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ABSTRACT

Spoken Question-Answering (SQA) is a core capability for useful and interac-
tive artificial intelligence systems. Recently, several speech-language models
(SpeechLMs) have been released with a specific focus on improving their SQA
performance. However, a lack of controlled ablations of pretraining data processing
and curation makes it challenging to understand what factors account for perfor-
mance, despite substantial gains from similar studies in other data modalities. In
this work, we address this gap by conducting a data-centric exploration for pre-
training SpeechLMs. We focus on three questions fundamental to speech-language
pretraining data: (1) how to process raw web-crawled audio content for speech-text
pretraining, (2) how to construct synthetic datasets to augment web-crawled data
and (3) how to interleave (text, audio) segments into training sequences. We apply
the insights from our controlled data-centric ablations to pretrain a 3.8B-parameter
SpeechLM, called SpeLangy, that outperforms models that are up to 3x larger
by 10.2% absolute performance. We hope our findings highlight the impact of
effective data curation and guide future data-centric exploration in SpeechLMs.

How to process raw audio into interleaved speech-text training data?

How to construct synthetic datasets using quality text-only datasets?

How to interleave between speech and text modalities while training?

Text tokenSpeech token
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?
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Figure 1: (Left) We highlight the data-centric questions we study in this work (Sec. 3), (Right)
Distilling all our data-insights yields a strong 3.8B-parameter SpeechLM, SpeLangy (Sec. 5).

1 INTRODUCTION

Language-based assistants are now widely deployed (OpenAI, 2024; Comanici et al., 2025). Yet,
purely textual interactions are inherently limiting for real-world assistants that must operate in open,
hands-free settings. Voice provides a natural, low-friction interface for human–AI interaction, and
recent work therefore emphasizes Spoken Question-Answering (SQA) (Nachmani et al., 2023; Liu
et al., 2025; Xiaomi, 2025)—where a question is asked in audio and the system must produce spoken
or textual answers—as a core capability for end-to-end speech language models (SpeechLMs).

Recently, speech–text interleaved pretraining—next-token prediction over sequences that alternate
between speech and text tokens—has been proposed as a viable strategy to boost SQA performance
(Nguyen et al., 2025b; Zeng et al., 2024b). However, while these works describe modeling choices
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comprehensively, details of their data pipelines are often not shared or evaluated in a controlled setting.
How should we process raw audio into trainable speech-text chunks? Can we leverage text-only
datasets to go beyond datasets sourced from raw audio? How should we interleave tokens for effective
modality alignment? In the current literature, these data-centric questions remain underexplored.
In other domains like language (Dubey et al., 2024; Li et al., 2024) and vision (Gadre et al., 2023;
Siméoni et al., 2025), data curation has consistently proven to be a primary driver of performance
improvements, yet a large gap exists from the data-centric perspective in the speech-language domain.

In our work, we aim to close this gap with a systematic, data-centric study of interleaved pretraining
for SQA (Fig. 1). We first provide a detailed description of our processing pipeline for converting
raw audio into speech-text interleaved data (Fig. 8). We then study optimal interleaving strategies
for speech-text pretraining, finding that fine-grained interleaving (which alternates between speech
and text modalities at sentence boundaries) improves alignment of the two modalities (Sec. 3.3).
Building on this, we introduce effective synthetic data methods involving LLM-based rewriting and
text-to-speech synthesis to go beyond raw web-crawled audio for pretraining (Sec. 3.4). We also
examine two modality-sampling schemes for interleaved training, finding that a deterministic ordering
of alternating speech-text chunks is beneficial compared to stochastic modality sampling (Sec. 3.5).
To understand why our data-centric methods improve SQA performance, we analyse the modality gap
between speech and text distributions (Sec. 4.1) and inspect the topic distributions of web-crawled
and synthetic datasets (Sec. 4.2). Finally, to showcase the efficacy of our data interventions at
scale, we pretrain a 3.8B SpeechLM (SpeLangy) that outperforms 3x larger models by upto 10%
average SQA performance. Taken together, our results underscore the central role of data curation in
speech–language pretraining and motivate a broader, systematic push toward data-centric exploration.

2 RELATED WORK

Speech Language Models. Most recent SpeechLMs employ a simple Speech Encoder + Connector
+ LLM philosophy for conducting joint speech-text training (Lakhotia et al., 2021; Algayres et al.,
2023; Hassid et al., 2023; Nguyen et al., 2025b; Nachmani et al., 2023; Rubenstein et al., 2023; Zhang
et al., 2023; Défossez et al., 2024). Models like Kimi-Audio (Ding et al., 2025), Step-Audio-2 (Wu
et al., 2025), Baichuan-Audio (Li et al., 2025b), GLM-4-Voice (Zeng et al., 2024a), and MiMo-
Audio (Xiaomi, 2025) have emerged as strong foundation models that seamlessly perform several
tasks, including spoken question-answering. While demonstrating impressive performance, details
behind their data curation strategies are however scant. Through our controlled experiments, we aim
to fill this gap by shedding light on how to effectively construct speech-text pretraining datasets.

Data Curation for Foundation Models. Pretraining data quality is pivotal for driving performance of
foundation models. Efforts like Gopher (Rae et al., 2021), T5 (Raffel et al., 2020), Nemotron-CC (Su
et al., 2024), FineWeb (Penedo et al., 2024), DCLM (Li et al., 2024) and Olmo-2 (OLMo et al., 2024)
significantly emphasize the benefits of strong data processing, curation and filtering for language
data. In computer vision, Dino-v2 (Oquab et al., 2023), Dino-v3 (Siméoni et al., 2025), Aim-v2 (Fini
et al., 2025) and Web-SSL (Fan et al., 2025) showcased the high impact that careful data curation
has on model quality. Similar results on the importance of data-centric research have been shown in
vision-language (Gadre et al., 2023; Fang et al., 2023a; Tong et al., 2024) and reasoning-based (Guha
et al., 2025; Li et al., 2025c; Muennighoff et al., 2025) foundation modeling literature. Owing to
the paucity of such data-centric research in the speech-language domain, we aim to close this gap,
demonstrating the strong utility of data-centric approaches for boosting SpeechLM quality.

3 CONTROLLED DATA-CENTRIC EXPERIMENTS

In this section, we address three data-centric questions for improving SQA, via controlled exper-
iments: (1) how to process raw web-crawled audio into suitable interleaved speech-text training
data (Sec. 3.3), (2) how to construct synthetic speech-text datasets seeded from text-only datasets
(Sec. 3.4), and (3) how to interleave between speech and text modalities while training (Sec. 3.5).

3.1 EVALUATION BENCHMARKS

Spoken Question-Answering (S→T). We use three standard benchmarks for SQA where the
model is asked questions in speech and responds in text (S→T): Spoken-LLaMA-Questions (SLQ),
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Figure 2: Our experimental conditions for speech-text pretraining data. (Top) We study two
interleaving strategies: coarse (long chunks) and fine (short chunks) (Sec. 3.3). (Middle) We construct
two synthetic datasets—Krist and Quest—from web-crawled documents (Sec. 3.4). (Bottom) We
study two modality-sampling schemes: deterministic and stochastic (Sec. 3.5).

Spoken-Web-Questions (SWQ) and Spoken-TriviaQA (STQ). We source audio questions from Ope-
nAudioBench (Li et al., 2025b). Our protocol follows standard language modeling pretraining
evaluations (Gu et al., 2024; Allal et al., 2025) to use an MCQ cloze-format with log-likelihood
evaluation for choosing the correct option (we use 4 multiple choices with chance-level accuracy
being 25%). We provide more details and examples from each of our evaluation sets in Appx. F.

Text Understanding (T→T). To ensure our speech-text pretraining recipe does not degrade base lan-
guage performance, we evaluate on 12 standard text benchmarks spanning across general knowledge,
math and coding: MMLU (Hendrycks et al., 2020), CoreEN (Gunter et al., 2024; Mizrahi et al., 2025)
(consisting of 9 benchmarks—ARC-Easy and ARC-Challenge (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), Lambada (Paperno et al., 2016), PIQA (Bisk et al., 2020), SciQ (Welbl et al., 2017),
TriviaQA (Joshi et al., 2017), WebQuestions (Berant et al., 2013), and WinoGrande (Sakaguchi et al.,
2021)), GSM-8k (Cobbe et al., 2021), and HumanEval (Chen et al., 2021).

3.2 BASE SETUP

Model Architecture. We conduct all our experiments with a ∼3.8B-parameter SpeechLM, consisting
of two major components: a speech tokenizer and a pretrained language model. Our speech tokenizer
consists of a speech encoder with conformer (Gulati et al., 2020) blocks followed by a finite scalar
quantizer (Mentzer et al., 2023) that outputs discrete speech tokens. We initialize our LM with the
dense 3B base-LM from (Li et al., 2025a) that has a context-length of 16, 384 tokens.

Training Data. Our base mixture consists of web-crawled audio that we process into interleaved
speech-text data. We provide more details on how we process audio into our training data format in
the next section. We also use the text continued-pretraining dataset from (Li et al., 2025a) to preserve
the base-LM’s text performance. Following prior multimodal works (Shukor et al., 2025; McKinzie
et al., 2024), we use a 60% text-only and 40% speech-text data mixture during training.

Optimization Details. We train with a global-batch-size of 512 and a packed-sequence-length of
16, 384 tokens, for 200k steps. We use the standard next-token prediction objective and compute the
loss over both speech and text tokens (we also conduct ablations with loss-masking on the speech
tokens in Sec. 3.6). We only tune the language model weights while keep the speech tokenizer frozen.
For more details, please refer to Appx. D.
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3.3 PROCESSING PRETRAINING DATA VIA FINE-GRAINED INTERLEAVING

Extracting interleaved data from raw audio. We begin with >10M hours of raw web-crawled audio.
To process them into trainable speech-text samples, we follow a multi-stage pipeline (see Fig. 8),
involving speaker diarization, language detection and filtering, paired-transcription generation and
filtering, and interleaved chunking. Our pipeline yields interleaved training samples Xi consisting of
multiple paired speech-text chunks of the form Xi={(A1,T1),(A2,T2)· · ·(An,Tn)}, where n is the
number of chunks in each sample. We provide more details about each individual component along
with detailed statistics in Appx. A, while focusing on the interleaved chunking component here.
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Figure 3: Audio chunk length
distribution (in seconds) for
our interleaving strategies.

Fine vs coarse interleaving. Prior speech-text pretraining
works (Liu et al., 2025; Zeng et al., 2024a) have explored construct-
ing interleaved data from raw audio. However, they do not quantify
the importance of interleaving granularity for effective training. To
study this, we construct two interleaving variants (see Fig. 2A)—
(1) coarse interleaving, where we merge multiple consecutive di-
arized outputs into one if tagged with same speaker-ID, yielding
long chunks, and (2) fine interleaving, where we keep all diarized
outputs as is without merging, yielding short chunks. As expected,
from Fig. 3, we find coarse interleaving leads to longer chunks (mean-
length=19.2s) compared to fine interleaving (mean-length=5.2s).
From Tab. 1, we note fine interleaving improves SQA performance
by 3.1% on average, while matching text-only performance. This is
a significant finding since the default approach in prior works (Ding
et al., 2025; Li et al., 2025b) has been to merge same-speaker diariza-
tion outputs, yet our results advocate for more granular interleaving. Hence, for all our subsequent
experiments, we adopt fine interleaving for web-crawled speech-text pretraining by default.

Table 1: Fine chunking improves over coarse chunking.

Interleaving Granularity Text Understanding (T→T) SQA (S→T) acc (%)
CoreEN MMLU SWQ STQ SLQ Avg

Coarse 60.4 63.9 42.5 26.6 43.6 37.6
Fine 60.4 64.1 42.7 32.2 47.3 40.7

Takeaway: Fine-grained interleaving of speech-text pretraining data boosts SQA performance.

3.4 CONSTRUCTING EFFECTIVE SYNTHETIC DATASETS

While web-crawled datasets offer massive volume, they often have poor domain coverage—their data
distribution does not reflect the highest-priority domains for downstream deployment (Baack, 2024;
Longpre et al., 2024). Often, sufficient data from many core domains simply does not exist or is hard
to crawl (Zhang et al., 2024c; Fang et al., 2023b). Together, these motivate using synthetic data to
augment existing data from web-crawls. Moreover, in our web-crawled audio data, we find noisy
text-annotations (due to hallucinations from transcription models) and artifacts like background noise
and speaker overlap. Thereby, we explore synthesizing interleaved speech-text datasets from existing
text-only corpora. We build two synthetic datasets (see Fig. 2B) to augment web-crawled data—
Knowledge-Rich Interleaved Speech-Text (Krist) and Question-Answering Speech-Text (Quest).

Knowledge-Rich Interleaved Speech-Text (Krist). We start from lightly-filtered web-crawled
documents (similar to WARC files from CommonCrawl (2007)). We then apply URL-filtering to
preserve knowledge-rich domains (list is in Appx. B.1). This is motivated by recent efforts advocating
high-quality educational data for accelerating training (Penedo et al., 2024; Abdin et al., 2024;
Gunasekar et al., 2023). Next, we use gpt-4o-mini to extract and lightly rewrite the text-content
from raw HTML, following Maini et al. (2024) (prompt used in Appx. B.2). We then segment the
texts based on sentence-level splitting, to produce different text chunks. Finally, we synthesize audio
for each chunk using melo-TTS (Zhao et al., 2023). To improve diversity, we randomly sample
voices from 5 different accents. This pipeline yields ∼4.6M hours of interleaved speech-text data.
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Question-Answering Speech-Text (Quest). Since Krist is synthesized from HTML-extracted text,
its constituent samples do not sound like natural conversations. We therefore build Quest, explicitly
organized in a question-answering format to mimic real world audio. Starting from the same high-
quality HTML pool as Krist, we first mine all possible question texts using regex-parsing. We then
use gpt-4o to filter out invalid questions (examples in Appx. B.3). Finally, we use gpt-4o to
generate responses along with a chain-of-thought (Wei et al., 2022) trace (prompts in Appx. B.2). We
use the same sentence-level chunking as Krist to get ∼0.9M hours of interleaved speech-text data.

Table 2: Synthetic speech-text interleaved data improves over web-crawl data.

Data Mix Text Understanding (T→T) SQA (S→T) acc (%)
CoreEN MMLU SWQ STQ SLQ Avg

Web-crawl 100% 60.4 64.1 42.7 32.2 47.3 40.7

Web-crawl 53% + Krist 47% 60.8 64.8 43.4 29.2 52.0 41.5
Web-crawl 66% + Quest 34% 60.4 66.2 42.7 34.7 66.3 47.9
Web-crawl 59% + Quest 6% + Krist 35% 60.7 65.9 43.8 31.5 51.0 42.1
Web-crawl 40% + Quest 27% + Krist 33% 60.6 65.7 43.3 31.7 49.3 41.4

Results. We study the impact of mixing Krist and Quest with web-crawled data (mixed proportional
to their approximate token counts) in Tab. 2. We find that mixing in Krist brings a 0.8% lift in SQA
performance while also moderately benefitting text-only benchmarks, compared to training on web-
crawl alone. Further, mixing Quest with web-crawl improves both MMLU and SQA performance
by 2.1% and 7.2%. We hypothesize that question-answering format in interleaved training helps
to sample-efficiently adapt to downstream SQA capabilities. We additionally explore two further
ratios for mixing Quest and Krist with the web-crawled data—one where we sample according to
approximate token-counts of each data source (59% web-crawl), and another where we upsample the
synthetic proportion (40% web-crawl). Both settings improve over web-crawl by 1.4−0.7% SQA.
However, due to complex interactions between mixing ratios and data repeats (Muennighoff et al.,
2023), it is unclear how to construct an optimal mixture extracting the best of each data source (Shukor
et al., 2025) (details on exact token counts in Appx. C). We leave this exploration for future work.

Takeaway: Synthetic datasets using TTS models bring gains when mixed with web-crawled data.

3.5 MODALITY SAMPLING SCHEMES FOR INTERLEAVED TRAINING
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Figure 4: Number of modal-
ity switches during interleaved
training for sampling schemes.

So far, we have discussed interleaved speech-text data processing
and curation for improving SQA performance. However, we did
not describe how we sample modality chunks during interleaved
training. Here, we study two different sampling schemes as shown
in Fig. 2C. Recollect that each interleaved training sample is of the
form Xi={(A1,T1),(A2,T2)· · ·(An,Tn)}.

Stochastic Sampling. In the first variant (used in prior experiments),
at each chunk i, we randomly sample the chunk-modality with 0.5
probability. The modality sampling at each chunk i is independent
of other chunks. We always start with an audio chunk A1, to ensure
that there is at least 1 audio chunk.

Deterministic Sampling. While the stochastic variant allows flex-
ibility potentially offering better generalization, it can restrict the
number of modality switches during training. Hence, we test a de-
terministic approach, where we alternate between audio and text
modalities at each chunk, i.e. we formulate the training sequence as {A1,T2,A3· · ·An−1,Tn}. This
maximizes the number of modality switches for a given sample. Here too, we always start with A1.

Results. From Tab. 3, we find deterministic sampling boosts SQA performance by 1% on average
over stochastic sampling. We posit that the number of modality switches during training affects
the SQA performance—in Fig. 4, we plot the distribution of modality switches occuring during
interleaved training, finding that stochastic sampling switches modalities quite infrequently, whereas
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the deterministic approach has a higher number of switches during training. Indeed, the expected
number of modality switches for a sample consisting of n chunks is n−1 for deterministic sampling
and n−1

2 for stochastic sampling. By frequently switching modalities more often, deterministic
sampling likely enables more effective cross-modal learning, thereby improving performance.

Table 3: Deterministic speech-text sampling improves over stochastic sampling.

Sampling scheme Text Understanding (T→T) SQA (S→T) acc (%)
CoreEN MMLU SWQ STQ SLQ Avg

Stochastic 60.6 65.7 43.3 31.7 49.3 41.4
Deterministic 60.1 65.2 44.2 31.2 51.7 42.4

Takeaway: Deterministic sampling improves SQA ability over stochastic for interleaved training.

3.6 OUR DATA-CENTRIC LESSONS TRANSFER TO UNDERSTANDING-ONLY SPEECHLMS

So far, we showed our three data-centric methods boost SQA significantly. These results were
achieved while computing the loss on both audio and text tokens during interleaved training to support
a native end-to-end speechLM. However, there is also great interest in developing an understanding-
only speechLM, e.g. the Thinker model in Thinker-Talker architecture (Xu et al., 2025). In this vein,
many prior works (Liu et al., 2025; Chu et al., 2024; Li et al., 2025b) apply loss masking on the audio
tokens while doing speech-text interleaved training.

We hence test if our three data strategies also transfer to the audio-loss-masked setting. From Tab. 4,
we find this indeed to be the case (9.3% average SQA lift). Further, we find absolute SQA performance
improves significantly with loss-masking (51.8% with loss masking vs. 42.4% without). This result
corroborates prior results (Liu et al., 2025; Li et al., 2025b; Chu et al., 2024) suggesting that, for
small scale models there is an inherent modality conflict between audio and text tokens, which can
lead to regressions when computing loss on both modalities.

Table 4: Our data-centric methods also work for understanding-only SpeechLM

Method Text Understanding (T→T) SQA (S→T) acc (%)
CoreEN MMLU SWQ STQ SLQ Avg

Baseline (w/o loss-masking) 60.4 63.9 42.5 26.6 43.6 40.7
+ all data interventions 60.1 65.2 44.2 31.2 51.7 42.4

Baseline (w/ loss-masking) 61.7 66.5 45.9 34.0 47.7 42.5
+ all data interventions 61.8 67.3 45.7 44.6 65.0 51.8

Takeaway: Our three data interventions also transfer to the understanding-only SpeechLM setting.

4 UNDERSTANDING WHY OUR DATA INTERVENTIONS HELP

4.1 IMPROVED ALIGNMENT BETWEEN MODALITY DISTRIBUTIONS

Here, we aim to better understand why our data interventions (fine chunking + synthetic data mixing)
improve over a baseline with coarse chunking and no synthetic data. One plausible hypothesis is
that fine interleaving and synthetic data close the gap between the model’s audio-conditioned and
text-conditioned output distribution. Since we initialize from a well-trained language model, ensuring
the audio-conditioned output distribution matches the distribution of text-conditioned outputs enables
strong modality alignment. We now test if our data-centric approaches close this distribution gap.

Setup. We start with Spoken-LLaMA-Questions. For each test sample, we independently compute
the token-wise teacher-forced probability distributions based on conditioning on audio and text
questions separately. We then compute the mean token-wise KL-divergence values between the two
probability distributions. For more details, definitions and other metrics, please refer to Appx. H.
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Figure 5: Our methods reduce
the distribution gap between
text and audio modalities.

Results. In Fig. 5, we plot the distribution of mean KL-divergence
values between text-conditioned and audio-conditioned output distri-
butions on the full Spoken-LLaMA-Questions test set. We find that
fine interleaving induces lower KL-divergence values (mean=2.21)
compared to coarse interleaving (mean=3.20). Moreover, a model
trained with both fine interleaving and synthetic data further closes
the distribution gap (mean KLD=1.47). This holds across other
metrics and test sets too (see Appx. H). This result suggests our
data interventions indeed help to close the gap between text- and
audio-conditioned probability distributions, thereby better aligning
the two modalities, leading to stronger SQA capability.

4.2 SYNTHETIC DATA IMPROVES DOMAIN COVERAGE

In Sec. 3.4, we observed that our synthetic datasets improve both text and SQA performance signifi-
cantly. Our central hypothesis for why is—web-crawled data has a very skewed topic distribution
and our synthetic data improves the domain coverage. To help understand the composition of our
web-crawled and synthetic datasets from a topic perspective, we leveraged the topic-domain classifier
from (Wettig et al., 2025)1, which can categorize texts in 24 different topic domains (an analysis with
more fine-grained classifiers is in Appx. I.3). We run the classifier on 5000 random samples from each
of our training datasets (Web-crawl, Krist and Quest). We also annotate topics covered in evaluation
datasets. From our results in Fig. 6 (more results in Appx. I), we make two key observations:

• Web-crawled data is highly skewed and is majorly comprised of entertainment, sports
and fitness, religion and social life domains. This is not surprising given that most of our
web-crawled data is sourced from podcasts, interviews, talk-shows and monologues.

• Synthetic data improves topic coverage. It is evident that both Krist and Quest oversample
data from the domains of science and tech, health, education and jobs, and finance, all of
which are extremely under-represented in the web-crawled data.

Therefore, by enabling broader coverage of topic domains, our synthetic datasets help to (i) close the
distribution mismatch between the raw web-crawled data and the downstream evaluation datasets,
and (ii) enhance the diversity of our pretraining data distribution. Prior work in the language space
has also discussed the importance of training data diversity and domain coverage (Wettig et al., 2025;
Nguyen et al., 2025a; Maini et al., 2025; Wang et al., 2025b; Maini et al., 2024).

4.3 ANALYSING TRAIN-TEST CONTAMINATION

Given the significant boosts induced by our synthetic datasets, a natural question arises—Is there
test-set leakage, and if so, how does it impact SQA performance? To address this, we conduct a
contamination analysis with two goals in mind: (1) identify the proportion of test samples that are
likely contaminated in our training data, and (2) understand the performance impact of this leakage.

Contamination detection. To find extent of contamination in our synthetic datasets, we follow recent
works (Singh et al., 2024; Sainz et al., 2024; Li et al., 2024; Dubey et al., 2024) and use n-gram
token overlaps. While prior works used n=13, we opt for a window from n=6 to n=13 to improve
recall, at the expense of more false-positives. We use the gpt-4o tokenizer and apply lower-case
normalization pre-tokenizing. We mark a test sample as contaminated if we find a matching n-gram
in any equivalent n-token span of a synthetic dataset. We consider all three SQA test sets for analysis,
and concatenate the question and answer of each sample for matching. For train sets, we take samples
from the original seed text-datasets (from which we synthesize audio) for detecting matches.

Proportion of contamination. We report the proportion of contaminated test samples in Tab. 11.
We find that the Quest dataset has almost no contamination, while Krist has a small, yet non-
negligible amount of contamination. Overall, SWQ eval is barely contaminated (0.4%) while STQ
and SLQ evals have 2.5% and 7.7% contaminated samples respectively. Importantly, note that due
to our windowed n-gram approach, we have many false-positive matches (examples of matches
are in Appx. J.1). However, we keep all matches to be as conservative as possible while analysing

1https://huggingface.co/WebOrganizer/TopicClassifier-NoURL
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Distributions of topic domains in our evaluation and training datasets

Figure 6: Synthetic data improves domain coverage. We plot the distribution of topic domains
in our evaluation datasets (in blue, Spoken-LLaMA-Questions (left) and Spoken-TriviaQA (right))
and contrast them with the topic distribution of web-crawled and synthetic datasets. Our synthetic
datasets (Krist and Quest) fill gaps in domains that are under-represented in the web-crawled data,
reducing distribution mismatch, thereby enabling better downstream SQA performance.

effect of contamination. To understand the impact of test-set contamination on downstream model
performance, we consider the tests sets with these contaminated samples removed as clean sets—
SWQ-clean has 996 samples, STQ-clean has 975 samples, and SLQ-clean has 277 samples.

Evaluation Datasets
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Random 95% CI
STQ
SLQ
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WC-53% + K-47%
WC-66% + Q-34%
WC-59% + Q-6% + K-35%
WC-40% + Q-27% + K-33%

Figure 7: We plot differences between
clean and random removal mean accura-
cies along with 95% CIs—our results sug-
gest contamination has minor effect.

Significance testing setup. We conduct a one-sided sig-
nificance test on the differences between performance on
the full test set (including all contaminated samples) and
performance on the clean set (removing all contaminated
samples). To control for the accuracy difference induced
by reducing test set size for the clean sets, we compute
the random removal baseline accuracy—model perfor-
mance after removing the same number of randomly
selected test samples, averaged across 100 bootstrap
replicates with different seeds. We compute empirical
p-values by comparing clean accuracy against the boot-
strap distribution. Under this setting, our null hypothesis
is: observed model accuracy on the full test set is not
artificially inflated by contamination. For more details
on the significance testing setup, refer Appx. J.3.

Results. We apply the previously described significance
testing procedure for all 4 models trained in Sec. 3.4
that use synthetic data in their data mixture. In Fig. 7,
we plot the absolute differences between the clean and
random removal mean accuracy for all eval-model pairs.
We find that contamination does not seem to significantly improve performance for Spoken-TriviaQA
and Spoken-Web-Questions evaluations. For Spoken-LLaMA-Questions, contamination seems to
be having a minor effect (1.4−2.1%) when Krist is in the data mixture. However, we find that the
effect of contamination is not statistically significant in almost all the settings (at a significance level
of α=0.01). We provide a more in-depth analysis with confidence intervals (CIs) and the p-values
in Appx. J.3. Additionally, we note that the performance boosts on Spoken-LLaMA-Questions due
to synthetic data observed in Sec. 3.4 (3.7%−19%) far exceed the clean vs random-removal-mean
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accuracy differences observed here (upto 2%). Taken together, these results suggest that test-set
contamination does not play a major role in explaining the accuracy boosts observed in Sec. 3.4.

5 SPELANGY : BRINGING IT ALL TOGETHER

Equipped with our key data-centric insights from previous sections, we now train a 3.8B SpeechLM,
called SpeLangy. We use the same configuration as before, with 16, 384 sequence length trained for
1.67T speech-text tokens. We compare against Kimi-Audio (Ding et al., 2025), Qwen-Audio (Chu
et al., 2023), and Qwen2-Audio (Chu et al., 2024). We additionally compare two post-trained models—
Voxtral-mini (Liu et al., 2025) and GLM-4-Voice (Zeng et al., 2024a)—with the caveat that having
undergone instruction-tuning, they are not directly comparable to base models (Dominguez-Olmedo
et al., 2024). To ensure our training recipe does not degrade language performance, we also compare
against strong open-weights base language models on standard text-only benchmarks.

Results. From Tab. 5 we find SpeLangy outperforms Kimi-Audio, Qwen-Audio and Qwen-2-Audio
by 10.2%, 11.1% and 9.8% on average across the three SQA benchmarks, while being 2.8×, 2.2×
and 2.2× smaller in size. Further, we obtain competitive performance with the strongly post-trained
Voxtral-mini and GLM-4-Voice, without having undergone any specific instruction-tuning. In Tab. 6,
we compare text performance of SpeLangy with the base LM that we initialize from—we observe
large boosts across the board compared to the base-LM. Further, our model is competitive with
Gemma-2 (Team et al., 2024), Gemma-3 (Team et al., 2025) and Qwen-2.5 (Yang et al., 2024)
models, all of which are leading open-weights models, highlighting the strength of our SpeLangy.

Table 5: Spoken Question-Answering (S→T) comparison. We report results for SoTA SpeechLMs
and SpeLangy. Where possible, we report results obtained using the pretrained base models (if no
base models are publicly released, we evaluate the post-trained checkpoints and make a note of this).

Type Model # Params SWQ STQ SLQ Average

Base

Kimi-Audio 10.5B 44.0 33.8 47.0 41.6
Qwen-Audio 8.4B 45.7 30.3 46.0 40.7
Qwen-2-Audio 8.4B 45.7 33.4 47.0 42.0
SpeLangy 3.8B 45.7 44.6 65.0 51.8

SFT Voxtral-mini 4.7B 41.6 46.6 65.3 51.2
GLM-4-Voice 9.9B 43.3 52.4 64.7 53.4

Table 6: Text Understanding (T→T) comparison. We compare SpeLangy with leading text-only
base models of same size-class. Text-init is the model we start continued-pretraining from. Our model
is competitive with all compared models, highlighting that we strongly preserve text-only capabilities.

Model # Params CoreEN MMLU GSM8k HumanEval

Text-init 3B 62.4 62.2 47.1 29.9

Gemma-2 2.6B – 56.1 30.3 19.5
Gemma-3 4B – 62.8 38.4 36.0
Qwen-2.5 3B – 65.6 79.1 42.1
SpeLangy 3.8B 61.8 67.3 71.9 37.6

6 CONCLUSION

In this work, we studied three data-curation methods for speech-language interleaved pretraining
to enhance spoken question-answering (SQA) capabilities. We found fine-grained interleaving of
speech-text chunks bringing large gains, while synthetic datasets synthesized from knowledge-rich
seed text-datasets also boosted performance. Deterministic sampling of speech-text chunks during
interleaved pretraining further improved SQA results. We showed that these data-centric recipes
strengthen alignment between the speech and text modalities and broaden domain coverage of
pretraining datasets. Distilling these insights, we pretrained SpeLangy, achieving competitive
performance with larger models. We hope our insights motivate more data-centric SpeechLM work.
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A PREPROCESSING WEB-CRAWLED AUDIO AS INTERLEAVED TRAINING DATA

In this section, we provide more details about each step in our data processing pipeline for converting
web-crawled audio into interleaved speech-text format. We highlight all the components in Fig. 8.
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Processing web-crawled audio into speech-text interleaved data

Figure 8: Our processing pipeline to convert raw web-crawled audio into trainable speech-text data.

Raw Audio. We start with a large corpus (>10M hours) of conversational-speech audios crawled
from the web. These audios are sourced from a range of web domains, filtered to remove other
audio types like music, ads and background audios. Our audio corpus primarily consist of podcasts,
interviews and monologue speeches.

Speaker Diarization. Our first processing step involves identifying different speakers in each audio
sample. We use pyannotate (Bredin, 2023) to annotate each audio sample into speaker diarized
outputs. For each audio, the diarization procedure outputs a list of (audio-start, audio-end,
speakerID) triplets. An example of a diarization output on an audio sample is shown below:

[{’start’: 0.031, ’end’: 5.971, ’speaker’: ’SPEAKER_06’},
{’start’: 7.085, ’end’: 10.493, ’speaker’: ’SPEAKER_06’},
{’start’: 11.607, ’end’: 13.278, ’speaker’: ’SPEAKER_06’},
{’start’: 13.565, ’end’: 16.315, ’speaker’: ’SPEAKER_06’},
{’start’: 17.092, ’end’: 18.323, ’speaker’: ’SPEAKER_06’},
{’start’: 25.968, ’end’: 26.66, ’speaker’: ’SPEAKER_01’}]

Here, the start and end markers denote the audio-timestamps corresponding to the beginning and
end of the diarized segment, and the speaker denotes the speakerID corresponding to that segment.
Note that there can diarization segments with multiple overlapping timestamps, if the original audio
has overlapping conversation.

Language Filtering. As a next step, we identify the primary language of the audio using Whis-
per (Radford et al., 2023) and filter out all non-english audios.

Transcription Generation. Next, we aim to provide paired text annotations for all of the raw audios in
our corpus. For this, we first used the Whisper model (Radford et al., 2023) to transcribe the raw audio
from each of the diarized output chunks. However, we noticed that the Whisper model transcriptions
can tend to be quite noisy and contain some hallucinations. To ensure cleaner transcriptions, we use
a post-processing transcription ensembling approach called ROVER (Fiscus, 1997) used in prior
works performing transcription cleaning (Jalalvand et al., 2015). We first obtain additional speech
transcriptions from an internal SIRI transcription model and Nvidia-Parakeet-TDT-CTC. We
then apply the ROVER post-processing method using the three candidate transcriptions from Whisper,
SIRI and Parakeet. We use the ensembled transcription as our text annotations for subsequent steps.
We provide some examples of the individual model-based transcriptions and the final ROVER-
ensembled transcriptions below:
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Whisper: “ And I don’t think it was a compliment. Yeah.”
SIRI: “And I don’t think it as a compliment.”
Parakeet: “And I don’t think it’s compliment yeah.”
ROVER-ensembled: “And I don’t think it was a compliment. Yeah. ”

Whisper: “ Yeah, I was just never sure if it meant like someone who was left be-
hind by fashion like...”
SIRI: “Yeah, I was just never sure if it meant like someone who was left behind by fashion
like”
Parakeet: “Yeah, I was just never sure if it meant like someone who was left behind by
fashion like”
ROVER-ensembled: “Yeah, I was just never sure if it meant like someone who was left
behind by fashion like ”

Transcription Filtering. Despite the ROVER post-processing, we still find that a lot of annotations
are low-quality including empty transcription texts and containing several repetitions. We filter out
samples with such faulty transcriptions. For detecting repetition, we use a heuristic n-gram based
approach. We first tokenize each transcription using a pretrained SentencePiece (Kudo & Richardson,
2018) tokenizer. We then search for unique 15-gram spans in the tokenized text. If we find that a
15-gram span occurs more than 5 times in the entire sequence, we discard that sample.

Interleaved Chunking. The last step in our pipeline is the interleaved chunking stage, which
constructs the final audio-text chunks used for interleaved training. As described in the main text, we
study two chunking strategies:

1. Coarse chunking. Here, we aim to have relatively long audio-text chunks. To do this, we
continually merge consecutive audio segments based on the diarization outputs while they
have the same speakerID. While merging the segments, we concatenate the corresponding
text transcriptions of each audio segment, separated by a white-space, to yield the merged
text transcription for the merged audio.

2. Fine chunking. Since the original diarized output segments already yield relatively short
chunks, we do not do any post-processing on the output segments and directly use them as
our audio-text chunks for interleaved training.

For both chunking strategies, we additionally filter out any audio-text chunks where the audio chunk
is smaller than 0.2 seconds.
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B DETAILS OF SYNTHETIC DATASETS

B.1 KNOWLEDGE-RICH DOMAINS USED FOR SYNTHETIC DATASETS

In this section, we provide a list of knowledge-rich domains we use for domain-filtering as the first
step in our pipeline for constructing synthetic datasets:

1. https://www.numerade.com/home/

2. https://www.brainscape.com

3. https://brainly.com

4. https://www.chegg.com/

5. https://www.proprofs.com

6. https://www.schoolsolver.com

7. https://www.studypool.com

8. https://www.symbolab.com

9. https://www.justia.com

10. https://www.askalawyeroncall.com

11. https://freelawchat.com

12. https://www.healthtap.com

13. https://www.24houranswers.com

14. https://web2.0calc.com

15. https://myhomeworkapp.com

16. https://www.justanswer.com

17. https://quizlet.com/

B.2 PROMPT

Extraction prompt for Krist. To extract and lightly rewrite the text content from the HTML using
gpt-4o-mini, we use the following prompt:

Extract the useful (non-boilerplate) text from the following HTML content into well-
formatted plaintext, please. There is no need to retain hyperlinks out of the page, they can be
dropped. Output the content in mark up tags as show below.

‘‘‘plaintext
{
<well formatted plain text here>
}

{html_content}

Question validation prompt for Quest. To validate and filter out questions that are incorrectly
formatted / extracted from the HTML, we use the following prompt to gpt-4o:
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Here is a problem that you do not need to solve:
{question}

## Your task: Don’t try to solve the problem, instead, do a brief free-form analysis,
then output results for the following fields:

complete: Values choose between (you can’t use any other values)
True - The problem is complete: it asks a clear and understandable question, and does not
depend on any missing or unseen visual elements such as figures, graphs, tables, or images.
False - The problem is incomplete: it is ambiguous, unanswerable, or relies on external
content (e.g., a graph or diagram) that is not provided.

is question: Values choose between (you can’t use any other values)
True - The problem is asking a specific question (e.g., it requests the value of an expression, a
numerical answer, or a specific outcome.
False - The problem is not a question (e.g., it is a statement, conversation, or unrelated
content).

Question answering prompt for Quest. Finally, we prompt gpt-4o to answer with a chain-of-
thought to each verified question using:

Please answer the following question. Let’s think step by step.

{question}

B.3 EXAMPLES OF INVALID QUESTIONS IN QUEST

Previously, we presented the prompt used for validating and filtering out incomplete or incorrectly
extracted questions. Since we score for question completeness and question validity, our filtering
mechanism only keeps questions that are marked as complete and valid. Here, we show examples of
questions that were marked as invalid i.e. marked as incomplete, invalid, or both.

Question
Example of mechanical?
complete: False
is question: False

Question
How does this picture show social impacts of imperialism? helppp me
complete: False
is question: True

Question
Minimum duration for diagnosis for: Selective Mutism
complete: True
is question: False

Question
Audience analysis examples
complete: False
is question: False
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C TRAINING DATA STATISTICS

Text-only dataset. For our text-only continued pretraining dataset, we use the dataset used in the
continual pretraining experiments of Li et al. (2025a), which roughly comprises of 2.2T tokens.

Speech-text datasets. Here, we provide the exact details of all our speech-text training data sources.
Note that since our tokenizer processes audio at 12.5Hz, our token yield per second is 12.5 speech
tokens. Hence, an hour of audio (3600s) corresponds to 45k speech tokens. In Tab. 7, for each dataset,
we report the number of raw hours of speech content along with the total number of speech tokens.
As evident, web-crawl data contains the most number of unique tokens followed by Krist and Quest.

Table 7: Training Data Statistics.

Training dataset # Hours # Speech tokens
Web-crawl 8.03M 361.3B
Krist 4.72M 212.4B
Quest 0.86M 38B

C.1 DETAILS OF DATA MIXTURES FOR SYNTHETIC DATA EXPERIMENTS

Here, we break down the exact token counts used for each data mixture in the experiments in Tab. 2.
Remember that we train for a total of 200k steps with a batch-size of 512 and sequence-length of
16, 384 yielding 1.67T multimodal tokens for the full training run. For each experiment, we use 60%
text-only and 40% speech-text mixing ratio. Hence, the text-only ratio corresponds to ∼1T tokens.
The speech-text ratio corresponds to the remaining ∼670B tokens. Now, in Tab. 8, we report for
each data source (text-only, web-crawl, Krist and Quest), the exact mixing proportion in the training
mixture (%mix), total number of tokens in the training mixture (#toks) and the number of repeats
(epochs) of the original data source (#repeats) used across all our experiments in Tab. 2. As is evident
from the table, due to the heterogenity of data sources and their corresponding token-sizes, it is quite
complex to determine an optimal mixing proportion.

Table 8: Data mixture statistics for experiments in Tab. 2.

Training dataset Text-only dataset Web-crawl Krist Quest
%mix #toks #repeats %mix #toks #repeats %mix #toks #repeats %mix #toks #repeats

Web-crawl 100% 0.60 1T 0.45 0.40 670B 1.85 0.00 0.00 0.00 0.00 0.00 0.00
Web-crawl 53% + Krist 47% 0.60 1T 0.45 0.21 355B 0.98 0.19 315B 1.48 0.00 0.00 0.00
Web-crawl 66% + Quest 34% 0.60 1T 0.45 0.26 442B 1.22 0.00 0.00 0.00 0.14 228 6.00
Web-crawl 59% + Quest 6% + Krist 35% 0.60 1T 0.45 0.24 395B 1.09 0.14 232B 1.10 0.02 43B 1.13
Web-crawl 40% + Quest 27% + Krist 33% 0.60 1T 0.45 0.16 267B 0.74 0.13 221B 1.04 0.11 182 4.79
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D TRAINING DETAILS

All our models are 3.8B parameter transformer-based speech-language models. We use a global-
batch-size of 512 for all our experiments. Our models use a packed-sequence-length of 16, 384 tokens.
We train for 200k steps in total, yielding a total of 1.67T multimodal tokens for our training runs.
Using the standard 6ND rule (Kaplan et al., 2020), this equates to about 3.81×1022FLOPs (note that
this estimate is a rough lower bound since we do not count the FLOPs associated with the speech
tokenizer in this estimate). We only tune the language model weights while keep the speech tokenizer
frozen. We use a cosine-decay learning rate schedule with 1000 steps of linear-warmup. We use the
AdamW (Loshchilov & Hutter, 2017) optimizer with β1=0.9 and β2=0.95, a peak learning rate of
3e−4, weight decay of 1e−5 and clip gradients to a max norm of 1.0. We use the axlearn (Lee
et al., 2025) codebase for all our experiments using jax (Bradbury et al., 2021) and pygrain (Ritter
et al., 2023) for dataloading. One training run takes approximately 7 days on 512 TPU-v6e chips.
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E EXTENDED RELATED WORK

In the main paper, we briefly described some related work in speech-language pretraining. Further,
we focused on situating our work in the SpeechLM literature and emphasized the lack of data-centric
research in speech-language pretraining. Here, we provide a deeper dive into SpeechLMs and
reference some related data-centric work that does exist in the speech-language domain.

Speech Language Models. There has been a recent push for training end-to-end SpeechLMs (Arora
et al., 2025). Early efforts like Whisper (Radford et al., 2023), SALMONN (Tang et al., 2023), and
LTU-AS (Gong et al., 2023) employed multi-task pretraining to enable tasks like automatic speech
recognition, emotion classification etc. Scaling these principles by increasing model-size and training
compute (Chu et al., 2023; 2024; Liu et al., 2025; Geng et al., 2025; Kong et al., 2024; Ghosh et al.,
2025; Goel et al., 2025) has yielded continued gains. Further works considered pretraining models
with speech understanding and generation capabilities (Lakhotia et al., 2021; Algayres et al., 2023;
Hassid et al., 2023; Nguyen et al., 2025b; Nachmani et al., 2023; Rubenstein et al., 2023; Zhang
et al., 2023; Défossez et al., 2024). More recently, models like Kimi-Audio (Ding et al., 2025),
Step-Audio-2 (Wu et al., 2025), Baichuan-Audio (Li et al., 2025b), GLM-4-Voice (Zeng et al., 2024a),
and MiMo-Audio (Xiaomi, 2025) have emerged as strong foundation models that seamlessly perform
several tasks, including spoken-question answering. While demonstrating impressive performance,
details behind their data curation strategies are scant. Through our controlled experiments, we aim to
fill this gap by shedding light on how to effectively construct speech-text pretraining datasets.

Data Curation for Speech-Language Models. Whisper (Radford et al., 2023) was one of the first
works to effectively leverage web-scale data for training a multi-task speech-text model, using a
dataset of 680k hours. Attempting to openly reproduce the original Whisper dataset, (Ngo et al.,
2025) introduced OLMOASR-POOL, a dataset of 3M hours of audio and 17M transcripts. They
conducted heuristic-based filtering on their data pool, showcasing benefits on ASR tasks. Tian
et al. (2024) and Peng et al. (2025) similarly conducted comprehensive studies to understand the
effects of data heterogenity, ASR error rate based filtering and LLM-based transcription rephrasing,
while training Whisper-style models. However, these efforts were limited to training models that
were primarily capable of performing ASR tasks. The data curation literature in the end-to-end
SpeechLM literature is much more sparse. Kimi-Audio (Ding et al., 2025) describes their speech-text
dataset construction pipeline, beginning from 13M audio hours and processing them into speech-text
interleaved training data. However, why certain design decisions were taken remain unanswered.
Contrarily, Zeng et al. (2024b) constructed synthetic interleaved data sourced from high-quality text
pretraining data, but yet again omit clear details on key design choices. MiMo-Audio (Xiaomi, 2025)
scaled up their training dataset size by an order of magnitude to an unprecedented 100M hours of
audio data. While they showcased the benefits of dataset quantity using few-shot experiments, they
did not conduct any explicit controlled experiments to justify the filtering and curation decisions
they made. In our work, we aim to fill this gap on the data-centric side of SpeechLMs, by describing
and understanding data curation pipelines for speech-text interleaved pretraining through three key
questions around interleaved data chunking, synthetic dataset construction and chunk sampling
schemes during interleaved training.
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F DETAILS AND EXAMPLES OF SQA EVALUATION DATASETS

We aim to evaluate the speech-to-text transfer capability of SpeechLMs, where the model is asked a
question in speech and tasked with responding in text (S→T). In the literature, there is a lack
of standardized evaluations for this task of Spoken-Question-Answering (SQA). While efforts
like Spectron-LM (Nachmani et al., 2023) and Voxtral (Liu et al., 2025) have open-sourced some
evaluation sets, they use different text-to-speech engines and generation parameters for synthesizing
the spoken questions, rendering comparisons across different models unfair. Moreover, these datasets
only consist of a question and answer, requiring models to generate free-form text outputs. However,
prior works in LM evaluation standardization (Gu et al., 2024; Allal et al., 2025; Li et al., 2024;
Brown et al., 2020) recommend using a cloze-form of MCQ evaluation for evaluating base-models
with question-conditioned completion log-probabilities rather than decoding free-form text outputs.
The log-probability method removes evaluation confounds such as decoding temperature, sampling
method and other decoding parameters, which are known to induce large variance (Hochlehnert
et al., 2025). Therefore, we construct a standardized SQA evaluation suite of three datasets—Spoken-
LLaMA-Questions, Spoken-Web-Questions and Spoken-TriviaQA. We source the raw audio questions
from OpenAudioBench (Li et al., 2025b). We then prompt gpt-4o-mini with the original text
question and answer of each sample to provide a set of three distractor choices (the prompts for
generating choices are in Appx. G). Hence, our final evaluation datasets consist of a spoken-question
and 4 choices, with one correct answer (chance-level is 25%). In Tab. 9, we provide details about the
number of test samples, the TTS engine used for synthesizing the speech questions, and the links to
the original audio source files.

Table 9: Details of SQA evaluation datasets.

Evaluation Dataset Num. samples Chance% TTS Engine Audio Source
Spoken-LLaMA-Questions 300 25% Google Cloud TTS Link
Spoken-TriviaQA 1000 25% Baichuan-Audio TTS Link
Spoken-Web-Questions 1000 25% Baichuan-Audio TTS Link

Below, we also provide a few examples from each evaluation dataset, with the question (in text),
choices, and the ground-truth answer.

• Spoken-LLaMA-Questions

Question: What is the capital of France?
Choices: Paris, London, Berlin, Madrid
Ground-Truth: Paris

Question: Which river is the longest in South America?
Choices: Nile, Amazon, Paraná, Orinoco
Ground-Truth: Amazon

• Spoken-TriviaQA

Question: Who was Jackie Kennedy’s second husband?
Choices: John F. Kennedy, Robert F. Kennedy, Frank Sinatra, Aristotle Onassis
Ground-Truth: Aristotle Onassis

Question: What is the oldest vegetable known to man?
Choices: Carrot, Potato, Pea, Onion
Ground-Truth: Pea

• Spoken-Web-Questions
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Question: What language do most Italians speak?
Choices: Italian, French, Spanish, German
Ground-Truth: Italian

Question: Who did Shaq first play for?
Choices: Los Angeles Lakers, Miami Heat, Boston Celtics, Orlando Magic
Ground-Truth: Orlando Magic

Evaluation details. We use log-likelihood based scoring for our evaluation protocol following
standard language modeling works (Brown et al., 2020; Allal et al., 2025; Gu et al., 2024).

For each test sample and each answer-choice (out of 4 total choices), we use the following cloze-form
to prompt the model:

Question:\n<question-in-audio>\nAnswer:<answer-choice>

Then, we compute the completion log-probability for each of the 4 answer choices. We normalize
the completion log-probability by answer length to prevent biasing against long answer choices. A
question is marked correct if the model assigns highest normalized log-probability to the ground-truth
answer. We use standard accuracy metric (random chance level is 25%) for reporting results.
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G PROMPTS FOR GENERATING DISTRACTOR CHOICES FOR EVALUATION SETS

We use the following prompt for generating the distractor options for Spoken-LLaMA-Questions and
Spoken-TriviaQA.

SYSTEM PROMPT
You are a helpful assistant.

INPUT PROMPT
I will give you a simple question and answer pair. This pair comes from an evaluation dataset.
I am trying to convert it into an MCQ format dataset. You have to give three more plausible
distractor options that I can use along with the correct option to create the MCQ test set.
Give the three distractor options one after the other, comma-separated, all in one line.

Here are a few examples:

Input:
Question: What colour is the sky?
Answer: blue

Output:
green,red,yellow

Input:
Question: What season comes after spring?
Answer: summer

Output:
winter,monsoon,autumn

I will give you the question and the answer now. Remember, please give the three
options in one line, comma-separated.

Question: <question>
Answer: <answer>
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For Spoken-Web-Questions, as there can be multiple correct answers for a question, we pick the first
reference answer as ground-truth and use the following prompt for generating distractor options.

SYSTEM PROMPT
You are a helpful assistant.

INPUT PROMPT
I will give you a simple question and answer pair. This pair comes from an evaluation dataset.
Note that the answer might be one of out many possible correct answers. I am trying to con-
vert it into an MCQ format dataset. You have to give three more plausible distractor options
that I can use along with the correct option to create the MCQ test set. Since the provided
answer might be one of many possible correct answers, ensure that the distractor options you
provide are definitely incorrect for the given question. For example, if the question is “What
is a leap year?” and the answer I provide is 2004, do not give distractor options like 2000
or 2012. Give the three distractor options one after the other, comma-separated, all in one line.

Here are a few examples:

Input:
Question: What colour is the sky?
Answer: blue

Output:
green,red,yellow

Input:
Question: What season comes after spring?
Answer: summer

Output:
winter,monsoon,autumn

I will give you the question and the answer now. Remember, please give the three
options in one line, comma-separated.

Question: <question>
Answer: <answer>
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H DIVERGENCE ANALYSIS BETWEEN MODALITY DISTRIBUTIONS

In this section, we describe in detail the exact setup used for our analysis in Sec. 4.1.

We start with a spoken question-answering test set. Each test sample consists of (qa, qt, gt) triplets,
where qa denotes the spoken question in audio modality, qt denotes the question in text modality, and
gt denotes the ground-truth answer in text modality.

Goal. We aim to measure the divergence between the token-wise teacher-forced (Williams &
Zipser, 1989) conditional probability distributions of the audio and text modality. That is, we compare
the next–token distributions under audio vs. text question conditioning, evaluated along the same
ground–truth (GT) answer path (the answer is always in text modality).

Notation. For each test sample s, let {t1,t2· · ·tm} and {a1,a2· · ·an} represent the question tokens
in text and audio modality respectively. That is, the tokenized representation of qt is {t1,t2· · ·tm}
and the tokenized representation of qa is {a1,a2· · ·an}. For brevity, let us denote these tokenized
representations as t1:m and a1:n. Note that since the length of the question tokens in text and audio
modalities might differ, it is possible that n ̸= m. Let {g1,g2 · · · go} represent the ground-truth
answer tokens in text modality i.e. the tokenized representation of gt is {g1,g2 · · · go}. Again, for
brevity, we denote this as g1:o. Let V be the vocabulary of the SpeechLM.

For a given test sample s, for each answer token i ∈ {1,2· · ·o}, we define the teacher-forced
next–token distributions as:

P
(s)
aud,i(v) = Pr

θ

(
X = v | a1:n, g1:i−1

)
, v ∈ V, (1)

P
(s)
text,i(v) = Pr

θ

(
X = v | t1:m, g1:i−1

)
, v ∈ V. (2)

where Prθ(X=v|Y ) represents the conditional probability distribution for all values v ∈ V , condi-
tioned on the previous context Y .

Per–token divergences. We now compute (1) forward KL, (2) reverse KL, and (3) Jensen–Shannon
(JS) divergence at each step i, between the two next-token distributions:

D
(s)
KL→(i) =

∑
v∈V

P
(s)
aud,i(v) log

P
(s)
aud,i(v)

P
(s)
text,i(v)

, (3)

D
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, (4)
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)
. (5)

Answer–span aggregation (per example). To get a mean divergence value per sample, we average
the per-token divergences over the answer length o (masking any padded positions in practice):

D
(s)

KL→ =
1

o

o∑
i=1

D
(s)
KL→(i), D

(s)

KL← =
1

o

o∑
i=1

D
(s)
KL←(i), D

(s)

JS =
1

o

o∑
i=1

D
(s)
JS (i). (6)

The distribution of these per-sample mean divergences is what we plot in Fig. 5 and Appx. H.1.

Dataset–level metrics. Over each test set S we also report the dataset means across metrics
in Tab. 10:

DKL→ =
1

|S|
∑
s∈S

D
(s)

KL→, DKL← =
1

|S|
∑
s∈S

D
(s)
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|S|
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D
(s)

JS . (7)
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H.1 MORE RESULTS ACROSS DIFFERENT METRICS AND TEST SETS

In the main paper Sec. 4.1, we showcased the divergence plots between the conditional next-token dis-
tributions, on the Spoken-LLaMA-Questions test with the reverse KL-divergence metric only. Here,
we showcase the divergence distributions across all three of our test sets—Spoken-LLaMA-Questions,
Spoken-Web-Questions and Spoken-TriviaQA—across three divergence metrics—Forward KL Di-
vergence, Reverse KL Divergence and Jensen Shannon Divergence. The plots for Spoken-LLaMA-
Questions are in Fig. 9, for Spoken-Web-Questions are in Fig. 10, and for Spoken-TriviaQA are
in Fig. 11. Furthermore, in Tab. 10, we report the mean values of the divergence distributions obtained.
Across all plots and the table, we observe that our data interventions consistently close the distribution
mismatch between the conditional probability distributions of audio and text modalities. This suggests
that our data intervention implicitly induce a self-distillation behaviour (Zhang et al., 2021; Mobahi
et al., 2020; Zhang et al., 2019) in our trained SpeechLMs. Such an implicit “distillation through data”
property has also been observed in prior works in the multimodal and language domains (Udandarao
et al., 2025; Rawat et al., 2024; Wang et al., 2024; Sachdeva & McAuley, 2023; Wang et al., 2018).
Further, Wang et al. (2025a) showed that explicitly applying a cross-modal distillation objective
further helps to reduce the modality distribution gap, and our results further implicitly confirm this.
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Figure 9: Conditional-distribution divergences on Spoken-LLaMA-Questions.
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Figure 10: Conditional-distribution divergences on Spoken-Web-Questions.
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Figure 11: Conditional-distribution divergences on Spoken-TriviaQA.

Table 10: Dataset-level means of all divergence metrics b/w conditional next-token distributions.
We report the means of all three divergence distributions (as computed in eq. (7)). FKL represents
forward KL-divergence, RKL is reverse KL-divergence and JSD is Jensen-Shannon divergence.

Method Spoken-Web-Questions Spoken-TriviaQA Spoken-LLaMA-Questions
FKL RKL JSD FKL RKL JSD FKL RKL JSD

Coarse 2.07 2.78 0.32 2.97 3.70 0.40 2.57 3.20 0.35
Fine 1.68 1.84 0.27 2.72 2.80 0.36 2.15 2.21 0.30
Fine + Syn 1.90 1.35 0.24 2.71 1.94 0.31 2.23 1.47 0.27

I TOPIC DOMAIN ANALYSIS

I.1 DETAILS ABOUT TOPIC DOMAIN CLASSIFIER

For conducting the topic domain analysis in Fig. 6, we used the topic domain classifier that was
released by (Wettig et al., 2025). The classifier is a gte-base-en-v1.5 that was fine-tuned on
web-texts annotated by LLaMA models. We used the No-URL version of the classifier that takes only
the raw text as input and classifies it into one of 24 output classes. For getting the topic distribution
of each of our datasets, we randomly sample 5000 examples, concatenate all the text chunks from
each example (for web-crawled data, these are the annotated transcriptions while for synthetic data,
these are the source text data samples), and use that as input to the topic classifier.

I.2 TOPIC DISTRIBUTION FOR SPOKEN-WEB-QUESTIONS

In Fig. 12, we showcase the topic distribution of Spoken-Web-Questions. Similar to the takeaways
in Fig. 6, we find that some of the topics that Spoken-Web-Questions contains are severely under-
represented in the web-crawled dataset while being represented adequately in the synthetic datasets.
This further corroborates our findings that synthetic datasets help close the distribution mismatch
between the web-crawled dataset and the evaluation datasets. Our findings regarding the under-
representation of concepts in web-crawled datasets have also been echoed in the language and vision
domains (Wiedemer et al., 2025; Parashar et al., 2024; Elazar et al., 2023; Kandpal et al., 2023;
Udandarao et al., 2024; Zhao et al., 2024; Samuel et al., 2024; Dodge et al., 2021).

I.3 A MORE FINE-GRAINED TOPIC DISTRIBUTION ANALYSIS

For all the topic domain analyses we have conducted previously, we used a coarse-level topic
classifier that could categorize between 24 different topics. Here, we use a more fine-grained
topic classifier that can produce a finer-grained categorization into 67 different topics. We use the
finefineweb-domain-fasttext-classifier, which is a bi-gram fasttext model that was
used for curating the FineFineWeb dataset (Zhang et al., 2024a). We use the same procedure as
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Figure 12: Topic domain distribution for Spoken-Web-Questions eval and training datasets.

before for annotating our evaluation and training datasets. We plot the fine-grained topic distributions
for Spoken-LLaMA-Questions in Fig. 13, Spoken-TriviaQA in Fig. 14 and Spoken-Web-Questions
in Fig. 15, along with all training datasets. Across all the plots, our findings from Figs. 6 and 12
hold—our synthetic datasets increase the diversity and topic coverage of our training data distribution,
thereby more closely matching the distribution of concepts encompassed in the evaluation datasets.
This helps improve model generalization, yielding better downstream performance.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

0 10 20

mathematics
chemistry

biology
geography

sports
drama_and_film

environmental_science
history
physics

travel
statistics

ocean_science
medical

music_and_dance
movie

urban_planning
celebrity

literature
astronomy

food
weapons_science

philosophy
agronomy

finance
game

hydraulic_engineering
painting

entertainment
christianity

topicality
instrument_science

health
beauty
artistic

economics
aerospace

library
materials_science

politics
systems_science

psychology
optical_engineering

journalism_and_media_communication
relationship

civil_engineering
public_administration

automotive
sociology

computer_science_and_technology
atmospheric_science

textile_science
transportation_engineering

communication_engineering
photo

design
landscape_architecture

petroleum_and_natural_gas_engineering
electronic_science

pet
fashion

nuclear_science
news

gamble
mining_engineering

mechanical_engineering
hobby

law

SLQ eval

0 10 20

Web-crawl

0 10 20

Krist

0 10 20

Quest

% Distribution

Figure 13: Fine-grained topic domain distribution for Spoken-LLaMA-Questions eval and training
datasets.

J DETAILS ABOUT CONTAMINATION ANALYSIS

J.1 EXAMPLES OF CONTAMINATED MATCHES

In this section, we show some examples of the matches we get from our contamination identification
procedure. For each match, we show the training dataset, the training sample, the contaminated test
sample, the test dataset it belongs to, and the contaminated n-gram span.

Train dataset: Quest
Train sample:
What is the definition of vitreous? The word derives from Latin viteus, “of glass,” and is
used to describe either a glass-like quality or the glass-like substance filling the eye. Vitreous
(adjective): 1. Having the appearance or properties of glass; glassy, transparent, brittle. 2. In
anatomy, relating to the vitreous humor or vitreous body—the clear, gelatinous substance
filling the space between the lens and the retina of the eye.
Test dataset: Spoken-TriviaQA
Test sample:
What is the thick watery substance filling the space between the lens and the retina of the
eye?
Contaminated span:
substance filling the space between the lens and the retina of the eye
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Figure 14: Fine-grained topic domain distribution for Spoken-TriviaQA eval and training datasets.
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Figure 15: Fine-grained topic domain distribution for Spoken-Web-Questions eval and training
datasets.
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Train dataset: Quest
Train sample:
When did Arthur & Catherine marry? Prince Arthur, the eldest son of Henry VII, married
Catherine of Aragon — daughter of Ferdinand II of Aragon and Isabella I of Castile. Their
wedding took place at St. Paul’s Cathedral in London on 14 November 1501. Arthur and
Catherine were married on 14 November 1501.
Test dataset: Spoken-TriviaQA
Test sample:
What was founded by Ferdinand II of Aragon and Isabella I of Castile to keep Catholic
orthodoxy as the major religion of their kingdoms?
Contaminated span:
ferdinand ii of aragon and isabella i of castile

Train dataset: Krist
Train sample:
What conclusions can be drawn about the USA’s actions in the 1920s and 1930s? One
conclusion to this statement, which seems to be addressing the approach to foreign policy
during the period, might be ”...reflected a strong, if uneven, commitment to isolationism.”
On the one hand, the United States was fairly steadfast in its unwillingness to get directly
involved in the affairs of the world, particularly Europe. Except for a few non-binding pacts
and negotiations over the repayment of reparations and war debts, the United States remained
generally aloof from European affairs during the 1920s.
Test dataset: Spoken-TriviaQA
Test sample:
What was the name of the democratic government of Germany in the 1920s and early 1930s,
destroyed by Adolf Hitler?
Contaminated span:
in the 1920s and early 1930s,

Train dataset: Krist
Train sample:
In 1912, Lenin, then in exile in Switzerland, appointed Joseph Stalin to serve on the first Cen-
tral Committee of the Bolshevik Party. Three years later, in November 1917, the Bolsheviks
seized power in Russia. The Soviet Union was founded in 1922, with Lenin as its first leader.
During these years, Stalin had continued to move up the party ladder, and in 1922 he became
secretary general of the Central Committee of the Communist Party, a role that enabled him
to appoint his allies to government jobs and grow a base of political support.
Test dataset: Spoken-Web-Questions
Test sample:
what led to stalin rise in power?
Contaminated span:
to serve on the first central committee of the bolshevik party

J.2 PROPORTION OF CONTAMINATION IN EVAL DATASETS

Table 11: Proportion of contamination. For each evaluation dataset, we report the proportion of test
samples detected as contaminated. We also report the absolute number of matches in brackets.

Evaluation dataset % Contamination [# samples]
Krist Quest All

Spoken-Web-Questions 0.4% [4] 0.1% [1] 0.4% [4]
Spoken-TriviaQA 2.2% [22] 0.8% [8] 2.5% [25]
Spoken-LLaMA-Questions 6.7% [20] 0.2% [5] 7.7% [23]
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J.3 EXPANDED DESCRIPTION OF SIGNIFICANCE TESTING SETUP AND RESULTS

Null hypothesis. We start from the full test set (containing contaminated samples). In our signifi-
cance test, we test whether removing contaminated test items reduces accuracy beyond what would be
expected under random removal of an equal number of items. Formally, for accuracy A, the null is:

H0 : Aclean ∼ distribution of Arand,

i.e., the clean accuracy is not lower than the random-removal distribution. Because the contamination
claim is directional (contamination would inflate accuracy), we use a one-sided test.

Test procedure. For each training mix and dataset from Sec. 3.4, we compute: (i) Full accuracy on
the full test set; (ii) Clean accuracy after removing all known contaminated items; (iii) a random-
removal baseline by drawing 100 random subsets (without replacement) of the same size as the
contaminated set , recomputing accuracy on the remaining items each time. Accuracies for (ii) and
(iii) are computed over the reduced denominators (remaining items). From the bootstrap distribution
we report the mean and 95% percentile CI and compute the empirical one-sided p-value as:

p = Pr
(
Arand ≤ Aclean

)
,

This p-value is appropriate for the hypothesis that contamination inflates accuracy (so clean should
be lower if inflation is present). With 100 replicates, the p-value granularity is 0.01. Hence, we report
p<0.01 when no replicate from the bootstrap distribution is as low as the clean accuracy.

Results and interpretation. Tables 12–14 summarize results for Spoken-TriviaQA, Spoken-
LLaMA-Questions, and Spoken-Web-Questions. We highlight the difference ∆ = Clean−RandMean
and give the decision at a significance level α=0.01.

Table 12: One-sided contamination test on STQ (N=1000).

Data mix Full (%) Clean (%) Random mean (95% CI) (%) ∆ (pp) One-sided p Decision
Web-crawl 53% + Krist 47% 29.20 29.03 29.22 [28.77, 29.64] −0.19 0.32 Fail to reject H0

Web-crawl 66% + Quest 34% 34.70 34.56 34.73 [34.26, 35.28] −0.17 0.38 Fail to reject H0

Web-crawl 59% + Quest 6% + Krist 35% 30.80 30.46 30.81 [30.36, 31.18] −0.35 0.09 Fail to reject H0

Web-crawl 40% + Quest 27% + Krist 33% 31.70 31.59 31.70 [31.28, 32.10] −0.11 0.41 Fail to reject H0

Table 13: One-sided contamination test on SLQ (N=300).

Training mix Full (%) Clean (%) Random mean (95% CI) (%) ∆ (pp) One-sided p Decision
Web-crawl 53% + Krist 47% 52.00 50.54 52.16 [50.54, 53.62] −1.62 0.10 Fail to reject H0

Web-crawl 66% + Quest 34% 66.33 66.79 66.34 [64.62, 68.06] +0.45 0.82 Fail to reject H0

Web-crawl 59% + Quest 6% + Krist 35% 50.33 48.01 50.33 [48.91, 51.62] −2.32 < 0.01 Reject H0

Web-crawl 40% + Quest 27% + Krist 33% 49.33 47.29 49.43 [47.65, 50.90] −2.14 0.02 Fail to reject H0

Table 14: One-sided contamination test on SWQ (N=1000).

Training mix Full (%) Clean (%) Random mean (95% CI) (%) ∆ (pp) One-sided p Decision
Web-crawl 53% + Krist 47% 43.40 43.27 43.39 [43.22, 43.57] −0.12 0.23 Fail to reject H0

Web-crawl 66% + Quest 34% 42.70 42.57 42.69 [42.47, 42.87] −0.12 0.20 Fail to reject H0

Web-crawl 59% + Quest 6% + Krist 35% 43.80 43.67 43.80 [43.62, 43.98] −0.13 0.19 Fail to reject H0

Web-crawl 40% + Quest 27% + Krist 33% 43.30 43.17 43.29 [43.07, 43.47] −0.12 0.23 Fail to reject H0

Takeaways. Across STQ and SWQ, clean accuracies consistently fall within the random-removal
confidence intervals. Therefore, we find no significant contamination-driven inflation. For SLQ,
the Web-crawl 59% + Quest 6% + Krist 35% mix shows a drop in clean accuracy relative to the
random baseline that is statistically significant under our one-sided p-test (p<0.01), consistent
with contamination inflating test performance. However, for the other three data mixes we again
see no significant evidence of inflation, under our testing setup. Hence, overall we conclude that
contamination does not have a major effect on inflating model performance.

J.4 LIMITATIONS OF OUR CONTAMINATION ANALYSIS

Post-hoc analysis. Our contamination analysis is entirely post-hoc, after training of a model is
complete. In the ideal case, one would decontaminate the training sets with respect to the test sets
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a-priori (Beyer et al., 2024; Zhai et al., 2022; Oquab et al., 2023; Trinh & Le, 2018; Gao et al., 2020;
Mizrahi et al., 2025; Allal et al., 2025; OLMo et al., 2024). In practice, however, this is unrealistic,
since this assumes prior knowledge of all possible test sets that the model may encounter in the wild.
Infact, several popular language model trainers do not decontaminate their training sets precisely for
this reason (Su et al., 2024; Weber et al., 2024; Maini et al., 2025; Rae et al., 2021; Penedo et al.,
2023; Kandpal et al., 2025). Further, while we acknowledge that our post-hoc contamination analysis
can be limiting and would benefit from a more causal treatment such as in works like (Li et al., 2024;
Soldaini et al., 2024; Bordt et al., 2024; Jiang et al., 2024), we however note that the downside of
such a causal analysis is the significant overhead of re-training our models. Hence, we also note that
many works in the literature refrain from a fully causal treatment of contamination (Radford et al.,
2019; Brown et al., 2020; Dubey et al., 2024; Achiam et al., 2023).

Language-only detection. Our contamination detection only operates on the seed text-datasets that
we generate our synthetic datasets from. We have not done any contamination analysis between the
spoken question audios in our test sets with the audios in our training sets (we note that prior works in
speech-language processing also mainly do contamination analysis at the text-level (Ngo et al., 2025;
Tseng et al., 2025)). While this is a reasonable proxy for our synthetic datasets, such a method might
not transfer well for decontamination analyses of web-crawled datasets. This is because many of the
speech transcriptions of the web-crawled speech might be noisy, incorrect or contain hallucinations
induced by the transcription model. Hence, measuring, detecting and quantifying contamination on
the audio modality is an important research problem that warrants futher attention.

Testing on non-contaminable benchmarks. While research in optimal ways to do test-set con-
tamination in language models is still nascent, many works take the alternate approach of building
benchmarks that are by construction non-contaminated (Ghosh et al., 2024; White et al., 2024; Zeng
et al., 2025; Wildman et al., 2025; Jain et al., 2024; Zhang et al., 2024b; Yang et al., 2023; Srivastava
et al., 2024). We note that there is a huge gap in such robust evaluations in the speech-language
modeling community, and striving for better benchmarks would enable stronger significance in results,
while diminishing the impacts of train-test contamination on downstream model performance.
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K LIMITATIONS AND DISCUSSION

While we conducted extensive experiments to study the three data-centric questions we outlined
in Fig. 1, there are still a few limitations in our work that can be improved upon:

Model sizes. All our experiments were at the 3.8B parameter scale. While our results are strong
(outperforming models that are 3× the size), it would still be interesting to explore if our data-centric
strategies would hold at larger model scales. While papers like DataComp-LM (Li et al., 2024) and
DataComp-CLIP (Gadre et al., 2023) suggest transferability of data curation methods across model
scales, recent work in language modeling has posited that there may be trade-offs when applying data
curation across different model sizes (Mizrahi et al., 2025). To the best of our knowledge, no existing
work showcases such trade-offs in the SpeechLM community. It would be an interesting direction to
explore the interaction of data recipes and model scale.

More speech-text tasks. Since the focus of our work was mainly on improving spoken question-
answering capabilities of SpeechLMs, all our experiments used the standard benchmarks that are
prevalent in the literature for our task of interest (Liu et al., 2025; Xiaomi, 2025; Li et al., 2025b;
Ding et al., 2025). We therefore did not explore how our models would perform on more targeted
tasks like automatic speech recognition, emotion recognition or text-to-speech synthesis. One caveat
preventing us from a direct comparison on such tasks is that we do not employ any task-specific
training, unlike other SpeechLMs that explicitly add in a task-specific component into their training
mixture (e.g., ASR-specific training datasets).

Transfer to post-training? In our work, we only explored speech-language pretraining. Hence, all
our data-centric methods were only tested for the pretraining phase. Therefore, our model checkpoints
are inherently base-models, which cannot be used in an assistant manner. It is an interesting open
question whether our data intervention strategies would also lead to better post-training results. To
the best of our knowledge, such a connection between pretraining and post-training is underexplored
even in the language modeling community, with only a few works hinting at such a connection with
no clear experimentation (Mizrahi et al., 2025; Maini et al., 2025).

Training from scratch. All our training runs initialize the language model backbone for our
SpeechLM using a pretrained base-LM. This is the standard recipe used by almost all the existing
foundation SpeechLMs (Li et al., 2025b; Défossez et al., 2024; Liu et al., 2025; Wu et al., 2025;
Xiaomi, 2025; Chu et al., 2024; Ding et al., 2025; Zeng et al., 2024a). However, recent work in the
vision-language literature has advocated for full native multimodal pretraining from scratch (Shukor
et al., 2025), where both the language model and the modality-specific encoder/tokenizer are trained
from scratch. It would be interesting to explore if our data-centric methods also enable more efficient
SpeechLM pretraining from scratch in the future.

Better training recipes. In all our experiments, we freeze the speech tokenizer while only training
the language model. In the SpeechLM literature, there is no strong consensus regarding freezing or
unfreezing the speech tokenizer. A potential next step could be to unfreeze the tokenizer and study the
transferability of our data-centric recipes. Additionally, we conduct only one continued-pretraining
stage—however, recent SpeechLM works have explored more sophisticated multi-stage pipelines
involving pretraining and mid-training (Wu et al., 2025; Xiaomi, 2025; Li et al., 2025b; Goel et al.,
2025). It would again be interesting to test our methods in a multi-stage pipeline.
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