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ABSTRACT

The rapid advancement of video diffusion models has been hindered by funda-
mental limitations in temporal modeling, particularly the rigid synchronization
of frame evolution imposed by conventional scalar timestep variables. While
task-specific adaptations and autoregressive models have sought to address these
challenges, they remain constrained by computational inefficiency, catastrophic
forgetting, or narrow applicability. In this work, we present Pusa1 V1.0, a versa-
tile model that leverages vectorized timestep adaptation (VTA) to enable fine-
grained temporal control within a unified video diffusion framework. Note that
VTA is a non-destructive adaptation, which means that it fully preserves the ca-
pabilities of the base model. Unlike conventional methods like Wan-I2V, which
finetune a base text-to-video (T2V) model with abundant resources to do image-
to-video (I2V), we achieve comparable results in a zero-shot manner after an
ultra-efficient finetuning process based on VTA. Moreover, this method also un-
locks many other zero-shot capabilities simultaneously, such as start-end frames
and video extension —all without task-specific training. Meanwhile, it keeps the
T2V capability from the base model. Mechanistic analyses also reveal that our
approach preserves the foundation model’s generative priors while surgically in-
jecting temporal dynamics, avoiding the combinatorial explosion inherent to the
vectorized timestep. This work establishes a scalable, efficient, and versatile
paradigm for next-generation video synthesis, democratizing high-fidelity video
generation for research and industry alike.

1 INTRODUCTION

Diffusion models Song et al. (2020); Ho et al. (2020) have transformed generative modeling, achiev-
ing remarkable results in image synthesis. Their extension to video generation Ho et al. (2022); He
et al. (2022); Chen et al. (2023); Wang et al. (2023); Ma et al. (2024); OpenAI (2024); Xing et al.
(2023b); Liu et al. (2024a) has been a focal point. However, these mainstream video diffusion mod-
els (VDMs) still employ a scalar timestep variable following image diffusion models, enforcing
uniform temporal evolution across all frames. This approach, while being effective for text-to-video
(T2V), struggles with nuanced, temporal-dependent tasks like image-to-video (I2V) and video ex-
tension Liu et al. (2024b); Wan et al. (2025); Xing et al. (2023a).

∗Work partially done during an internship at Huawei Research.
1Pusa (/pu: ’sA:/) normally refers to ”Thousand-Hand Guanyin” in Chinese, reflecting the iconography of

many hands to symbolize boundless compassion and ability. We use this name to indicate that our model uses
many timestep variables to achieve various video generation capabilities, and we will fully open source it to let
the community benefit from this technology.
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Figure 1: Method comparison. (b) Wan2.1-I2V-14B (Wan-I2V) and (c) Pusa both support I2V gen-
eration and are fine-tuned from (a) Wan2.1-T2V-14B (Wan-T2V). Specifically, Wan-I2V represents
the mainstream practice for I2V, which modifies the base T2V model with a mask mechanism and
an image clip embedding, leading to the destruction of the pretrained priors of the base model. In
contrast, Pusa proposes a non-destructive VTA approach, which only inflates the model’s timestep
variable from a scalar to a vector. In this way, Pusa fully utilizes the pretrained priors and uses much
less data and computation to achieve comparable I2V results.

Autoregressive alternatives like Diffusion Forcing Chen et al. (2024) and AR-Diffusion Sun et al.
(2025) have explored avoiding this rigid synchronization modeling form of conventional VDMs.
Nonetheless, their applications for video generation, like start-end frames, remained constrained by
the autoregressive design. Despite large-scale deployment such as MAGI-1 Teng et al. (2025) and
SkyReels V2 Chen et al. (2025) further advanced scalability, they still face challenges in computa-
tional efficiency, bidirectional reasoning, and error accumulation over long sequences.

Concurrently, FVDM Liu et al. (2024b) proposed a vectorized timestep to reframe the video diffu-
sion paradigm fundamentally. Specifically, instead of using a scalar timestep to control the noise
level of the whole video, it allows independent noise evolution per frame by assigning each frame
a timestep, together results in a timestep vector for the video. Besides, to address the potential
computational explosion inherent with frame-level timesteps during training, FVDM introduces a
novel probabilistic timestep sampling strategy (PTSS), which not only achieves training efficiency
comparable to that of conventional scalar timestep approaches but also unlocks T2V, I2V, and other
temporal control tasks simultaneously.

In this work, we extend the paradigm of Frame-Aware Video Diffusion Models (FVDM)Liu et al.
(2024b) to an industrial scale by proposing a vectorized timestep adaptation (VTA) strategy, which
adapts pretrained large-scale VDMs to support frame-level timesteps (shown in Fig. 1). Besides, to
enable fine-grained temporal control with minimal finetuning data and computation, we design the
VTA to be non-destructive, which means it does not need any architectural modification to the base
model and thus fully preserves the model’s capabilities. As a result, our proposed model, Pusa V1.0,
achieves SOTA level performance on the VBench-I2V benchmark Huang et al. (2024), comparable
with Wan-I2V, which is also adapted and fine-tuned from the same base model (Wan-T2V), despite
using only 4K samples and 0.5K compute cost (vs. expected ≥ 10M samples and ≥ 100K cost Wan
et al. (2025)). Besides I2V capability, Pusa also generalizes to tasks such as start-end frames and
video extension, all in a zero-shot way without any task-specific retraining. This highlights the great
potential and versatility of the FVDM/Pusa paradigm at scale.

Our contributions can be summarized as:

• Unprecedented Efficiency: We present Pusa with a non-destructive VTA method to the
base T2V model and an ultra-efficient finetuning strategy, which achieves SOTA I2V per-
formance with only 4K samples and 0.5K compute cost.

• Unified Multi-Task Generalization: Pusa not only preserves T2V capability from the
base model, but also generalizes well to many advanced temporal tasks like I2V, start-end
frames, video extension, etc., all in a zero-shot way.

• Underlying Superiority: Mechanistic analyses reveal that our approach preserves the
foundation model’s generative priors while surgically injecting temporal dynamics, avoid-
ing the combinatorial explosion inherent to vectorized timesteps. This work marks a critical
shift in video generation by combining principled temporal modeling with efficient adap-
tation, enabling scalable, high-quality, and general-purpose video synthesis.
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2 METHODOLOGY

2.1 PRELIMINARIES: FLOW MATCHING FOR GENERATIVE MODELING

Generative modeling aims to learn a model capable of synthesizing samples from a target data
distribution q0(z) over RD. Continuous Normalizing Flows (CNFs) Chen (2018) achieve this by
transforming samples z1 from a simple base distribution q1(z) (e.g., a standard Gaussian N (0, I))
to samples z0 that approximate the target distribution q0(z). This transformation is defined by
an invertible mapping, often conceptualized as an ordinary differential equation (ODE) trajectory.
Specifically, a probability path {zt}t∈[0,1] is defined, connecting z0 ∼ q0 at t = 0 to z1 ∼ q1 at
t = 1. The dynamics along this path are described by an ODE:

dzt
dt

= vt(zt, t), t ∈ [0, 1] (1)

where vt : RD × [0, 1]→ RD is a time-dependent vector field.

Flow Matching (FM) Lipman et al. (2022); Liu et al. (2022); Tong et al. (2023) is a simulation-
free technique to directly learn this vector field vt(zt, t) by training a neural network vθ(zt, t) to
approximate it. This is achieved by regressing vθ(zt, t) against a target vector field ut(zt|z0, z1).
This target field is defined along specified probability paths pt(zt|z0, z1) that connect samples z0 ∼
q0 to corresponding samples z1 ∼ q1.

A common choice for these paths is a linear interpolation between a data sample z0 and a prior
sample z1:

zt = (1− t)z0 + tz1, t ∈ [0, 1] (2)
For such paths, the conditional target vector field is the time derivative of zt:

ut(z0, z1) =
dzt
dt

= z1 − z0 (3)

Note that for linear interpolation paths, ut is independent of t and zt, depending only on the end-
points z0 and z1. The (conditional) flow matching objective function to train the neural network vθ
is then:

LFM(θ) = Et∼U [0,1],z0∼q0,z1∼q1

[
∥vθ((1− t)z0 + tz1, t)− (z1 − z0)∥22

]
(4)

where U [0, 1] is the uniform distribution over [0, 1] and ∥·∥22 denotes the squared Euclidean norm.
Once vθ is trained, new samples that approximate q0 can be generated by first sampling z1 ∼ q1 and
then solving the ODE dzt

dt = vθ(zt, t) from t = 1 down to t = 0. The resulting z0 is a generated
sample.

2.2 FRAME-AWARE FLOW MATCHING

Flow matching has become the common choice for SOTA video generation models Wan et al.
(2025); Kong et al. (2024); Team (2024). To enable nuanced temporal modeling in existing SOTA
models, we first need to extend the FVDM Liu et al. (2024b) paradigm to the flow matching frame-
work.

A video clip X is represented as a sequence of N frames. Each frame xi ∈ Rd is a d-dimensional
column vector. The entire video clip can be represented as an N × d matrix X, where the i-th row
is xi⊤. This can be written as X = [x1,x2, . . . ,xN ]⊤, thus X ∈ RN×d.

In contrast to the single-scalar time variable t used in standard flow matching (Eq. 4), we introduce
a vectorized timestep variable (VTV) τ ∈ [0, 1]N , defined as:

τ = [τ1, τ2, . . . , τN ]⊤ (5)
Here, each component τ i ∈ [0, 1] represents the individual progression parameter of the i-th frame
along its respective probability path from the data distribution to a prior distribution. This vec-
torization allows each frame to evolve at a potentially different rate or stage within the generative
process.

Let X0 = [x1
0, . . . ,x

N
0 ]⊤ be a video sampled from the true data distribution qdata(X), where xi

0 ∈
Rd. Similarly, let X1 = [x1

1, . . . ,x
N
1 ]⊤ be a video sampled from a simple prior distribution qprior(X)

(e.g., each frame xi
1 is drawn independently from N (0, σ2Id)).
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For each frame i, we define a conditional probability path p(xi
τ i |xi

0,x
i
1) indexed by its individual

timestep τ i. Adopting the linear interpolation strategy from Eq. 2 for each frame (which are d-
dimensional vectors):

xi
τ i = (1− τ i)xi

0 + τ ixi
1 (6)

The state of the entire video, corresponding to a specific vectorized timestep τ , is then given by the
N × d matrix Xτ , whose i-th row is xi⊤

τ i :

Xτ = [x1
τ1 ,x2

τ2 , . . . ,xN
τN ]⊤ (7)

We aim to learn a single neural network vθ(X, τ ) that models the joint dynamics of all frames
conditioned on their respective timesteps. This network takes the current video state X ∈ RN×d

(which is Xτ during training) and the vectorized timestep τ ∈ [0, 1]N as input. It outputs a velocity
field for the entire video, an N × d matrix denoted as vθ(X, τ ) = [v1, . . . ,vN ]⊤, where each
vi ∈ Rd is the velocity vector for the i-th frame. Thus, vθ : RN×d × [0, 1]N → RN×d.

The target vector field for the entire video Xτ , conditioned on the initial video X0 and target prior
X1, is an N × d matrix U(X0,X1). Its i-th row is the transpose of the derivative of the i-th frame’s
path (Eq. 6) with respect to its individual timestep τ i. Using the derivative from Eq. 3 for each
frame:

dxi
τ i

dτ i
= xi

1 − xi
0 (8)

Thus, the target video-level vector field is:

U(X0,X1) = [(x1
1 − x1

0), . . . , (x
N
1 − xN

0 )]⊤ = X1 −X0 (9)

Notably, for the linear interpolation path, this target vector field X1−X0 is independent of both the
current video state Xτ and the vectorized timestep τ itself, simplifying the regression target. The
video state Xτ at timestep τ is constructed via frame-wise linear interpolation:

Xτ = (1− τ )⊙X0 + τ ⊙X1 (10)

where ⊙ denotes element-wise multiplication between the timestep vector τ = [τ1, τ2, ..., τN ]⊤

and each frame.

Key Properties:

1. Path Consistency: Each frame evolves linearly: xi
τ i = (1− τ i)xi

0 + τ ixi
1

2. Vector Field Simplicity: dXτ

dτ = X1 −X0 (constant for all τ )

3. Decoupling: Frame dynamics depend only on their own τ i, enabling asynchronous evolution.

The parameters θ of the neural network vθ are optimized by minimizing the Frame-Aware Flow
Matching (FAFM) objective function:

LFAFM(θ) = EX0∼qdata,X1∼qprior,τ∼pPTSS(τ )

[
∥vθ(Xτ , τ )− (X1 −X0)∥2F

]
(11)

where Xτ is the video state constructed according to Eq. 7, ∥·∥2F denotes the squared Frobenius
norm, τ ∼ pPTSS(τ ) indicates that the vectorized timestep τ is sampled according to PTSS in
FVDM Liu et al. (2024b). This strategy is designed to expose the model to both asynchronous frame
evolutions with a probability pasync ∈ [0, 1]) and synchronized frame evolutions with probability
1− pasync during training.

2.3 VECTORIZED TIMESTEP ADAPTATION

In this work, we aim to adapt a large-scale, pre-trained T2V diffusion models to support the vector-
ized timestep Liu et al. (2024b). The adaptation, which we term Vectorized Timestep Adaptation
(VTA), along with a lightweight fine-tuning process, imbues the model with fine-grained temporal
control, enabling advanced capabilities such as zero-shot I2V.
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2.3.1 IMPLEMENTATION OF VECTORIZED TIMESTEP ADAPTATION

The foundational principle of our implementation is to re-engineer the core architecture to process
a vectorized timestep τ instead of a scalar timestep t. The architectural adaptation is primarily fo-
cused on the model’s temporal conditioning mechanism. We introduce two key modifications:
Vectorized Timestep Embedding: The timestep embedding module is modified to process the in-
put vector τ , generating a sequence of frame-specific embeddings Eτ ∈ RN1×D, where N1 is the
number of frames in the video latent sequence, each vector in the sequence corresponds to a latent
frame’s individual.
Per-Frame Modulation: These frame-specific embeddings are subsequently projected to produce
per-frame modulation parameters (i.e., scale, shift, and gate) within each block of the DiT architec-
ture. The operation of a DiT Peebles & Xie (2023) block on the latent representation zi of the i-th
frame is thus conditioned on its individual timestep τ i, which can be conceptually expressed as:

ziout = DiTBlock(ziin, context,modulate(τ i))

Note that this modification is non-destructive, which means it fully preserves the T2V capability of
the base model. The adapted model generates the same results by setting all frame timesteps to the
same values as the base model.

Table 1: Vbench-I2V results. Our model demonstrates SOTA-level performance, achieving a top-
tier rank among open-source models, and is notably comparable with its architectural baseline, Wan-
I2V. All scores are reported in percentages (%). Higher is better for all metrics. Best score in each
column is in bold. Abbreviations: SC: Subject Consistency, BC: Background Consistency, MS:
Motion Smoothness, DD: Dynamic Degree, AQ: Aesthetic Quality, IQ: Imaging Quality, I2V-S:
I2V Subject Consistency, I2V-B: I2V Background Consistency, CM: Camera Motion.

Model Overall Scores ↑ Quality Metrics ↑ I2V Metrics ↑
Total I2V Quality SC BC MS DD AQ IQ I2V-S I2V-B CM

— Closed / Proprietary Models —
Gen-4-I2V (API) 88.27 95.65 80.89 93.23 96.79 98.99 55.20 61.77 70.41 97.84 97.46 68.26
STIV (Apple) 86.73 93.48 79.98 98.40 98.39 99.61 15.28 66.00 70.81 98.96 97.35 11.17

— Open Source Models —
Magi-1 89.28 96.12 82.44 93.96 96.74 98.68 68.21 64.74 69.71 98.39 99.00 50.85
Step-Video-TI2V 88.36 95.50 81.22 96.02 97.06 99.24 48.78 62.29 70.44 97.86 98.63 49.23
DynamiCrafter-512 86.99 93.53 80.46 93.81 96.64 96.84 69.67 60.88 68.60 97.21 97.40 31.98
CogVideoX-5b-I2V 86.70 94.79 78.61 94.34 96.42 98.40 33.17 61.87 70.01 97.19 96.74 67.68
Animate-Anything 86.48 94.25 78.71 98.90 98.19 98.61 2.68 67.12 72.09 98.76 98.58 13.08
SEINE-512x512 85.52 92.67 78.37 95.28 97.12 97.12 27.07 64.55 71.39 97.15 96.94 20.97
I2VGen-XL 85.28 92.11 78.44 94.18 97.09 98.34 26.10 64.82 69.14 96.48 96.83 18.48
ConsistI2V 84.07 91.91 76.22 95.27 98.28 97.38 18.62 59.00 66.92 95.82 95.95 33.92
VideoCrafter 82.57 86.31 78.84 97.86 98.79 98.00 22.60 60.78 71.68 91.17 91.31 33.60
CogVideoX1.5-5B 71.58 92.25 50.90 91.80 94.66 40.98 62.29 70.21 97.07 96.46 95.50 39.71
SVD-XT-1.1 – – 79.40 95.42 96.77 98.12 43.17 60.23 70.23 97.51 97.62 –
SVD-XT-1.0 – – 80.11 95.52 96.61 98.09 52.36 60.15 69.80 97.52 97.63 –

Wan-I2V 86.86 92.90 80.82 94.86 97.07 97.90 51.38 64.75 70.44 96.95 96.44 34.76
Ours 87.32 94.84 79.80 92.27 96.02 98.49 52.60 63.15 68.27 97.64 99.24 29.46

2.3.2 TRAINING PROCEDURE

The optimization follows the FAFM objective defined in Eq. 11. A key advantage of our approach
is its simplicity: by leveraging the robust generative prior of the base model, we circumvent
the need for sampling synchronous timesteps. Instead, we train the model directly with a fully
randomized vectorized timestep (pasync = 1 ), where each component τ i is sampled independently
from U [0, 1]. This stochastic training regimen compels the model to learn fine-grained temporal
control from a maximally diverse distribution of temporal states.

2.3.3 INFERENCE FOR IMAGE-TO-VIDEO

Pusa performs zero-shot I2V generation by strategically manipulating the vectorized timestep τ
during sampling. To condition generation on a starting image I0, for simplicity and fair comparison
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with baselines, we clamp its timestep component to zero throughout inference (i.e., τ1s = 0 for all
steps s). Note that we can also add some noise (e.g., set τ1s = 0.2∗s or any level of noise) to the first
frame, which may synthesize more coherent videos with a slight change to the first frame. During
sampling, which follows the Euler method for ODE integration, this ensures the change in the first
frame’s latent is always zero, effectively fixing it as a clean condition. This flexible control scheme
naturally extends to other complex temporal tasks, such as start-end frames and video extension.
The detailed I2V sampling algorithm is outlined in Appendix B.

3 EXPERIMENTS

Our experiments are designed to rigorously validate the three core contributions of this work: (1) the
unprecedented efficiency and SOTA-level performance of our model, Pusa, on the primary task of
I2V generation; (2) the underlying mechanism for why Pusa works; and (3) the emergent zero-shot
multi-task capabilities of Pusa.

Figure 2: Quantitative compari-
son of training strategies. Both
our LoRA and full fine-tuning (FT)
approaches consistently outperform
Wan-I2V’s fine-tuning method,
achieving much superior scores
with unprecedented efficiency.

Figure 3: Qualitative comparison of training strategies at
900 iterations. From top to bottom: Ours (LoRA, α = 1.4),
Ours (FT), and Wan-I2V like baseline. Our methods maintain
high fidelity to the condition image, whereas the baseline fails
to preserve subject identity and color under the training bud-
get.

3.1 SETUP

Our method works for both full fine-tuning and Lora fine-tuning. Towards adaptation with fewer
GPUs, we perform fine-tuning on the SOTA open-source Wan-T2V model using the LoRA (Low-
Rank Adaptation) technique Hu et al. (2022) for our final model, which enables parameter-efficient
training. The training infrastructure consists of 8 GPUs, each has 80GB of memory and high band-
width, with DeepSpeed Zero2 Rajbhandari et al. (2020) for memory optimization, achieving a total
batch size of 8. The LoRA implementation is based on DiffSynth-Studio2, leveraging its optimized
diffusion model training pipeline. Regarding the fine-tuning dataset, we directly utilize T2V samples
generated by Wan-T2V Zheng et al. (2025); Wan et al. (2025). This dataset includes 3,860 high-
quality 720p videos and spans diverse visual domains and temporal structures (e.g., natural scenes,
human activities, camera motion), ensuring robust model generalization and aligned with Wan’s
original distribution. For evaluation, we use Vbench-I2V Huang et al. (2024) for comprehensive
I2V capability evaluation. Note that there is no overlap between the training and evaluation data.
For baseline comparison, we use the whole testing set, generating 5590 videos. For hyperparameter
and ablation studies, we test with a subset of 750 videos.

3.2 BASELINE COMPARISON

As shown in Table 1, Pusa, with only 10 inference steps, achieves SOTA-level performance among
open-source models. This result is also comparable to the result of its direct baseline, Wan-I2V.
Note that all the baselines are trained with vastly greater resources. More specifically, our model

2https://github.com/modelscope/DiffSynth-Studio
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obtains a total score of 87.32, outperforming Wan-I2V’s 86.86. Besides, Pusa demonstrates supe-
rior performance in key I2V metrics, such as I2V Background Consistency (99.24 vs. 96.44) and
I2V Subject Consistency (97.64 vs. 96.95), indicating a more faithful adherence to the input image
condition. Furthermore, our model exhibits a higher Dynamic Degree (52.60 vs. 51.38), producing
more motion-rich videos while maintaining high Motion Smoothness (98.49 vs. 97.90). Hyperpa-
rameter studies about Pusa are available in Appendix C.1.

3.3 ABLATION STUDY

We conduct a series of ablation studies to dissect the core components and verify the effectiveness
of our proposed methodology. Due to space constraints, we present a summary of our key findings
here. Comprehensive results are provided in the Appendix C.2.

Training Strategy. We compare three distinct training strategies: the baseline model trained with
the Wan-I2V method, our approach with full fine-tuning, and LoRA fine-tuning on the same dataset
with 480p resolution. As illustrated in Fig. 2, both our methods converge at a very early stage with
close results and substantially outperform the baseline across all training steps. This quantitative
superiority is mirrored in our qualitative results (Fig. 3). At 900 iterations, both our LoRA and fully
fine-tuned models generate videos highly faithful to the conditioning image. In stark contrast, the
baseline fails catastrophically under the same training budget, with the generated video completely
diverging from the source. This underscores a critical finding: the Wan-I2V’s method is profoundly
inefficient, requiring a massive scale of data and compute to reach its official performance Wan
et al. (2025). Our method, conversely, delivers superior results with a minuscule fraction of these
resources, demonstrating a paradigm shift in training efficiency.

Table 2: Ablation on Timestep Sampling Strat-
egy. Comparison of overall scores at 900 train-
ing iterations. Our random sampling approach
achieves the highest performance.

Sampling Strategy Total (%) Quality (%) I2V (%)
Ours 87.69 80.55 94.83
I2V 73.27 69.96 76.57
PTSS (p = 0.2) 84.74 77.60 91.88
PTSS (p = 0.8) 86.49 79.30 93.69

Timestep Sampling Strategy. Our framework
employs a simple yet powerful strategy of sam-
pling purely random timesteps for each frame
during training. To validate this design, we
compare it against a more structured approach,
PTSS, where timesteps are preferentially sam-
pled from a specific range, and an intuitive
baseline for I2V with the first frame always be-
ing noise-free τ1 = 0 while all other timesteps
being of the same value. Table 2 summarizes
the performance at 900 steps. The results un-
equivocally demonstrate that our fully random
sampling strategy achieves the highest scores, surpassing all baselines. This finding confirms that
our training strategy is more effective for learning robust temporal dynamics in our framework.

Table 3: Ablation Study on Base Model.

Base Model Setting Overall Quality Metrics I2V Metrics
Total Quality I2V SC BC MS DD AQ IQ I2V-S I2V-B CM

Wan2.1 α = 1.4 87.69 80.55 94.83 91.39 96.02 98.10 66.40 62.42 68.57 97.78 99.33 26.40

Wan2.2 high α = 1.5, low α = 1.4 87.69 79.89 95.49 91.57 96.83 97.91 63.60 59.30 68.75 96.99 99.18 51.60

Base Model Comparison. We further investigate the impact of different base models on final per-
formance. As shown in Table 3, both our Wan2.1-based model and our Wan2.2-based model achieve
an identical overall score of 87.69. However, they demonstrate different characteristic strengths: the
Wan2.1 variant excels in aesthetic quality and dynamic degree. Conversely, the Wan2.2 variant gen-
erates videos with significantly more pronounced camera motion (51.60 vs. 26.40). Since we use
the same dataset for finetuning, these differences mainly come from the base models themselves.
Overall, this suggests our method works well with different base models, and the choice of base
model can be tailored to application needs and the model’s characteristics.
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Figure 4: I2V results, where our model generates a smooth and realistic animation of the first frame
while Wan2.1-T2V generates completely different frames but aligned with the text prompt, and
Wan2.1-I2V generates frames with noticeable distortions. All videos are generated with the same
condition image and text prompt: ”a snowboarder is in the air doing a trick”.

3.4 ANALYSIS OF THE ADAPTATION MECHANISM

We investigate the mechanisms underlying Pusa’s efficient adaptation, showing that it performs
highly targeted parameter updates that augment — rather than overwrite — the pretrained knowledge
of the foundation model.

I2V Qualitative. In Fig. 4, Wan-T2V with VTA uses the same inference method as Pusa to do I2V
generation, which is by directly setting the first frame noise-free. Since the model is only trained for
the T2V task, the generated frames only align with the text prompt but have no relation to the first
frame. Meanwhile, Pusa achieves seamless alignment with both text and input image, outperforming
Wan-I2V, which exhibits visible distortions and poor character preservation.

Attention Mechanism. Visualization of frame-to-frame self-attention maps (Fig. 5) reveals critical
differences. Specifically, we plot the self-attention maps of queries and keys within the final Trans-
former block across 3 different inference steps, i.e., steps 0, 4, and 9 (10 steps in total). Wan-T2V
exhibits a diagonal attention pattern, indicating that each frame primarily attends to itself, with little
frame correlation. In contrast, both Wan-I2V and Pusa show strong attention from all frames to the
first frame initially, which is essential for maintaining consistency with the input image. However,
a key difference emerges: the attention to the first frame in Wan-I2V is only strengthened in step 0.
In Pusa, the attention to the first frame is significantly enhanced across all steps. This exemplifies
Pusa’s surgical injection of temporal dynamics.

Parameter Divergence. This observation is further supported by an analysis of parameter changes
(Fig. 6). The parameter drift in Wan-I2V is substantial and concentrated in modules critical for
content generation, such as the text encoder and cross-attention blocks. This implies a significant al-
teration of the model’s core generative priors. Pusa, in contrast, exhibits minimal parameter changes,
with modifications almost exclusively in the self-attention blocks responsible for temporal dynam-
ics. The magnitude of parameter change in Wan-I2V is more than an order of magnitude larger than
in Pusa. This confirms that our approach constitutes a minimal, targeted adaptation, preserving the
integrity of the foundation model, and explaining its efficiency.

Vectorized Timestep Adaptation Efficacy. The VTV framework faces a combinatorial explosion
in temporal composition space (e.g., 1048 configurations for 16 frames), making convergence from
scratch challenging. Pusa circumvents this by leveraging Wan-T2V’s pretrained video generation
capabilities, requiring only brief fine-tuning to master temporal control with independent timesteps.
The base model’s inherent robustness to timestep asynchronization is evidenced by its coherent
zero-shot I2V generation (Fig. 4), despite failing image-condition adherence. This stems from Wan-
T2V’s diagonal self-attention patterns (Fig. 5), indicating frame synthesis independence. Pusa’s
fine-tuning surgically introduces targeted temporal correlation while preserving the stable genera-
tive core, enabling nondestructive adaptation that solves the VTV compositionality problem with
unprecedented efficiency.
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Figure 5: Visualization of attention maps. Specifically, these maps are of the last DiT block
across multiple inference steps. Each value in the attention map represents frame-to-frame cor-
relation/attention; a larger value means higher correlation. Zoom in for a better view.

Figure 6: Analysis on finetuned model’s parameter shifts. The columns, from left to right, repre-
sent the top 10 components with largest average relative parameter changes and average change by
transformer blocks, respectively. Zoom in for a better view.
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3.5 ZERO-SHOT MULTI-TASK CAPABILITIES

Our approach demonstrates exceptional generalization across diverse video generation tasks beyond
T2V without task-specific training. This capability comes from flexible vectorized time step settings,
enabling arbitrary conditioning on any subset of frames with any level of noise. Besides, Pusa
retains high T2V generation quality after adaptation from its strong foundation model, confirming
that our fine-tuning process avoids catastrophic forgetting of the primary task. More significantly,
the proposed method exhibits remarkable zero-shot performance on complex temporal synthesis
tasks, including I2V generation, start-end frames, video completion, video extension, and so on.
Comprehensive results for these tasks are available in Appendix D.

4 CONCLUSION

This work introduces Pusa, which achieves SOTA-level I2V performance based on Wan-T2V with
unprecedented efficiency, requiring only $500 and 4K samples. The key innovation lies in our non-
destructive VTA strategy, preserving the foundation model’s robust priors while enabling frame-
independent evolution. This unlocks many zero-shot generalizations to diverse tasks, a property un-
matched by conventional or auto-regressive VDMs. Our analysis demonstrates that Pusa’s success
stems from its minimal, targeted modifications to the base model’s temporal attention mechanisms,
avoiding the catastrophic forgetting observed in task-specific fine-tuning. The implications are pro-
found: Pusa redefines the efficiency-quality tradeoff in video generation, enabling high-fidelity,
multi-task generation at a fraction of traditional costs.
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APPENDIX

A MORE RELATED WORKS

The field of video generation has rapidly evolved, driven by the success of diffusion models in
image synthesis. Our work builds upon and extends several key research threads, positioning itself
as a highly efficient and versatile solution for the next paradigm of video diffusion models.

A.1 CONVENTIONAL VIDEO DIFFUSION MODELS

The initial extension of image diffusion models to video generation established a foundational
paradigm. Seminal works like VDM Ho et al. (2022) and subsequent large-scale models such as
Latent Video Diffusion Models (LVDM) He et al. (2022), VideoCrafter1 Chen et al. (2023), and
others Wang et al. (2023); Ma et al. (2024); Wan et al. (2025); Kong et al. (2024) all adopted the
same diffusion framework. A core characteristic of these conventional models is their reliance on
a scalar timestep variable. This single variable governs the noise level and evolution trajectory uni-
formly across all frames of a video clip during the diffusion process. While this synchronized-frame
approach proved effective for generating short, self-contained clips, particularly for T2V tasks, it
imposes a rigid temporal structure. The uniform noise schedule inherently limits the model’s abil-
ity to handle tasks requiring asynchronous frame evolution, such as I2V generation, where the first
frame or condition image is given, or complex editing tasks like video interpolation. Recognizing
the limitations of conventional VDMs in temporal modeling, the research community has developed
numerous extensions targeting specific video generation tasks Xing et al. (2023b). These approaches
predominantly focus on adapting existing scalar timestep based models through fine-tuning strate-
gies or zero-shot techniques to handle domain-specific challenges such as image-to-video generation
Xing et al. (2023a); Guo et al. (2023); Zhang et al. (2023); Li et al. (2024); Ni et al. (2024), video
interpolation Wang et al. (2024b;a); Wan et al. (2025), and long video synthesis Duan et al. (2024);
Henschel et al. (2024); Kim et al. (2024); Lu et al. (2024); Dalal et al. (2025); Zhao et al. (2025)
These methods typically involve extensive fine-tuning of a large, pre-trained T2V model on task-
specific data or employing zero-shot domain transfer techniques.

I2V generation has emerged as a particularly active area. For example, the Wan-I2V model pre-
sented in the Wan paper required fine-tuning Wan T2V model on its T2V pretraining dataset to
achieve its SOTA I2V capabilities and can only do I2V after this process Wan et al. (2025). Overall,
these extensions reveal fundamental challenges in balancing flexibility, generalization, and the re-
tention of original model capabilities. Fine-tuning approaches often suffer from catastrophic forget-
ting, where adaptation to specific tasks severely degrades performance on its original capabilityPan
et al. (2024); Ramasesh et al. (2021). Zero-shot methods, exemplified by TI2V-Zero introduces a
zero-shot method for conditioning T2V diffusion models on images Ni et al. (2024). However, its
generalization and generation quality are limited by potential visual artifacts and reduced robust-
ness, as its simple ”repeat-and-slide” strategy struggles with diverse input and can produce blurry
or flickering videos. The reliance on task-specific architectures and training procedures highlights
the need for a more unified and general approach that can handle diverse video generation scenar-
ios without requiring extensive finetuning. Our work departs from these limitations by adopting
the VTV introduced by FVDM Liu et al. (2024b), enabling fine-grained control over the generative
process.

A.2 AUTOREGRESSIVE VIDEO DIFFUSION MODELS

Recently, people have explored autoregressive paradigms for video diffusion models, where frames
are generated sequentially rather than simultaneously (Chen et al., 2024; Sun et al., 2025; Teng
et al., 2025; Chen et al., 2025; Huang et al., 2025). This direction includes methods like Diffusion
Forcing, which trains a causal next-token model to predict one or multiple future tokens without fully
diffusing past ones, enabling variable-length generation capabilities. CauseVid Yin et al. (2024)
represents another significant advancement in this direction, proposing fast autoregressive video
diffusion models that can generate frames on-the-fly with streaming capabilities.

Large-scale autoregressive models such as MAGI-1 Teng et al. (2025) and SkyReels-V2 Chen et al.
(2025) have demonstrated the potential for scalable video generation through chunk-by-chunk pro-
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cessing, where each segment is denoised holistically before proceeding to the next. Self-Forcing
Huang et al. (2025) addresses the critical issue of exposure bias in autoregressive video diffusion by
introducing a training paradigm where models condition on their own previously generated outputs
rather than ground-truth frames. This approach enables real-time streaming video generation while
maintaining temporal coherence through innovative key-value caching mechanisms.

Despite these advances, autoregressive video diffusion models face inherent limitations that con-
strain their applicability. The sequential nature of generation restricts these models to unidirectional
tasks, making them inadequate for many scenarios, such as start-end frames, video transitions, and
keyframe interpolation. Moreover, error accumulation and drift issues represent persistent chal-
lenges in autoregressive approaches, where small prediction errors compound over time, leading to
quality degradation in longer sequences Huang et al. (2025). Recent theoretical analyses have also
identified both error accumulation and memory bottlenecks as fundamental phenomena in autore-
gressive video diffusion models, revealing a Pareto frontier between these competing constraints
Wang et al. (2025).

A.3 FRAME-AWARE VIDEO DIFFUSION MODEL

Frame-aware video diffusion model (FVDM) Liu et al. (2024b) is a parallel line of research to re-
construct the paradigm for video diffusion models, by enabling independent temporal evolution for
each frame. The vectorized timestep approach enables unprecedented flexibility across multiple
video generation tasks, including T2V, I2V, start-end frames, video extension, and so on, all within
a single unified framework. Unlike conventional approaches that require extensive destructive ar-
chitectural modifications and retraining, FVDM demonstrates strong zero-shot capabilities across
diverse temporal conditioning scenarios with its PTSS training strategy. In this work, Pusa-Wan
(V1.0) further extends FVDM to an industrial scale and proposes a dedicated VTA strategy and
post-training method, achieving remarkable efficiency gains with finetuning costs reduced to mere
$500 from above 100K of Wan-I2V, while outperforming it on Vbench-I2V.

The FVDM/Pusa framework represents a fundamental departure from previous temporal modeling
approaches, offering a solution that can perform both directional generation tasks (like autoregres-
sive models) and bidirectional temporal reasoning tasks that autoregressive approaches cannot han-
dle. This unified capability, combined with the demonstrated computational efficiency and strong
empirical results, positions this approach as a promising direction for next-generation video diffu-
sion models.

Algorithm 1 Pusa: Sampling for I2V Generation

Require: Trained model vθ, VAE Encoder E and Decoder D, Scheduler.
Require: Initial image I0, text prompt c, number of frames N1, inference steps S.

1: Encode prompt: cemb ← EncodePrompt(c).
2: Encode image to initial latent: ẑ11 ← E(I0).
3: Sample noise for remaining frames: [z11, z

2
1, . . . , z

N1
1 ] ∼ N (0, I).

4: ▷ Initialize video with clean first frame and noisy subsequent frames.
5: Construct initial latent video: Z1 ← [ẑ11, z

2
1, . . . , z

N1
1 ].

6: Retrieve scheduler noise levels {σs}Ss=1, where σ1 > · · · > σS ≈ 0.
7: for s← 1, . . . , S − 1 do
8: Let σcurrent ← σs and σnext ← σs+1.
9: ▷ Construct vectorized timestep to freeze the first frame.

10: Set current path parameter τs ← σ−1([0, σcurrent, . . . , σcurrent]
⊤).

11: Set current noise levels σs ← [0, σcurrent, . . . , σcurrent]
⊤.

12: Set next noise levels σs+1 ← [0, σnext, . . . , σnext]
⊤.

13: Predict vector field: Ûs ← vθ(Zs, τs, cemb).
14: ▷ Update latents; first frame remains unchanged.
15: Zs+1 ← Zs + Ûs ⊙ (σs+1 − σs).
16: end for
17: Decode final latent video: Xout ← D(ZS).
18: return Output video Xout.
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B INFERENCE ALGORITHM FOR I2V GENERATION

Pusa performs zero-shot I2V generation by strategically manipulating the vectorized timestep τ
during sampling. To condition generation on a starting image I0, for simplicity and fair comparison
with baselines, we clamp its timestep component to zero throughout inference (i.e., τ1s = 0 for all
steps s). Note that we can also add some noise (e.g., set τ1s = 0.2∗s or any level of noise) to the first
frame, which may synthesize more coherent videos with a slight change to the first frame. During
sampling, which follows the Euler method for ODE integration, this ensures the change in the first
frame’s latent is always zero, effectively fixing it as a clean condition. This flexible control scheme
naturally extends to other complex temporal tasks, such as start-end frames and video extension.
The detailed I2V sampling procedure is outlined in Algorithm 1.

Table 4: Comprehensive studies on key hyperparameters. This table presents a detailed analysis
of our model’s performance by varying training iterations, LoRA configurations, and the number
of inference steps. All scores are reported in percentages (%), with higher values indicating better
performance. For each ablation group, the best score per metric is highlighted in bold.

Group Setting Overall Quality Metrics I2V Metrics
Total Quality I2V SC BC MS DD AQ IQ I2V-S I2V-B CM

(a) LoRA Configurations

256

α = 1.0 79.75 73.25 86.25 84.35 88.20 98.91 28.92 60.90 64.73 91.69 91.18 28.00
α = 1.4 83.12 76.07 90.17 85.65 96.67 98.99 30.06 60.13 67.15 90.33 98.78 23.48
α = 1.7 85.86 77.96 93.76 97.18 96.68 99.06 10.40 63.04 70.70 98.60 98.30 8.40
α = 2.0 84.22 76.30 92.14 96.71 94.63 99.05 6.40 60.34 69.63 97.96 95.77 16.00

512

α = 1.0 80.17 74.35 85.99 83.16 86.99 98.05 62.40 58.44 62.49 91.23 90.70 34.40
α = 1.4 86.46 79.79 93.13 88.64 93.54 97.68 78.80 61.12 67.47 95.72 97.60 38.40
α = 1.7 87.11 80.42 93.80 92.93 95.58 97.72 62.80 61.78 70.34 97.30 97.93 29.60
α = 2.0 85.98 79.10 93.87 93.88 93.93 97.96 51.20 60.57 70.38 96.92 97.69 17.60

(b) Inference Steps

—

2 steps 79.92 67.97 91.87 77.18 92.90 98.18 16.80 51.69 55.44 94.20 97.55 30.40
5 steps 86.03 77.59 94.48 88.53 95.65 98.25 50.00 60.21 65.96 97.03 99.25 29.20

10 steps 87.69 80.55 94.83 91.39 96.02 98.10 66.40 62.42 68.57 97.78 99.33 26.40
20 steps 87.84 81.17 94.51 89.54 95.89 98.10 79.88 61.02 68.99 97.07 99.10 31.10

(c) Training Iterations

150

α = 1.0 78.23 73.36 83.11 80.29 86.09 98.63 50.80 60.19 63.62 88.67 88.47 34.00
α = 1.4 79.33 73.01 85.65 81.61 86.20 98.74 48.00 59.32 61.92 90.79 91.11 26.91
α = 1.7 82.79 74.99 90.60 84.37 89.92 98.84 48.40 60.05 63.25 93.62 95.99 31.60
α = 2.0 84.31 76.25 92.37 87.23 91.86 98.86 53.97 59.03 62.36 95.71 97.04 30.20

450

α = 1.0 79.27 74.20 84.35 82.20 86.81 98.32 59.20 59.48 62.62 90.32 89.00 33.60
α = 1.4 85.72 79.41 92.04 88.07 93.34 98.12 73.54 61.88 66.69 94.94 96.98 32.94
α = 1.7 87.37 80.95 93.80 91.67 95.51 97.61 72.54 62.25 69.91 96.87 98.23 30.34
α = 2.0 85.96 79.54 92.39 92.88 94.12 97.46 60.69 61.04 70.22 96.51 97.52 14.51

750

α = 1.0 80.17 74.35 85.99 83.16 86.99 98.05 62.40 58.44 62.49 91.23 90.70 34.40
α = 1.4 86.46 79.79 93.13 88.64 93.54 97.68 78.80 61.12 67.47 95.72 97.60 38.40
α = 1.7 87.11 80.42 93.80 92.93 95.58 97.72 62.80 61.78 70.34 97.30 97.93 29.60
α = 2.0 85.98 79.10 93.87 93.88 93.93 97.96 51.20 60.57 70.38 96.92 97.69 17.60

900

α = 1.0 81.78 74.63 88.93 84.23 88.48 98.44 60.73 58.56 60.10 93.14 93.73 32.80
α = 1.4 87.69 80.55 94.83 91.39 96.02 98.10 66.40 62.42 68.57 97.78 99.33 26.40
α = 1.7 86.93 79.19 94.67 94.78 95.80 98.22 41.20 61.84 70.14 98.31 99.26 18.00
α = 2.0 85.91 77.96 93.86 95.15 94.26 98.38 32.40 60.57 70.17 98.22 98.95 6.15

1200

α = 1.0 82.08 75.01 89.14 84.81 88.30 98.15 63.20 58.17 61.90 93.02 94.04 34.40
α = 1.4 87.32 80.30 94.34 90.72 95.44 97.58 73.20 61.51 68.01 97.19 98.83 29.89
α = 1.7 86.86 79.70 94.02 93.66 95.46 98.02 54.80 60.77 69.70 97.65 98.77 18.80
α = 2.0 86.01 78.32 93.69 94.21 94.16 98.40 41.20 59.51 69.96 97.90 98.74 9.16

C COMPREHENSIVE QUANTITATIVE RESULTS

C.1 HYPERPARAMETER STUDY

To validate our hyperparameter choices and understand their impact on performance, we conducted
a series of studies, summarized in Table 4.
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Lora Configurations Lora rank is a critical ingredient that influences the fine-tuning performance.
As we know, Lora learns much less with small ranks compared to full fine-tuning Biderman et al.
(2024), thus, Lora rank should be large enough to have the capacity to learn the new capabilities
since tasks like I2V are very general. We investigated the influence of LoRA rank, a proxy for
the adaptation’s capacity. As shown in Table 4(a), a higher rank of 512 consistently outperforms a
rank of 256 on most metrics, particularly in overall quality. This suggests that a larger adaptation
capacity is beneficial in capturing the nuances of temporal dynamics required for I2V tasks. We
also find that the LoRA alpha scaling at inference time is critical; an alpha of 1.7 yields the best
results for the 750-iteration checkpoint, balancing the influence of the LoRA weights against the
pre-trained model.

Inference Steps. As detailed in Table 4(b), we analyzed the trade-off between computational cost
at inference and generation quality using our best checkpoint with rank 512 and alpha 1.4 with 900
iterations. Performance scales predictably with the number of steps, with significant gains observed
up to 10 steps. While 20 steps provide a marginal improvement, the results at 10 steps are nearly
identical (87.69 vs. 87.84). Consequently, we adopt 10 inference steps as our default to ensure an
optimal balance between quality and generation speed.

Training Progression. We evaluated checkpoints of Lora rank 512 at various stages of training,
from 150 to 1200 iterations, using 10 inference steps. Table 4(c) shows a clear trend of improving
performance up to 900 iterations, where we achieved our highest score of 87.69 with an alpha of
1.4. Beyond this point, performance begins to plateau or slightly degrade, indicating that the model
has converged. This rapid convergence underscores the data efficiency of our approach. Our final
model for comparison in Table 1 uses the 900-iteration checkpoint of rank 512.

C.2 ABLATION STUDIES

We conduct further ablation studies to analyze the core components of our proposed method. We
investigate the effectiveness of our training strategy against a baseline approach and examine the
impact of different timestep sampling strategies during training. The results are summarized in
Table 5.

Training Strategy. We compare our training strategy against the baseline method used in Wan-
I2V across different training regimes: full model fine-tuning and parameter-efficient LoRA fine-
tuning. As shown in Table 5(a), both of our fine-tuning approaches significantly outperform the
baseline at every checkpoint. Our full fine-tuning method already achieves a total score of 83.78
in just 150 steps, surpassing the baseline’s peak score of 75.01. The LoRA-based approach further
accelerates performance gains. The results show that performance consistently improves with more
training steps. For instance, with α = 1.7, the score increases from 84.92 at 150 steps to 86.27 at 600
steps. The best LoRA result is 87.09 at 900 steps with α = 1.4, which substantially outperforms full
fine-tuning at the same iteration (84.06). This highlights not only the effectiveness of our training
recipe but also the remarkable efficiency and power of combining it with LoRA.

Timestep Sampling Strategy. Our method utilizes a simple yet effective strategy of sampling
purely random timesteps for each frame during training. To validate this choice, we compare it
against an intuitive baseline for I2V with the first frame always being noise-free τ1 = 0 while
all other timesteps are of the same value, and a more structured approach, PTSS, where a certain
percentage of timesteps are sampled from a specific range. As detailed in Table 5(b), we conduct a
comprehensive comparison at the 900-iteration mark, testing PTSS with probabilities (p) of 0.2, 0.5,
and 0.8 against our fully random approach (equivalent to p = 0). The results consistently show that
our method outperforms I2V beaseline and all PTSS variants across different LoRA alpha values.
Notably, our approach with α = 1.4 achieves the highest total score of 87.69, surpassing the best
PTSS result (87.36 from p=0.5, α = 1.7). This confirms that a simpler, fully randomized timestep
sampling strategy is more effective for learning robust temporal dynamics in our framework.
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Table 5: Ablation studies on training methodology. This table presents our analysis of (a) the
training strategy, comparing our method (with both Full and LoRA fine-tuning) against the baseline
across different training steps, and (b) the timestep sampling strategy. All scores are reported in
percentages (%), with higher values being better. The overall best configuration is marked with *.

Group Setting Overall Quality Metrics I2V Metrics
Total Quality I2V SC BC MS DD AQ IQ I2V-S I2V-B CM

(a) Training Strategy

Baseline (Wan-I2V)

150 steps 75.01 77.85 72.16 97.02 98.31 99.22 24.80 59.75 63.65 82.19 77.43 29.60
300 steps 74.02 76.81 71.23 96.93 97.75 99.18 18.80 58.28 63.39 81.58 76.48 30.00
600 steps 73.29 75.63 70.95 97.44 97.88 99.23 9.60 56.63 62.18 81.47 76.09 30.80
900 steps 73.21 76.02 70.39 96.96 97.65 99.13 17.20 57.00 61.42 80.56 76.15 28.80
1500 steps 73.39 76.26 70.53 97.19 98.00 99.30 11.20 59.24 62.11 80.60 76.13 31.60

Ours (Full Finetune)
150 steps 83.78 76.10 91.46 85.20 91.10 98.79 39.60 63.46 67.95 94.62 96.14 36.00
300 steps 83.35 78.07 88.62 84.86 90.91 98.37 66.40 63.61 67.35 92.77 93.57 32.80
600 steps 85.21 78.51 91.90 85.95 90.20 98.30 76.00 61.80 66.69 95.58 95.79 38.80
900 steps 84.06 77.67 90.45 85.97 90.67 98.40 66.80 61.27 66.17 94.27 95.05 33.60

Ours (LoRA Finetune)

150 steps, α = 1.4 81.62 74.62 88.62 83.56 88.10 98.90 45.60 60.52 65.39 92.20 94.30 29.60
150 steps, α = 1.7 84.92 77.39 92.44 87.18 93.12 99.02 46.00 62.73 66.76 95.52 97.08 33.20

300 steps, α = 1.4 82.97 75.39 90.55 86.42 90.99 98.94 40.80 59.90 65.19 93.87 95.67 32.00

600 steps, α = 1.4 85.98 78.60 93.35 89.37 93.50 98.76 58.80 60.55 66.98 96.49 97.87 30.40
600 steps, α = 1.7 86.27 78.73 93.81 91.78 94.51 98.40 52.40 60.13 68.37 97.31 98.43 22.80

900 steps, α = 1.4* 87.09 79.77 94.42 90.37 94.68 98.55 62.80 61.72 68.20 97.40 98.67 31.20
900 steps, α = 1.7 87.01 80.02 94.00 93.56 96.01 98.44 51.20 61.74 70.24 97.70 98.54 20.80

(b) Timestep Sampling Strategy

Ours

450 steps, α = 1.0 79.27 74.20 84.35 82.20 86.81 98.32 59.20 59.48 62.62 90.32 89.00 33.60
450 steps, α = 1.4 85.72 79.41 92.04 88.07 93.34 98.12 73.54 61.88 66.69 94.94 96.98 32.94
450 steps, α = 1.7 87.37 80.95 93.80 91.67 95.51 97.61 72.54 62.25 69.91 96.87 98.23 30.34

900 steps, α = 1.0 81.78 74.63 88.93 84.23 88.48 98.44 60.73 58.56 60.10 93.14 93.73 32.80
900 steps, α = 1.4* 87.69 80.55 94.83 91.39 96.02 98.10 66.40 62.42 68.57 97.78 99.33 26.40
900 steps, α = 1.7 86.93 79.19 94.67 94.78 95.80 98.22 41.20 61.84 70.14 98.31 99.26 18.00

I2V (τ1 = 0)

450 steps, α = 1.0 74.26 71.62 76.91 76.83 84.03 98.41 54.40 58.14 61.92 82.44 84.49 30.80
450 steps, α = 1.4 74.03 71.11 76.95 76.55 83.58 98.49 53.60 56.12 62.20 82.48 84.61 29.60
450 steps, α = 1.7 74.73 70.98 78.47 76.63 83.91 98.56 49.60 56.23 62.63 83.65 85.96 29.60

900 steps, α = 1.0 73.27 69.96 76.57 75.93 83.37 98.60 43.20 56.57 61.25 82.23 84.15 30.80
900 steps, α = 1.4 72.54 68.47 76.61 75.11 83.10 98.68 36.40 53.87 60.23 81.61 84.33 36.40
900 steps, α = 1.7 72.42 67.82 77.02 74.53 82.96 98.72 32.80 53.39 59.66 81.90 85.05 32.00

PTSS (p = 0.2)

450 steps, α = 1.0 77.53 72.33 82.74 79.62 85.66 98.61 42.40 59.96 63.85 88.18 88.80 27.60
450 steps, α = 1.4 79.67 73.63 85.70 81.07 87.44 98.69 46.40 60.23 64.35 90.77 90.77 32.80
450 steps, α = 1.7 82.05 75.32 88.79 82.47 89.80 98.76 50.80 62.16 64.42 92.70 94.19 28.80

900 steps, α = 1.0 77.96 72.24 83.68 80.38 85.49 98.40 44.40 58.67 63.72 89.43 88.91 31.20
900 steps, α = 1.4 81.57 74.71 88.43 83.63 88.95 98.51 52.40 59.57 63.50 92.69 93.51 30.40
900 steps, α = 1.7 84.74 77.60 91.88 85.97 92.68 98.40 63.20 61.27 64.93 94.68 96.82 34.80

PTSS (p = 0.5)

450 steps, α = 1.0 78.16 72.96 83.36 80.69 86.58 98.42 45.20 59.80 64.21 88.97 88.64 33.60
450 steps, α = 1.4 82.08 75.76 88.41 84.98 91.24 98.46 48.40 61.64 64.70 91.94 94.20 29.60
450 steps, α = 1.7 85.52 78.64 92.41 88.87 94.94 98.45 52.40 63.29 67.36 95.06 97.40 33.60

900 steps, α = 1.0 79.63 73.51 85.76 82.98 87.27 98.37 46.00 58.80 64.42 91.01 90.80 30.67
900 steps, α = 1.4 86.38 79.51 93.26 90.18 95.60 98.26 56.30 63.74 68.01 96.20 98.09 28.75
900 steps, α = 1.7 87.36 80.44 94.28 93.25 96.63 98.07 54.80 63.58 69.67 97.71 98.36 28.80

PTSS (p = 0.8)

450 steps, α = 1.0 79.03 73.78 84.28 82.13 86.86 98.56 45.60 60.41 65.36 89.98 89.14 34.40
450 steps, α = 1.4 85.59 79.03 92.14 88.10 93.93 98.63 61.60 62.84 67.03 94.78 97.35 32.00
450 steps, α = 1.7 87.31 80.84 93.79 91.63 95.98 98.17 65.20 63.27 69.41 97.02 98.08 30.40

900 steps, α = 1.0 80.71 75.17 86.25 82.65 86.73 97.73 69.60 59.37 64.50 91.37 90.96 34.80
900 steps, α = 1.4 85.98 78.86 93.10 87.10 91.34 97.31 86.40 60.79 64.98 96.13 97.24 38.00
900 steps, α = 1.7 86.49 79.30 93.69 89.98 92.78 97.11 79.20 60.44 66.67 97.15 97.67 32.40
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D QUALITATIVE RESULTS ON MULTI-TASK CAPABILITIES

Our approach demonstrates exceptional generalization across diverse video generation tasks beyond
text-to-video (T2V), without task-specific training. This capability comes from flexible vectorized
timestep settings, enabling arbitrary conditioning on any subset of frames.

Text-to-Video Generation. Unlike specialized image-to-video (I2V) models, Pusa preserves the
T2V capabilities of its foundation model. As shown in Fig. 14, the qualitative output maintains
high quality, demonstrating that our fine-tuning process does not induce catastrophic forgetting of
the primary T2V task. This preservation of capabilities establishes Pusa as a truly unified video
generation model.

Complex Temporal Tasks. The FVDM framework reveals its true power through zero-shot per-
formance on complex temporal synthesis tasks. Additional results demonstrating seamless I2V
generation are presented in Fig. 4.

Pusa can perform start-end frames conditioning through various configurations. When conditioning
on the first frame and the last frame (encoded to a single latent frame similar to the first frame), the
model generates coherent video sequences, as illustrated in Fig. 8. Alternatively, conditioning on the
first frame and the last 4 frames (encoded to a single latent frame as default) yields improved results,
as shown in Fig. 10. The latter approach addresses the challenge posed by the 4× compression rate
for the last frames introduced by the VAE, where conditioning solely on the last frame produces
inferior results due to its interpretation as 4 static frames.

Using the unique properties of our framework, we can enhance video coherence by introducing
controlled noise to the encoded latents (e.g., setting τ1 = 0.3 ∗ t and τN = 0.7 ∗ t). This technique
generates appropriate motion and content for the condition frames, resulting in more coherent video
synthesis, as demonstrated in Fig. 9.

Furthermore, Figures 11, 12, and 13 showcase Pusa’s capabilities for video completion/transition
and video extension, seamlessly completing or continuing given video sequences. These advanced
capabilities emerge inherently from our vectorized timestep adaptation strategy, which does not
require task-specific training, and highlight the remarkable versatility and power of our approach.
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Figure 7: More image-to-video results. The first frames of each row are the given condition images
extracted from Veo2 & Sora demos. Each generated video has 81 frames in total.
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Figure 8: Zero-shot results w.r.t. start & end frames to video. The first and last frames are given
condition frames extracted from Veo2 & Sora demos. Each generated video has 81 frames in total.
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Figure 9: Zero-shot results w.r.t. start & end frames with noise. The first and last frames are
given conditions and added 30% and 70% noise during sampling to make the generated video more
coherent. Condition frames are extracted from Veo2 & Sora demos. Each generated video has 81
frames in total.
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Figure 10: Zero-shot results w.r.t. start & end frames to video. The first and last 4 frames (encoded
to one latent frame) are given condition frames extracted from Veo2 & Sora demos. Each generated
video has 81 frames/21 latent frame in total.
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Figure 11: Zero-shot results w.r.t. video completion/transition. The first 9 frames and the last 12
frames extracted from Veo2 demos are given as conditions and encoded to the first 3 latent frames
and the last 3 latent frames, respectively. Each generated video has 81 frames/21 latent frames in
total.
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Figure 12: Zero-shot results w.r.t. video extension. The first 13 frames extracted from Veo2 de-
mos are given as conditions and encoded to the first 4 latent frames. Each generated video has 81
frames/21 latent frames in total.
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Figure 13: Zero-shot results w.r.t. video extension. The first 41 frames extracted from Veo2 demos
are given as conditions and encoded to the first 11 latent frames. Each generated video has 81
frames/21 latent frames in total.
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Figure 14: Text-to-video results. Prompts all from Vbench2.0.
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