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ABSTRACT

Modeling semantic and structural information from tabular data remains a core
challenge for effective table understanding. Existing Table-as-Text approaches
flatten tables for large language models (LLMs), but lose crucial structural cues,
while Table-as-Image methods preserve structure yet struggle with precise seman-
tics. Recent Table-as-Multimodality strategies attempt to combine textual and vi-
sual views, but they (1) statically process both modalities for every query-table
pair within large multimodal LLMs (MLLMs), inevitably introducing redundancy
and even conflicts, and (2) depend on costly fine-tuning of MLLMs. In light of
this, we propose TableDART, a training-efficient framework that integrates mul-
timodal views by reusing pretrained single-modality models. TableDART intro-
duces a lightweight 2.59M-parameter MLP gating network that dynamically se-
lects the optimal path (Text-only, Image-only, or Fusion) for each table–query
pair, reducing redundancy and avoiding conflicts that arise when textual and vi-
sual views of the same table provide inconsistent cues. By routing to the most
appropriate view, our framework improves both accuracy and efficiency. In ad-
dition, we propose a novel agent to mediate cross-modal knowledge integration
by analyzing outputs from text- and image-based models, either selecting the best
result or synthesizing a new answer through reasoning. This design avoids the pro-
hibitive costs of full MLLM fine-tuning. Extensive experiments on seven bench-
marks show that TableDART establishes new state-of-the-art performance among
open-source models, surpassing the strongest baseline by an average of 4.02%.
The code is available at: https://github.com/xiaobo-xing/TableDART.

1 INTRODUCTION

Tabular data is one of the most ubiquitous formats in the real world, with applications spanning
finance (Chen et al., 2021; Zhu et al., 2021; 2024b), healthcare (Shi et al., 2024; Wang et al., 2024),
and many other domains that rely on relational databases and spreadsheets (Fey et al., 2024; Gao
et al., 2026). Despite its prevalence, effectively modeling tabular data remains a long-standing chal-
lenge, due to its unique characteristics such as heterogeneity of diverse data types across columns,
permutation invariance regarding row and column order, and hierarchical structure of multi-level or
nested headers and indices (Fang et al., 2024; Borisov et al., 2024; Chen et al., 2023).

Existing approaches to tabular data understanding can be broadly categorized into two paradigms.
The first is the “Table-as-Text” paradigm, where tables are linearized into sequences and processed
by large language models (LLMs) (Zha et al., 2023; Su et al., 2024). While effective, this approach is
sensitive to serialization choices (Sui et al., 2024) and inevitably loses critical structural information
(Deng et al., 2024). The second paradigm treats “Table-as-Image”, where table screenshots are
processed with vision models. This approach better preserves structural information but struggles to
capture precise and aligned semantic meaning (Deng et al., 2024).
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To combine the complementary strengths of these paradigms, recent research has moved toward
“Table-as-Multimodality”, where tables are represented in both textual and visual forms and pro-
cessed via fine-tuned multimodal LLMs (MLLMs) (Liu et al., 2025). While promising, this MLLM-
based paradigm suffers from two key limitations that hinder both performance and practicality. First,
regardless of the context, they mandate both modality views for every table-query pair. However,
not all queries benefit from multiple views, as integrating multiple views often introduces redun-
dancy and, in some cases, conflicting signals. For example, textual linearization may inadvertently
impose row-order sensitivity (Fang et al., 2024), while tables in their original or visual form remain
permutation-invariant (Wu et al., 2025). Such redundancy and conflicts mislead the MLLM’s table
understanding, resulting in suboptimal performance. Second, existing approaches typically rely on
heavy MLLMs, which remain computationally prohibitive to adapt at scale even with parameter-
efficient fine-tuning strategies (Hu et al., 2022), limiting their practicality under constrained training
budgets and deployment pipelines (Yin et al., 2025).

In this paper, we propose TableDART (Dynamic Adaptive multi-modal RouTing), a novel frame-
work for efficient and effective multimodal table understanding. Unlike prior work, TableDART
does not naively combine all modalities’ perspectives. Instead, it introduces a lightweight MLP gat-
ing network that dynamically selects the optimal processing path (either Text-only, Image-only, or
Fusion) for each table-query pair depending on the instance’s complexity and resource efficiency.
When fusion is selected, a powerful LLM agent integrates the outputs of both single-modality ex-
perts, serving either as an arbitrator (selecting the better output) or as a rescuer (generating an
enhanced answer by reasoning over both sources). Notably, TableDART reuses existing single-
modality experts (Text-only and Image-only), requiring training only for the gating network. This
makes it significantly more training-efficient than fine-tuning MLLMs. We validate TableDART
with extensive experiments on seven diverse benchmarks. Results show that TableDART not only
achieves state-of-the-art performance among open-source models, surpassing the strongest MLLM-
based baseline by an average of 4.02% accuracy, but also provides new insights into dynamic routing
policies for multimodal table understanding.

In summary, our main contributions are:

(a) We propose TableDART, a novel framework that adaptively selects the optimal processing
path for each query to make the most of modality-specific features for table understanding.

(b) We introduce a parameter-efficient training paradigm that fully leverages pretrained (and
frozen) single-modality experts by learning to route over experts with different output vo-
cabularies, making the lightweight gating network (2.59M parameters) the only trainable
part. An LLM agent is designed to further facilitate cross-modal consensus, enabling a
plug-and-play setup without fine-tuning any LLM or MLLM backbones.

(c) We conduct extensive experiments and establish new state-of-the-art performance on multi-
ple benchmarks. In addition, we provide an in-depth analysis of the learned routing policy,
demonstrating its strong generalizability and effectiveness.

2 RELATED WORK

Unimodal Approaches for Table Understanding. A dominant paradigm for applying LLMs to
tabular data is the Table-as-Text approach, which serializes tables into linear text sequences. Early
work such as TaPas (Herzig et al., 2020) demonstrated its effectiveness, inspiring specialized tabular
models like TableLlama (Zhang et al., 2024) and TableGPT2 (Su et al., 2024), which achieve state-
of-the-art results for table understanding. However, these models remain constrained by their input
modality, as they cannot capture the rich visual and structural semantics inherent in the original table
format (Deng et al., 2024). To overcome this limitation, the Table-as-Image paradigm has emerged,
leveraging Multi-modal Large Language Models (MLLMs) to directly process table images. Pio-
neering works such as Table-LLaVA (Zheng et al., 2024), TabPedia (Zhao et al., 2024), SynTab-
LLaVA (Zhou et al., 2025), and generalist MLLMs like Ovis2 (Lu et al., 2024) and Qwen2.5-VL
(Bai et al., 2025) showcase the potential of modeling visual layouts and structural cues, aligning
with broader trends in vision-centric text understanding (Yuan et al., 2026; Qiao et al., 2026). Yet,
this paradigm is not a universal solution, as its effectiveness diminishes for tasks where reasoning
relies heavily on text-centric pretraining knowledge (Deng et al., 2024).
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Figure 1: Architecture of TableDART. The framework operates in three main stages: Multimodal
Encoding (Section 3.2), Gating Network (Section 3.3), and Dynamic Inference Pathways (Sec-
tion 3.4).

Multi-modal Approaches and Dynamic Routing. Building on the complementary strengths of
unimodal representations, Table-as-Multimodality approaches have emerged. For example, HIPPO
(Liu et al., 2025) fine-tunes an MLLM to jointly process both text and image representations of the
table, achieving strong performance gains. However, these MLLM-based methods typically adopt
a static, one-size-fits-all strategy, applying both modalities to every table–query pair. This rigid
design can introduce redundancy or even conflict, particularly when a single modality would suffice.
To address this gap, we propose TableDART, which introduces a dynamic routing mechanism that
adaptively selects the optimal modality path for each instance. By learning an intelligent, instance-
level policy, TableDART enables more efficient and robust multimodal reasoning, moving beyond
the limitations of prior paradigms.

3 METHODOLOGY

3.1 OVERVIEW

The key novelty of TableDART lies in its ability to dynamically and efficiently leverage existing
single-modality models to capture complementary information from tabular data for downstream
tasks. To this end, TableDART integrates five components: (1) a Table-as-Text model Mt, (2) a
Table-as-Image modelMv , (3) a text embedding model to process queries, (4) a lightweight gating
network, and (5) an LLM-based agent responsible for multimodal fusion. Among these compo-
nents, only the gating network is trainable, ensuring that TableDART remains highly parameter- and
training-efficient. Figure 1 provides an overview of TableDART’s workflow, which is detailed in the
subsequent sections.

3.2 ENCODING TABLE-AS-MULTIMODALITY

Given a raw table T and a query q, TableDART leverages existing models to encode them from
complementary modality perspectives, thereby capturing both semantic and structural information.
This is achieved through a parallel feature extraction pipeline with three concurrent streams: (1)
Table-as-Text encoding: The raw table T is serialized into text and processed by the encoder Et
of the Table-as-Text model Mt, yielding a feature vector et. (2) Table-as-Image encoding: A
screenshot of T is fed into the encoder Ev of the Table-as-Image model Mv , producing ev . (3)
Query encoding: The query q is transformed into an embedding eq using a text embedding model
Eq . We apply modality-specific pooling to convert encoder outputs into fixed-dimensional vectors,
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which are concatenated to form a unified multimodal representation for the gating network:

et = Et(Serialize(T ))
ev = Ev(Screenshot(T ))

eq = Eq(q)
x = [eq, et, ev]

(1)

Here, x serves as the multimodal joint representation by concatenating the three embeddings, which
is subsequently passed into the gating network to determine the path of dynamic inference. Note
that Et and Ev only activate a small part of the corresponding expert models, constituting a minor
computational overhead (i.e., 7.15% of the Table-as-Text model’s and 7.63% of the Table-as-Image
model’s total parameters). Detailed analyses of the embedding construction and parameter break-
down are provided in Appendix A.3.1.

3.3 GATING NETWORK AND POLICY TRAINING

As discussed in the introduction and confirmed by our experiments, not every table–query pair ben-
efits from fusing both modalities, as this can introduce redundant or even conflicting signals. To
address this, TableDART employs a lightweight gating network that dynamically selects the infer-
ence path. This design both maximizes the effective use of information and reduces computational
cost compared to always invoking all modality models.

Formally, the gating network G is implemented by a lightweight MLP with few trainable parameters
(see Appendix A.3.2 for architectural details). It takes as input the multimodal representation x from
Eq. 1 and outputs the raw logits z for each processing path (Text-only, Image-only, or Fusion):

z = G(x). (2)

To ensure that G selects the most appropriate strategy for each table-query pair, balancing both
predictive accuracy and resource efficiency, we design the following training objective:

Ltotal = Ltask + λLresource, (3)

where λ controls the strength of the resource-aware regularization.

The task loss Ltask encourages the gating network to prioritize paths with strong empirical perfor-
mance. For each training instance, we pre-compute a vector of binary scores s = (s1, s2, s3) ∈
{0, 1}3, where each component sk is 1 if the k-th inference path produces a correct answer, and 0
otherwise. This method naturally handles instances where multiple paths are correct, as each suc-
cessful path receives a score of 1. To form the training signal, this score vector is converted into
a soft target probability distribution using a temperature-controlled softmax. Similarly, the gating
network’s raw logits z are converted into a predicted distribution. The task loss then minimizes the
KL divergence between these two distributions:

Ltask = KL(softmax(s/τ) ∥ softmax(z/τg)), (4)

where τg, τ are temperature parameters. We use the standard forward KL divergence, which encour-
ages the gating network to assign probability to all empirically successful paths.

Beyond empirical performance on table understanding, we also account for inference overhead. To
prevent over-reliance on costly strategies, we introduce a resource-aware regularizer:

Lresource = softmax(z/τg)T c, (5)

where c is an empirically measured cost vector for each inference path. By computing the expected
cost of the routing policy, the resource loss Lresource penalizes high-cost inference routes, especially
on simple tasks whereLtask sees minimal improvements from over-complex paths. As such, it guides
the gating policy toward more balanced choices, alleviating the information redundancy problem.
The full training procedure, including the detailed protocol for measuring the cost vector c, is pro-
vided in Appendix A.5.
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3.4 ADAPTIVE INFERENCE

The adaptive inference process begins with a deterministic routing decision guided by the trained
gating network. For each query-table pair, the network produces a vector of raw logit scores, and
the framework selects the single, optimal path corresponding to the highest score for execution.
Once the path is selected, inference proceeds accordingly. TableDART supports three inference
paths: Text-only, Image-only, and Fusion. The first two directly reuse existing single-modality ex-
pert models: the Table-as-Text modelMt and the Table-as-Image modelMv . If the gating network
selects either, TableDART simply continues the inference process from the intermediate represen-
tation of the chosen model. For example, when the gate selects the Text-only path, TableDART
forwardsMt’s remaining layers using the intermediate encoding et to produce the final output.

For the Fusion path, we design a novel, training-free LLM-based Fusion agent that synthesizes
the final answer by reasoning over the outputs of the two single-modality experts, Mt and Mv .
Specifically, when the gating network selects the Fusion path, bothMt andMv are at first executed
to generate results rt and rv , along with their auxiliary outputs at and av . These, together with the
original table T , are passed to the Fusion agent. The Fusion agent operates in two possible roles
depending on its reasoning process: (1) Arbitrator: IfMt andMv produce conflicting results, the
agent resolves the disagreement, similar in spirit to aggregating a consensus from multiple sources
(Hung et al., 2018), by selecting the more reliable answer according to its confidence. (2) Rescuer:
If the agent believes both models provide uncertain or low-confidence outputs, it synthesizes a new,
more accurate answer by jointly reasoning over their partial evidence. A detailed description of the
Fusion agent’s implementation and prompt design is provided in Appendix A.4.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluation Datasets and Metrics. We evaluate TableDART on seven diverse benchmarks across
two tasks: Table Question Answering (TQA) and Table Fact Verification (TFV). For TQA, which
requires interpreting complex queries (Ren et al., 2020; 2021) to perform grounded reasoning over
tabular evidence, we use five benchmarks: WTQ (Pasupat & Liang, 2015), TABMWP (Lu et al.,
2023), TAT-QA (Zhu et al., 2021), HiTab (Cheng et al., 2022), and FeTaQA (Nan et al., 2022). For
TFV, we use TabFact (Chen et al., 2020) and InfoTabs (Gupta et al., 2020). Following the established
protocol (Zheng et al., 2024; Liu et al., 2025), we use Accuracy for WTQ, TABMWP, TAT-QA,
HiTab, TabFact, InfoTabs, while using BLEU score for FeTaQA as it is a generative free-form re-
sponse task. Detailed statistics and further experimental setup details are provided in Appendix A.5.

Baselines. We compare TableDART against a comprehensive set of baselines, including (1) Table-
as-Text models: Llama-2-7B (Touvron et al., 2023), Llama3-Instruct-8B (Dubey et al., 2024),
TableLlama-7B (Zhang et al., 2024), and TableGPT2-7B (Su et al., 2024); (2) Table-as-Image mod-
els: MiniGPT-4-7B (Zhu et al., 2024a), mPLUG-Owl-7B (Ye et al., 2023), mPLUG-Owl2-7B (Ye
et al., 2024), LLaVA v1.5-7B (Liu et al., 2024), Table-LLaVA-7B (Zheng et al., 2024), Qwen-VL-
7B (Bai et al., 2023), InternLM-XComposer2-7B (Zhang et al., 2023), Monkey-7B (Li et al., 2024),
TabPedia-7B (Zhao et al., 2024), SynTab-LLaVA-7B (Zhou et al., 2025), MiniCPM-V-2.6-8B (Yao
et al., 2024), Qwen2.5-VL-7B (Bai et al., 2025), and Ovis2-8B (Lu et al., 2024); (3) Table-as-
Multimodality models: HIPPO-8B (Liu et al., 2025) and Google Gemini 2.0 Flash (Comanici et al.,
2025).

We employ TableGPT2-7B and Ovis2-8B as TableDART’s primary single-modality models. To
demonstrate generalization, we additionally evaluate a variant by replacing the Table-as-Image
model Ovis2-8B with Qwen2.5-VL-7B while retaining TableGPT2-7B. We use Google Gemini 2.0
Flash to implement the Fusion agent. Comparing TableDART against these base models directly
demonstrates the effectiveness of our framework. Appendix A.5.2 provides a detailed rationale for
model selection and clarifies the sourcing of baseline results adopted from previous studies. Notably,
TableDART is a general framework that can be seamlessly integrated with a wide range of existing
LLMs, VLMs and MLLMs.

Implementation Details. Our training set is a 10,000-sample mixture constructed by sampling from
five diverse table understanding benchmarks, following the protocol of prior work (Liu et al., 2025).
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Table 1: Main performance comparison on seven benchmarks for Table Question Answering (TQA)
and Table Fact Verification (TFV). The Average column shows the mean accuracy across all bench-
marks that use Accuracy as the evaluation metric. The best and second-best results are marked.

TQA TFV Summary

Method WTQ TABMWP TAT-QA HiTab FeTaQA TabFact InfoTabs Average
(Acc.) (Acc.) (Acc.) (Acc.) (BLEU) (Acc.) (Acc.) (Acc.)

Constituent Models of TableDART
TableGPT2-7B (Text-only Path) 61.42 83.87 50.39 70.27 28.97 77.80 71.07 69.14
Ovis2-8B (Image-only Path) 58.76 87.00 47.67 68.59 34.70 80.80 74.11 69.49

Table-as-Text Baselines
Llama-2-7B 16.39 22.82 13.73 10.72 10.93 9.20 38.92 18.63
Llama3-Instruct-8B 21.24 42.01 13.08 6.97 12.66 73.89 54.00 35.20
TableLlama-7B 24.97 10.10 19.04 46.57 38.38 79.37 46.57 37.77
Table-as-Image Baselines
MiniGPT-4-7B 0.90 0.22 0.13 0.20 0.39 0.00 0.10 0.26
mPLUG-Owl-7B 0.62 1.76 0.13 0.25 7.42 7.46 5.53 2.63
mPLUG-Owl2-7B 0.67 6.83 0.39 0.13 11.91 8.21 26.19 7.07
LLaVA v1.5 1.24 6.05 2.97 2.03 8.24 18.90 28.31 9.92
Table-LLaVA-7B 18.43 57.78 12.82 10.09 25.60 59.85 65.26 37.37
Qwen-VL-7B 0.09 3.30 0.13 0.06 0.45 1.12 0.65 0.89
InternLM-XComposer2-7B 0.05 0.06 0.26 0.12 2.62 1.19 1.11 0.46
Monkey-7B 19.07 13.26 12.31 6.41 3.41 22.56 22.11 15.95
TabPedia-7B 23.53 10.66 13.08 6.54 14.31 35.49 2.43 15.29
SynTab-LLaVA-7B 39.59 88.30 51.94 35.66 35.45 70.78 69.42 59.28
MiniCPM-V-2.6-8B 47.97 83.68 51.55 56.53 32.68 78.48 73.03 65.21
Qwen2.5-VL-7B 54.37 63.69 51.94 62.69 10.99 75.81 70.13 63.11
Table-as-Multimodality (MLLM-based) Baselines
HIPPO-8B 55.77 87.50 60.75 63.00 33.18 82.27 75.74 70.84
Gemini 2.0 Flash 63.56 46.29 35.62 60.41 10.57 81.33 54.31 56.92
Table-as-Multimodality (Dynamic Adaptive Routing)
TableDART (TableGPT2-7B + Qwen2.5-VL-7B) 69.29 72.61 59.07 71.13 29.87 77.94 71.46 70.25
TableDART (TableGPT2-7B + Ovis2-8B) 70.58 84.54 62.05 74.37 36.11 81.37 76.22 74.86

We train only the lightweight MLP gating network while keeping all large LLM models frozen.
The complete details regarding our data construction, hyperparameter settings, and computational
environment are provided in Appendix A.5.

4.2 EFFECTIVENESS ANALYSIS
State-of-the-Art Performance. Table 1 shows the comparison results of TableDART with base-
lines. From the results, we can observe that: (1) Compared to all single-modality based methods,
TableDART consistently achieves superior or highly competitive results, including surpassing its
constituent models like TableGPT2-7B and Ovis2-8B, demonstrating that the framework success-
fully combines their strengths to achieve a result neither could reach alone. (2) Compared to multi-
modality based methods, TableDART’s dynamic routing mechanism proves more effective than the
MLLM-based HIPPO, outperforming it on five of the seven benchmarks. (3) TableDART outper-
forms the powerful Fusion agent model (Google Gemini 2.0 Flash), confirming that the performance
gains are driven by the intelligent routing mechanism, not just the capacity of the Fusion agent’s
backbone. (4) TableDART demonstrates strong generalization across backbone models. When in-
stantiated by replacing the Table-as-Image model with Qwen2.5-VL-7B while retaining TableGPT2-
7B, the framework achieves a substantial +7.14% average accuracy gain over the single-modality
Qwen2.5-VL baseline, validating its model-agnostic effectiveness. Furthermore, the ‘Average’ col-
umn summarizes the average performance, showing that TableDART achieves the strongest results
among all baselines, surpassing the best multi-modality tabular model, HIPPO-8B, by a decisive
+4.02% in average accuracy and +2.93 points in BLEU score.

Zero-Shot Generalization Performance. To assess TableDART’s generalization capability, we
compare it with the strongest MLLM-based baseline, HIPPO-8B, in a zero-shot setting on unseen
datasets excluded from training. As shown in Table 2, TableDART demonstrates superior generaliza-
tion. It achieves a +18.05% accuracy improvement and a +2.93 BLEU score gain over HIPPO-8B.
Notably, TableDART maintains nearly identical performance on seen (74.95%) and unseen datasets
(74.37%), whereas HIPPO-8B suffers a sharp drop from 72.41% to 63.00%. This substantial advan-
tage highlights that TableDART learns a genuinely generalizable routing policy, capable of adapting
to new tables rather than overfitting to the training distribution.
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Table 2: Generalization performance on seen versus unseen datasets. Seen datasets were included
in the training mixture, while unseen datasets were excluded from training.

Method Seen Datasets Unseen Datasets
(Avg. Acc.) (Avg. Acc. / BLEU)

HIPPO-8B (Best MLLM-based Baseline) 72.41 63.00 / 33.18
TableDART 74.95 74.37 / 36.11

Improvement +3.51% +18.05% / +2.93 pts

4.3 EFFICIENCY ANALYSIS

Training Efficiency. TableDART demonstrates exceptional training efficiency rooted in its archi-
tectural design. Our framework freezes all large constituent models, requiring only the training of a
lightweight MLP gating network with just 2.59M parameters. This contrasts sharply with MLLM-
based approaches like HIPPO, which fine-tune their 8B backbone model using LoRA (Hu et al.,
2022). For their model architecture and LoRA configuration, the total number of trainable parame-
ters reaches 25.87M, meaning that HIPPO trains nearly 10 times more parameters than our entire
framework. This vast difference highlights the profound training efficiency and the plug-and-play
scalability of our modular design.

Inference Efficiency. To quantify the practical benefits of dynamic adaptive routing, we benchmark
TableDART’s optimal configuration (λ = 0.15) against a Non-Adaptive Fusion baseline that pro-
cesses every instance via the full multimodal pipeline. Both settings use identical backbone models
and Fusion agents, ensuring a fair comparison to isolate the efficiency gains of our adaptive policy.
The detailed evaluation protocol is in Appendix A.6. The results, presented in Table 3, demonstrate
substantial efficiency gains. For example, TableDART achieves an average reduction of 24.5% in
latency compared to the Non-Adaptive Fusion baseline, decreasing the mean inference time from
2.92s to 2.20s per sample. These improvements are a direct consequence of TableDART’s learned
routing policy, which reserves the computationally expensive Fusion path for instances that truly re-
quire multimodal reasoning, while assigning simpler cases to the more efficient unimodal paths. As
shown in Appendix A.7 and Appendix B.3, the model routes multimodally complex instances to the
Fusion path while assigning simpler ones to the appropriate unimodal path. In particular, Figure 6
shows that 34.8% of TAT-QA instances cannot be solved by either single-modality model alone, and
Figure 10 confirms that the learned policy routes 88.7% of these instances to the powerful Fusion
path. In contrast, for simpler datasets such as TABMWP, where single-modality models are highly
effective, the routing policy assigns 97.2% of the instances to the more efficient Image-only path.
Overall, TableDART’s inference efficiency derives from its intelligent dynamic routing mechanism,
which preserves effectiveness while substantially reducing unnecessary computational cost.

Table 3: Inference efficiency for TableDART with its Dynamic Adaptive Routing policy versus the
Non-Adaptive Fusion baseline. TPS is short for Tokens per Second. “↓” indicates lower is better,
while “↑” indicates higher is better.

Dynamic Adaptive Routing Non-Adaptive Fusion

Dataset Latency (s) ↓ TPS ↑ Latency (s) ↓ TPS ↑
WTQ 2.39 8.90 2.84 1.33
TABMWP 1.81 26.09 2.53 1.04
TAT-QA 2.35 22.36 3.17 2.22
HiTab 2.56 13.97 3.19 1.70
FeTaQA 1.93 18.98 2.99 11.11
TabFact 2.21 16.48 2.91 4.43
InfoTabs 2.17 17.60 2.78 5.09

Average 2.20 17.77 2.92 3.85

4.4 ANALYSIS OF EACH INFERENCE PATH

To better understand the contribution of each inference path in TableDART, we categorize instances
based on whether the single-modality or Fusion paths could produce a correct solution. The statis-
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Figure 2: Performance analysis of inference paths. (a) The chart counts instances based on which
path(s), if any, produced a correct answer, across all datasets. (b) A per-dataset analysis of two
key metrics: the Complementarity Rate, which is the percentage of instances where correctness
is achieved by only one of the two single-modality models, and the Synergy Success Rate, which
measures the fraction of hard cases (instances where both single-modality models fail) that are suc-
cessfully resolved by the Fusion path.

tics in Figure 2 provide three key insights. (1) Unimodal paths have complementary performance,
as 24.0% of test instances fall into a complementarity zone where only single-modality paths gen-
erate correct answers (17.2% for the image-only path vs. 6.8% for the text-only path) as shown
in Figure 2(a). This underscores the importance of maintaining distinct single-modality inference
paths. Moreover, the complementarity rate varies across data sets according to Figure 2(b), high-
lighting the need for instance-specific dynamic routing. (2) Hard cases, where both single-modality
inference paths fail, account for 17.3% of the test set. While 14.9% of these remain unsolved, the
Fusion path successfully rescues an additional 2.4% (Figure 2a). This capability is further reflected
in the Synergy Success Rate (i.e., the proportion of hard cases resolved by Fusion), which averages
14.0% across benchmarks (Figure 2b). These results confirm that our Fusion agent is not only an
Arbitrator between modalities but also a Rescuer, capable of synergistic reasoning beyond the limits
of individual models. (3) Easy cases where both unimodal inference paths succeed make up the
majority of the data, accounting for 58.7% of the test set (Figure 2a). For this substantial portion,
multimodal fusion is unnecessary, as either single-modality path suffices to produce the correct an-
swer. This result reinforces our core motivation for dynamic adaptive routing, rather than defaulting
to multimodal fusion in all cases.

4.5 ABLATION STUDY ON KEY COMPONENTS

Impact of Dynamic Gating. We ablate the routing strategy to validate our dynamic approach by
comparing it with two non-adaptive baselines in Table 4. The results first confirm the effective-
ness of our dynamic strategy, as TableDART significantly outperforms the Random Routing base-
line. Compared with the Non-Adaptive Fusion baseline, which uses the same backbone models
as TableDART but applies a brute-force strategy where every instance is routed through our LLM
Agent-based Fusion path, our method not only achieves comparable results on most benchmarks but
also delivers clear gains on datasets such as TABMWP and HiTab. This indicates that TableDART’s
effectiveness is not solely attributable to the strong Fusion agent, but arises from the dynamic routing
mechanism itself. As shown in Figure 10, the learned policy routes most instances to the appropri-
ate unimodal paths and uses Fusion only when needed. In many cases, a single modality already
provides sufficient information, and forcing unnecessary multimodal processing introduces extra
cost and potential noise, which is why TableDART surpasses the Non-Adaptive Fusion baseline
on several datasets. Overall, these observations demonstrate the balance of resource-efficiency and
performance-effectiveness of our dynamic routing design.

Impact of Resource-Aware Objective (λ). We analyze the effect of the resource loss weight λ,
highlighting its two key roles in shaping the final routing policy. (1) Effective Routing Policy Con-
trol. As shown in Figure 3, λ directly regulates the framework’s behavior. For instance, reducing its
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TQA TFV

Method WTQ TABMWP TAT-QA HiTab FeTaQA TabFact InfoTabs

TableDART w/ Random Routing 65.40 75.50 58.94 70.49 30.87 79.50 69.57
TableDART w/ Non-Adaptive Fusion 70.97 81.47 63.34 73.35 34.82 81.56 76.83

TableDART (Dynamic Routing) 70.58 84.54 62.05 74.37 36.11 81.37 76.22

Table 4: Ablation on routing strategies.

Benchmark λ = 1.0 λ = 0.15 λ = 0.1 λ = 0.05 λ = 0.00

Table Question Answering (TQA)
WTQ 64.94 70.58 67.96 71.80 71.96
TABMWP 83.86 84.54 84.79 85.08 85.47
TAT-QA 61.79 62.05 63.21 64.12 64.38
HiTab 73.79 74.37 72.14 74.30 73.22
FeTaQA 35.28 36.11 35.37 34.34 35.87

Table Fact Verification (TFV)
TabFact 77.30 81.37 79.55 81.39 79.81
InfoTabs 70.13 76.22 70.44 73.59 74.19

Avg. Acc. 71.97 74.86 73.02 75.05 74.84

Table 5: Impact of the resource loss weight (λ) on TableDART’s performance. The best and
second-best results are highlighted.

value increases reliance on the computationally expensive Fusion path, causing more queries to be
routed to the Fusion inference path.

(2) Regularization for Improved Generalization. Table 5 shows that our proposed resource-aware
objective also serves as an effective regularizer. The highest performance, both in terms of average
results and across four of the seven benchmarks, is not attained with a purely performance-driven
policy (λ = 0.00), but rather at a non-zero λ. By penalizing computational cost, the objective dis-
courages the gate from over-relying on the Fusion path, a tendency that risks overfitting to training
artifacts. Instead, it promotes a more balanced routing policy that generalizes more effectively. In
addition, varying λ has a direct impact on inference efficiency. As illustrated in Appendix B.4 (Fig-
ure 11 and Table 11), efficiency generally improves as λ increases, since a larger penalty discourages
unnecessary use of the Fusion path. However, the trend is not strictly monotonic, because each λ
induces a distinct routing policy that balances accuracy and computational cost differently. Based
on this observation, we select λ = 0.15 for the final model, which achieves the second-best aver-
age accuracy (74.86%, within 0.19 points of the best) while requiring 8.4% less inference latency,
representing a well-regularized operating point on the performance–efficiency frontier. This con-
figuration enables a truly adaptive policy, which tailors routing to the task type, directing 97.2% of
queries to the Image-only path for the structure-heavy TABMWP, while shifting to 67.5% Text-only
for the semantics-focused InfoTabs (see Appendix B.3 and Fig. 10 for a full breakdown).

4.6 CASE STUDY

To qualitatively illustrate the sophisticated reasoning of our Fusion path, Figure 4 presents two
representative cases that highlight the LLM agent’s primary roles. (1) The first case demonstrates
the agent as an Arbitrator. Tasked with a probability calculation, the Table-as-Text model fails
by incorrectly summing a subset of the data for its denominator, while the Table-as-Image model
reasons correctly. The Fusion agent resolves this conflict by validating both reasoning paths against
the source table and selecting the correct output. (2) The second case showcases the Fusion agent
as a Rescuer. Here, Fusion agent reasons that both single-modality models fail to identify the two
required occupations, with each providing only one correct and one hallucinated answer. The agent
exhibits true synergy by synthesizing a new, fully correct answer, combining the valid fragments
from both failed outputs while discarding the errors. This synthesis demonstrates the Fusion agent’s
ability to generate novel, correct answers from incomplete and conflicting information from two
single-modality models.
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Figure 3: Inference path selection distribution vs. the resource loss weight (λ) on two representative
benchmarks. Each bar shows the percentage of instances routed to the Text-only (blue), Image-
only (green), and Fusion (orange) paths. A red star (*) marks the configuration with the highest
performance for each dataset (see Table 5). This selection highlights TableDART’s adaptability to
diverse challenges. Full results on all seven datasets are provided in Appendix B.1.

(a) Conflict Resolution: Fusion as an Arbitrator

(b) Synergy: Fusion as a Rescuer

• Dataset: HiTab
• Question: Which two occupations of female gig workers have 

the highest percentage?

• Dataset: TABMWP
• Question: What is the probability that a randomly selected 

cloud was marked as stratus and was observed in the 
afternoon?

Model OutputsInput Context

Input Context Model Outputs

• Table-as-Text Model Output: 
• Answer: 3/9
• Explanation : The probability is calculated by dividing the number of 

stratus clouds observed in the afternoon (3) by the total number of cloud 
observations (7 + 2 = 9).

• Table-as-Image Model Output:
• Answer: 3/19
• Explanation Snippet: "…, we look at the table and find the number of 

stratus clouds observed in the afternoon, which is 3. Then, we divide this by 
the total number of clouds observed, which is 19."

• Fusion Model Final Answer:  3/19

• Table-as-Text Model Output: 
• Answer: "5 - occupations in art, culture, recreation and sport", "6 - sales and 

service occupations"
• Explanation Snippet: "...identifies top percentages as '26.6%' (for 'art...') and 

'22.1%' (for 'sales...’). "
• Table-as-Image Model Output:

• Answer: "4 - occupations in education, law and social, community and 
government services", "5 - occupations in art, culture, recreation and sport”

• Explanation Snippet : "...identifies top percentages as '20.3%' (for 
'education...') and '26.6%' (for 'art...’).”

• Fusion Model Final Answer: "4 - occupations in education, law and social, 
community and government services, 6 - sales and service occupations"

• Table Image (for Table-as-Image 
Model): 

• Table Image (for Table-as-Image 
Model): 

• Serialized Table (for Table-as-Text 
Model ): 
"| |Morning|Afternoon|\n|:---|:---|:---
|\n|Stratocumulus|7|7|\n|Stratus|2|3|"

• Serialized Table (for Table-as-Text 
Model ): 
"| |percentage of gig workers|...|\n|:---
|:---|...|\n|...|...|...|\n|4 - occupations in 
education...|...|20.3|...|\n|5 - 
occupations in art...|...|9.1|...|\n|6 - 
sales and service 
occupations...|...|22.1|...|\n... (5 rows 
omitted) ...\n|9 - occupations in 
manufacturing...|...|1.0|...|"

Figure 4: Case studies illustrate the key synthesis roles of the Fusion Model, which is implemented
by an LLM agent. (a) As an Arbitrator (example from the TABMWP dataset), it resolves a conflict
between a correct and an incorrect numerical reasoning path. (b) As a Rescuer (example from the
HiTab dataset), it demonstrates synergy by synthesizing a correct answer from two distinct, incorrect
outputs, showcasing its ability to combine partially correct reasoning fragments.

5 CONCLUSION

In this work, we introduced TableDART, a dynamic adaptive multi-modal routing framework for
table understanding. We replace the conventional MLLM-based approach with a lightweight MLP-
based gating network that learns to route each input to an optimal processing path: Text-only,
Image-only, or Fusion. This instance-level routing is learned efficiently by training only the 2.59M-
parameter gate while keeping the large base models entirely frozen, preserving their pre-trained ca-
pabilities and ensuring plug-and-play flexibility. Our experiments across seven diverse benchmarks
demonstrate that TableDART consistently achieves strong performance, validating that its dynamic,
resource-aware routing is a more effective and efficient paradigm for complex table reasoning tasks.
Please refer to Appendix A.1 for a detailed reproducibility statement.
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A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. All source code, trained gating net-
work checkpoints, and experiment configurations are provided at the following GitHub repository:
https://github.com/xiaobo-xing/TableDART. Below is a summary of the key components for repro-
duction.

• Model Architecture: The overall architecture of TableDART is detailed in Section 3. Spe-
cific details of the embedding extraction pipeline and the MLP gating network are provided
in Appendix A.3. The primary constituent models are TableGPT2-7B (Su et al., 2024)
and Ovis2-8B (Lu et al., 2024), with Qwen2.5-VL-7B (Bai et al., 2025) additionally em-
ployed to validate generalization. Google’s Gemini 2.0 Flash model (Comanici et al., 2025)
implements the Fusion agent.

14

https://arxiv.org/abs/2307.08674
https://github.com/xiaobo-xing/TableDART


Published as a conference paper at ICLR 2026

• Training Procedure: Our parameter-efficient training methodology for the gating network,
including the resource-aware objective function, is described in Section 3.3. Full imple-
mentation details are provided in Appendix A.5.

• Datasets and Preprocessing: The datasets used for training and evaluation are described
in Section 4. Our training mixture was constructed from five datasets: WTQ (Pasupat &
Liang, 2015), TABMWP (Lu et al., 2023), TAT-QA (Zhu et al., 2021), TabFact (Chen et al.,
2020), and InfoTabs (Gupta et al., 2020). We evaluate on these five datasets plus two zero-
shot datasets: HiTab (Cheng et al., 2022) and FeTaQA (Nan et al., 2022). Our specific data
construction protocol is detailed in Section 4.1 and Appendix A.5.

• Hyperparameters and Computational Infrastructure: A comprehensive list of all hy-
perparameters is provided in Table 10. All experiments were conducted on a single
NVIDIA H100 80GB GPU. These computational resources were provided by the Bunya su-
percomputer (The University of Queensland Research Computing Centre, 2024), operated
by The University of Queensland Research Computing Centre (RCC). Full details on the
training pipeline, hyperparameters, and computational setup are located in Appendix A.5.

A.2 LARGE LANGUAGE MODELS USAGE

Large Language Models were employed to fix the grammar issues in this paper. The authors remain
fully responsible for all content.

A.3 MODEL ARCHITECTURE DETAILS

A.3.1 EMBEDDING ARCHITECTURE AND COMPUTATIONAL ANALYSIS

The gating network requires fixed-dimensional feature representations to enable consistent routing
decisions across variable-length inputs. We employ different pooling strategies optimized for each
modality’s characteristics:

• Table-as-Text Model Features: 3,584 dimensions obtained through attention-masked
mean pooling of TableGPT2-7B input embeddings. This approach weights each token by
its attention importance, preventing padding tokens from diluting the semantic representa-
tion while preserving global table structure information essential for routing decisions.

• Table-as-Image Model Features: 6,144 dimensions derived from spatial-temporal pool-
ing of Ovis2-8B visual tokenizer outputs. Mean pooling across spatial dimensions cap-
tures holistic visual layout characteristics rather than fine-grained spatial details, providing
sufficient information for modality appropriateness assessment without overwhelming the
routing mechanism with local visual features.

• Question Embedding: 384 dimensions from all-MiniLM-L6-v2 (Reimers & Gurevych,
2019) sentence transformer. This pre-trained model provides question-type agnostic se-
mantic representations that complement the features from the single-modality models, en-
abling the gating network to learn routing patterns based on question semantics rather than
model-specific encodings.

Total Concatenated Dimension: 3,584 + 6,144 + 384 = 10,112 dimensions. This unified multi-
modal representation serves as the input to the MLP gating network, which learns to map these
heterogeneous features to processing path selection probabilities.

Parameter Analysis: The embedding extraction phase utilizes only a small fraction of each model’s
total parameters: (1) The Table-as-Text model requires 545M parameters from the input embedding
layer (152K vocab × 3,584 dimensions), representing 7.15% of TableGPT2-7B’s 7.62B parameters;
(2) The Table-as-Image model requires 682M parameters from the Vision Transformer component
aimv2-huge-patch14-448 for visual feature extraction, representing 7.63% of Ovis2-8B’s 8.94B pa-
rameters. This computational efficiency enables lightweight routing decisions while preserving rich
semantic representations from the pre-trained models.
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A.3.2 GATING NETWORK ARCHITECTURE SPECIFICATION

Following standard practice in dynamic routing and mixture-of-experts systems in the prior works
(Lepikhin et al., 2021; Zhu et al., 2022; Xue & Marculescu, 2023), the MLP gating network im-
plements a standard two-layer architecture designed for efficient and effective routing. The detailed
forward pass is defined as:

h = ReLU(W1x+ b1) (6)

h′ = Dropout(h, p = 0.1) (7)

z = W2h
′ + b2 (8)

where x ∈ R10112 is the concatenated multi-modal input features, and z ∈ R3 represents the final
expert selection logits. During inference, these logits are converted to probabilities via a Softmax
function to select the optimal expert.

Implementation Details. The hidden dimension is set to 256, a choice empirically found to bal-
ance representational capacity for learning complex routing patterns with computational efficiency.
Dropout with a probability of p = 0.1 is applied after the hidden layer to prevent overfitting. We
use the ReLU activation function for its computational efficiency and stable gradient properties. All
weight matrices are initialized using Xavier uniform initialization (Glorot & Bengio, 2010), and bias
vectors are initialized to zero to ensure stable training dynamics.

Parameter Count. The lightweight nature of our gating network is evident in its parameter count,
detailed in Table 6. The total of 2.59M trainable parameters is negligible compared to the billions
of parameters in the frozen LLM/MLLM models, underscoring the high parameter efficiency of our
TableDART framework.

Component Computation Parameters

First Layer
Weight matrix W1 10,112× 256 2,588,672
Bias vector b1 256 256
First layer subtotal 2,588,928

Second Layer
Weight matrix W2 256× 3 768
Bias vector b2 3 3
Second layer subtotal 771

Total Network Parameters 2,589,699 ≈ 2.59M

Table 6: Detailed parameter breakdown of the MLP gating network.

A.4 FUSION PATH DETAILED DESIGN

This section provides the detailed design of the Fusion path, which serves as the sophisticated syn-
thesis mechanism within the TableDART framework. As described in the main text, this component
is implemented as an LLM agent that interfaces with Google’s Gemini 2.0 Flash model via REST
API calls. For each instance, the LLM agent receives four key inputs: (1) the original question,
(2) the complete table data in a structured markdown format, (3) the output from the Table-as-Text
model containing its answer and explanation, and (4) the output from the Table-as-Image model con-
taining its answer and explanation. These inputs are formatted into a prompt whose logical structure
is illustrated in Figure 5. To ensure output format compatibility across benchmarks, the prompt is
dynamically adapted based on the target dataset. As detailed in Table 7, specific instructions are
appended to the prompt to meet the unique formatting requirements of each benchmark, such as
requiring JSON outputs for TabFact or full-sentence responses for FeTaQA.
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Question

Full Table Data
（Markdown)

Table-as-Text 
Model

Full Answer

Table-as-Image 
Model

 Full Answer

Fusion Model

Fusion Prompt Logic

• Role: You are a synthesizer.
• Inputs: Question, Full table data (markdown format), 

Table-as-Text model output (answer & explanation) , 
Table-as-Image model output (answer & explanation).

• Core Instructions:
1. Analyze the table & compare the two models’ 

answers and explanations.
2. Constraint: Synthesize only from two models’ 

outputs. Use table structure understanding only to 
resolve conflicts.

3. Handle Scenarios:
• If complementary: Merge key information.
• If conflicting: Reason to produce the most 
plausible answer.

4. Dataset-Specific Adaptation (Format adapted based 
on target benchmark)

5. Output Format: Be extremely concise.

Figure 5: The data flow and logical structure of the prompt for the Fusion path’s LLM agent. This
structure guides the synthesis of a final answer from the outputs of the single-modality models.

Dataset(s) Additional Instruction

TabFact Generate JSON response with “answer” field containing [“True”] or
[“False”]

InfoTabs Generate JSON response with “answer” field: [“Entail”], [“Contra-
dict”], or [“Neutral”]

TabMWP Output numeric answers without units when applicable
FeTaQA Provide complete sentence responses, not keywords or phrases
WTQ, HiTab, TAT-QA Standard JSON format with concise, direct answers

Table 7: Dataset-specific prompt adaptations for the Fusion path’s LLM agent.

A.5 EXPERIMENTAL SETUP AND IMPLEMENTATION DETAILS

A.5.1 DATASETS AND METRICS

Our experimental evaluation is conducted on seven diverse benchmarks across two primary tasks:
Table Question Answering (TQA) and Table Fact Verification (TFV). We follow the established pro-
tocol of previous works (Zheng et al., 2024; Liu et al., 2025) for evaluation metrics, using Accuracy
for most tasks and BLEU score for the generative FeTaQA benchmark. Table 8 provides a detailed
breakdown of these datasets, including the number of instances used for our training mixture and
the full size of the official test sets.

Task Type Dataset Train Validation Test

Table Question
Answering (TQA)

TABMWP 2,000 300 7,686
WTQ 2,000 300 4,344
HiTab — — 1,586
TAT-QA 2,000 300 772
FeTaQA — — 2,003

Table Fact
Verification (TFV)

TabFact 2,000 300 6,845
InfoTabs 2,000 300 5,400

Total 10,000 1,500 28,636

Table 8: Statistics of the datasets used for our experiments. The ‘Test’ column reflects the official
benchmark size, while the ‘Train’ and ‘Validation’ columns indicate the number of instances we
sampled from the official training data to construct our training mixture, as detailed in Section 4.1.

17



Published as a conference paper at ICLR 2026

A.5.2 COMPARATIVE MODELS AND RATIONALE

We compare TableDART against a comprehensive set of baselines, strategically selected to validate
our core contributions across several axes:

• Constituent Models: To demonstrate that TableDART’s performance stems from its dy-
namic framework, we evaluate its core constituent models as standalone baselines. These
include: (1) the Table-as-Text model, TableGPT2-7B (Su et al., 2024); (2) the primary
Table-as-Image model, Ovis2-8B (Lu et al., 2024); (3) the additional visual expert used
for generalization, Qwen2.5-VL-7B (Bai et al., 2025); and (4) the backbone of our Fusion
agent, Google Gemini 2.0 Flash (Comanici et al., 2025). We selected these backbone mod-
els because they are recent and strong representatives of their respective paradigms. Eval-
uating the single-modality experts in isolation establishes a performance baseline. Specif-
ically, including Qwen2.5-VL-7B enables us to test the framework’s generalization capa-
bilities across different visual backbones, while comparing against Gemini as a standalone
MLLM verifies that our performance lift arises from the routing mechanism rather than
only the capacity of the Fusion agent alone.

• MLLM-based Baselines: To highlight the superiority of our dynamic adaptive routing
paradigm over static, one-size-fits-all approaches, we compare against two key models.
First, HIPPO (Liu et al., 2025), a recent model representing the MLLM paradigm that
jointly processes both text and image representations for all inputs. Second, Google Gemini
2.0 Flash (Comanici et al., 2025). Since Gemini serves as the backbone for the LLM agent
in our Fusion path, including it as a standalone MLLM baseline allows us to demonstrate
that the observed improvements stem from our dynamic routing framework itself, rather
than solely from the capacity of the Fusion agent’s underlying model.

• Broader Competitive Landscape: To position TableDART within the broader field, we
benchmark it against an extensive suite of single-modality baselines in the 7-8B param-
eter range. Our selection of Table-as-Text models includes generalist LLMs like Llama-
2-7B (Touvron et al., 2023) and Llama3-Instruct-8B (Dubey et al., 2024), as well as the
specialized TableLlama-7B (Zhang et al., 2024). The set of Table-as-Image MLLMs is
equally comprehensive, featuring MiniGPT-4-7B (Zhu et al., 2024a), mPLUG-Owl-7B (Ye
et al., 2023), mPLUG-Owl2-7B (Ye et al., 2024), LLaVA v1.5-7B (Liu et al., 2024), Table-
LLaVA-7B (Zheng et al., 2024), Qwen-VL-7B (Bai et al., 2023), InternLM-XComposer2-
7B (Zhang et al., 2023), Monkey-7B (Li et al., 2024), TabPedia-7B (Zhao et al., 2024),
SynTab-LLaVA-7B (Zhou et al., 2025), Qwen2.5-VL-7B (Bai et al., 2025) and MiniCPM-
V-2.6-8B (Yao et al., 2024).

For a comprehensive and fair comparison, we report several baseline results directly from their orig-
inal publications. Specifically, the results for the following models are adopted from the HIPPO pa-
per (Liu et al., 2025): Llama-2-7B, Llama3-Instruct-8B, TableLlama-7B, MiniGPT-4-7B, mPLUG-
Owl-7B, mPLUG-Owl2-7B, LLaVA v1.5, Table-LLaVA-7B, MiniCPM-V-2.6-8B, Qwen-VL-7B,
InternLM-XComposer2-7B, Monkey-7B, and the HIPPO model itself. Furthermore, the results for
TableGPT2-7B are sourced from its proposal paper (Su et al., 2024), and the results for SynTab-
LLaVA are sourced from Zhou et al. (2025). We also adopt the results for TabPedia and Ovis2-8B
(except TABMWP dataset) from Jiang et al. (2025). All other model results not mentioned above
were generated by our own experimental runs.

A.5.3 TRAINING AND IMPLEMENTATION DETAILS

Training Data Construction. Our training set is a 10,000-sample mixture, constructed by ran-
domly sampling 2,000 instances from five datasets: TABMWP, WTQ, TAT-QA, TabFact, and In-
foTabs (Lu et al., 2023; Pasupat & Liang, 2015; Zhu et al., 2021; Chen et al., 2020; Gupta et al.,
2020). Following the protocol of HIPPO (Liu et al., 2025), FeTaQA and HiTab are excluded from
training due to their non-accuracy-based evaluation metric (BLEU) and challenges in serializing
complex hierarchical structures, respectively (Nan et al., 2022; Cheng et al., 2022). An additional
15% validation split (1,500 samples) is generated using the same random sampling procedure with
a fixed seed to ensure reproducibility.
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Processing Path Cost Measurement Protocol. The resource cost vector c used in our resource-
aware objective is derived from empirical measurements to provide a realistic estimate of each path’s
computational expense. We measured these costs on a representative testbed of 70 samples (10
from each benchmark), averaging over 10 timed runs following 5 warm-up iterations. Our final cost
metric offers a holistic balance of latency (seconds per instance) and throughput (tokens per second),
defined as: Cost = 0.5 × (Avg Latency) + 0.5 × (1.0/Avg TPS). For the Fusion path, its latency
assumes parallel execution of its base models plus a 0.3s API average overhead, reflecting a realistic
deployment scenario. The resulting empirically derived cost values are summarized in Table 9.

Table 9: Breakdown of the processing path cost calculation. The Fusion path’s latency assumes
parallel execution of the two single-modality models (taking the max latency) plus a measured API
overhead. Its TPS is consequently bottlenecked by the slower Table-as-Image model.

Processing Path Avg. Latency (s) Avg. TPS Final Cost (c)

Text-only 1.445 44.19 0.73
Image-only 1.559 18.78 0.81
Fusion 1.859 18.78 0.96

Hyperparameter Configuration. Table 10 summarizes the complete hyperparameter settings
used for training the gating network. The resource loss weight λ = 0.15 is selected based on exten-
sive ablation studies (Section 4.5), which demonstrate optimal performance-efficiency trade-offs at
this value. These hyperparameters are selected through preliminary experiments to balance training
stability and convergence speed. The target temperature τ = 0.3 creates sufficiently sharp target
distributions while preventing degenerate solutions, while the gate temperature τg = 1.0 maintains
standard softmax behavior during training.

Parameter Value

Learning Rate 1e-4
Batch Size 8
Gradient Accumulation Steps 4
Effective Batch Size 32
Weight Decay 0.01
Gradient Clipping (Max Norm) 1.0
Hidden Dimension 256
Dropout Rate 0.1
Target Temperature (τ ) 0.3
Gate Temperature (τg) 1.0
Resource Loss Weight (λ) 0.15
LR Warmup Ratio 0.05
Training Epochs 1

Table 10: Complete hyperparameter configuration for TableDART training.

Training Pipeline. Expert model parameters remain frozen throughout training, with only the
lightweight 2-layer MLP gating network being optimized. This parameter-efficient approach dra-
matically reduces computational requirements compared to joint fine-tuning alternatives. The learn-
ing rate follows a cosine annealing schedule with 5% linear warmup, starting from zero and reaching
the maximum learning rate of 1e-4 after the warmup period. We employ the AdamW optimizer with
weight decay 0.01 to prevent overfitting of the gating network. Gradient accumulation over 4 steps
achieves an effective batch size of 32 while maintaining memory efficiency on single-GPU training.
Gradient clipping with maximum norm 1.0 ensures training stability, particularly important given
the dynamic target generation process.

Computational Configuration and Convergence. Training is conducted on a single NVIDIA
H100 80GB GPU with mixed precision optimization. Expert models utilize bfloat16 precision to
reduce memory consumption, while the gating network maintains float32 precision for numerical
stability during gradient computation. The complete training process requires approximately 13.5
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hours to complete one epoch. Training converges rapidly within this single epoch, which we em-
pirically determined to be optimal to prevent overfitting. The model is evaluated on the held-out
validation set, and the checkpoint with the highest validation accuracy is saved as the best model for
inference.

A.6 EFFICIENCY BENCHMARK PROTOCOL

This section provides a detailed account of the protocol used for the efficiency analysis presented
in Section 4.2. We outline the methodology for data sampling, performance measurement under a
parallel assumption, and the precise definitions for all reported metrics to ensure full reproducibility.

A.6.1 BENCHMARK SETUP AND DATA SAMPLING

To create a representative and manageable testbed, we constructed an evaluation set via stratified
random sampling from the seven benchmark test sets. We randomly sampled a balanced set of 50
instances from each dataset, resulting in a comprehensive benchmark suite of 350 unique samples.
To ensure statistical stability, the entire measurement process was repeated three times with dif-
ferent random seeds, and all reported metrics are the average across these independent runs. All
benchmarks were executed on a single NVIDIA H100 80GB GPU.

A.6.2 MEASUREMENT PROTOCOL AND PARALLEL ASSUMPTION

Our measurement protocol is designed to simulate a realistic parallel-processing deployment sce-
nario. For each sample, the total inference latency is calculated by summing the durations of three
sequential phases, with parallelism applied within phases where appropriate.

• Phase 1: Parallel Feature Extraction. The framework concurrently extracts embeddings
from the input question, the serialized text table, and the table image. The duration of
this phase is determined by the maximum latency among these three parallel operations:
Tphase1 = max(Ttext embed, Tvision embed, Tquestion embed).

• Phase 2: Gating and Routing. The concatenated embeddings are fed into the lightweight
gating network to yield a routing decision. This phase is only applicable to TableDART;
for the Non-Adaptive Fusion baseline, its duration is zero.

• Phase 3: Generation and Fusion. The execution path depends on the routing decision:
– For TableDART (Unimodal Path): If the Text-only or Image-only path is selected,

the duration is simply the generation time of the chosen model (Ttext gen or Tvision gen).
– For TableDART (Fusion Path) and the Non-Adaptive Fusion baseline: Both the

Table-as-Text and Table-as-Image models perform generation in parallel, followed by
a call to the Fusion API. The duration is the maximum of the two generation times
plus the API call latency: Tphase3 = max(Ttext gen, Timage gen) + Tfusion api.

The total latency for each sample is the sum of these three phases: Lparallel = Tphase1+Tphase2+Tphase3.

A.6.3 METRIC DEFINITIONS

We use the following two primary metrics to report efficiency:

• Latency (s): The total time in seconds to process a single sample, calculated as Lparallel
under the parallel assumption described above. This is our primary metric for comparing
the end-to-end speed of different frameworks. Lower values are better.

• Tokens per Second (TPS): A measure of throughput, calculated by dividing the number
of generated output tokens by the total parallel latency. The token count is estimated using
the Text Expert’s tokenizer. Higher values are better.

A.7 DETAILED ARCHITECTURAL ANALYSIS

This section provides detailed visualizations to supplement the summary analysis in Section 4.4.
Figure 6 offers a full, per-dataset breakdown of the performance overlap between the single-modality
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Figure 6: Per-dataset breakdown of performance overlap between the single-modality models. The
stacked bars show the percentage of instances solved by only the Table-as-Text model, only the
Table-as-Image model, both, or neither. The distribution varies significantly across benchmarks,
highlighting the need for adaptive routing.
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Figure 7: Detailed analysis of Fusion Path Synergy. (a) The absolute number of hard cases (where
both base models failed) and the number of those cases successfully rescued by the Fusion path
(synergy). (b) The Synergy Success Rate (Fusion Path Correct / Both Base Models Wrong) for each
dataset demonstrates the consistent effectiveness of the Fusion path.

models. Figure 7 provides a more detailed view of the synergy analysis, showing both the absolute
number of hard cases and the corresponding synergy success rates for each benchmark. These
detailed charts serve as the underlying evidence for the aggregate statistics and trends discussed in
the main paper.

B FURTHER IN-DEPTH ANALYSIS

B.1 FULL GATING DECISION ANALYSIS ON ALL DATASETS

To supplement the analysis in the main paper, this section provides the complete visualizations of the
processing path selection distribution for all seven benchmarks. Figure 3 in the main text highlights
two representative datasets, while Figure 8 below shows the results on the remaining five.

21



Published as a conference paper at ICLR 2026

1.0 0.1
5

0.0
5 0.0

0.0

0.2

0.4

0.6

0.8

1.0

R
ou

tin
g 

D
is

tri
bu

tio
n

*TabFact

1.0 0.1
5

0.0
5 0.0

*TABMWP

1.0 0.1
5

0.0
5 0.0

*WTQ

1.0 0.1
5

0.0
5 0.0

 (Resource Loss Weight)

0.0

0.2

0.4

0.6

0.8

1.0

R
ou

tin
g 

D
is

tri
bu

tio
n

*InfoTabs

1.0 0.1
5

0.0
5 0.0

 (Resource Loss Weight)

*FeTaQA

Processing Path
Text-only
Image-only
Fusion

Figure 8: Processing path selection distribution vs. the resource loss weight (λ) on the five additional
benchmarks. A red star (*) marks the best-performing configuration for each dataset. The data
demonstrates consistent adaptive behavior across these diverse tasks.

The trends observed here are consistent with our main findings. For instance, on the math-heavy
TABMWP dataset, the policy heavily favors the Image-only path. On the visually complex HiTab
benchmark, the routing policy maintains a significant reliance on both the Image-only and Fusion
paths across all λ values. Finally, the generative FeTaQA task shows a strong preference for the Fu-
sion path when performance is prioritized. These varied, dataset-specific behaviors further validate
that TableDART successfully learns to adapt its strategy to the underlying characteristics of the data.

B.2 ANALYSIS OF THE LEARNED ROUTING POLICY

Our final in-depth analysis dissects the sophisticated nature of the learned routing policy, revealing
a crucial trade-off between aligning with a simple heuristic and achieving globally-optimal task
performance. To investigate this, we adopt a behavioral analysis approach, a common technique in
policy analysis and explainable AI (Guidotti et al., 2019), by defining a Heuristic Alignment Score.
This metric measures the percentage of times TableDART’s routing policy matches a simple, greedy
heuristic: always choose the most cost-effective processing path (first Text-only, then Image-only,
then Fusion) that is known to solve a given problem correctly. The procedure for calculating this
metric is detailed in Algorithm 1. We then plot this alignment score against the final average task
performance for each of our λ configurations.

The result, shown in Figure 9, illustrates a clear non-linear relationship, resembling a Pareto frontier.
We observe that a policy laser-focused on maximizing heuristic alignment (e.g., at λ = 1.0, the
rightmost point) adheres most closely to the simple greedy rule but yields a suboptimal overall task
performance. This demonstrates that a greedy, locally-focused strategy can be detrimental to the
global objective.

Crucially, our chosen configuration, λ = 0.15, resides at the apex of this performance curve. Its
modest Heuristic Alignment Score indicates that it has learned a more sophisticated, non-greedy
policy. It quantitatively proves that the globally optimal strategy, learned via end-to-end training,
involves strategically investing in more computationally expensive processing paths, even when a
cheaper option is technically viable. This finding validates that TableDART learns a truly effective,
globally-optimized routing policy that transcends simple heuristics.
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Algorithm 1 Heuristic Alignment Score Calculation

1: Input: Set of test samples S, Table-as-Text model results RText, Table-as-Image model results
RImage, TableDART’s routing decisions DTableDART .

2: Output: Heuristic Alignment Score Salign.
3:
4: Naligned routes ← 0
5: Ntotal ← |S|
6:
7: for each sample si ∈ S do
8: is text correct← RText(si) is correct
9: is image correct← RImage(si) is correct

10: TableDART choice← DTableDART (si)
11:
12: ▷ Define the simple, greedy heuristic action
13: if is text correct then
14: heuristic choice← “Text-only”
15: else if is image correct then
16: heuristic choice← “Image-only”
17: else
18: heuristic choice← “Fusion”
19: end if
20:
21: if TableDART choice = heuristic choice then
22: Naligned routes ← Naligned routes + 1
23: end if
24: end for
25:
26: Salign ← (Naligned routes/Ntotal)× 100
27: return Salign

B.3 ANALYSIS OF PER-DATASET ROUTING POLICIES

To provide quantitative evidence of TableDART’s adaptive capabilities, we analyze the routing de-
cisions of our final model (trained with λ = 0.15) on each of the seven test benchmarks. Figure 10
visualizes the learned policy, revealing how the framework dynamically allocates resources based
on the specific demands of each dataset.

The analysis highlights several key adaptive behaviors:

• Adaptation to Modality Strengths: The model demonstrates a profound understanding of
modality-task alignment. For TABMWP, a benchmark requiring structural and mathemat-
ical reasoning, the policy routes an overwhelming 97.2% of instances to the Image-only
path. Conversely, for InfoTabs, a fact-verification task dependent on fine-grained seman-
tics, the strategy shifts dramatically to favor the Text-only path (67.5%).

• Adaptation to Task Difficulty: On challenging benchmarks where single-modality mod-
els are likely to fail, such as TAT-QA, the policy learns to prioritize correctness by invoking
the powerful but costly Fusion path for 88.7% of cases. This demonstrates an ability to
gauge task difficulty and escalate to a more robust strategy when necessary.

• Balanced, Nuanced Strategies: For benchmarks with a mix of challenges like WTQ and
FeTaQA, the model learns a more balanced policy, distributing queries across all three
paths. This indicates that the routing is not coarse-grained but makes fine-tuned, instance-
level decisions.

In summary, this analysis provides compelling evidence that TableDART operates as a truly adaptive
framework, which is the key to its state-of-the-art performance and efficiency.
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Figure 9: The trade-off between aligning with a simple greedy heuristic (x-axis) and achieving
globally-optimal task performance (y-axis). The curve shows that strictly following the greedy
heuristic can hurt final performance, and TableDART’s best configuration (λ = 0.15) learns a supe-
rior, non-greedy policy.
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Figure 10: The learned routing policy distribution for each benchmark using the final TableDART
model (λ = 0.15). The distinct strategies across datasets provide strong evidence of the framework’s
adaptive nature.

B.4 EFFECT OF λ ON INFERENCE EFFICIENCY

To more clearly characterize how the resource-aware objective influences efficiency, we report em-
pirical latency and throughput measurements across different values of λ in Table 11. As shown, λ
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has a direct impact on inference cost. While larger λ generally encourages more efficient routing by
discouraging unnecessary use of the Fusion path, the trend is not strictly monotonic. This is because
each λ induces a distinct routing policy that balances accuracy and computational cost differently.

Figure 11 visualizes this relationship by plotting average latency against average accuracy. The
resulting curve illustrates a natural performance–efficiency frontier: smaller λ values (e.g., 0.0 and
0.05) tend to overuse the Fusion path, while very large values (e.g., 1.0) favor efficiency at the cost
of reduced accuracy. The configuration λ = 0.15 provides the best overall balance, achieving the
second-highest average accuracy (within 0.19 points of the best) while maintaining strong efficiency
(8.4% less inference latency).
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Figure 11: Performance–efficiency trade-off across different values of the resource loss weight (λ).
The red star marks the selected configuration.
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Table 11: Inference efficiency for different values of λ. Higher values encourage more efficient
routing, though the effect is not strictly monotonic due to the distinct routing policies induced by
each setting.

λ Latency (s) Throughput (TPS)

0.00 2.3675 15.14
0.05 2.4021 13.72
0.10 2.0832 23.85
0.15 2.2008 17.77
1.00 1.8490 29.56
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