.00 96.11 100.00 387.44

Forget06

Original 0.00 100.00 98.33 100.00 298.33
Ediff 45.00 80.00 99.17 100.00 324.17

CA-model 85.00 81.67 88.33 88.09 343.09
CA-noise 85.00 91.67 85.83 92.46 354.96

SalUn 90.00 83.33 98.33 88.52 360.18
ESD 100.00 75.00 100.00 93.47 368.47

CORE (ours) 90.00 100.00 97.50 99.56 387.06

Forget25

Original 1.20 96.54 95.29 100.00 293.03
Ediff 54.00 78.46 95.10 84.48 312.04

CA-model 68.60 78.85 95.69 81.73 324.87
CA-noise 47.20 86.15 90.59 82.09 306.03

SalUn 51.60 77.31 87.65 82.34 298.90
ESD 90.40 46.54 99.02 88.12 324.08

CORE (ours) 91.60 95.38 97.65 100.00 384.63

Table 1: Performance of CORE and five baseline methods using Stable Diffusion v-1.5 on Forget01,
Forget06, and Forget25 in UnlearnCanvas. Unlearning accuracy, In-domain and cross-domain retain
accuracy, and scaled FID value serve as main metrics and are summarized in Section 4.1. For details
about the scaled FID value, see Appendix A. The best total score is highlighted in bold.

CORE achieves the best overall performance. In Table 1, we present the unlearning effective-
ness and retainability of CORE compared to five baseline methods across Forget01, Forget06 and
Forget25 tasks from UnlearnCanvas. The “Original” row refers to the performance of the pre-trained
model without any unlearning. On Forget01, CORE ranks second overall based on the total score.
However, in the more challenging tasks Forget06 and Forget25, CORE consistently achieves the
highest total score among all methods, with an increasing performance gap over the baseline meth-
ods. Notably, CORE is the only method that maintains strong performance as the size of the forget
set grows. In the most difficult task, where 25 out of 50 concepts are targeted for forgetting, CORE
achieves the highest unlearning accuracy, in-domain retain accuracy, and scaled FID score, while
securing the second-best cross-domain retain accuracy. Compared to its close variants, ESD, CORE
achieves similar unlearning accuracy but significantly outperforms in retainability, particularly in
cross-domain tasks, due to the adoption of an additional retain loss. Compared to baseline meth-
ods that use a trainable noise predictor, such as SalUn and CA-model, CORE excels in forgetting
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more concepts due to the stability of its non-trainable target, which proves more reliable over longer
unlearning periods. Figure 2 shows some generated images using CORE and five baseline methods.

Algorithm UA (↑) IRA (↑) CRA (↑) SFID (↑) Total (↑)

Forget06

Ediff 36.67 81.67 92.50 100.00 310.84
CA-model 85.00 83.33 96.67 86.67 351.67
CA-noise 81.67 91.67 87.50 87.62 348.46

SalUn 95.00 65.00 90.83 86.37 337.20
ESD 100.00 46.67 99.17 86.11 331.95

CORE (ours) 83.33 100.00 96.67 99.67 379.67

Table 2: Generalization ability of CORE and baseline meth-
ods using Stable Diffusion v-1.5 on Forget06 of Unlearn-
Canvas. Unlearning accuracy, In-domain and cross-domain
retain accuracy, and scaled FID value serve as main metrics
and are summarized in Section 4.1. The best total score is
highlighted in bold.

CORE shows better generalization
ability in unlearning styles. We
further investigate CORE’s ability to
generalize in unlearning styles, aim-
ing to verify that CORE can effec-
tively unlearn specific target styles,
instead of simply overfitting to the
training objects. To assess this, we
train the model on only 10 objects for
each forget concept and then evalu-
ate the unlearning accuracy on 10 un-
seen objects. This tests the model’s
ability to generalize beyond the spe-
cific objects used during training. As
shown in Table 2, CORE outperforms
all baseline methods in terms of gen-
eralization ability.

The role of non-trainable target
noise. A key design choice in CORE is the use of non-trainable target noise from the pre-trained
diffusion model in both the unlearn and retain objectives. This is contrary to other approaches that
use trainable noise predictors as targets in the unlearn loss and Gaussian noise vectors as targets
in the retain loss. To isolate the specific effects of the non-trainable target noise, excluding the
influence of auxiliary techniques like saliency maps, we evaluate several variants of CORE:

• We replace εθ∗(xt, pa) with εθ(xt, pa) in equation (2), where xt are noisy images from
the forget set and pa is the alternative concept. This variant mirrors the backbone of the
unlearn loss used in SalUn (Fan et al., 2023).

• We replace εθ∗(xt, pa) with a Gaussian noise ε in equation (2) and apply a negative sign
to the unlearn loss. This variant follows the gradient ascent-based method, similar to the
unlearn loss in CA-noise (Kumari et al., 2023).

• We replace εθ∗(xt, pr) with a Gaussian noise ε in equation (3), where xt is noisy observa-
tions of images from the retain set. This variant is aligned with the retain loss employed in
many baseline methods (Heng & Soh, 2024; Kumari et al., 2023; Wu et al., 2024).

Unlearn Loss Retain Loss UA (↑) IRA
(↑)

CRA
(↑)

SFID
(↑)

Total
(↑)

CORE CORE 95.00 100.00 97.08 100.00 392.08
E∥εθ(x

f
t , pf )−εθ∗(x

f
t , pa)∥22 CORE 43.33 98.33 95.00 100.00 336.66

−E∥εθ(x
f
t , pf )− ε∥22 CORE 85.00 61.67 60.00 79.48 286.15

CORE E∥εθ(x
r
t , pr)−ε∥22 83.33 93.33 96.67 99.92 373.25

Table 3: Performance of CORE and its variants on the Forget06 task from UnlearnCanvas. In each
variant, one component of the loss function remains unchanged, while the non-trainable target noise
in the other component is replaced with alternative approaches. Metrics and are summarized in
Section 4.1. The best total score is highlighted in bold. Here, xf

t and xr
t are the noisy observations

for images in the forget set and retain set, respectively; pf , pa, pr correspond to forget concepts,
alternative concepts, and retain concepts, respectively. ε denotes the standard Gaussian random
vector used to generate xf

t . Here, we pair each forget concept with one distinct retain concept in all
experiments above.
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Scheme for reconditioned concepts UA (↑) IRA (↑) CRA (↑) SFID (↑) Total (↑)

Default (one-to-one) 91.60 95.38 97.65 100.00 384.63
One base concept (all-to-one) 82.40 60.00 98.33 93.06 333.79

Five base concepts (five-to-one) 93.40 84.04 98.43 96.52 372.39
Random concept (one-to-all) 56.60 95.77 96.96 100.00 349.33

Random from five concepts (one-to-five) 56.40 95.58 97.75 99.78 349.51

Table 4: Comparison of different alternative concept selection schemes. All experiments are done
in the Forget25 task from UnlearnCanvas. In CORE (referred to as “Default”), each forget concept
is paired one-to-one with a distinct alternative concept. One base concept: all forget concepts are
reconditioned onto a single base concept. Five base concepts: forget concepts are grouped into sets
of five, with each group reconditioned to one base concept. Random concept: a random alternative
concept is selected for each forget concept at every gradient step. Random from five concepts: each
forget concept is paired with five alternative concepts, with one randomly sampled at each step. The
best total score is highlighted in bold. Significant underperforming results are highlighted in green.

Anchor Selection: How do we approach it? Another key distinction between CORE and other
baseline methods lies in how anchors pa are selected in the unlearning objective (as defined in equa-
tion 2). In CORE, each forget concept pf is paired with a distinct alternative concept. This contrasts
with other methods that recondition all forget concepts to a single base concept or the empty string.
To demonstrate the effectiveness of CORE’s one-to-one pairing, we compare different selection
schemes: One approach involves pairing each forget concept with a set of alternative concepts (or
even the entire retain set) and randomly sampling one at each gradient step to recondition the tar-
get images. Another approach reconditions images from multiple or even all forget concepts onto
a single base concept. As shown in Table 4, CORE’s one-to-one reconditioning scheme signifi-
cantly outperforms these strategies. Specifically, unlearning accuracy declines sharply when forget
concepts are paired with multiple alternatives (one-to-all or one-to-five) and a random alternative is
sampled at each step. Conversely, the model’s stylistic retainability suffers when all forget concepts
are reconditioned to just one or a few base concepts.

5 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we introduce COncept REconditioning (CORE), a novel and effective method for
unlearning in diffusion models. CORE leverages a non-trainable target noise from the pre-trained
diffusion model to guide both the unlearning and retain objectives, thereby avoiding the pitfalls of
using trainable noise predictors or random Gaussian noise targets. Through extensive experiments
on the UnlearnCanvas dataset, we demonstrate that CORE consistently outperforms state-of-the-
art baseline methods in terms of unlearning effectiveness, retainability, and generalization ability,
particularly in challenging tasks involving multiple forget concepts. Moreover, we highlight the
importance of a one-to-one concept reconditioning scheme, which proves superior to other anchor
selection strategies.

There are several promising directions for future research. One key area is improving the efficiency
of unlearning, particularly when dealing with a large number of forget concepts. Current methods
can still be time-consuming when unlearning many concepts simultaneously. Exploring accelerated
unlearning methods while maintaining performance is an exciting avenue. Additionally, future work
could investigate the robustness of unlearning methods in dynamic environments, where new con-
cepts might continuously be added to the model, requiring continuous updates without retraining
from scratch.
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ETHICS STATEMENT

This work addresses potential ethical concerns related to the generation of sensitive or harmful
content by diffusion models. Our method of concept reconditioning was designed to mitigate the
generation of harmful or sensitive content, such as those involving biases, privacy violations, or
copyright infringement. Our work complies with applicable research integrity guidelines and en-
sures transparency in methodology and data usage to avoid any potential ethical violations.

REPRODUCIBILITY STATEMENT

In this paper, we use public dataset and open-sourced models. We attach a detailed description of
our proposed method and its training process to facilitate reproducibility.
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A EXPERIMENT DETAILS

Hyperparameter. All experiments are done using one 80GB NVIDIA A100 GPU. We use an
open-sourced Stable Diffusion v-1.5 for all experiments (Rombach et al., 2022), which is first fine-
tuned on all data in UnlearnCanvas before any unlearning process, and the fine-tuned model is
provided by Zhang et al. (2024c). As suggested in prior works (Gandikota et al., 2023; Zhang et al.,
2024c), we only fine-tune the cross-attention in U-Nets in the Stable Diffusion and freeze all other
parameters when doing unlearning. Following Zhang et al. (2024c), we use the first three images
for each style and object for training. For CORE, we run 25 epochs in Forget01 and Forget06, and
100 epochs in Forget25. In testing the generalization ability of unlearning styles, where the testing
and training objects are distinct, we double the epochs in Forget06. We use Adam with a constant
learning rate of 1 × 10−5 in CORE, and the batch size is set to 4. We set α = 1.0 in equation (4).
The hyperparameters used for training the baseline methods are described in Appendix B.

Scaled FID Values. Scaled FID (SFID) is a modified version of Fréchet Inception Distance
(FID) (Heusel et al., 2017), which ranges from zero to infinity and measures the quality of gen-
erated images. A lower FID value indicates a higher generation quality. To measure the overall
performance of unlearning algorithms, we convert the original FID value into Scaled FID value,
which ranges from 0 to 100 and increases when the generation quality grows. We compute the origi-
nal FID value for the base model and the unlearned model, denoted as FID0 and FIDM , respectively.
SFID is then defined as

SFIDM = min

{
100× FID0

FIDM
, 100

}
(7)

A model with better retainability tends to have higher SFID values. In our experiments, we compute
SFID values on the retain set.

B BASELINE METHODS OVERVIEW

In this section, we introduce baseline methods, discuss how they relate to our proposed approach,
and describe their training procedures. For the most part, the training setup for these baseline meth-
ods follows Zhang et al. (2024c). We set the alternative concept as one common base concept (one
base style) in Forget01. For each step, we randomly sample one alternative concept from the retain
set in Forget06. In Forget25, we create a bijection from the 25 concepts in the forget set and the
other 25 concepts in the retain set. In Forget25, we have also tried to pick a random alternative
concept at each step, but this worsens the performance for all baselines by a large margin.

ESD (Gandikota et al., 2023). ESD is the first method that offers both efficiency and effective-
ness in unlearning for diffusion models. It utilizes a more complex unlearning objective without
incorporating a retain objective. As a result, ESD’s retainability is generally outperformed by other
methods. The objective function for ESD is defined as follows:

LESD(θ) := E(x0,pf )∼Df ,t

∥∥∥εθ(xt, pf )−
(
εθ∗(xt, p0)− η

(
εθ∗(xt, pf )− εθ∗(xt, p0)

))∥∥∥2
2
, (8)

where (x0, pf ) are sampled from the forget set, t is uniformly sampled from [0, T ], εθ and εθ∗

are the current and pre-trained noise predictors in diffusion models. Here, p0 is a base concept,
which can be an empty string (Gandikota et al., 2023) or a base style in UnlearnCanvas. In our
experiments, according to Gandikota et al. (2023), we set η = 1.0, batch size to 1, and the learning
rate to 1× 10−5, and we run 1000 gradient steps.
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Although the objective in ESD seems to be very different from our framework of concept erasing,
we can still fit it into our framework in Section 3.2 via proper decomposition. Namely,

LESD(θ) : = E(x0,pf )∼Df ,t

∥∥∥εθ(xt, pf )−
(
εθ∗(xt, p0)− η

(
εθ∗(xt, pf )− εθ∗(xt, p0)

))∥∥∥2
2

= E(x0,pf )∼Df ,t ∥εθ(xt, pf )− (1 + η)εθ∗(xt, p0) + ηεθ∗(xt, pf )∥22
= E(x0,pf )∼Df ,t

(
εθ(xt, pf )

2 + (1 + η)2 · εθ∗(xt, p0)
2 + η2 · εθ∗(xt, pf )

2

+ 2η · εθ(xt, pf ) · εθ∗(xt, pf )− 2(1 + η) · εθ(xt, pf ) · εθ∗(xt, p0)

− 2η(1 + η) · εθ∗(xt, p0) · εθ∗(xt, pf )
)

= E(x0,pf )∼Df ,t

(
(1 + η) ·

(
εθ(xt, pf )− εθ∗(xt, p0)

)2 − η ·
(
εθ(xt, pf )− εθ∗(xt, pf )

)2
+ η(1 + η) ·

(
εθ∗(xt, p0)− εθ∗(xt, pf )

)2)
= (1 + η)E(x0,pf )∼Df ,t

(
εθ(xt, pf )− εθ∗(xt, p0)

)2︸ ︷︷ ︸
(a)

−ηE(x0,pf )∼Df ,t

(
εθ(xt, pf )− εθ∗(xt, pf )

)2︸ ︷︷ ︸
(b)

+ η(1 + η)E(x0,pf )∼Df ,t

(
εθ∗(xt, p0)− εθ∗(xt, pf )

)2︸ ︷︷ ︸
(c)

.

Since term (c) in the last line is a constant independent of θ, we can omit it in the loss function. The
remaining two terms (a) and (b) can both fit into the Concept Erasing framework (see equation 5).
Term (a) is equivalent to choosing λ = (1 + η) and yCE = εθ∗(xt, p0), while term (b) is equivalent
to choosing λ = −η and yCE = εθ∗(xt, pf ).

SalUn (Fan et al., 2023). Saliency Unlearning (SalUn) introduces a saliency mask to the diffusion
model parameters before unlearning. This mask, based on the absolute gradient scale for the forget
concept, identifies the most important parameter subsets for unlearning targeted concepts, enabling
efficient unlearning that edits only a small portion of the model. The loss function for SalUn is given
by:

LSalUn(θ) := E(x0,pf )∼Df ,t,pr ̸=pf
∥εθ(xt, pf )− εθ(xt, pr)∥22︸ ︷︷ ︸

unlearn objective

+β · E(x0,pr)∼Dr,t,ε ∥ε− εθ(xt, pr)∥22︸ ︷︷ ︸
retain objective

,

(9)
where ε is the standard Gaussian random vector used to generate xt, and pf and pr are forget
concepts and retain concepts, respectively. t is sampled uniformly from [0, T ]. In contrast to CORE,
which uses εθ∗ as the target for the retain objectives, SalUn uses the Gaussian random vector ε.
Their unlearn objective can fit in the framework in equation (5) with a trainable network as the
target noise. This can lead to target degradation during the unlearning process, especially when
multiple concepts need to be unlearned. Following Fan et al. (2023) and Zhang et al. (2024c), we
take β = 1.0. We use a learning rate of 1×10−5 and a batch size of 4. We run 10 epochs in Forget01
and 100 epochs in Forget06 and Forget25.

EDiff (Wu et al., 2024). EraseDiff (EDiff) formulates the objective as follows:

LEDiff(θ) := E(x0,pf )∼Df ,t,εf
∥εθ(xt, pf )− εf∥22︸ ︷︷ ︸

unlearn objective

+β · E(x0,pr)∼Dr,t,ε ∥ε− εθ(xt, pr)∥22︸ ︷︷ ︸
retain objective

. (10)

The retain objective is similar to that in SalUn, but the unlearn objective differs. Here, εf is a uni-
formly distributed random vector, which serves as the target noise. This unlearn objective aligns
with the concept erasing framework (equation 5), where yCE is uniformly distributed. EraseDiff
simplifies the diffusion process by solving it as a first-order optimization problem, reducing compu-
tational complexity. In our experiments, we use a batch size of 4 and a learning rate of 5 × 10−5.
We run 5 epochs in Forget01 and 50 epochs in Forget06 and Forget25.
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CA (Kumari et al., 2023). Concept Ablation (CA) matches the image distribution from the forget
set to an anchor concept. They design two objective functions: a model-based one and a noise-based
one. The model-based CA objective is defined as

LCA−model(θ) := E(x0,pf )∼Df ,t

[
ωt ∥εθ(xt, pf )− εθ(xt, p0).sg()∥2

]︸ ︷︷ ︸
unlearn objective

+ λ · E(x0,pr)∼Dr,t,ε ∥ε− εθ(xt, pr)∥22︸ ︷︷ ︸
retain objective

. (11)

Here, ωt is a time-dependent weight applied to the loss, p0 is a fixed base concept from the retain
set, and .sg() denotes the stop-gradient operator. The noise-based objective is defined as

LCA−noise(θ) := E(x0,pf )∼Df ,t,ε

[
ωt ∥εθ(xt, pf )− ε∥2

]︸ ︷︷ ︸
unlearn objective

+ λ · E(x0,pr)∼Dr,t,ε ∥ε− εθ(xt, pr)∥22︸ ︷︷ ︸
retain objective

. (12)

In both objectives, ε is the standard Gaussian random vector used to generate xt. In our experiments,
we use a batch size of 4 and a learning rate of 1.6 × 10−5. We run 200 gradient steps in Forget01
and 100 epochs in Forget06 and Forget25.

C MORE RESULTS ON UNLEARNCANVAS

In this section, we present more images generated from our experiments on UnlearnCanvas in Fig-
ure 3. This is the result from Forget25 task. The first column is generated by the fine-tuned Stable
Diffusion model before any unlearning. Other columns are generated by the model unlearned by
our proposed method and five baseline methods. In the figure, (Forget) means the style is among the
25 concepts in the forget set, while (Retain) means the style does not belong to the forget set. The
figure is shown on the next page.
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Blossom Season Butterfly
(Forget)

Original CORE (ours) CA-model CA-noise EDiff ESD SalUn

Color Fantasy Frog
(Forget)

Cubisim Bear
(Forget)

Dadaism Cat
(Forget)

Bricks Flame
(Forget)

Comic Etch Horse
(Forget)

Fauvism Flower
(Forget)

Vibrant Flow Cat
(Retain)

Warm Smear Flame
(Retain)

Water Color Horse
(Retain)

Winter Flower
(Retain)

Super String Bird
(Retain)

Unkyoe Bear
(Retain)

Warm Love Frogs
(Retain)

Water Color Dog
(Retain)

Figure 3: Additional generated images from the unlearned models.
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D RESULTS ON I2P

Despite the success of CORE on UnlearnCanvas for erasing styles, some people may wonder if
CORE can be utilized to erase concepts other than artistic styles. Here, we provide an example
of using CORE on the I2P dataset (Schramowski et al., 2023) to remove nudity-related contents.
The images on the left column is the image generated by original stable diffusion model, and the
nudity contents are covered by black rectangles. The right column are the images generated by the
unlearned model using CORE, and the nudity contents are all successfully erased.

Figure 4: Generated images and corresponding prompts in I2P.
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