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Abstract
Many generative applications, such as synthesis-
based 3D molecular design, involve construct-
ing compositional objects with continuous fea-
tures. Here, we introduce Compositional Gener-
ative Flows (CGFlow), a novel framework that
extends flow matching to generate objects in com-
positional steps while modeling continuous states.
Our key insight is that modeling compositional
state transitions can be formulated as a straight-
forward extension of the flow matching interpo-
lation process. We further build upon the theo-
retical foundations of generative flow networks
(GFlowNets), enabling reward-guided sampling
of compositional structures. We apply CGFlow
to synthesizable drug design by jointly design-
ing the molecule’s synthetic pathway with its 3D
binding pose. Our approach achieves state-of-
the-art binding affinity and synthesizability on
all 15 targets from the LIT-PCBA benchmark,
and 4.2× improvement in sampling efficiency
compared to 2D synthesis-based baseline. To
our best knowledge, our method is also the first
to achieve state of-art-performance in both Vina
Dock (-9.42) and AiZynth success rate (36.1%)
on the CrossDocked2020 benchmark.

1. Introduction
Sampling objects through compositional steps while model-
ing continuous state is essential for a wide range of scientific
applications (Jain et al., 2023a; Wang et al., 2023). One such
important application is synthesizable target-based drug de-
sign, which aims to jointly generate molecules through a
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sequence of compositional reaction steps and predict their
continuous 3D conformations relative to a protein target
(Li et al., 2022). To this end, we propose a flow-based
generative framework that jointly models the compositional
structure and continuous state of objects.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021) and flow matching models (Lip-
man et al., 2023) have achieved state-of-the-art performance
in high-dimensional modeling tasks such as 3D molecule
generation and protein structure design (Hoogeboom et al.,
2022; Campbell et al., 2024; Schneuing et al., 2024a). How-
ever, standard diffusion and flow matching are restricted to
modeling all the dimensions of the object at once (Chen
et al., 2024). This results in an inability to model the compo-
sitional structure of objects through sequential construction
steps. As a consequence, two main limitation arise: (1)
the validity of compositional objects cannot be ensured, as
invalid generative actions cannot be masked, and (2) the
potential for efficient reward credit assignment in the com-
positional space is restricted (Bengio et al., 2021; Hansen
et al., 2022; Yao et al., 2023). In drug design, where syn-
thesizability is crucial for wet-lab validation, molecules can
be naturally viewed as compositional objects constructed
through sequential synthesis steps. Unfortunately, exist-
ing diffusion and flow matching models lack the ability to
effectively model and respect the compositional nature of
synthesis constraints when generating molecules.

Sequential models are a natural fit for generating composite
objects. For instance, autoregressive models have been ap-
plied for 3D molecular design (Peng et al., 2023; Gebauer
et al., 2020). However, current autoregressive models lack
mechanisms to correct errors from earlier steps, causing
slight errors in early position predictions to cascade (Jin
et al., 2022). Generative flow networks (GFlowNets; Ben-
gio et al., 2021) have recently shown success in sampling
compositional structure for synthesis-based molecule design
(Koziarski et al., 2024; Cretu et al., 2024; Seo et al., 2024),
but remain limited to 2D molecules.

In this paper, we identify the key gap in standard flow match-
ing and sequential models when generating compositional
objects with continuous properties. To address this lim-
itation, we introduce Compositional Generative Flows
(CGFlow), a novel generative framework that enables flow-
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Figure 1. Overview of 3DSynthFlow generation. 3D Molecule x = (C,S) consisting of its synthesis pathway C and 3D conformation S
(visualized using x). CGFlow generation interleaves 1). the continuous process for modeling position S, and 2). the sequential sampling
of synthesis steps at discrete intervals (t={0, 0.25, 0.5, 0.75}). The modeling of synthesis pathways and position are both dependent on
the object xt = {St, Ct}, ensuring the interplay between the two processes.

based compositional generative modeling. Our key insight
is that compositional generation in flow matching can be
realized through a straightforward extension of the interpola-
tion process to accommodate compositional state transitions.
CGFlow represents a new generative modeling paradigm
that combines the strengths of flow matching models for
high-dimensional data while respecting the innate composi-
tional nature of objects.

CGFlow consists of two interleaved flow processes: (1)
Compositional Flow for modeling the probability path of
compositional structure from data distribution to empty
structures, and (2) State Flow for transporting the state
variables associated with the compositional structure from
data distribution to noise distribution.

To generate the interpolation path from data to noise, Com-
positional Flow progressively dismantles the compositional
structure until it reaches an empty state. State Flow follows
the standard optimal transport interpolation of flow match-
ing, with the distinction that it assigns higher noise levels to
the states of components removed earlier in the process, as
described in Ruhe et al. (2024).

To generate compositional structures from the empty state,
CGFlow samples constructive compositional steps with the
generative policy, which can be modeled using distribution
learning approaches, reinforcement learning, or GFlowNets.
In particular, GFlowNets is used to prompt efficient explo-
ration of compositional state spaces by reward-guided sam-
pling (Bengio et al., 2021). The conditional flow matching
(CFM) objective (Lipman et al., 2023) is used to estimate
the vector field for generating state variables. Both composi-
tional structure and state variables serve as inputs, ensuring

interdependence throughout the generative process.

As an application of the CGFlow framework, we present
3DSynthFlow, the method for target-based drug design en-
suring synthesizability. We combine flow matching-based
3D structure generation with the GFlowNet-based synthesis-
aware molecular generative model developed by Seo et al.
(2024). Fig. 1 illustrates how 3DSynthFlow jointly gener-
ates the synthesis pathway (compositional structure) and
3D conformation (continuous state) of molecules. Previ-
ous flow-based generative models focused on generating
either the 3D molecular structure or the synthesis pathway,
but not both (see Sec. 5). 3DSynthFlow can jointly gener-
ate synthesis pathways and 3D molecular structures. This
enables effective modeling of protein-ligand interactions
and ensures synthesizability, both of which are essential for
target-based drug discovery.

In our experiments, we evaluate 3DSynthFlow on the task
of designing synthesizable drugs directly within protein
pockets. 3DSynthFlow achieves 4.2× sampling efficiency
improvement, and state-of-the-art performance across all
15 targets in the LIT-PCBA benchmark (Tran-Nguyen
et al., 2020) for binding affinity. 3DSynthFlow can be
extended to pocket-conditional setting and achieve state
of-art-performance in both Vina Dock (-9.42) and AiZynth
success rate (36.1%) on the CrossDocked benchmark.

Our contributions are summarized as follows:

• We propose Compositional Generative Flows (CGFlow),
a flow-based framework that enables a generation of com-
positional objects while modeling continuous states.

• We incorporate GFlowNets in CGFlow to enable effi-

2



Compositional Flows for 3D Molecule and Synthesis Pathway Co-design

cient exploration of compositional state-space for high-
rewarded samples.

• We use our compositional framework to develop 3DSyn-
thFlow for 3D molecule and synthesis pathway co-design.
3DSynthFlow achieves 4.2× improvement in sampling
efficiency and demonstrate significant improvements in
binding affinity and ligand efficiency on the LIT-PCBA
benchmark.

• To the best of our knowledge, 3DSynthFlow is the first
model to achieve state-of-the-art performance in both
binding affinity and synthesis success rate on Cross-
Docked2020.

2. GFlowNets preliminary
Generative Flow Networks (GFlowNets; Bengio et al.,
2021) are a family of probabilistic models that learn a
stochastic policy to construct compositional objects x ∈ X
proportional to the reward of terminate state R(x), i.e.,
p(x) ∝ R(x). Each object x is constructed through a trajec-
tory τ = (s0 → ...→ sn = x) ∈ T from the initial state s0
and a series of state transitions s→ s′, where the terminate
state is the object sn = x ∈ X .

A GFlowNet models a flow F as an unnormalized density
function along a directed acyclic graph (DAG) G = (S,A),
where S denotes the state space andA represents transitions.
We define the trajectory flow F (τ) as a flow through the
trajectory τ . The node flow F (s) is defined as the sum of tra-
jectory flows through the node s, i.e., F (s) =

∑
s∈τ F (τ),

and the edge flow F (s → s′) is defined as the total flow
along the edge s→ s′, i.e., F (s→ s′) =

∑
(s→s′)∈τ F (τ).

From the flow network, we define two policy distributions.
The forward policy PF (s

′|s) executes the state transition
s→ s′ from the flow distribution, i.e., PF (s

′|s) = F (s→
s′)/F (s). Similarly, the backward policy PB(s|s′) dis-
tributes the node flow F (s) to reverse transitions s 99K s′,
i.e., PB(s|s′) = F (s′ → s)/F (s).

To match the likelihood of generating x ∈ X with the re-
ward function R, two boundary conditions must be achieved.
First, the node flow of each terminal state x, which repre-
sents the unnormalized probability of sampling the object x,
must equal its reward, i.e., F (x) = R(x). Second, the ini-
tial node flow s0, which represents the partition function Z,
must equal the sum of all rewards. i.e., Z =

∑
x∈X R(x).

One such objective to satisfy these conditions is trajectory
balance (TB; Malkin et al., 2023), defined as follows:

LTB(τ) =

(
log

Zθ

∏n
t=1 PF (st|st−1; θ)

R(x)
∏n

t=1 PB(st−1|st; θ)

)2

, (1)

where the PF , PB , and Z are directly parameterized to
minimize the TB objective.

3. Compositional Generative Flows
CGFlow is a generative framework for modeling composi-
tional objects with continuous states. The framework con-
sists of two interleaved flows: the Compositional Flow for
modeling compositional structures and the State Flow for
modeling continuous states.

Data representation. Many applications naturally re-
quire compositional structure modeling, such as composing
molecules via synthesis pathways (Gao et al., 2022) or con-
structing a causal graph (Nishikawa-Toomey et al., 2024).

Here, we represent an object x as a tuple (C,S), where
C denotes the compositional structure and S represents
the associated continuous states. For a given object, the
compositional structure is defined as an ordered sequence
C = (C(i))ni=1, where n denotes the number of its compo-
sitional components (e.g., molecular building blocks). The
i-th component C(i) is added at the i-th generative step of
the trajectory τ (e.g., synthesis pathway).

Each compositional component C(i) contains mi points
(e.g., atoms) and mi may vary across components. Each
point has an associated continuous state of dimension d
(e.g., atom position). S(i) represents the states associated
with component i and is of size (mi, d). The continuous
state S is defined as an ordered tuple of all states from each
component S = (S(i))ni=1.

This representation differs from standard flow matching,
which models only state variables while ignoring the com-
positional structure and generation order of the object. In
CGFlow, the compositional structure and state variables of
an object are modeled jointly, ensuring the validity of the
composition in generated objects.

3.1. Joint conditional flow process

We first define a joint conditional flow (Lipman et al., 2023)
consisting of two components, the compositional flow and
state flow. The joint conditional flow Pt|1(·|x1) interpo-
lates the object x from an initial state x0 to the final object
x1. At the initial state, x0 = (C0,S0), the compositional
structure is represented as an empty graph, C0 = ∅, and the
continuous state S0 = [ ] has no dimension. The final object
x1 = (C1,S1) consists of its complete structure C1 and its
continuous states S1. Our proposed flow must satisfy the
following boundary conditions:

Pt|1(xt|x1) =

{
δ(xt = x0), t = 0,

δ(xt = x1), t = 1.
(2)

which ensures that at t = 0, the flow starts at the initial state
x0, and at t = 1, it reaches the final state x1.

3



Compositional Flows for 3D Molecule and Synthesis Pathway Co-design

3.1.1. COMPOSITIONAL FLOW

Compositional Flow defines a conditional probability flow
over the compositional structure C, progressively transition-
ing it from an empty graph C0 to a complete structure C1.
Components are added sequentially in a predefined valid or-
der, where C(1) is the first component added. The function
k(t) determines how many components have been added at
time t, defined as:

k(t) =

{
0, t = 0,

min(⌊t/λ⌋+ 1, n), t > 0,
(3)

where λ defines time interval between adding each compo-
sitional components. At time t, the compositional structure
Ct includes the first k(t) components from this order. k(t)
increases in discrete steps as t progresses, starting from
k(0) = 0 and ensuring k(1) = n, such that all n compo-
nents are added by t = 1. Each component C(i) is generated
at time t(i)gen = λ · (i− 1). To ensure that all components are
generated within the valid time range, we require λ ≤ 1/n
for all datapoints, satisfying tgen ≤ 1−λ. The compositional
structure at time t is then given by:

Ct = (C(i))
k(t)
i=1 , (4)

This formulation guarantees a gradual and sequential con-
struction of Ct, transitioning from the empty state C0 to the
fully constructed structure C1 at fixed intervals.

Previous work models transitions across dimensions in diffu-
sion processes using a rate function (Campbell et al., 2023).
In contrast, we formulate transitions at fixed discrete inter-
vals. Our approach retains key advantages of autoregressive
generation, including simplified likelihood evaluation and
learning objectives.

3.1.2. STATE FLOW

State flow defines a conditional probability path over the
continuous states S = (S(i))ni=1. Each continuous state S(i)

is initialized only when its corresponding compositional
component C(i) is generated, and components are generated
at different times. Intuitively, we have greater uncertainty
in the continuous states of recently added components than
those generated earlier. Therefore, we introduce a temporal
bias similar to that used in diffusion-based video generation
(Ruhe et al., 2024): the global time t is reparameterized into
a component-wise local time t

(i)
local, defined as:

t
(i)
local = clip

(
t− t

(i)
gen

twindow

)
, (5)

where t(i)gen is the generation time of component C(i), twindow

is the interpolation time window, and clip(x) ensures t(i)local ∈

Figure 2. Local time for each component over time, with n = 4,
λ = 0.2, and twindow = 0.4. t(i)local = 0 indicates the S(i) has not
yet been initialized.

[0, 1]. Intuitively, t(i)local = 0 when the current time is t = t
(i)
gen,

and t
(i)
local = 1 when the current time surpasses t(i)gen + twindow.

State flow is modeled as a linear interpolation based on t
(i)
local,

combined with Gaussian noise applied throughout:

S
(i)
t =

{
N
(
t
(i)
localS

(i)
1 + (1− t

(i)
local)S

(i)
0 , σ2

)
, if t > t

(i)
gen,

[ ] , else.
(6)

where S(i)
0 represents the fully noisy initial state, and S

(i)
1 is

the final refined state. The continuous state S(i)
t exists only if

the corresponding component C(i)
t has been generated, i.e.,

t > t
(i)
gen. To summarize, state flow enables the interpolation

of continuous states when their associated compositional
components are generated sequentially.

3.2. Sampling

During the sampling process, objects are generated by in-
terleaving the integration of the state flow model pθ1|t and
sampling actions using the compositional flow policy πθ.
The process alternates between refining continuous states
St and sequentially constructing the compositional structure
Ct at fixed time points.

For state flow, the vector field governing the continuous
states for the i-th component S(i) is defined as Ŝ(i)

1 − S
(i)
t ,

where Ŝ(i)
1 is the predicted clean state by pθ1|t, as formulated

in previous works (Le et al., 2023). The rate at which
we step in this vector field κ(i) is determined by the time
remaining in the interpolation process for the state S(i):

κ(i) =
min(t

(i)
end − t,∆t)

twindow
, (7)

where t
(i)
end = t

(i)
gen + twindow is the time at which the inter-

polation for component i is completed, and twindow is the
interpolation window. The state values S(i) are updated
using Euler’s method:

S
(i)
t+∆t = S

(i)
t + (Ŝ

(i)
1 − S

(i)
t ) · κ(i)∆t, (8)

Intuitively, if t ≥ t
(i)
end, the state S

(i)
t is directly set to the

predicted clean value Ŝ
(i)
1 , ensuring the coherence of the

continuous state.
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Figure 3. Overview of sampling and training using the pre-trained
state flow model pθ1|t. At t = iλ, compositional flow model πϕ

samples a component C(i) based on the state xt and its previous
prediction x̂t

1. Then, the transition function T incorporates the
component C(i) into the object. At t = 1, the compositional flow
model is trained based on the reward of the generated object x1.

For compositional structure generation, new components
C(i) are sampled from the compositional flow policy πθ at
discrete time intervals separated by λ. Transition function
T (xt,C

(i)) incorporates newly sampled component C(i)

into the object. T also incorporates the new component’s
associated state S

(i)
0 by sampling its value from a noise

distribution (typically Gaussian).

3.3. Training objectives

We train CGFlow to jointly approximate the distribution
of continuous states S and the sequential generation of
the compositional structure C with two models: (1) a state
flow model pθ1|t for updating continuous states, and (2) a
compositional flow policy πθ for sampling compositional
components. Both models are conditioned on the object
xt = (Ct,St) with self-conditioning x̂t

1 = (Ct, Ŝt1) at time
t, where Ŝt1 = (Ŝ

(i)
1 )

k(t)
i=1 from the previous prediction (Chen

et al., 2022). This ensures their dependence on both the com-
positional structure and the continuous state of the object.

3.3.1. STATE FLOW LOSS.

The state flow model can be trained simulation-free, and
independently of the compositional flow model. For each
object x, we first assign a generation trajectory τ over its
compositional components C. Then we can sample xt ac-
cording to the joint interpolation process (see Sec. 3.1).

The state flow model pθ1|t takes the entire object xt =

(Ct,St) as input and outputs Ŝt+∆t
1 , the predicted clean

continuous states. The objective sums over the continu-
ous states S(i)

t corresponding to components C(i) that have

already been generated at the sampled time t:

Lstate = Epdata(x1)U(t)

k(t)∑
i=1

∥∥pθ1|t(xt)
(i) − S

(i)
1

∥∥2
2
, (9)

where k(t) represents the number of components generated
at time t. The refinement model pθ1|t(xt)

(i) predicts Ŝ
(i)
1 ,

the clean continuous states for component i, and we compute
the MSE loss compared to the ground truth S

(i)
1 .

3.3.2. COMPOSITIONAL FLOW LOSS.

Given a pre-trained state flow model pθ1|t, the compositional
flow model πϕ samples a trajectory τ by sequentially adding
a component C(i) at t = iλ, conditioned on the current
state xt and self-conditioning x̂t

1. This strategy allows the
compositional flow model to make decisions using a less
noisy estimate x̂t

1, which is particularly advantageous in
protein-ligand interaction modeling (Harris et al., 2023).

Inspired by GFlowNets (Bengio et al., 2021), we optimize
the compositional flow model such that the probability of
sampling a compositional structure for x1 is proportional to
its reward R(x1), using the trajectory balance (TB; Eq. (1))
objective. However, the object x1 = (C1,S1) from a trajec-
tory τ is stochastic due to the transition function T , which
samples the initial state S

(i)
0 from a noise distribution. To

ensure a deterministic transition T (xt,C
(i)), we fix the

random seed when sampling the initial state S
(i)
0 .

Given a deterministic transition function and a fixed state
flow model ODE, xt = (Ct,St) is uniquely determined by
a given trajectory τ sampled from the compositional flow
model πϕ. This formulation views the interpolation with the
state flow model pθ1|t as the transition of the state resulting
from the sampled action by the compositional flow policy
πϕ*. Then, TB loss is computed as:

LTB(τ)=

(
log

Zϕ

∏n−1
i=0 PF (C(i)|xiλ, x̂

iλ
1 ;ϕ)

R(x1)

)2

. (10)

We provide the theoretical background in Sec. B.

By enabling online training, this approach generalizes be-
yond the empirical data, as it can sample new data under the
current policy. Alternatively, the compositional flow model
can be trained using a maximum likelihood objective based
on the data distribution (see Sec. A.3).

We refer readers to Sec. A.1 for a summary of the key
steps in applying CGFlow to a new data domain. In the
next section, we demonstrate CGFlow’s application to 3D
molecular generation and synthesis pathway design.

*Conceptually, it resembles an internal model of the world:
used to predict the next state of the world as a function of the
current state and action (Bryson & Ho, 1969). The state flow
model weights are fixed to remain faithful to the data distribution.
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Figure 4. Illustration of synthesis-based composition rules. (a)
reactant unit-based and (b) synthon unit-based (ours).

4. 3D Molecule and Synthesis Pathway
Co-design within Protein Pockets

Synthesizability is a critical factor for ensuring molecules
can be readily made for wet lab validation. Recent works
have incorporated combinatorial chemistry principles into
generative models to respond to this challenge (Koziarski
et al., 2024; Cretu et al., 2024; Seo et al., 2024). Despite
these advancements, these synthesis-based generative mod-
els are restricted to 2D molecular graphs, limiting their
ability to capture the 3D protein-ligand interactions that are
essential for biological efficacy.

To address this limitation, we introduce 3DSynthFlow, a gen-
erative method based on CGFlow, enabling the co-design of
synthesis pathways and 3D molecular conformations. This
approach facilitates effective modeling of protein-ligand in-
teractions and synthesizability, which are both essential for
target-based drug discovery.

State flow model predicts the docking pose of a molecule
within a target protein pocket. Unlike typical docking,
where the full 2D molecule is provided at t = 0, the state
flow model must predict the pose for the ligand that is se-
quentially constructed at discrete time intervals. Molecules
for training the state flow model x are first decomposed
into their compositional structure C, which represents the
sequentially composed synthesis pathway using Enamine re-
action rules, and their continuous state S , which represents
the 3D coordinates refined over time. To ensure atoms not
present in the molecule do not appear during decomposition
(i.e., leaving group for reactions), we adopt a synthon-based
representation rather than a reactant-based representation as
Fig. 4. We discuss the motivation behind this formulation
in Sec. E.1.2.

The state flow model is then trained using the objective de-
scribed in Sec. 3.3.1 on the protein-ligand complex dataset,
independent of the compositional flow model. The Semla
architecture (Irwin et al., 2024), originally designed for 3D
molecular generation, is used to parameterize the State flow
model. We introduce new hierarchical Semla for memory-
efficient protein encoding, and protein-ligand message pass-
ing to enable protein-ligand modeling (See Sec. D.2.1).

Compositional flow model generates a synthesis pathway
to construct a molecular structure. The action space for

the composition flow model consists of all valid synthetic
steps for a given structure Ct (see Sec. D.1). We modify the
architecture from RxnFlow (Seo et al., 2024) to model the
sampling policy for synthesis steps using 3D protein-ligand
complexes as input (see Sec. D.2.2). The compositional
flow model is trained online as described in Sec. 3.3.2.

5. Related Work
Synthesis-based generative models. Generative models
have emerged as the key paradigm for discovering candi-
dates by bypassing the expensive virtual screening. How-
ever, most generative models often render molecules out-
side the bounds of synthesizable chemical space, limiting
their practical use in real-world applications (Gao & Co-
ley, 2020). To address this limitation, several studies (Shen
et al., 2024; Guo & Schwaller, 2024) have employed various
synthetic complexity estimation methods (Ertl & Schuffen-
hauer, 2009; Coley et al., 2018; Kim et al., 2023; Neeser
et al., 2024; Genheden et al., 2020) as the reward function.

Another promising direction is to design molecules by as-
sembling purchasable building blocks under predefined syn-
thesis protocols. (Gao et al., 2022; Li et al., 2022; Seo
et al., 2023; Swanson et al., 2024; Gao et al., 2024). This
strategy explicitly constrains the sample space to synthesiz-
able chemical space. More recently, Koziarski et al. (2024);
Cretu et al. (2024); Seo et al. (2024) have extended this
strategy using GFlowNets, formulating synthesis pathway
generation as trajectories of GFlowNets. This effectively
explores the chemical space to discover diverse candidate
molecules while balancing exploration and exploitation.

Diffusion for sequential data. Diffusion models have
recently gained traction for generative modeling of se-
quential structures in diverse domains, spanning biologi-
cal sequences (Campbell et al., 2024; Stark et al., 2024),
videos (Ruhe et al., 2024), and language modeling (Lou
et al., 2024). Campbell et al. (2023) propose a jump pro-
cess for transitioning between different dimensional spaces
to address the variable-dimension nature of data. To ex-
ploit the temporal causal dependency in sequences, Ruhe
et al. (2024); Zhang et al. (2023) explore frame-level noise
schedules for diffusion-based video generation for arbitrary-
length frame rollout. Wu et al. (2023); Chen et al. (2024)
apply similar ideas of training next-token prediction models
while diffusing past ones for applications in planning and
language modeling. Most similar to our work for molecule
design using diffusion models are methods that use a sepa-
rate diffusion process for each sequentially added fragment
(Peng et al., 2023; Ghorbani et al., 2023; Li et al., 2024).

We provide an extended related works for sequential dif-
fusion for molecular generation and structure-based drug
design in Sec. C.
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Table 1. Average Vina docking score of Top-100 diverse modes. We report two versions of SynFlowNet (v2024.05a and v2024.10b).
Avg. and Med. are the average and median values over the average docking scores for all 15 LIT-PCBA protein targets. The results for the
remaining 10 target proteins are reported in Appendix. 17 The best results are in bold.

Average Vina Docking Score (kcal/mol, ↓)

Category Method ADRB2 ALDH1 ESR ago ESR antago FEN1 Avg. Med.

Fragment FragGFN -10.19 (± 0.33) -10.43 (± 0.29) -9.81 (± 0.09) -9.85 (± 0.13) -7.67 (± 0.71) -9.58 -9.85
FragGFN+SA -9.70 (± 0.61) -9.83 (± 0.65) -9.27 (± 0.95) -10.06 (± 0.30) -7.26 (± 0.10) -9.22 -9.58

Reaction

SynNet -8.03 (± 0.26) -8.81 (± 0.21) -8.88 (± 0.13) -8.52 (± 0.16) -6.36 (± 0.09) -8.12 -8.52
BBAR -9.95 (± 0.04) -10.06 (± 0.14) -9.97 (± 0.03) -9.92 (± 0.05) -6.84 (± 0.07) -9.35 -9.84
SynFlowNeta -10.85 (± 0.10) -10.69 (± 0.09) -10.44 (± 0.05) -10.27 (± 0.04) -7.47 (± 0.02) -9.95 -10.34
SynFlowNetb -9.17 (± 0.68) -9.37 (± 0.29) -9.17 (± 0.12) -9.05 (± 0.14) -6.45 (± 0.13) -8.78 -9.17
RGFN -9.84 (± 0.21) -9.93 (± 0.11) -9.99 (± 0.11) -9.72 (± 0.14) -6.92 (± 0.06) -9.08 -9.91
RxnFlow -11.45 (± 0.05) -11.26 (± 0.07) -11.15 (± 0.02) -10.77 (± 0.04) -7.66 (± 0.02) -10.46 -10.84

3D Reaction 3DSynthFlow -11.96 (± 0.12) -11.82 (± 0.03) -11.58 (± 0.07) -11.23 (± 0.08) -7.79 (± 0.01) -10.89 -11.26

6. Experiments
Overview We evaluate 3DSynthFlow for synthesizable
target-based drug design in two common settings: pocket-
specific optimization (Sec. 6.1) and pocket-conditional
generation (Sec. 6.2). Our experiments aims to address
three main key questions: (1) Does 3DSynthFlow generate
molecules with improved binding affinity and ligand effi-
ciency compared to existing synthesis-based baselines? (2)
Does co-designing 3D structures improve the sampling effi-
ciency in discovering diverse high-reward modes? (3) How
does 3DSynthFlow generalize to the pocket-conditional set-
ting, and how does it compare to existing SBDD baselines?

To answer these questions, We first apply 3DSynthFlow
to optimize for targets in the LIT-PCBA benchmark (Tran-
Nguyen et al., 2020). We evaluate the affinity, ligand ef-
ficiency, synthesis success rate and protein-ligand interac-
tions of generated molecules. Then, we compare the sam-
pling efficiency of 3DSynthFlow against 2D-based baseline.
Lastly, we comapre 3DSynthFlow against SBDD methods
in the pocket-conditional setting on the CrossDocked dataset
(Francoeur et al., 2020).

Setup. To construct synthetic pathway, we utilize 38
bimolecular Enamine synthesis protocols from Gao et al.
(2024). We use Enamine’s 1.2M-size catalog set and 300k-
size stock set in Sec. 6.1 and Sec. 6.2, respectively. For stock
set, we filtered out molecules with drug-likeness score lower
than 60 (Lee et al., 2022). To ensure tractability, molecular
generation is limited to two synthesis steps, consistent with
Enamine REAL Space (Grygorenko et al., 2020). To esti-
mate synthesizability, we employ the retrosynthetic analysis
tool AiZynthFinder (Genheden et al., 2020).

We pre-train the state flow model for 3D pose prediction
on the CrossDocked dataset (Francoeur et al., 2020) with
LIT-PCBA targets removed (see Sec. E.3.2). We sample a
synthesis pathway for each ligand using reaction rules to
fragment the ligand (see Fig. 4). This exposes the state flow

model to intermediate states - allowing it to predict their
poses for partial structures during compositional flow model
training (see Sec. E.1.2 for motivation).

6.1. Pocket-specific optimization

Setup. We follow Seo et al. (2024) in both the reward
function and evaluation protocol. To estimate the binding
affinity, we use the GPU-accelerated docking tool UniDock
(Yu et al., 2023). Each method generates up to 64,000
molecules for each protein target. To prevent reward hack-
ing by increasing molecular size to improve the docking
score, QED (Bickerton et al., 2012) is jointly optimized, and
we set a generation of 40 heavy atoms. The reward function
for multi-objective optimization is described in Sec. E.2.

Generated molecules are filtered based on property con-
straints (QED > 0.5), and the top 100 diverse modes are
selected according to docking scores, ensuring structural di-
versity with a Tanimoto distance threshold of 0.5 †. Finally,
we evaluated the average Vina docking score and AiZyn-
thFinder Success Rate of the selected molecules. Ligand
effiency as computed by (Vina / number of heavy atoms) is
also reported to confirm the docking score improvement do
not arise from simply increase in molecular size.

Baselines. We compare our approach against several
synthesis-based methods, including a genetic algorithm
SynNet (Gao et al., 2022), a conditional generative model
BBAR (Seo et al., 2023), and multiple GFlowNets. We
consider two settings of fragment-based GFlowNets, with
and without synthetic accessibility score (SA; Ertl & Schuf-
fenhauer, 2009) objective (FragGFN, FragGFN+SA), and
three different synthesis-based GFlowNets (RGFN, Syn-
FlowNet, RxnFlow) (Koziarski et al., 2024; Cretu et al.,
2024; Seo et al., 2024).

†Since we select top 100 modes filtering for similarity, diversity
is not reported in this section.
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Figure 5. Number of discovered modes (satisfying Vina <-10 kcal/mol, QED >0.5, Sim <0.5) as a function of sampling budget for the
first four LIT-PCBA targets for 3DSynthFlow (3D) vs RxnFlow (2D) across 3 seeds. Higher is better.

Table 2. The average success rate and synthetic steps estimated
from AiZynthFinder for all 15 LIT-PCBA protein targets.

Method Success Rate (%, ↑) Synthesis Steps (↓)

FragGFN+SA 3.52 3.74
SynNet 47.50 3.45
BBAR 17.92 3.68
SynFlowNeta 54.60 2.55
SynFlowNetb 58.38 2.47
RGFN 47.43 2.46
RxnFlow 65.35 2.17
3DSynthFlow 68.58 2.39

Results. Table. 1 presents the Vina results for the first
five targets, while the full property results for all targets
are in Sec. F.7. 3DSynthFlow consistently outperforms all
baselines across LIT-PCBA targets in affinity and ligand
efficiency, demonstrating that co-designing 3D molecular
structures alongside synthesis pathways enhances the dis-
covery of high-affinity molecules. Table. 3 shows molecules
generated by 3DSynthFlow also exhibit a higher number
of protein-ligand interactions, as quantified by PoseCheck,
highlighting the benefits of 3D-aware modeling for target-
aware drug design (see full results in Sec. F.5).

Furthermore, Fig. 5 and Table. 16 presents the sampling
efficiency for the first 5 LIT-PCBA targets. Diverse high-
scoring modes were defined by QED>0.5, Vina<-10 kcal/-
mol‡, and Tanimoto similarity<0.5 to any other mode. After
sampling 64,000 molecules, 3DSynthFlow identified 4.2x
number of diverse high-scoring modes compared to Rxn-
Flow (4432.3 vs 1062.6). This enhanced sampling efficiency
validates the effectiveness of 3DSynthFlow framework, and
suggests a higher probability of experimental success.

Table. 2 shows that 3DSynthFlow attains comparable syn-
thesizability compared to its 2D baselines, demonstrating
its generated molecules is likely to be synthesizable. This
ensures that the high-affinity compounds identified by our
model are not merely theoretical but represent viable candi-
dates for experimental validation and further development.

‡Except for FEN1, where we use Vina below -7 kcal/mol to
maintain similar number of modes compared to the other targets.

Table 3. PoseCheck Averages and standard deviations over 4 runs,
for the top 100 diverse modes for the first 5 LIT-PCBA pocket.
The results for all protein-ligand interactions are reported in Ap-
pendix. F.5. The best results in each column are in bold.

Method H-Bond Acceptors H-Bond Donors Sum

SynFlowNeta 0.22 (± 0.01) 0.11 (± 0.01) 0.33
SynFlowNetb 0.22 (± 0.03) 0.10 (± 0.01) 0.32
RGFN 0.19 (± 0.01) 0.11 (± 0.01) 0.30
RxnFlow 0.22 (± 0.00) 0.10 (± 0.01) 0.32
3DSynthFlow 0.33 (± 0.06) 0.17 (± 0.03) 0.50

Finally, we conduct extensive ablation studies on the var-
ious technical decisions regarding: flow matching steps
(Sec. F.2), time scheduling (Sec. F.3), and use of pose-based
rewards (Sec. F.1). Analysis on training efficiency can be
found in Sec. E.1.3.

6.2. Pocket-conditional generation.

Setup. Our method generalizes to pocket-conditional gener-
ation problem setting (Peng et al., 2022; Guan et al., 2023;
Schneuing et al., 2024a), enabling the design of binders
for unseen pockets with a single model and no additional
oracle calls. We follow the same pocket-conditional experi-
mental setup and reward function used in TacoGFN (Shen
et al., 2024) and RxnFlow (Seo et al., 2024) (see Sec. E.2.
3DSynthFlow adopt the pre-trained proxy from TacoGFN
trained on CrossDock2020 train set, which leverages phar-
macophore representation (Seo & Kim, 2024), to compute
rewards for training a pocket-conditional policy.

Each method generates 100 molecules for each of the 100
test pockets in the CrossDocked2020 benchmark (Francoeur
et al., 2020) and are evaluated on these additional metrics
compared to the pocket-specific setting: Diversity repre-
sents the average pairwise Tanimoto distance computed
from ECFP4 fingerprints (Morgan, 1965). We also report
Validity (%), the proportion of unique molecules that can
be parsed by RDKit, and Time (sec.), the average duration
required to sample 100 molecules.

Baselines. We compare 3DSynthFlow with state-of-the-
art distribution learning-based models trained on a syn-
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Table 4. Benchmark Results for Generative Methods. We report the average (Avg.) and median (Med.) values for each metric when
available. Time indicates the average duration to generate 100 molecules. Reference denotes known actives. For methods where only one
value is available, the median is indicated as “–”.

Validity (↑) Vina (↓) QED (↑) AiZynth. Succ Rate (↑) Div (↑) Time (↓)

Category Method Validity Avg. Med. Avg. Med. Avg. Med. Avg. Avg.

Reference - -7.71 -7.80 0.48 0.47 36.1% - - -

Atom

Pocket2Mol 98.3% -7.60 -7.16 0.57 0.58 29.1% 22.0% 0.83 2504
TargetDiff 91.5% -7.37 -7.56 0.49 0.49 9.9% 3.2% 0.87 3428
DecompDiff 66.0% -8.35 -8.25 0.37 0.35 0.9% 0.0% 0.84 6189
DiffSBDD 76.0% -6.95 -7.10 0.47 0.48 2.9% 2.0% 0.88 135
MolCRAFT 96.7% -8.05 -8.05 0.50 0.50 16.5% 9.1% 0.84 141
MolCRAFT-large 70.8% -9.25 -9.24 0.45 0.44 3.9% 0.0% 0.82 >141

Fragment TacoGFN 100.0% -8.24 -8.44 0.67 0.67 1.3% 1.0% 0.67 4

2D Reaction RxnFlow 100.0% -8.85 -9.03 0.67 0.67 34.8% 34.5% 0.81 4

3D Reaction
3DSynthFlow (low β) 99.9% -9.14 -9.38 0.69 0.69 36.2% 37.0% 0.78 6
3DSynthFlow (med β) 99.9% -9.30 -9.62 0.72 0.71 35.1% 36.0% 0.74 6
3DSynthFlow (high β) 100.0% -9.42 -9.61 0.73 0.73 36.1% 36.0% 0.69 6

thesizable drug set, including the autoregressive model
Pocket2Mol (Peng et al., 2022), and diffusion-based meth-
ods: TargetDiff (Guan et al., 2023), DiffSBDD (Schneuing
et al., 2024b), DecompDiff (Guan et al., 2024), and Mol-
Craft (Qu et al., 2024). We further include comparisons
with optimization-based approaches: the fragment-based
method TacoGFN (Shen et al., 2024) and the reaction-based
method RxnFlow (Seo et al., 2024). To ensure a fair eval-
uation of distribution learning-based methods, we use the
docking proxy trained on CrossDocked training set. To bal-
ance exploration and exploitation during sampling, we vary
the reward exponentiation parameter β of 3DSynthFlow:
low β (sampled from U(1, 64)), medium β (U(16, 64)),
and high β (U(32, 64)).

Results. As shown in Table. 4, 3DSynthFlow achieves
improvements in pocket-conditional generation in synthesiz-
ability and docking scores. In particular, 3DSynthFlow-
high β attains an average docking score of -9.42 kcal/-
mol, outperforming RxnFlow (-8.85) and state-of-the-art
diffusion-based methods like MolCRAFT-large (-9.25) and
DecompDiff (-8.35). We attribute this improvement largely
to our explicit consideration of 3D co-design in the reaction-
based generation framework. However, due to the limited
accuracy of the pre-trained proxy model for docking score
reward, we find the improvement in docking score less sig-
nificant than the pocket-specific setting.

3DSynthFlow surpasses the 2D reaction-based GFlowNets,
TacoGFN and RxnFlow, while maintaining a highly compa-
rable computational cost. We attribute this to a fundamental
design difference: while the 2D baselines are conditioned on
1D sequence-based representations, 3DSynthFlow leverages
the full 3D geometry of the binding site. This result indi-
cates that 3D interaction modeling is essential, particularly
for achieving robust performance across diverse targets.

SBDD methods such as MolCRAFT-large can attain strong
binding affinity (-9.25) similar to 3DSynthFlow (-9.42),
however their synthesis success rate is much lower (3.9% vs
36.1%). The main contribution of 3DSynthFlow is represent-
ing both the compositional nature for synthesis constraints
and modeling 3D poses for binding.

7. Discussion
Limitations. Our synthesis-based action space based on
arm and linker synthons does not yet explore certain nonlin-
ear synthesis pathway such as ring-forming reactions. This
synthon-based generation is chosen to prevent the leaving
group atoms of intermediate states being lost or forming
new rings – which would degrade the accuracy of pose pre-
diction for intermediate states. However, this constraint can
be substantially mitigated by expanding the chemical search
space through incorporating a larger building block library.
For example, Sadybekov et al. (2021) successfully achieved
a notable hit rate of 33% with arm-and-linker design.

Conclusion. In this work, we introduce Compositional Gen-
erative Flows (CGFlow), a flexible generative framework for
jointly modeling compositional structures and continuous
states. We introduce a simple extension to the flow match-
ing interpolation process for handling compositional state
transition. CGFlow enables the integration of GFlowNets
for efficient exploration of compositional state spaces with
flow matching for continuous state modeling. We apply
CGFlow to 3D molecule and synthesis pathway co-design
and develop 3DSynthFlow, which achieves state-of-the-art
performance on both LIT-PCBA and CrossDocked bench-
mark. Future work includes using a more expressive model
for pose prediction and developing more application-specific
methods using CGFlow.
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Impact Statement
In small-molecule drug discovery, it is crucial to design
molecules that possess both high binding affinity and syn-
thesizability. Despite the clear importance of these goals, ef-
forts to achieve them simultaneously have been constrained
by the distinct nature of each objective. To address this
challenge, we propose a generative modeling framework
for compositional and continuous data. Our approach en-
ables the joint generation of 3D binding poses within protein
binding site and their synthetic pathways, addressing key
challenges in target-based drug discovery. By improving the
integration of synthesis constraints and structural modeling,
this work has the potential to accelerate the development of
novel therapeutics, ultimately benefiting public health. At
the same time, generative models for molecular design carry
inherent risks, including the potential for misuse in design-
ing harmful substances. To promote responsible use, we
focus on applications that align with therapeutic discovery.

Acknowledgements
This work was supported by Basic Science Research Pro-
grams through the National Research Foundation of Korea
(NRF), grant-funded by the Ministry of Science and ICT
(RS-2023-00257479). This research was also supported by
the NSERC Discovery Grant.

References
Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T.,

Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J.,
Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C.-
C., O’Neill, M., Reiman, D., Tunyasuvunakool, K., Wu,
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Appendix to:
Compositional Flows for 3D Molecule and Synthesis Pathway Co-design

A. CGFlow details
All code is provided in supplementary material.

A.1. CGFlow recipe

We now summarize the key steps for implementing CGFlow for generative tasks which constructs compositional structures
with continuous states.

1. Decompose the object into its compositional and continuous part (e.g., 2D structure and 3D coordinates) (See Sec. 3).
2. Define action space for additive composition steps.
3. Define a function for sampling action sequence for constructing the compositional structure (e.g. synthesis order).
4. Train State Flow model on existing datasets (e.g. 3D protein-ligand complexes) (Sec. 3.3.1).
5. Train the compositional flow model using GFlowNets-based Compositional Flow loss, if reward function R(x) (docking

score) is available, else use cross-entropy loss (Sec. 3.3.2).
6. Run sampling using trained state flow and compositional flow model (Algorithm 1).

A.2. Sampling Algorithm

Algorithm 1 Compositional Flow Sampling with CGFlow
Require: step size ∆t, interval λ, time window twindow

1: init t = 0, i = 0, Ct = C0,S0 = S0, Ŝt1 = S0
2: while t < 1 do
3: xt ← (Ct,St, Ŝt1) ▷ Use self-conditioning.
4: if t mod λ = 0 then
5: i← i+ 1
6: C(i) ∼ πθ(xt) ▷ Compositional flow model: Sample the next compositional component i.
7: S

(i)
t ∼ N (0, 1) ▷ Initialize new state values for component i under the fixed seed

8: xt ← T (xt,C
(i),S

(i)
t ) ▷ Transition with sampled composition and state value.

9: t
(i)
gen ← t

10: end if
11: t

(j)
local ← clip

(
t−t(j)gen

twindow

)
, ∀j ≤ i

12: Ŝ
(j)
1 ← pθ1|t(xt, t

(j)
local), ∀j ≤ i ▷ State flow model: Predict final state values.

13: S
(j)
t+∆t ← S

(j)
t + (Ŝ

(j)
1 − S

(j)
t ) · κ(j)∆t, ∀j ≤ i ▷ Step according to the predicted vector field.

14: t← t+∆t
15: end while
16: return x1

A.3. Alternative training objectives

There may be cases where reward function R(x) is not available, or the goal is to model the data distribution instead. In
these settings, the compositional flow model can adopt cross-entropy loss to maximize the log-likelihood of sampling C(σi)

at each step i, aligned with the valid generation order σ. The loss is:

Lcomp = −Ept(xt)

n∑
i=1

log πθ(C(σi)|x
t=t

(σi)
gen

), (11)

where πθ(C(σi)|xt) represents the policy model for generating the next compositional component C(σi), conditioned on
the entire object xt.
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B. Theoretical background
The object x = (C,S) is sequence data where C = (C(i))ni=1 and S = (S(i))ni=1. Therefore, we formulate the generative
process as an auto-regressive process, i.e., PB(−|−) = 1.0.

To train the compositional flow model with the trajectory balance (TB) objective, we must estimate forward transition
probabilities along the trajectory τ = (x0 → xiλ → · · · → xnλ → x1), where λ is the time interval between successive
components C(·), and n < 1/λ is the total number of components.

Since the state flow model pθ1|t introduces randomness in the initial state S(i)
0 ∼ N (0, σ2), estimating the forward transition

probability involves integrating over this noise distribution as follows:

PF

(
x(i+1)λ

∣∣∣xiλ, x̂
t
1;ϕ, p

θ
1|t

)
= PF

(
C(i)

∣∣∣xiλ, x̂
t
1;ϕ
)∫

P
(
x(i+1)λ

∣∣∣T (xiλ,C
(i),S

(i)
0 ); pθ1|t

)
p(S

(i)
0 )dS

(i)
0

= PF

(
C(i)

∣∣∣xiλ, x̂
t
1;ϕ
)∫

δ
(
Φθ
(
T (xiλ,C

(i),S
(i)
0 ), λ,∆t

)
= x(i+1)λ

)
p(S

(i)
0 )dS

(i)
0 ,

(12)

where Φθ is the ODE solver of the state flow model pθ1|t. This integration induces a Dirac delta term, making direct
probability estimation challenging.

Proposition B.1. Let the initial state S
(i)
0 be fixed§. Then, the object xt = (Ct,St) is uniquely determined by a given

trajectory τ sampled from the compositional flow model πϕ.

Proof. When S
(i)
0 is fixed, the ODE solver fully specifies S(i+1)λ based on Siλ, the self-conditioning x̂t

1, and the sampled
component C(i). Consequently, the sequence (C(1), . . . ,C(k(t))) directly determines St. Given that the generative progress
is auto-regressive, there is a one-to-one correspondence between xt and (C(1), . . . ,C(k(t))) for every t.

Building on this determinism, we simplify the forward transition probability PF (x(i+1)λ|xiλ;ϕ;pθ
1|t
) as:

PF

(
x(i+1)λ

∣∣∣xiλ, x̂
t
1;ϕ, p

θ
1|t

)
= PF

(
C(i)

∣∣∣xiλ, x̂
t
1;ϕ
)

(13)

This allows us to write the TB objective in a more tractable form:

LTB(τ) =

log
Zϕ

∏n−1
i=0 PF (x(i+1)λ|xiλ;ϕ, p

θ
1|t)

R(x1)
(((((((((((((∏n−1

i=0 PB(xiλ|x(i+1)λ;ϕ, p
θ
1|t)
×�������

P (x1|xnλ; p
θ
1|t)

�������
P (xnλ|x1; p

θ
1|t)

2

=

(
log

Zϕ

∏n−1
i=0 PF (C

(i)|xiλ;ϕ)

R(x1)

)2

. (14)

By enforcing trajectory balance under these conditions, we ensure that the likelihood of sampling a final object x1 is
proportional to its reward R(x1), while sidestepping the complexities introduced by the continuous noise integration.

C. Extended related works
Sequential diffusion for molecular generation Peng et al. (2023); Ghorbani et al. (2023); Li et al. (2024) sequentially
generate molecules fragment by fragment using diffusion models. These methods use a separate diffusion process to generate
each 3D fragment graph, with atomic positions fixed post-generation. They also lack the ability to enforce compositional
synthesis constraints during the generation process. Instead, 3DSynthFlow formulates a joint flow process: state flow
refines all atomic positions throughout, mitigating the issue with cascading error in position prediction; composition flow
sequentially constructs the synthesis pathway, effectively enforcing the synthesis constraint.

§To minimize the influence of the fixed initial state value, we sample the initial state from the noise distribution using the manual
random seed which is equal to the size of the current object, such as the number of atoms.
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Structure-based drug design We categorize structure-based drug design (SBDD) in two main categories: pocket-specific
and pocket-conditional following Seo et al. (2024).

The first approach optimizes docking scores for a target. Methods include evolutionary algorithms (Reidenbach, 2024),
reinforcement learning (RL) (Zhavoronkov et al., 2019), and GFlowNets (Bengio et al., 2021; Pandey et al., 2025; Koziarski
et al., 2024). The drawback of this approach is that each pocket must be optimized individually, which can restrict scalability.

In contrast, the pocket-conditional generation approach produces molecules tailored to any given pocket without the
need for extra training. This strategy leverages distribution-based generative models (Ragoza et al., 2022; Peng et al.,
2022; Guan et al., 2024; Schneuing et al., 2024b; Qu et al., 2024) that are trained on protein-ligand complex datasets
to learn the distribution of ligands suitable for different pockets. Recently, Shen et al. (2024); Seo et al. (2024) adopted
pocket-conditioned policy for GFlowNets that generates samples from reward-biased distributions in a zero-shot setting.

D. 3DSynthFlow details
D.1. Action space

Following Cretu et al. (2024); Koziarski et al. (2024); Seo et al. (2024), we treat chemical reactions as forward transitions
and synthetic pathways as trajectories for molecular generation.

Compared to previous methods, we represent a building block as synthon, which is not a complete molecule. The synthons
can be connected at the attachment point according to the pre-defined connection rules, i.e., reactionsR (See Fig. 4). To
prevent a generation trajectory terminating at an incomplete structure, we define two types of synthon according to Liu et al.
(2017): brick is the synthon including one attachment point, and linker is the synthon including two attachment points.

Figure 6. Examples of brick and linker synthons.

We define B as the entire synthon set, B′ ⊆ B as the brick synthon set, and Br ⊆ B as the allowable synthon set for reaction
r ∈ R.

At the initial state C0, the model always selects FirstSynthon, which samples a brick synthon b from the entire brick
synthon set B′ to serve as the starting molecule. For subsequent states Ct, the model chooses AddSynthon, which firstly
identifies the available reaction setR(Ct) ⊆ R and then samples the synthon from the available synthon set ∪r∈R(Ct)Br.
If the brick synthon is selected, the trajectory is terminated. When the trajectory reaches the maximum length, the model
always selects a brick synthon.

In summary, the allowable action space A(C) for a given compositional state C is:

A(C) =

{
B′ if t = 1,

∪r∈R(C)Br otherwise,
(15)

D.2. 3DSynthFlow Model architecture

D.2.1. STATE FLOW MODEL

To model state flow for predicting ligand docking poses in 3DSynthFlow, we extend the Semla architecture introduced by
Irwin et al. (2024). Semla is a scalable, E(3)-equivariant model originally designed for 3D molecular generation; We refer
reader to the original paper for full details for SemlaFlow. We make the following modifications to adapt Semla for 3D
protein-ligand modelling:

Hierarchical pocket encoding: Inspired by AlphaFold3 (Abramson et al., 2024), which models protein at both atom level
and token level, we propose a hierarchical encoding strategy HierSemla which first encodes each residues at atom level
and aggregates atomic representation to residue level. More specifically, we introduce a Residue Encoder based on the
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Semla architecture, and apply it independently to encode each of its atom type, connections and position first. Then we
perform mean pooling over the invariant and equivariant features within each residue, obtaining residue-level embedding
(h

(pro)
i ,x

(pro)
i ). This hierarchical design enables all-atom resolution modeling of the protein pocket while significantly

improving memory efficiency: by restricting full attention to within-residue interactions, we avoid the O(N2) memory cost
of full atom-level attention across the entire protein, which can contain up to 2000 atoms.

Synthon attachment point information: In addition to the original atomic input features (atomic type and charge), we
further provide the boolean feature IS ATTACHMENT POINT indicating whether this atom is the attachment point for a new
synthon. Intuitively, this hints the model where the future synthon will be added in next reaction and bias the model to leave
space for the future synthon in the intermediate state pose prediction. We find this additional feature lead to better pose
prediction performance in practice.

Protein-ligand attention layer: The protein residue embeddings (h(pro)
i ,x

(pro)
i ), along with their original positions x(pro)

i ,
are combined with the ligand atom embeddings (h(lig)

j ,x
(lig)
j ) for pairwise message passing at each modified Semla layer

(i, j) ∈ V × P , defined as: (
minv

i,j , m
equi
i,j

)
= Ω

(pro−lig)
θ

(
h̃i, h̃j , x̃i · x̃j

)
, (16)

where h̃i and x̃i are normalized linearly projected features. The protein-ligand messages are aggregated with the original
ligand-ligand messages and used for attention-based updates. This formulation enables message exchange between residue
nodes and atom nodes, ensuring that the model effectively learns protein-ligand interactions critical to binding.

Modification to prior: Since the atom type and bond connections are generated by the compositional flow model instead
of the state flow model, therefore they remain fixed throughout the process. This means we cannot use techniques such
as equivariant-OT to reduce the transport cost (Klein et al., 2023; Song et al., 2023), since they assume interchangeability
between newly initialized nodes. We have also tried using harmonic prior from Jing et al. (2023); Stärk et al. (2024) to
initialize position with bonding information as prior. We observed improved pose prediction with Gaussian noise during
initial training, but no advantage of the harmonic prior over the Gaussian prior at convergence.

D.2.2. COMPOSITIONAL FLOW MODEL

We adopt a model architecture inspired by Bengio et al. (2021); Cretu et al. (2024); Seo et al. (2024), using a graph
transformer (Yun et al., 2022) as the backbone fθ, and a multi-layer perceptron (MLP) gθ for action embedding. The graph
embedding dimension is d1 and the synthon embedding dimension is d2. The GFlowNet condition such as temperature β or
multi-objective weights are encoded in condition vector c.

To capture spatial relationships between the protein and ligand, the model uses a 3D protein-ligand complex graph for each
state. The protein is represented as a fully-connected residual graph, where each node corresponds to a Cα atom. The ligand
is also connected to all protein nodes. All pairwise distances between nodes are encoded in the graph edges, enabling the
model to reason about the 3D structure. We represent each state s as an input of GFlowNet.

Initial synthon selection. For the initial state s = s0, the model always selects FirstSynthon to sample brick synthon
b ∈ B′ for the starting molecule with MLPAddSynthon : Rd1 → Rd2

.

Fθ(s0, b, c) = MLPFirstSynthon(fθ(s0, c))⊙ gθ(b) (17)

Adding synthon selection. For the later states s ̸= s0, the model selects AddSynthon to sample allowable brick or
linker synthon b ∈ ∪r∈R(s)Br with MLPAddSynthon : Rd1 → Rd2

. We note that the reaction type information is included in
synthon embedding:

Fθ(s, (r, b), c) = MLPAddSynthon(fθ(s, c))⊙ gθ(r, b)). (18)

Synthon masking. The state flow model is trained on the data distribution of active ligands. This may sometimes not
work well for out-of-distribution molecules that are much larger than the training data. Therefore, we restrict the actions
which make the state to have more than 40 atoms. This process can be performed simply in a synthon-based action space.
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E. Experimental details
E.1. Training details

E.1.1. 3DSYNTHFLOW HYPERPARAMETERS

Table 5. Default hyperparameters used for compositional structure.
Hyperparameters Values

Time per action λ 0.3
Interpolation window twindow 1.0
Maximum decomposed part 3

Minimum decomposed fragment size 5
Minimum trajectory length 2 (minimum reaction steps: 1)
Maximum trajectory length 3 (maximum reaction steps: 2)

Here we define the hyperparameters used for 3DSynthFlow:

1. Time per action (λ): Defines the time interval between adding each additional synthon.

2. Interpolation window (twindow): Specifies the fixed time window that affects the noise scheduling of the continuous
states of each component.

3. Maximum decomposed part: Determines the maximum number of synthons a molecule can be decomposed into,
preventing molecules from being associated with excessive synthesis steps.

4. Minimum decomposed fragment size: Specifies the minimum number of atoms that each synthon product must
contain when a molecule is decomposed according to reaction rules. This ensures that synthons are of realistic size
when decomposing CrossDocked ligands for training a pose prediction model.

5. Minimum trajectory length: Defines the minimum trajectory length for sampling composition steps in 3DSynthFlow.

6. Maximum trajectory length: Specifies the maximum trajectory length that can be reached.

We further exam the effect of performance for different setting of time scheduling, varying λ and twindow in Appendix F.3.

Table 6. Default hyperparameters used for State flow model.
Hyperparameters Values

Number of protein layers 4
Number of ligand layers 8

Noise prior Gaussian
Time distribution Beta(1.0, 1.0)

For parameterizing the state flow model for pose prediction, we use the same hyperparameter from the official repository ¶.
We show the additional hyperparameters in Table. 6 and provide an explanation for each below:

1. Number of protein layers: the number of layers with protein-protein message passing.

2. Number of ligand layers: the number of layers with protein-ligand message passing.

3. Noise prior: Defines the noise distribution which initial state values are drawn from.

4. Time distribution: Defines the time distribution
¶Follow SemlaFlow’s hyperparameter settings in train.py at https://github.com/rssrwn/semla-flow/blob/

main/semlaflow/train.py
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Composition flow model In this work, we set most parameters to the default values|| for all GFlowNet baselines (Some of
the parameters are in Table. 7). However, since 3DSynthFlow is built from RxnFlow, it follows some important parameters
of RxnFlow except for maximum trajectory length and state embedding size. We note that our state embedding dimension is
smaller than other GFlowNet baselines.

Table 7. Default hyperparameters used in all GFlowNets. The settings are from seh frag.py (Bengio et al., 2021)
Hyperparameters Values

GFN temperature β Uniform(0, 64)
Sampling tau (EMA factor) 0.9

Learning rate (Z) 10−3

Learning rate (PF ) 10−4

State embedding dimension 64

Table 8. Specific hyperparameters used in 3DSynthFlow training. The parameters are from RxnFlow (Seo et al., 2024), except for the
maximum trajectory length (4 for RxnFlow) and state embedding size (128 for RxnFlow and other GFlowNets).

Hyperparameters Values

Minimum trajectory length 2 (minimum reaction steps: 1)
Maximum trajectory length 3 (maximum reaction steps: 2)
State embedding dimension 64

Action embedding dimension 64
Action space subsampling ratio 1%
Train random action probability 5%

For action space subsampling, we randomly subsample 1% actions for FirstSynthon and each bi-molecular reaction
template r ∈ R2. However, for bi-molecular reactions with small possible reactant block sets Br ∈ B, the memory benefit
from the action space subsampling is small while a variance penalty is large. Therefore, we set the minimum subsampling
size to 100 for each bi-molecular reaction, and the action space subsampling is not performed when the number of actions is
smaller than 100.

The number of actions for each action type is imbalanced, and the number of reactant blocks (Br) for each bi-molecular
reaction template r is also imbalanced. This can make some rare action categories not being sampled during training. We
empirically found that ReactBi action were only sampled during 20,000 iterations (1.28M samples) in a toy experiment
that uses one bi-molecular reaction template and 10,000 building blocks in some random seeds. Therefore, we set the
random action probability as the default of 5%, and the model uniformly samples each action category in the random action
sampling. This prevents incorrect predictions by ensuring that the model experiences trajectories including rare actions. We
note that this random selection is only performed during model training.

E.1.2. DETAILS OF STATE FLOW MODEL TRAINING

To expose the state flow model to realistic partial ligand structures, we decompose each CrossDocked ligand into up to three
fragments using 38 bimolecular Enamine synthesis protocols, defined by reaction SMARTS patterns. For each molecule,
we randomly select a fragment ordering and sample a time step t, so the model observes the molecule at varying stages
of assembly (e.g., only fragment A at t = 1, fragments A and B at t = 2, etc.). This mimics the compositional assembly
process used during generation and teaches the model to predict physically plausible docking conformations for incomplete
ligands.

Importantly, the decomposition is not intended to yield commercially purchasable Enamine synthons. Instead, the use of
Enamine protocols ensures the resulting fragments are chemically meaningful and synthetically relevant, even if they do not
match existing catalog synthons. This allows us to use any CrossDocked molecule for training while staying aligned with
the synthetic priors used at generation time.

Across the CrossDocked dataset, we find that over 93% of molecules can be decomposed into at least two fragments using

||Follow default hyperparameter settings in seh frag.py and seh frag moo.py at https://github.com/
recursionpharma/gflownet/blob/trunk/src/gflownet/tasks
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this protocol, and over 87% can be decomposed into three. This high decomposition rate enables robust learning from
partially constructed molecules and ensures strong coverage of fragment combinations encountered during inference.

E.1.3. TRAINING TIME AND COMPUTATIONAL EFFICIENCY

The state flow model (i.e., the pocket-conditional pose predictor) was trained for 30 epochs on 8 A4000 GPUs (16GB),
requiring a total of 26 hours. Since the state flow model is trained on the CrossDocked dataset and is reused across different
test pockets, it incurs only a one-time computational cost. We plan to release the pretrained weights, so that users will need
to train only the composition flow model tailored to their custom reward function and target.

In contrast, the composition flow model is trained for 1,000 iterations under 20 flow matching steps. Training with GPU-
accelerated docking (UniDock; balance mode) takes between 7 and 12 hours (depending on the target) on a single A4000
GPU (16GB), making the computational requirement accessible for most practical drug discovery campaigns. Moreover, the
composition flow model can be trained in a pocket-conditioned manner to enable zero-shot molecule sampling for any target
pocket, thereby converting the training into a one-time cost in this setting.

Table 9. Summary of Training Time for 3DSynthFlow Components.
Model Component Hardware Batch Size Number of Iterations Training Time

State Flow Model 8 × A4000 (16GB) dynamic 30 epochs 26 hours
Composition Flow Model 1 × A4000 (16GB) 64 1,000 steps 7–10 hours

E.2. Reward function

To train GFlowNet models, we employ the same reward function proposed in RxnFlow (Seo et al., 2024) and TacoGFN
(Shen et al., 2024).

Pocket-specific optimization . To optimize both QED andd Vina docking score, we set the reward function as:

R(x) = w1QED(x) + w2V̂ina(x), (19)

where V̂ina(x) is a normalized docking score. The parameters w1 and w2 serve as conditions of multi-objective GFlowNets
(Jain et al., 2023b), and are set to 0.5 for non-GFlowNet baselines.

Pocket-conditional optimization . We use the the modified reward function proposed by Shen et al. (2024). According to
Seo et al. (2024), we remove SA score term (Ertl & Schuffenhauer, 2009) from the reward functions since 3DSynthFlow
explicitly generate synthetic pathway:

raffinity(x) =


0 if 0 ≤ Proxy(x)
−0.04× Proxy(x) if − 8 ≤ Proxy(x) ≤ 0

−0.2× Proxy(x)− 1.28 if − 13 ≤ Proxy(x) ≤ −8
1.32 if Proxy(x) ≤ −13

rQED(x) =

{
QED(x)/0.7 if QED(x) ≤ 0.7

1 otherwise

rSA(x) =

{
ŜA(x)/0.8 if ŜA(x) ≤ 0.8

1 otherwise

TacoGFN-Reward(x) =
raffinity(x)× rQED(x)× rSA(x)

3
√

HeavyAtomCounts(x)
(20)

RxnFlow-Reward(x) =
raffinity(x)× rQED(x)

3
√

HeavyAtomCounts(x)
(21)
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E.3. Datasets

E.3.1. LIT-PCBA POCKETS

Table. 10 describes the protein information used in pocket-specific optimization with UniDock, which is performed on
Sec. 6. We follow the same procedure used in pocket extraction for the CrossDock dataset: taking all residue of the protein
within 10 Å radius to the reference ligand as the binding pocket.

Table 10. The basic target information of the LIT-PCBA dataset and PDB entry used in this work.
Target PDB Id Target name

ADRB2 4ldo Beta2 adrenoceptor
ALDH1 5l2m Aldehyde dehydrogenase 1
ESR ago 2p15 Estrogen receptor α with agonist
ESR antago 2iok Estrogen receptor α with antagonist
FEN1 5fv7 FLAP Endonuclease 1
GBA 2v3d Acid Beta-Glucocerebrosidase
IDH1 4umx Isocitrate dehydrogenase 1
KAT2A 5h86 Histone acetyltransferase KAT2A
MAPK1 4zzn Mitogen-activated protein kinase 1
MTORC1 4dri PPIase domain of FKBP51, Rapamycin
OPRK1 6b73 Kappa opioid receptor
PKM2 4jpg Pyruvate kinase muscle isoform M1/M2
PPARG 5y2t Peroxisome proliferator-activated receptor γ
TP53 3zme Cellular tumor antigen p53
VDR 3a2i Vitamin D receptor

E.3.2. CROSSDOCKED2020

We train the State flow model of 3DSynthFlow on the commonly used CrossDocked dataset (Francoeur et al., 2020). We
apply the splitting and processing protocol on the CrossDocked dataset to obtain the same training split of protein-ligand
pairs as previous methods (Luo et al., 2021; Peng et al., 2022). We use 99,000 complexes as the training set and remaining
1,000 complexes as the validation set. Since we co-design 3D binding pose and synthesis pathway, unlike the pervious
2D-based methods, we can leverage this dataset for training the auxiliary State flow pose prediction model.

E.4. Baselines

SynNet, BBAR We reused the values reported in Seo et al. (2024).

FragGFN, RGFN, RxnFlow. All GFlowNet baselines share the same training parameters under the multi-objective
GFlowNet (Jain et al., 2023b) setting. We also reused the values reported in Seo et al. (2024).

SynFlowNet. There are two versions for SynFlowNet (Cretu et al., 2024): 2024.3 and 2024.8. For version 2024.3, we
reused the values in Seo et al. (2024). For version 2024.8, we followed the processes and settings according to the original
paper and official code repository **. To construct the action space, we randomly selected 10,000 building blocks from
Enamine Global Stock (v2025.01.11) with 105 reaction templates. We trained SynFlowNet using backward policy learning
maximum likelihood, maximum trajectory length to 3, and action embedding with Morgan fingerprint (Morgan, 1965).
Finally, we set the training parameters used in other GFlowNet baselines (See Table. 7). The training code and data used in
the benchmark study are included in the supplementary materials.

F. Additional results
F.1. Reward computation without full docking

The most computational and time-intensive process in the training process is often docking the generated candidates with
molecular docking for evaluation. Glide, a standard docking software in the industry, takes around 6 minutes per compound

**Follow SynFlowNet’s hyperparameter settings in reactions task.py at https://github.com/mirunacrt/
synflownet/tree/46a4acabd2255eb964c317ffbb86b743a13a4685
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Table 11. Ablation study on reward setting for Vina docking scores. Evaluated on the ADH1 pocket. Results are averaged over 3 runs.
Method Reward setting Docking score (↓)

RxnFlow Full docking -11.26 (± 0.07)
3DSynthFlow Full docking -11.82 (± 0.07)
3DSynthFlow Local opt. -11.44 (± 0.06)
3DSynthFlowfinetuned Local opt. -11.62 (± 0.02)

in its most accurate setting (Friesner et al., 2004). This constraint necessitates either reducing the number of Oracle queries
or trading speed for less accurate docking settings. Docking scores are typically computed via Full docking, which performs
a full search for the optimal binding pose at a high computational cost. However, it can also be computed via Local
optimization for significantly faster computation, if an existing binding pose is available. ††

In this setting, we investigate directly using the final predicted pose from 3DSynthFlow to compute reward using local
optimization compared to using the full docking score. In the 3DSynthFlow finetuned setting for local opt., we first finetune
the pose predictor on re-docked poses from the first 9,600 sampled molecules to improve binding pose prediction, thereby
enabling accurate local optimization docking scores.

From Table. 11, we see that regardless of the scoring function used or whether we perform fine tuning, 3DSynthFlow
outperformed the best 2D baseline RxnFlow, confirming the benefit of 3D structure co-design. Interestingly, 3DSynthFlow
using local opt. do not perform as well as 3DSynthFlow trained with signals from full docking in both settings. While fine
tuning the pose prediction module helps, the gap between full docking and local opt. is not fully closed. Empirically, we
find the poses predicted from 3DSynthFlow sometimes contain steric clashes, leading to inaccurate estimation of the reward
signal. Accordingly, improving the pose prediction module emerges as a key next step to reduce steric clashes and enhance
the accuracy of local optimization docking scores, as disccussed in Sec. 7.

By co-designing binding pose and molecule, 3DSynthFlow using local opt. can bypass the computational burden of full
docking which 2D generative methods are subjected to, while surpassing their performance. This is a key advantage for
3DSynthFlow in cases where accurate full docking is prohibitively expensive for a large number of ligands.

F.2. Effect of Flow Matching Steps

Table 12. Effect of flow matching steps on performance for the ALDH1 target with the Vina reward. We report both the average docking
score (Avg Vina) over all generated molecules and the top 100 docking scores (Top 100 Vina), with lower values indicating better binding.
Training time is reported in seconds per iteration, and sampling time is reported in seconds per molecule.

Flow Matching Steps Avg Vina (↓) Top 100 Vina (↓) Training Time (sec/iter) Sampling Time (sec/mol)

20 −8.55± 0.18 −12.86± 0.22 16 0.058
40 −8.57± 0.13 −13.03± 0.27 22 0.086
60 −8.84± 0.14 −13.50± 0.24 24 0.115
80 −8.47± 0.18 −13.15± 0.16 27 0.153

We further analyzed how the number of flow matching steps impacts performance using the ALDH1 target with the Vina
reward. As shown in Table 12, performance slightly improves with increasing flow matching steps and appears to saturate
around 40–60 steps. This marginal improvement may stem from the fact that the pose prediction module’s primary role is to
provide a spatial context between intermediate molecules and the pocket; hence, extremely precise pose predictions have
limited additional impact on model decisions.

F.3. Ablation study on time scheduling of 3DSynthFlow

We conducted an ablation study to assess the effect of time scheduling in state flow training. Specifically, we compared
three scheduling strategies:

• No overlap: strictly autoregressive denoising - each synthon denoised after the previous one is completed. (λ =
0.33, twindow = 0.33).

††Scoring a predicted pose using the local-optimization setting in AutoDock Vina is 7× faster than performing full docking. This
speedup is even greater for more accurate docking programs, since the vast majority of time is spent on pose searching rather than scoring.

22



Compositional Flows for 3D Molecule and Synthesis Pathway Co-design

• Overlapping: partial overlap of synthon denoising (λ = 0.3, twindow = 0.4).

• Till end: all synthons are denoised jointly until t = 1 (λ = 0.33, twindow = 1.0).

To highlight the impact of noise scheduling on the final pose, we report the average local-optimized Vina docking scores
across different training iterations for the ALDH1 target over 3 seeds:

# of mol explored 10,000 20,000 30,000

No overlap −5.68± 0.29 −6.33± 0.26 −7.02± 0.34
Overlapping −6.28± 0.22 −7.28± 0.21 −7.22± 0.12
Till end −7.15± 0.40 −7.60± 0.29 −7.79± 0.12

Table 13. Ablation study on time scheduling for state flow training on the ALDH1 target.

We find 3DSynthFlow ’s Till end strategy, where all positions are refined until time t = 1, clearly outperforms conventional
autoregressive approaches - No overlap, adopted in previous works (See Appendix C). Our framework enables tuning of
hyperparameter λ and twindow to accommodate varying data problems.

F.4. State Space Size Estimation

We estimate the sample space size based on the number of synthetic steps: 1011 molecules with a single reaction step, 1017

molecules with two reaction steps, and 1023 molecules with three reaction steps. In our experiments, we employed up to
two reaction steps according to Enamine REAL. The resulting state space size is comparable to RGFN (up to 4 steps with
8,350 blocks) and SynFlowNet (up to 3 steps with 200k blocks).

To assess the breadth of building block (BB) exploration, we analyzed the number of unique BBs encountered during
training across the first five LIT-PCBA targets. Our model explored an average of approximately 55,000 unique BBs within
1,000 training iterations using a batch size of 64. This indicates significantly broader exploration compared to SynFlowNet,
which reported around 15,000 unique BBs over 8,000 iterations with a batch size of 8.

Table 14. Number of unique building blocks explored during training across 5 LIT-PCBA targets.

Target ADRB2 ALDH1 ESR ago ESR antago FEN1

Number of Unique BBs 45520± 7876 48644± 1983 55211± 5611 58097± 8529 69400± 5259

F.5. PoseCheck protein-ligand interactions

Table 15. PoseCheck protein-ligand interactions. We report two versions of SynFlowNet (v2024.05a and v2024.10b). Averages and
standard deviations over 3 runs, for the top 100 diverse modes per LIT-PCBA pocket. The best results in each column are in bold.

PoseCheck Metrics (↑)

Method H-Bond Acceptors H-Bond Donors Van der Waals Hydrophobic Sum

SynFlowNeta 0.22 (± 0.01) 0.11 (± 0.01) 9.31 (± 0.05) 10.41 (± 0.05) 20.05
SynFlowNetb 0.22 (± 0.03) 0.10 (± 0.01) 8.38 (± 0.05) 9.44 (± 0.06) 18.14
RGFN 0.19 (± 0.01) 0.11 (± 0.01) 9.19 (± 0.28) 10.25 (± 0.12) 19.73
RxnFlow 0.22 (± 0.00) 0.10 (± 0.01) 9.63 (± 0.09) 10.67 (± 0.10) 20.62
3DSynthFlow 0.33 (± 0.06) 0.17 (± 0.03) 11.04 (± 0.37) 10.79 (± 0.21) 22.32

Lastly, we evaluate the protein-ligand interactions of the top 100 generated molecules using PoseCheck (Harris et al., 2023).
Since baselines do not generate 3D poses, we assess all methods using their redocked structures for consistency. PoseCheck
evaluates four key protein-ligand interactions: H-bond acceptors, H-bond donors, van der Waals contacts, and hydrophobic
effects.

Hydrogen bonds (H-bonds) are the most important specific interactions in protein-ligand recognition (Bissantz et al., 2010)
and require precise geometric alignment to form (Brown, 1976). Unlike hydrophobic and van der Waals interactions, which
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are non-directional and broadly applicable, H-bonds require strict atomic alignment, reinforcing the need for accurate 3D
molecular modeling.

Notably, 3DSynthFlow achieves the highest H-bond acceptor and donor counts, outperforming all baselines. This improve-
ment suggests that co-designing 3D structure and synthesis pathways enhances the geometric alignment of polar functional
groups, leading to more stable and specific protein-ligand interactions. In addition, 3DSynthFlow-generated molecules also
result in more hydrophobic and van der Waals interactions to baselines, as shown in Table. 15, further enhancing binding
stability.

F.6. Full sampling efficiency results

Table 16. Average number of diverse modes discovered versus the number of molecules explored. The best results are in bold. Results are
computed over 2 seeds.

Number of Molecules Explored

Target Method 1,000 5,000 10,000 30,000 64,000

ADRB2 RxnFlow 3.0 (±1.4) 21.5 (±4.9) 52.0 (±24.0) 500.0 (±137.2) 1282.5 (±234.1)
3DSynthFlow 5.5 (±6.4) 70.5 (±41.7) 307.0 (±158.4) 2198.5 (±54.5) 5145.5 (±62.9)

ALDH1 RxnFlow 4.5 (±2.1) 26.5 (±7.8) 73.5 (±33.2) 472.5 (±99.7) 1240.0 (±75.0)
3DSynthFlow 18.5 (±14.8) 112.0 (±94.8) 326.5 (±316.1) 1789.5 (±989.2) 5701.0 (±1328.4)

ESR ago RxnFlow 5.0 (±4.2) 17.0 (±4.2) 44.0 (±8.5) 440.5 (±60.1) 1174.0 (±100.4)
3DSynthFlow 5.0 (±2.8) 55.0 (±43.8) 229.5 (±200.1) 1742.0 (±881.1) 5015.5 (±1680.7)

ESR antago RxnFlow 3.0 (±2.8) 14.5 (±0.7) 28.0 (±0.0) 218.0 (±21.2) 559.0 (±50.9)
3DSynthFlow 6.5 (±4.9) 60.0 (±11.3) 172.5 (±40.3) 1020.5 (±24.7) 2977.5 (±577.7)

FEN1 RxnFlow 3.5 (±0.7) 29.0 (±18.4) 75.5 (±57.3) 372.0 (±46.7) 1057.5 (±38.9)
3DSynthFlow 12.5 (±9.2) 58.5 (±29.0) 176.5 (±95.5) 852.0 (±63.6) 3322.0 (±49.5)

Average RxnFlow 3.8 21.7 54.6 400.6 1062.6
3DSynthFlow 9.6 71.2 242.4 1520.5 4432.3
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F.7. Full results for LIT-PCBA target

Table 17. Average Vina docking score for top-100 diverse modes generated against 15 LIT-PCBA targets. The best results are in bold.
Average Vina Docking Score (kcal/mol, ↓)

Category Method ADRB2 ALDH1 ESR ago ESR antago FEN1

Fragment FragGFN -10.19 (± 0.33) -10.43 (± 0.29) -9.81 (± 0.09) -9.85 (± 0.13) -7.67 (± 0.71)
FragGFN+SA -9.70 (± 0.61) -9.83 (± 0.65) -9.27 (± 0.95) -10.06 (± 0.30) -7.26 (± 0.10)

Reaction

SynNet -8.03 (± 0.26) -8.81 (± 0.21) -8.88 (± 0.13) -8.52 (± 0.16) -6.36 (± 0.09)
BBAR -9.95 (± 0.04) -10.06 (± 0.14) -9.97 (± 0.03) -9.92 (± 0.05) -6.84 (± 0.07)
SynFlowNeta -10.85 (± 0.10) -10.69 (± 0.09) -10.44 (± 0.05) -10.27 (± 0.04) -7.47 (± 0.02)

SynFlowNetb -9.17 (± 0.68) -9.37 (± 0.29) -9.17 (± 0.12) -9.05 (± 0.14) -6.45 (± 0.13)
RGFN -9.84 (± 0.21) -9.93 (± 0.11) -9.99 (± 0.11) -9.72 (± 0.14) -6.92 (± 0.06)
RxnFlow -11.45 (± 0.05) -11.26 (± 0.07) -11.15 (± 0.02) -10.77 (± 0.04) -7.66 (± 0.02)

3D Reaction 3DSynthFlow -11.97 (± 0.12) -11.82 (± 0.04) -11.58 (± 0.07) -11.23 (± 0.08) -7.79 (± 0.01)

GBA IDH1 KAT2A MAPK1 MTORC1

Fragment FragGFN -8.76 (± 0.46) -9.91 (± 0.32) -9.27 (± 0.20) -8.93 (± 0.18) -10.51 (± 0.31)
FragGFN+SA -8.92 (± 0.27) -9.76 (± 0.64) -9.14 (± 0.43) -8.28 (± 0.40) -10.14 (± 0.30)

Reaction

SynNet -7.60 (± 0.09) -8.74 (± 0.08) -7.64 (± 0.38) -7.33 (± 0.14) -9.30 (± 0.45)
BBAR -8.70 (± 0.05) -9.84 (± 0.09) -8.54 (± 0.06) -8.49 (± 0.07) -10.07 (± 0.16)
SynFlowNeta -9.27 (± 0.06) -10.40 (± 0.08) -9.41 (± 0.04) -8.92 (± 0.05) -10.84 (± 0.03)

SynFlowNetb -8.28 (± 0.15) -9.18 (± 0.35) -8.06 (± 0.15) -7.89 (± 0.13) -9.60 (± 0.16)
RGFN -8.48 (± 0.06) -9.49 (± 0.13) -8.53 (± 0.11) -8.22 (± 0.15) -9.89 (± 0.06)
RxnFlow -9.62 (± 0.04) -10.95 (± 0.05) -9.73 (± 0.03) -9.30 (± 0.01) -11.39 (± 0.09)

3D Reaction 3DSynthFlow -9.90 (± 0.14) -11.28 (± 0.15) -10.17 (± 0.37) -9.61 (± 0.11) -11.91 (± 0.01)

OPRK1 PKM2 PPARG TP53 VDR

Fragment FragGFN -10.28 (± 0.15) -11.24 (± 0.27) -9.54 (± 0.12) -7.90 (± 0.02) -10.96 (± 0.06)
FragGFN+SA -9.58 (± 0.44) -10.83 (± 0.34) -9.19 (± 0.29) -7.61 (± 0.27) -10.66 (± 0.61)

Reaction

SynNet -8.70 (± 0.36) -9.55 (± 0.14) -7.47 (± 0.34) -5.34 (± 0.23) -10.98 (± 0.57)
BBAR -9.84 (± 0.10) -11.39 (± 0.08) -8.69 (± 0.10) -7.05 (± 0.09) -11.07 (± 0.04)
SynFlowNeta -10.34 (± 0.07) -11.98 (± 0.12) -9.40 (± 0.05) -7.90 (± 0.10) -11.62 (± 0.13)

SynFlowNetb -9.36 (± 0.25) -10.64 (± 0.19) -8.25 (± 0.10) -6.84 (± 0.06) -10.32 (± 0.07)
RGFN -9.61 (± 0.11) -10.96 (± 0.18) -8.53 (± 0.07) -7.07 (± 0.06) -10.86 (± 0.11)
RxnFlow -10.84 (± 0.03) -12.53 (± 0.02) -9.73 (± 0.02) -8.09 (± 0.06) -12.30 (± 0.07)

3D Reaction 3DSynthFlow -11.26 (± 0.41) -13.36 (± 0.03) -10.00 (± 0.04) -8.41 (± 0.17) -12.98 (± 0.10)
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Table 18. Average ligand efficiency for top-100 diverse modes generated against 15 LIT-PCBA targets. The best results are in bold.
Average Ligand Efficiency (↓)

Category Method ADRB2 ALDH1 ESR ago ESR antago FEN1

Fragment FragGFN 0.410 (± 0.006) 0.368 (± 0.007) 0.347 (± 0.003) 0.358 (± 0.002) 0.246 (± 0.004)
FragGFN+SA 0.406 (± 0.007) 0.374 (± 0.023) 0.369 (± 0.003) 0.345 (± 0.024) 0.210 (± 0.004)

Reaction

SynNet 0.274 (± 0.041) 0.272 (± 0.006) 0.317 (± 0.005) 0.289 (± 0.020) 0.196 (± 0.003)
BBAR 0.412 (± 0.006) 0.401 (± 0.008) 0.380 (± 0.001) 0.387 (± 0.003) 0.257 (± 0.003)
SynFlowNeta 0.401 (± 0.006) 0.380 (± 0.007) 0.361 (± 0.003) 0.361 (± 0.004) 0.247 (± 0.004)

Synflownetb 0.380 (± 0.021) 0.362 (± 0.016) 0.351 (± 0.008) 0.349 (± 0.005) 0.234 (± 0.007)
RGFN 0.393 (± 0.005) 0.357 (± 0.004) 0.346 (± 0.002) 0.344 (± 0.002) 0.241 (± 0.001)
RxnFlow 0.412 (± 0.005) 0.396 (± 0.005) 0.375 (± 0.002) 0.380 (± 0.004) 0.246 (± 0.001)

3D Reaction 3DSynthFlow 0.448 (± 0.019) 0.395 (± 0.006) 0.391 (± 0.005) 0.398 (± 0.016) 0.252 (± 0.005)

GBA IDH1 KAT2A MAPK1 MTORC1

Fragment FragGFN 0.333 (± 0.018) 0.367 (± 0.009) 0.322 (± 0.008) 0.302 (± 0.002) 0.354 (± 0.005)
FragGFN+SA 0.318 (± 0.005) 0.369 (± 0.020) 0.298 (± 0.020) 0.294 (± 0.015) 0.355 (± 0.027)

Reaction

SynNet 0.244 (± 0.013) 0.281 (± 0.016) 0.294 (± 0.042) 0.226 (± 0.004) 0.316 (± 0.035)
BBAR 0.336 (± 0.002) 0.382 (± 0.005) 0.332 (± 0.003) 0.320 (± 0.002) 0.385 (± 0.004)
SynFlowNeta 0.330 (± 0.004) 0.368 (± 0.002) 0.327 (± 0.003) 0.305 (± 0.002) 0.368 (± 0.002)

SynFlowNetb 0.324 (± 0.007) 0.360 (± 0.013) 0.309 (± 0.004) 0.297 (± 0.011) 0.361 (± 0.009)
RGFN 0.310 (± 0.002) 0.351 (± 0.003) 0.310 (± 0.003) 0.298 (± 0.002) 0.346 (± 0.004)
RxnFlow 0.327 (± 0.004) 0.378 (± 0.001) 0.330 (± 0.001) 0.313 (± 0.001) 0.370 (± 0.001)

3D Reaction 3DSynthFlow 0.340 (± 0.018) 0.388 (± 0.007) 0.340 (± 0.016) 0.322 (± 0.009) 0.387 (± 0.008)

OPRK1 PKM2 PPARG TP53 VDR

Fragment FragGFN 0.352 (± 0.004) 0.442 (± 0.008) 0.319 (± 0.007) 0.307 (± 0.005) 0.394 (± 0.006)
FragGFN+SA 0.327 (± 0.014) 0.440 (± 0.009) 0.303 (± 0.013) 0.248 (± 0.025) 0.390 (± 0.020)

Reaction

SynNet 0.298 (± 0.039) 0.296 (± 0.005) 0.253 (± 0.031) 0.211 (± 0.031) 0.359 (± 0.015)
BBAR 0.370 (± 0.006) 0.442 (± 0.004) 0.326 (± 0.007) 0.288 (± 0.005) 0.409 (± 0.002)
SynFlowNeta 0.359 (± 0.004) 0.427 (± 0.003) 0.317 (± 0.002) 0.287 (± 0.008) 0.393 (± 0.003)

SynFlowNetb 0.355 (± 0.008) 0.410 (± 0.018) 0.296 (± 0.010) 0.282 (± 0.005) 0.380 (± 0.005)
RGFN 0.349 (± 0.001) 0.405 (± 0.002) 0.307 (± 0.002) 0.271 (± 0.001) 0.381 (± 0.002)
RxnFlow 0.369 (± 0.007) 0.436 (± 0.005) 0.319 (± 0.002) 0.289 (± 0.003) 0.405 (± 0.002)

3D Reaction 3DSynthFlow 0.389 (± 0.006) 0.444 (± 0.010) 0.321 (± 0.005) 0.294 (± 0.006) 0.416 (± 0.009)
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Table 19. Average success rate of AiZynthFinder for top-100 diverse modes generated against 15 LIT-PCBA targets. The best results are
in bold.

AiZynthFinder Success Rate (%, ↑)

Category Method ADRB2 ALDH1 ESR ago ESR antago FEN1

Fragment FragGFN 4.00 (± 3.54) 3.75 (± 1.92) 1.00 (± 1.00) 3.75 (± 1.92) 0.25 (± 0.43)
FragGFN+SA 5.75 (± 1.48) 6.00 (± 2.55) 4.00 (± 2.24) 1.00 (± 0.00) 0.00 (± 0.00)

Reaction

SynNet 54.17 (± 7.22) 50.00 (± 0.00) 50.00 (± 0.00) 25.00 (± 25.00) 50.00 (± 0.00)
BBAR 21.25 (± 5.36) 19.50 (± 3.20) 17.50 (± 1.50) 19.50 (± 3.64) 20.00 (± 2.12)
SynFlowNeta 52.75 (± 1.09) 57.00 (± 6.04) 53.75 (± 9.52) 56.50 (± 2.29) 53.00 (± 8.92)

SynFlowNetb 56.50 (± 6.58) 56.00 (± 3.08) 61.00 (± 2.74) 64.50 (± 9.86) 60.75 (± 3.77)
RGFN 46.75 (± 6.86) 47.50 (± 4.06) 50.25 (± 2.17) 49.25 (± 4.38) 48.50 (± 6.58)
RxnFlow 60.25 (± 3.77) 63.25 (± 3.11) 71.25 (± 4.15) 66.50 (± 4.03) 65.50 (± 4.09)

3D Reaction 3DSynthFlow 85.00 (± 7.87) 69.33 (± 3.86) 80.00 (± 4.24) 69.67 (± 14.06) 60.00 (± 15.64)

GBA IDH1 KAT2A MAPK1 MTORC1

Fragment FragGFN 5.00 (± 4.24) 4.50 (± 1.66) 1.25 (± 0.83) 0.75 (± 0.83) 2.75 (± 1.30)
FragGFN+SA 3.00 (± 1.00) 4.50 (± 4.97) 1.50 (± 0.50) 3.25 (± 1.48) 3.50 (± 2.50)

Reaction

SynNet 50.00 (± 0.00) 50.00 (± 0.00) 45.83 (± 27.32) 50.00 (± 0.00) 54.17 (± 7.22)
BBAR 17.75 (± 2.28) 19.50 (± 1.50) 18.75 (± 1.92) 16.25 (± 3.49) 18.75 (± 3.90)
SynFlowNeta 58.00 (± 4.64) 59.00 (± 4.06) 55.50 (± 10.23) 47.25 (± 6.61) 57.00 (± 7.58)

SynFlowNetb 61.50 (± 3.84) 60.50 (± 3.91) 57.25 (± 4.97) 44.50 (± 9.29) 62.00 (± 1.22)
RGFN 48.00 (± 1.22) 43.00 (± 2.74) 49.00 (± 1.22) 42.00 (± 3.00) 44.50 (± 4.03)
RxnFlow 66.00 (± 1.58) 64.00 (± 5.05) 66.50 (± 2.06) 63.00 (± 4.64) 70.50 (± 2.87)

3D Reaction 3DSynthFlow 64.67 (± 3.09) 65.67 (± 13.91) 68.00 (± 19.51) 54.67 (± 10.50) 64.67 (± 15.69)

OPRK1 PKM2 PPARG TP53 VDR

Fragment FragGFN 2.50 (± 2.29) 8.75 (± 3.11) 0.75 (± 0.43) 4.25 (± 1.64) 3.50 (± 2.18)
FragGFN+SA 3.25 (± 1.79) 9.75 (± 2.28) 1.25 (± 1.09) 2.25 (± 1.92) 3.75 (± 2.77)

Reaction

SynNet 54.17 (± 7.22) 50.00 (± 0.00) 54.17 (± 7.22) 29.17 (± 18.16) 45.83 (± 7.22)
BBAR 13.75 (± 3.11) 20.00 (± 0.71) 15.50 (± 2.29) 18.50 (± 3.28) 12.25 (± 3.34)
SynFlowNeta 56.50 (± 7.63) 50.75 (± 1.09) 53.50 (± 5.68) 55.50 (± 9.94) 53.50 (± 1.80)

SynFlowNetb 56.25 (± 2.49) 58.00 (± 7.00) 57.00 (± 5.74) 66.50 (± 6.80) 53.50 (± 3.84)
RGFN 48.00 (± 2.55) 48.50 (± 3.20) 47.00 (± 5.83) 53.25 (± 3.63) 46.50 (± 2.69)
RxnFlow 72.25 (± 2.05) 62.00 (± 3.24) 65.50 (± 4.03) 67.50 (± 2.96) 66.75 (± 2.28)

3D Reaction 3DSynthFlow 67.33 (± 20.37) 78.67 (± 8.73) 65.67 (± 8.18) 61.33 (± 11.73) 74.00 (± 17.15)
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Table 20. Average synthesis steps estimated from AiZynthFinder for top-100 diverse modes generated against 15 LIT-PCBA targets. The
best results are in bold.

Average Number of Synthesis Steps (↓)

Category Method ADRB2 ALDH1 ESR ago ESR antago FEN1

Fragment FragGFN 3.60 (± 0.10) 3.83 (± 0.08) 3.76 (± 0.20) 3.76 (± 0.16) 3.34 (± 0.18)
FragGFN+SA 3.73 (± 0.09) 3.66 (± 0.04) 3.66 (± 0.07) 3.67 (± 0.21) 3.79 (± 0.19)

Reaction

SynNet 3.29 (± 0.36) 3.50 (± 0.00) 3.00 (± 0.00) 4.13 (± 0.89) 3.50 (± 0.00)
BBAR 3.60 (± 0.17) 3.62 (± 0.19) 3.76 (± 0.04) 3.72 (± 0.11) 3.59 (± 0.14)
SynFlowNeta 2.64 (± 0.07) 2.48 (± 0.07) 2.60 (± 0.25) 2.45 (± 0.09) 2.56 (± 0.29)

SynFlowNetb 2.42 (± 0.10) 2.48 (± 0.10) 2.38 (± 0.10) 2.34 (± 0.30) 2.41 (± 0.14)
RGFN 2.88 (± 0.21) 2.65 (± 0.09) 2.78 (± 0.19) 2.91 (± 0.23) 2.76 (± 0.17)
RxnFlow 2.42 (± 0.23) 2.19 (± 0.12) 1.95 (± 0.20) 2.15 (± 0.18) 2.23 (± 0.18)

3D Reaction 3DSynthFlow 1.77 (± 0.37) 2.23 (± 0.16) 2.02 (± 0.20) 2.43 (± 0.61) 2.73 (± 0.50)

GBA IDH1 KAT2A MAPK1 MTORC1

Fragment FragGFN 3.94 (± 0.11) 3.74 (± 0.10) 3.78 (± 0.09) 3.72 (± 0.18) 3.84 (± 0.18)
FragGFN+SA 3.94 (± 0.15) 3.84 (± 0.23) 3.66 (± 0.18) 3.69 (± 0.21) 3.94 (± 0.08)

Reaction

SynNet 3.38 (± 0.22) 3.38 (± 0.22) 3.46 (± 0.95) 3.50 (± 0.00) 3.29 (± 0.36)
BBAR 3.71 (± 0.12) 3.68 (± 0.02) 3.63 (± 0.05) 3.73 (± 0.05) 3.77 (± 0.09)
SynFlowNeta 2.48 (± 0.18) 2.61 (± 0.13) 2.45 (± 0.37) 2.81 (± 0.24) 2.44 (± 0.27)

SynFlowNetb 2.45 (± 0.08) 2.46 (± 0.12) 2.45 (± 0.12) 2.83 (± 0.27) 2.39 (± 0.17)
RGFN 2.77 (± 0.20) 2.97 (± 0.15) 2.78 (± 0.10) 2.86 (± 0.19) 2.92 (± 0.06)
RxnFlow 2.10 (± 0.08) 2.16 (± 0.11) 2.29 (± 0.05) 2.29 (± 0.11) 2.05 (± 0.09)

3D Reaction 3DSynthFlow 2.47 (± 0.24) 2.49 (± 0.42) 2.47 (± 0.61) 2.70 (± 0.33) 2.42 (± 0.61)

OPRK1 PKM2 PPARG TP53 VDR

Fragment FragGFN 3.82 (± 0.13) 3.71 (± 0.12) 3.73 (± 0.24) 3.73 (± 0.23) 3.75 (± 0.06)
FragGFN+SA 3.62 (± 0.12) 3.84 (± 0.21) 3.71 (± 0.04) 3.66 (± 0.05) 3.67 (± 0.25)

Reaction

SynNet 3.29 (± 0.36) 3.50 (± 0.00) 3.29 (± 0.36) 3.67 (± 0.91) 3.63 (± 0.22)
BBAR 3.70 (± 0.17) 3.61 (± 0.05) 3.72 (± 0.13) 3.65 (± 0.05) 3.77 (± 0.16)
SynFlowNeta 2.49 (± 0.33) 2.62 (± 0.10) 2.56 (± 0.12) 2.51 (± 0.27) 2.55 (± 0.09)

SynFlowNetb 2.50 (± 0.11) 2.52 (± 0.20) 2.53 (± 0.06) 2.34 (± 0.10) 2.51 (± 0.17)
RGFN 2.81 (± 0.12) 2.82 (± 0.10) 2.82 (± 0.18) 2.64 (± 0.10) 2.84 (± 0.18)
RxnFlow 2.00 (± 0.09) 2.34 (± 0.19) 2.21 (± 0.06) 2.12 (± 0.12) 2.12 (± 0.12)

3D Reaction 3DSynthFlow 2.34 (± 0.53) 2.20 (± 0.41) 2.61 (± 0.39) 2.73 (± 0.47) 2.25 (± 0.78)
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F.8. Example generation trajectories

Figure 7. The example generation trajectory against ALDH1 target. The top row shows the 3D molecule xt (green). The mid row shows
the predicted final pose at each time step (cyan). The bottom row shows the synthesis pathway.
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