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ABSTRACT

Spoken Question-Answering (SQA) is a core capability for useful and interac-
tive artificial intelligence systems. Recently, several speech-language models
(SpeechLMs) have been released with a specific focus on improving their SQA
performance. However, a lack of controlled ablations of pretraining data processing
and curation makes it challenging to understand what factors account for perfor-
mance, despite substantial gains from similar studies in other data modalities. In
this work, we address this gap by conducting a data-centric exploration for pre-
training SpeechLMs. We focus on three questions fundamental to speech-language
pretraining data: (1) how to process raw web-crawled audio content for speech-text
pretraining, (2) how to construct synthetic datasets to augment web-crawled data
and (3) how to interleave (text, audio) segments into training sequences. We apply
the insights from our controlled data-centric ablations to pretrain a 3.8B-parameter
SpeechLM, called SpeLangy, that outperforms models that are up to 3x larger
by 10.2% absolute performance. We hope our findings highlight the impact of
effective data curation and guide future data-centric exploration in SpeechLMs.

How to process raw audio into interleaved speech-text training data?

How to construct synthetic datasets using quality text-only datasets?

How to interleave between speech and text modalities while training?

Text tokenSpeech token

?

?

?

Our Three Data-Centric Research Questions Our SpeLangy model is small and highly performant
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Figure 1: (Left) We highlight the data-centric questions we study in this work (Sec. 3), (Right)
Distilling all our data-insights yields a strong 3.8B-parameter SpeechLM, SpeLangy (Sec. 5).

1 INTRODUCTION

Language-based assistants are now widely deployed (OpenAI, 2024; Comanici et al., 2025). Yet,
purely textual interactions are inherently limiting for real-world assistants that must operate in open,
hands-free settings. Voice provides a natural, low-friction interface for human–AI interaction, and
recent work therefore emphasizes Spoken Question-Answering (SQA) (Nachmani et al., 2023; Liu
et al., 2025; Xiaomi, 2025)—where a question is asked in audio and the system must produce spoken
or textual answers—as a core capability for end-to-end speech language models (SpeechLMs).

Recently, speech–text interleaved pretraining—next-token prediction over sequences that alternate
between speech and text tokens—has been proposed as a viable strategy to boost SQA performance
(Nguyen et al., 2025b; Zeng et al., 2024b). However, while these works describe modeling choices
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comprehensively, details of their data pipelines are often not evaluated in a controlled setting. How
should we process raw audio into trainable speech-text chunks? Can we leverage text-only datasets
to go beyond datasets sourced from raw audio? How should we interleave tokens for effective
modality alignment? In the current literature, these data-centric questions remain underexplored.
In other domains like language (Dubey et al., 2024; Li et al., 2024) and vision (Gadre et al., 2023;
Siméoni et al., 2025), data curation has consistently proven to be a primary driver of performance
improvements, yet a large gap exists from the data-centric perspective in the speech-language domain.

In our work, we aim to close this gap with a systematic, data-centric study of interleaved pretraining
for SQA (Fig. 1). To operationalize our goal, we use a controlled study design that only uses a speech-
text interleaving task during pretraining, thereby removing the confounders of task interference,
suboptimal data-mixing ratios etc. that other SpeechLM pretraining pipelines (Ding et al., 2025;
Zeng et al., 2024a; Li et al., 2025c; Xiaomi, 2025) often suffer from. Our experimental methodology
is inspired by recent data-centric works that emphasize the importance of clean empirical setups for
conducting controlled data ablation experiments focused on a single modality or setting (Li et al.,
2024; Gadre et al., 2023). To the best of our knowledge, ours is the first work to systematically
compare different data strategies for speech-language interleaving strategies, on a level-playing field.
We first provide a detailed description of our processing pipeline for converting raw audio into speech-
text interleaved data (Fig. 9). We then study optimal interleaving strategies for speech-text pretraining,
finding that fine-grained interleaving (which alternates between speech and text modalities at sentence
boundaries) improves alignment of the two modalities (Sec. 3.3). Building on this, we introduce
effective synthetic data methods involving LLM-based rewriting and text-to-speech synthesis to go
beyond raw web-crawled audio for pretraining (Sec. 3.4). We also examine two modality-sampling
schemes for interleaved training, finding that a deterministic ordering of alternating speech-text chunks
is beneficial compared to stochastic modality sampling (Sec. 3.5). Further, we show our pretraining
data interventions also improve models under the audio-understanding only setting (Sec. 3.6) and
after post-training (Sec. 3.7). To understand why our data-centric methods improve performance,
we analyse the modality gap between speech and text distributions (Sec. 4.1) and inspect the topic
distributions of web-crawled and synthetic datasets (Sec. 4.2). Finally, to showcase the efficacy of our
data interventions at scale, we pretrain a 3.8B SpeechLM (SpeLangy) that outperforms 3x larger
models by upto 10% average SQA performance, across three standard benchmarks. Taken together,
our results underscore the central role of data curation in speech–language pretraining and motivate a
broader, systematic push toward data-centric exploration.

2 RELATED WORK

Speech Language Models. Most recent SpeechLMs employ a simple Speech Encoder + Connector
+ LLM philosophy for conducting joint speech-text training (Lakhotia et al., 2021; Algayres et al.,
2023; Hassid et al., 2023; Nguyen et al., 2025b; Nachmani et al., 2023; Rubenstein et al., 2023; Zhang
et al., 2023; Défossez et al., 2024; Liu et al., 2025). Models like Kimi-Audio (Ding et al., 2025), Step-
Audio-2 (Wu et al., 2025a), Baichuan-Audio (Li et al., 2025c), GLM-4-Voice (Zeng et al., 2024a),
and MiMo-Audio (Xiaomi, 2025) have emerged as strong foundation models that seamlessly perform
several tasks, including spoken question-answering. While demonstrating impressive performance,
details behind their data curation strategies are however scant. Through our controlled experiments,
we aim to fill this gap in the SpeechLM domain by shedding light on how to effectively construct
speech-text pretraining datasets.

Data Curation for Foundation Models. Pretraining data quality is pivotal for driving performance of
foundation models. Efforts like Gopher (Rae et al., 2021), T5 (Raffel et al., 2020), Nemotron-CC (Su
et al., 2024), FineWeb (Penedo et al., 2024), DCLM (Li et al., 2024) and OLMo-2 (OLMo et al., 2024)
significantly emphasize the benefits of strong data processing, curation and filtering for language
data. In computer vision, Dinov2 (Oquab et al., 2023), Dinov3 (Siméoni et al., 2025), AIMv2 (Fini
et al., 2025) and Web-SSL (Fan et al., 2025) showcased the high impact that careful data curation
has on model quality. Similar results on the importance of data-centric research have been shown in
vision-language (Gadre et al., 2023; Fang et al., 2023a; Tong et al., 2024a; Wang et al., 2025b) and
reasoning-based (Guha et al., 2025; Li et al., 2025d; Muennighoff et al., 2025) foundation modeling
literature. Owing to the paucity of such data-centric research in the speech-language domain, we
aim to close this gap through a set of controlled data ablations, demonstrating the strong utility of
data-centric approaches for boosting SpeechLM quality.
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Figure 2: Our experimental conditions for speech-text pretraining data. (Top) We study two
interleaving strategies: coarse (long chunks) and fine (short chunks) (Sec. 3.3). (Middle) We construct
two synthetic datasets—Krist and Quest—from filtered knowledge-rich web-documents (Sec. 3.4).
(Bottom) We study two schemes for interleaved training: deterministic and stochastic (Sec. 3.5).

3 CONTROLLED DATA-CENTRIC EXPERIMENTS

In this section, we address our three key data-centric questions for improving SQA, via controlled
experiments: (1) how to process raw web-crawled audio into suitable interleaved speech-text training
data (Sec. 3.3), (2) how to construct synthetic speech-text datasets seeded from text-only datasets
(Sec. 3.4), and (3) how to interleave between speech and text modalities while training (Sec. 3.5).

3.1 EVALUATION BENCHMARKS

Spoken Question-Answering (S→T). We use three standard benchmarks for SQA where the model
is asked questions in speech and is tasked to respond in text (S→T): Spoken-LLaMA-Questions (SLQ),
Spoken-Web-Questions (SWQ) and Spoken-TriviaQA (STQ). We source all the audio questions from
OpenAudioBench (Li et al., 2025c). Our protocol follows standard language modeling pretraining
evaluations (Gu et al., 2024; Allal et al., 2025) to use an MCQ cloze-format with log-likelihood
evaluation for choosing the correct option (we use 4 multiple choices with chance-level accuracy
being 25%). We provide more details and examples from each of our evaluation datasets in Appx. G.

Text Understanding (T→T). To ensure our pretraining recipe does not degrade base LM perfor-
mance, we evaluate on 12 standard benchmarks spanning general knowledge, math and coding:
MMLU (Hendrycks et al., 2020), CoreEN (Gunter et al., 2024; Mizrahi et al., 2025; Busbridge
et al., 2025) (consisting of 9 benchmarks—ARC-Easy and ARC-Challenge (Clark et al., 2018), Hel-
laSwag (Zellers et al., 2019), Lambada (Paperno et al., 2016), PIQA (Bisk et al., 2020), SciQ (Welbl
et al., 2017), TriviaQA (Joshi et al., 2017), WebQuestions (Berant et al., 2013), and WinoGrande (Sak-
aguchi et al., 2021)), GSM-8k (Cobbe et al., 2021), and HumanEval (Chen et al., 2021).

3.2 BASE SETUP

Model Architecture. We conduct all our experiments with a ∼3.8B-parameter SpeechLM, con-
sisting of two major components: a speech tokenizer and a pretrained language model. Our speech
tokenizer consists of a 1B-param speech encoder with conformer (Gulati et al., 2020) blocks with 8x
downsampling followed by a finite scalar quantizer (Mentzer et al., 2023) that outputs discrete speech
tokens at 80ms per token (12.5Hz). The speech tokenizer is trained jointly with a combination of
ASR and reconstruction loss, to jointly optimize phonetic and higher-level structure. We initialize our
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language model with the dense 2.8B base-LM from (Li et al., 2025b) that has a context-length of
16, 384 tokens. The LM we start from has undergone no additional continued-pretraining. The LM
does not support speech tokens natively. We extend the vocabulary to include speech tokens. We
initialize the new speech token embeddings randomly with Xavier normal initialization.

Training Data. Our base data mixture consists of web-crawled audio that we process into interleaved
speech-text data. We provide more details on how we process audio into our training data format in
the next section. We also use the text continued-pretraining dataset from (Li et al., 2025b) to preserve
the base-LM’s text performance. Following prior works (Shukor et al., 2025; McKinzie et al., 2024),
we use a 60% text-only and 40% speech-text data mixture during interleaved pretraining.

Optimization Details. We train with global-batch-size of 512 and packed-sequence-length of 16, 384
tokens, for 200k steps. We use standard next-token prediction objective and compute loss over both
speech and text tokens (we also ablate with loss-masking on speech tokens in Sec. 3.6). We only tune
language model while keeping speech tokenizer frozen. For more details, refer to Appx. E.

3.3 PROCESSING PRETRAINING DATA VIA FINE-GRAINED INTERLEAVING

Extracting interleaved data from raw audio. We begin with >10M hours of raw web-crawled
audio. To process them into trainable speech-text samples, we follow a multi-stage pipeline (see Fig. 9
in Appendix), involving speaker diarization, language detection and filtering, paired-transcription
generation and filtering, and interleaved chunking. Our pipeline yields interleaved training samples
Xi consisting of multiple paired speech-text chunks of the form Xi={(A1,T1),(A2,T2)· · ·(An,Tn)},
where n is the number of chunks in each sample. We provide more details about each individual
component along with stats in Appx. A, while focusing on the interleaved chunking component here.
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Figure 3: Audio chunk length
distribution (in seconds) for
our interleaving strategies.

Fine vs coarse interleaving. Prior speech-text pretraining
works (Liu et al., 2025; Zeng et al., 2024a) have explored construct-
ing interleaved data from raw audio. However, they do not quantify
the importance of interleaving granularity for effective training.
To study this, we construct two interleaving variants (see Fig. 2-
A)—(1) coarse interleaving, where we merge multiple consecutive
diarized outputs into one if tagged with same speaker-ID, yield-
ing long chunks, and (2) fine interleaving, where we keep all di-
arized outputs as is without merging, yielding short chunks. As
expected, from Fig. 3, we find coarse interleaving leads to longer
chunks (mean-length=19.2s) compared to fine interleaving (mean-
length=5.2s). From Tab. 1, we note fine interleaving improves SQA
performance by 3.1% on average, while matching text-only perfor-
mance. This is a significant finding since the default approach in
prior works (Ding et al., 2025; Li et al., 2025c) has been to merge
same-speaker diarization outputs, yet our results advocate for more granular interleaving. Hence, for
all our experiments, we adopt fine interleaving for web-crawled speech-text pretraining by default.

Table 1: Fine interleaving improves over coarse interleaving.

Interleaving Granularity Text Understanding (T→T) SQA (S→T) acc (%)
CoreEN MMLU SWQ STQ SLQ Avg

Text-init (no-speech) 62.4 62.2 – – – –

Coarse 60.4 63.9 42.5 26.6 43.6 37.6
Fine 60.4 64.1 42.7 32.2 47.3 40.7

Takeaway: Fine-grained interleaving of speech-text pretraining data boosts SQA performance.

3.4 CONSTRUCTING EFFECTIVE SYNTHETIC DATASETS

While web-crawled datasets offer massive volume, they often have poor domain coverage—their data
distribution does not reflect the highest-priority domains for downstream deployment (Baack, 2024;
Longpre et al., 2024). Often, sufficient data from many core domains simply does not exist or is hard
to crawl (Zhang et al., 2024c; Fang et al., 2023b; Kydlı́ček et al., 2025). Together, these motivate
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using synthetic data to augment existing web-crawl data. Moreover, in our web-crawled audio data,
we find noisy text-annotations (due to hallucinations from transcription models) and artifacts like
background noise and speaker overlap. Thereby, we explore synthesizing clean speech-text datasets
from existing text-only corpora. We build two synthetic datasets (see Fig. 2-B)—Knowledge-Rich
Interleaved Speech-Text (Krist) and Question-Answering Speech-Text (Quest).

Knowledge-Rich Interleaved Speech-Text (Krist). We start from lightly-filtered web-crawled
documents (similar to WARC files from CommonCrawl (2007)). We then apply URL-filtering to
preserve documents from knowledge-rich domains (list of domains is in Appx. C.1). This is motivated
by recent efforts advocating high-quality educational data for accelerating model training (Penedo
et al., 2024; Abdin et al., 2024; Gunasekar et al., 2023). Next, we use gpt-4o-mini to extract
and lightly rewrite the text-content from raw HTML, following Maini et al. (2024) (prompt used
in Appx. C.2). We then segment the texts based on sentence-level splitting, to produce different
text chunks. Finally, we synthesize audio for each chunk using melo-TTS (Zhao et al., 2023).
To improve speaker diversity in the synthesized data, we randomly sample voices from 5 different
accents. This pipeline yields ∼4.6M hours of interleaved speech-text data.

Question-Answering Speech-Text (Quest). Since Krist is synthesized from HTML-extracted text,
its samples do not sound natural. We therefore build Quest, explicitly organized in question-answering
format to mimic real audio. Starting from the same high-quality HTML pool as Krist, we first mine
all possible question texts using regex-parsing. We then use gpt-4o to filter out invalid questions
(some examples in Appx. C.3). Finally, we use gpt-4o to generate responses along with a chain-of-
thought (Wei et al., 2022) trace (generation prompts in Appx. C.2). We use the same sentence-level
chunking strategy as Krist. This pipeline produces ∼0.9M hours of interleaved speech-text data.

Table 2: Synthetic speech-text interleaved data improves over web-crawl data.

Data Mix Text Understanding (T→T) SQA (S→T) acc (%)
CoreEN MMLU SWQ STQ SLQ Avg

Text-init (no-speech) 62.4 62.2 – – – –

Web-crawl 100% 60.4 64.1 42.7 32.2 47.3 40.7

Web-crawl 53% + Krist 47% 60.8 64.8 43.4 29.2 52.0 41.5
Web-crawl 66% + Quest 34% 60.4 66.2 42.7 34.7 66.3 47.9
Web-crawl 59% + Quest 6% + Krist 35% 60.7 65.9 43.8 31.5 51.0 42.1
Web-crawl 40% + Quest 27% + Krist 33% 60.6 65.7 43.3 31.7 49.3 41.4

Results. We study the impact of independently mixing Krist and Quest with web-crawled data (mixed
proportional to their approximate token counts, for details see Appx. D) in Tab. 2. We find mixing in
Krist brings a 0.8% lift in SQA performance while also moderately benefitting text-only benchmarks,
compared to training on web-crawl alone. Further, mixing Quest with web-crawl improves both
MMLU and SQA performance by large margins of 2.1% and 7.2%. We hypothesize that the QA
format in interleaved training with Quest helps to efficiently adapt to downstream SQA capabilities.
We additionally explore two ratios for mixing Quest and Krist with the web-crawled data—one
where we sample according to approximate token-counts of each data source (59% web-crawl), and
another where we upsample the synthetic proportion (40% web-crawl). Both settings improve over
web-crawl by 1.4−0.7% SQA. However, due to complex interactions between mixing ratios and data
repeats (Muennighoff et al., 2023; Xue et al., 2023), it is unclear how to construct an optimal mixture
extracting the best of each data source (Shukor et al., 2025; Ye et al., 2024a) (details on exact token
counts in Appx. D). We leave such a data-mixing exploration for future work.

Takeaway: Synthetic datasets using TTS models bring gains when mixed with web-crawled data.

3.5 MODALITY SAMPLING SCHEMES FOR INTERLEAVED TRAINING

So far, we have discussed interleaved speech-text data processing and curation for improving SQA
performance. However, we did not describe how we sample modality chunks during interleaved
training. Here, we study two sampling schemes as shown in Fig. 2-C. Recollect that each interleaved
training sample is of form Xi={(A1,T1),(A2,T2)· · ·(An,Tn)}. We now test two variants:
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Stochastic Sampling. In the first variant (used in all our previous experiments), at each chunk i, we
randomly sample the chunk-modality with 0.5 probability. The modality sampling at each chunk i is
independent of all other chunks j ̸=i. We always start with an audio chunk A1, to ensure that there is
at least 1 audio chunk in our training sequence.
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Figure 4: Modality switches
during interleaved training for
our two sampling schemes.

Deterministic Sampling. While the stochastic variant allows flex-
ibility and potentially offers better generalization, it can restrict the
number of modality switches during training. Hence, we test a de-
terministic approach, where we alternate between audio and text
modalities at each chunk, i.e. we formulate the training sequence as
{A1,T2,A3· · ·An−1,Tn}. This maximizes the number of modality
switches for a given sample. Here too, we always start with A1.

Results. From Tab. 3, we find deterministic sampling boosts SQA
performance by 1% on average over stochastic sampling. We posit
that the number of modality switches during training affects the SQA
performance—in Fig. 4, we plot the distribution of modality switches
occuring during interleaved training, finding that stochastic sampling
switches modalities quite infrequently, whereas the deterministic
approach has a higher number of modality switches during training.
Indeed, the expected number of modality switches for a sample
consisting of n chunks is n−1 for deterministic sampling and n−1

2 for stochastic sampling. By
frequently switching modalities more often, deterministic sampling likely enables more effective
cross-modal learning, thereby improving downstream SQA performance.

Table 3: Deterministic speech-text sampling improves over stochastic sampling.

Sampling scheme Text Understanding (T→T) SQA (S→T) acc (%)
CoreEN MMLU SWQ STQ SLQ Avg

Text-init (no-speech) 62.4 62.2 – – – –

Stochastic 60.6 65.7 43.3 31.7 49.3 41.4
Deterministic 60.1 65.2 44.2 31.2 51.7 42.4

Takeaway: Deterministic sampling improves SQA over stochastic for interleaved training.

3.6 OUR DATA-CENTRIC LESSONS TRANSFER TO UNDERSTANDING-ONLY SPEECHLMS

So far, we showed our data-centric methods boost SQA significantly. These results were achieved
while computing loss on both audio and text tokens during interleaved training to support a native
end-to-end SpeechLM. However, there is also great interest in developing an understanding-only
SpeechLM that ingests both audio and text and outputs only text, e.g. the Thinker model in the
Thinker-Talker architecture series (Xu et al., 2025). In this vein, many prior works (Liu et al., 2025;
Li et al., 2025c) apply loss masking on the audio tokens while doing speech-text interleaved training.

Table 4: Our data-centric methods also work for understanding-only SpeechLM

Method Text Understanding (T→T) SQA (S→T) acc (%)
CoreEN MMLU SWQ STQ SLQ Avg

Baseline (w/o loss-masking) 60.4 63.9 42.5 26.6 43.6 40.7
+ all data interventions 60.1 65.2 44.2 31.2 51.7 42.4

Baseline (w/ loss-masking) 61.7 66.5 45.9 34.0 47.7 42.5
+ all data interventions 61.8 67.3 45.7 44.6 65.0 51.8

We hence test if our three data strategies also transfer to this audio-loss-masked setting. From Tab. 4,
we find this indeed to be the case (9.3% average SQA lift). Further, we find absolute SQA performance
improves significantly with loss-masking (51.8% with loss masking vs. 42.4% without). This result
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corroborates prior results (Liu et al., 2025; Li et al., 2025c; Chu et al., 2024) suggesting that, for
small scale models there is an inherent modality conflict between audio and text tokens, which can
lead to regressions when computing loss on both speech and text modalities.

Takeaway: Our three data interventions also transfer to the understanding-only SpeechLM setting.

3.7 OUR DATA-CENTRIC LESSONS TRANSFER AFTER POST-TRAINING

Previously, our methods were only tested for speech-text interleaved pretraining. Our models are
hence inherently base models, and cannot be used in an assistant-like manner. However, due to the
importance of real-world-assistant use-cases, we test if our gains also hold after instruction-tuning.

Post-training setup. We started from our base model checkpoints and conducted supervised fine-
tuning (SFT), with a data-mix of QA conversations, TTS and ASR-style conversations. For more
details on SFT data, refer to Appx. M. We selected 3 checkpoints from our previous experiments
to conduct SFT training using exact same SFT data. The first, denoted as coarse, is trained on
web-crawl only data with coarse interleaving (Row 1 in Tab. 1); second, denoted as fine, is trained
on web-crawl data with fine interleaving (Row 2 in Tab. 1 and Row 1 in Tab. 2); third is the best
model in Tab. 2, denoted as fine+syn, trained on web-crawl and Quest (Row 3 in Tab. 2).

Evaluations. We evaluate text response quality and audio response quality. To evaluate text response
quality, we use spoken-alpaca and noisy-alpaca. For audio response quality, we use 5 datasets from
third-party vendors and use LLM-as-judge. For more details on eval setup, refer Appx. M.3.

Results. From Tab. 5, we observe that the gains obtained from our pretraining data interventions are
largely carried on to the SFT stage, for both text and audio metrics. This suggests that SQA accuracy
can be a good proxy metric for model quality after post-training as well. Similar results suggesting
that front-loading high quality data into pretraining can benefit post-trained models have been shown
in the text-only domain (Akter et al., 2025; Shah et al., 2025). Taken together, our results demonstrate
the effectiveness of our proposed data-centric methods on downstream SFT tasks.

Table 5: Comparison of model’s text/audio response quality after SFT.

Pretrain ckpt Text Quality1 Audio Quality2

spoken-alpaca noisy-alpaca Eval 1 Eval 2 Eval 3 Eval 4 Eval 5

coarse 42.6 45.2 37.4 (17.2) 33.3 (24.1) 34.3 (18.1) 37.0 (16.3) 38.8 (16.9)

fine 44.3 47.3 39.9 (18.5) 33.8 (23.7) 36.4 (11.6) 38.0 (16.9) 41.9 (20.7)
fine + syn 47.4 48.8 41.1 (17.1) 36.6 (23.1) 40.1 (18.7) 39.4 (16.9) 39.3 (16.8)

Takeaway: Our three data-centric pretraining methods also improve post-trained SFT checkpoints.

4 UNDERSTANDING WHY OUR DATA INTERVENTIONS HELP

4.1 IMPROVED ALIGNMENT BETWEEN MODALITY DISTRIBUTIONS

Here, we aim to better understand why our data interventions (fine chunking + synthetic data mixing)
improve over a baseline with coarse chunking and no synthetic data. One plausible hypothesis is
that fine interleaving and synthetic data close the gap between the model’s audio-conditioned output
distribution and text-conditioned output distribution. Since we initialize from a well-trained language
model, ensuring the audio-conditioned output distribution matches the distribution of text-conditioned
outputs enables strong modality alignment. We now test if our approaches close this gap.

Setup. We start with the Spoken-LLaMA-Questions test set. For each sample, we independently
compute the token-wise teacher-forced probability distributions based on conditioning on audio
and text questions separately. We then compute the mean token-wise reverse-KL-divergence values
between the probability distributions. For details, please refer to Appx. J.

1Length-controlled (Dubois et al., 2024) win rates in % against the reference model.
2Win (Tie) rates in % against the reference model.
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Figure 5: Our methods re-
duce distribution gap (reverse-
KLD) between text and audio.

Results. In Fig. 5, we plot the distribution of mean reverse-KL-
divergence values between text-conditioned and audio-conditioned
output distributions on the full Spoken-LLaMA-Questions test set
(see Appx. J for definition of reverse-KLD). We find that fine inter-
leaving induces lower KL-divergence values (mean=2.21) compared
to coarse interleaving (mean=3.20). Moreover, a model trained with
both fine interleaving and synthetic data further closes the modality
distribution gap (mean KLD=1.47). This trend also holds across
other metrics (see Appx. J). This suggests that our data interventions
indeed close the gap between text-conditioned and audio-conditioned
probability distributions, thereby better aligning the two modalities,
leading to stronger downstream SQA performance.

4.2 SYNTHETIC DATA IMPROVES DOMAIN COVERAGE

Previously in Sec. 3.4, we observed that our synthetic speech-text datasets improve both text and
SQA performance significantly. Our central hypothesis for why is—web-crawled data has a very
skewed topic distribution and our synthetic data improves the domain coverage. To help understand
the composition of our web-crawled and synthetic datasets from a topic perspective, we leveraged the
topic-domain classifier from (Wettig et al., 2025)3, which can categorize texts in 24 different topic
domains (an analysis with more fine-grained classifiers is in Appx. K.3). We run the classifier on 5000
random samples from each of our training datasets (Web-crawl, Krist and Quest). We also annotate
topics in evaluation datasets. From Fig. 6 (more results in Appx. K), we make two observations:

• Web-crawled data is highly skewed and is majorly comprised of entertainment, sports
and fitness, religion and social life domains. This is not surprising given that most of our
web-crawled audio data is sourced from podcasts, interviews, talk-shows and monologues.

• Synthetic data improves topic coverage. It is evident that both the Krist and Quest datasets
oversample data from the domains of science and tech, health, education and jobs, and
finance, all of which are extremely under-represented in the web-crawled data.

Therefore, by enabling broader coverage of topic domains, our synthetic datasets help to (1) close the
distribution mismatch between the raw web-crawled data and the downstream evaluation datasets,
and (2) enhance the diversity of our pretraining data distribution. Our findings extend prior work
in the language space that have discussed the importance of training data diversity and domain
coverage (Nguyen et al., 2025a; Maini et al., 2025; 2024) to the speech-language domain.

4.3 ANALYSING TRAIN-TEST CONTAMINATION

Given the significant boosts induced by our synthetic datasets, a natural question arises—Is there
test-set leakage, and if so, how does it impact SQA performance? To address this, we conduct a
contamination analysis with two goals in mind: (1) identify proportion of test samples that are likely
contaminated in our training data, and (2) understand the performance impact of this leakage.

Figure 7: Proportion of contamination.

Eval % Contamination [# samples]
Krist Quest All

SWQ 0.4% [4] 0.1% [1] 0.4% [4]
STQ 2.2% [22]0.8% [8] 2.5% [25]
SLQ 6.7% [20]0.2% [5] 7.7% [23]

Contamination detection. To find the extent of con-
tamination in our synthetic datasets, we follow recent
works (Singh et al., 2024; Sainz et al., 2024; Dubey et al.,
2024) and use n-gram token overlaps. While prior works
used n=13, we opt for a window from n=6 to n=13 to
improve recall, at the expense of more false-positives. We
use the gpt-4o tokenizer and apply lower-case normal-
ization pre-tokenizing. We mark a test sample as contami-
nated if we find a matching n-gram in any equivalent n-token span of a synthetic dataset (pseudo-code
in Alg. 1). We consider all three SQA test sets for analysis, and concatenate the question and answer
of each sample for matching. For train sets, we take samples from seed text-datasets (from which we
synthesize audio) for detecting matches.

3https://huggingface.co/WebOrganizer/TopicClassifier-NoURL
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Distributions of topic domains in our evaluation and training datasets

Figure 6: Synthetic data improves domain coverage. We plot the distribution of topic domains
in our evaluation datasets (in blue, Spoken-LLaMA-Questions (left) and Spoken-TriviaQA (right))
and contrast them with the topic distribution of web-crawled and synthetic datasets. Our synthetic
datasets (Krist and Quest) fill gaps in domains that are under-represented in the web-crawled data,
reducing distribution mismatch, thereby improving SQA performance.

Proportion of contamination. We report the proportion of contaminated test samples in Fig. 7. We
find that the Quest dataset has almost no contamination, while Krist has a small, yet non-negligible
amount of contamination. Overall, the SWQ eval dataset is barely contaminated (0.4%) while STQ
and SLQ evals have 2.5% and 7.7% contaminated samples respectively. Importantly, note that due
to our windowed n-gram approach, we have many false-positive matches (examples of matches are
in Appx. L.1). However, we keep all matches to be as conservative as possible while analysing
effect of contamination. To understand the impact of test-set contamination on downstream SQA
model performance, we consider the tests sets with these contaminated samples removed as clean
sets—SWQ-clean has 996 samples, STQ-clean has 975 samples, and SLQ-clean has 277 samples.

Evaluation Datasets
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Impact of Contamination
Random 95% CI
STQ
SLQ
SWQ

WC-53% + K-47%
WC-66% + Q-34%
WC-59% + Q-6% + K-35%
WC-40% + Q-27% + K-33%

Figure 8: Differences b/w clean and ran-
dom removal accuracies with 95% CIs,
suggesting contamination has minor effect.

Significance testing setup. We conduct one-sided sig-
nificance test on differences b/w performance on full
test set and clean set (removing all contamination). To
control for the accuracy difference induced by reducing
test set size, we compute random removal baseline accu-
racy—performance after removing same number of ran-
domly selected samples, averaged across 100 bootstrap
replicates. We compute empirical p-values by compar-
ing clean accuracy against bootstrapped removal distri-
bution. For more details, refer Appx. L.3.

Results. We apply significance testing for all 4 mod-
els in Sec. 3.4 that use synthetic data. Fig. 8 shows
differences b/w clean and random removal mean for
all eval-model pairs, finding contamination does not
improve performance for Spoken-TriviaQA and Spoken-
Web-Questions. For Spoken-LLaMA-Questions, contam-
ination has minor effect (1.4−2.1%) when Krist is used.
However, the effect is not statistically significant (sig-
nificance level of α=0.01). We provide more analysis
in Appx. L.3. Additionally, we note the performance boosts on SLQ due to synthetic data in Sec. 3.4
(3.7%−19%) far exceed clean vs random-removal-mean accuracy differences observed (upto 2%).
Taken together, test-set contamination does not play major role in explaining accuracy boosts.
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5 SPELANGY : BRINGING IT ALL TOGETHER

Equipped with our key data-centric insights from the previous sections, we now train a 3.8B
SpeechLM, called SpeLangy. We use the same training configuration as before, with 16, 384
sequence length trained for 1.67T speech-text tokens. We compare against SoTA speech-language
base models including Kimi-Audio (Ding et al., 2025), Qwen-Audio (Chu et al., 2023), and Qwen2-
Audio (Chu et al., 2024). We additionally compare two post-trained models—Voxtral-mini (Liu et al.,
2025) and GLM-4-Voice (Zeng et al., 2024a)—with the caveat that having undergone instruction-
tuning, they are not directly comparable to base models (Dominguez-Olmedo et al., 2024). To
ensure our training recipe does not degrade language performance, we also compare against strong
open-weights base language models on standard text-only benchmarks.

Table 6: Spoken Question-Answering (S→T) comparison. We report results for SoTA SpeechLMs
and SpeLangy. Where possible, we report results using pretrained base models (if no base models
are released, we evaluate post-trained checkpoints and make a note of this in the table).

Type Model # Params SWQ STQ SLQ Average

Base

Kimi-Audio 10.5B 44.0 33.8 47.0 41.6
Qwen-Audio 8.4B 45.7 30.3 46.0 40.7
Qwen-2-Audio 8.4B 45.7 33.4 47.0 42.0
SpeLangy 3.8B 45.7 44.6 65.0 51.8

SFT Voxtral-mini 4.7B 41.6 46.6 65.3 51.2
GLM-4-Voice 9.9B 43.3 52.4 64.7 53.4

Table 7: Text Understanding (T→T) comparison. We compare with leading text-only models of
same size-class. Text-init is the model we start continued-pretraining. Our model is competitive with
all compared models, highlighting strong preservation of text-only abilities after speech-text training.

Model # Params CoreEN MMLU GSM8k HumanEval

Text-init 2.8B 62.4 62.2 47.1 29.9

Gemma-2 2.6B – 56.1 30.3 19.5
Gemma-3 4B – 62.8 38.4 36.0
Qwen-2.5 3B – 65.6 79.1 42.1
SpeLangy 3.8B 61.8 67.3 71.9 37.6

Results. From Tab. 6 we find that our SpeLangy outperforms Kimi-Audio, Qwen-Audio and
Qwen-2-Audio by 10.2%, 11.1% and 9.8% on average across the three SQA benchmarks, while
being 2.8×, 2.2× and 2.2× smaller in size. Further, we obtain competitive performance with the
strongly post-trained Voxtral-mini and GLM-4-Voice, without having undergone any task-specific
instruction-tuning. In Tab. 7, we compare the text performance of SpeLangy with the base LM that
we initialize from—we observe large boosts across the board compared to the base-LM, indicating
positive text-capability transfer. Further, our model is competitive with Gemma-2 (Team et al., 2024),
Gemma-3 (Team et al., 2025) and Qwen-2.5 (Yang et al., 2024) models, all of which are leading
open-weights text-only models, highlighting the strength of our SpeLangy model.

6 CONCLUSION

In this work, we studied three data-curation methods for speech-language interleaved pretraining
to enhance spoken question-answering (SQA) capabilities. We found fine-grained interleaving
of speech-text chunks bringing large gains, while synthetic datasets synthesized from knowledge-
rich seed text-datasets also boosted performance. Deterministic sampling of speech-text chunks
during interleaved pretraining further improved SQA results. We showed that these data-centric
recipes strengthen alignment between the speech and text modalities and broaden domain coverage
of pretraining datasets. Distilling these insights, we pretrained SpeLangy, achieving competitive
performance with larger models. We hope our insights motivate more data-centric SpeechLM work.
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Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
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A PREPROCESSING WEB-CRAWLED AUDIO AS INTERLEAVED TRAINING DATA

In this section, we provide more details about each step in our data processing pipeline for converting
web-crawled audio into interleaved speech-text format. We highlight all the components in Fig. 9.

Parallel Audio-Text ChunksWeb-crawled Audio Diarization Annotations

A B C
Speakers

pyannotate 
diarization

Keep English Data
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zh en

hi en
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Processing web-crawled audio into speech-text interleaved data

Figure 9: Our processing pipeline to convert raw web-crawled audio into trainable speech-text data.

Raw Audio. We start with a large corpus (>10M hours) of conversational-speech audio crawled
from the web. These are sourced from a range of web domains, filtered to remove other audio types
like music, ads and background noise. Our audio corpus primarily consist of podcasts, interviews and
monologue speeches.

Speaker Diarization. Our first processing step involves identifying different speakers in each audio
sample. We use pyannotate (Bredin, 2023) to annotate each audio sample into speaker diarized
outputs. For each audio, the diarization procedure outputs a list of (audio-start, audio-end,
speakerID) triplets. An example of a diarization output on an audio sample is shown below:

[{’start’: 0.031, ’end’: 5.971, ’speaker’: ’SPEAKER_06’},
{’start’: 7.085, ’end’: 10.493, ’speaker’: ’SPEAKER_06’},
{’start’: 11.607, ’end’: 13.278, ’speaker’: ’SPEAKER_06’},
{’start’: 13.565, ’end’: 16.315, ’speaker’: ’SPEAKER_06’},
{’start’: 17.092, ’end’: 18.323, ’speaker’: ’SPEAKER_06’},
{’start’: 25.968, ’end’: 26.66, ’speaker’: ’SPEAKER_01’}]

Here, the start and end markers denote the audio-timestamps corresponding to the beginning and
end of the diarized segment, and the speaker denotes the speakerID corresponding to that segment.
Note that there can be diarization segments with multiple overlapping timestamps, if the original
audio has overlapping conversation.

Language Filtering. As a next step, we identify the primary language of the audio using Whis-
per (Radford et al., 2023) and filter out all non-english audio.

Transcription Generation. Next, we aim to provide paired text annotations for all of the raw audio in
our corpus. For this, we first used the Whisper model (Radford et al., 2023) to transcribe the raw audio
from each of the diarized output chunks. However, we noticed that the Whisper model transcriptions
can tend to be quite noisy and contain some hallucinations. To ensure cleaner transcriptions, we use
a post-processing transcription ensembling approach called ROVER (Fiscus, 1997) used in prior
works performing transcription cleaning (Jalalvand et al., 2015). We first obtain additional speech
transcriptions from an internal SIRI transcription model and Nvidia-Parakeet-TDT-CTC. We
then apply the ROVER post-processing method using the three candidate transcriptions from Whisper,
SIRI and Parakeet. We use the ensembled transcription as our text annotations for subsequent steps.
We provide some examples of the individual model-based transcriptions and the final ROVER-
ensembled transcriptions below:

25

https://huggingface.co/nvidia/parakeet-tdt_ctc-1.1b


1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Whisper: “ And I don’t think it was a compliment. Yeah.”
SIRI: “And I don’t think it as a compliment.”
Parakeet: “And I don’t think it’s compliment yeah.”
ROVER-ensembled: “And I don’t think it was a compliment. Yeah. ”

Whisper: “ Yeah, I was just never sure if it meant like someone who was left be-
hind by fashion like...”
SIRI: “Yeah, I was just never sure if it meant like someone who was left behind by fashion
like”
Parakeet: “Yeah, I was just never sure if it meant like someone who was left behind by
fashion like”
ROVER-ensembled: “Yeah, I was just never sure if it meant like someone who was left
behind by fashion like ”

Transcription Filtering. Despite the ROVER post-processing, we still find that a lot of annotations
are low-quality including empty transcription texts and containing several repetitions. We filter out
samples with such faulty transcriptions. For detecting repetition, we use a heuristic n-gram based
approach. We first tokenize each transcription using a pretrained SentencePiece (Kudo & Richardson,
2018) tokenizer. We then search for unique 15-gram spans in the tokenized text. If we find that a
15-gram span occurs more than 5 times in the entire sequence, we discard that sample.

Interleaved Chunking. The last step in our pipeline is the interleaved chunking stage, which
constructs the final audio-text chunks used for interleaved training. As described in the main text, we
study two chunking strategies:

1. Coarse interleaving. Here, we aim to have relatively long audio-text chunks. To do this, we
continually merge consecutive audio segments based on the diarization outputs while they
have the same speakerID. While merging the segments, we concatenate the corresponding
text transcriptions of each audio segment, separated by a white-space, to yield the merged
text transcription for the merged audio.

2. Fine interleaving. Since the original diarized output segments already yield relatively short
chunks, we do not apply any post-processing on the output segments and directly use them
as our audio-text chunks for interleaved training.

For both chunking strategies, we additionally filter out any audio-text chunks where the audio chunk
is shorter than 0.2 seconds.
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B ETHICS STATEMENT

Our paper leverages large-scale web-crawled data for model pretraining. Below, we specify how
our data collection complies with copyright, licensing, and other web-crawling policies. We further
provide details on data provenance, consent, and compliance with legal and ethical standards (e.g.,
GDPR).

1. Data provenance. All speech data comes from publicly available podcast RSS feeds
and similar spoken-word streams. We do not scrape behind paywalls and avoid clearly
copyrighted catalogue content such as commercial audiobooks and music albums.

2. Web-crawling policies. Our collection framework respects robots.txt directives and
website-specific terms of use.

3. Licensing. We preferentially include sources under permissive or podcast-typical licenses
that allow redistribution for research. When license information is ambiguous, we err on the
side of exclusion.

4. Privacy and PII. We apply automatic filters to reduce personally identifiable information
(e.g., email addresses, phone numbers) and run safety classifiers to remove clearly harmful
or sensitive content. We have used this data under our institution’s data processing policies.

5. GDPR and regional compliance. Processing is conducted in accordance with internal legal
guidance, and only aggregate, non-identifiable statistics are reported. No attempt is made to
profile or target individual speakers.
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C DETAILS OF SYNTHETIC DATASETS

C.1 KNOWLEDGE-RICH DOMAINS USED FOR SYNTHETIC DATASETS

In this section, we provide a list of knowledge-rich domains we use for domain-filtering as the first
step in our pipeline for constructing synthetic datasets:

1. https://www.numerade.com/home/

2. https://www.brainscape.com

3. https://brainly.com

4. https://www.chegg.com/

5. https://www.proprofs.com

6. https://www.schoolsolver.com

7. https://www.studypool.com

8. https://www.symbolab.com

9. https://www.justia.com

10. https://www.askalawyeroncall.com

11. https://freelawchat.com

12. https://www.healthtap.com

13. https://www.24houranswers.com

14. https://web2.0calc.com

15. https://myhomeworkapp.com

16. https://www.justanswer.com

17. https://quizlet.com/

C.2 PROMPT

Extraction prompt for Krist. To extract and lightly rewrite the text content from the HTML using
gpt-4o-mini, we use the following prompt:

Extract the useful (non-boilerplate) text from the following HTML content into well-
formatted plaintext, please. There is no need to retain hyperlinks out of the page, they can be
dropped. Output the content in mark up tags as show below.

‘‘‘plaintext
{
<well formatted plain text here>
}

{html_content}

Question validation prompt for Quest. To validate and filter out questions that are incorrectly
formatted / extracted from the HTML, we use the following prompt to gpt-4o:
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Here is a problem that you do not need to solve:
{question}

## Your task: Don’t try to solve the problem, instead, do a brief free-form analysis,
then output results for the following fields:

complete: Values choose between (you can’t use any other values)
True - The problem is complete: it asks a clear and understandable question, and does not
depend on any missing or unseen visual elements such as figures, graphs, tables, or images.
False - The problem is incomplete: it is ambiguous, unanswerable, or relies on external
content (e.g., a graph or diagram) that is not provided.

is question: Values choose between (you can’t use any other values)
True - The problem is asking a specific question (e.g., it requests the value of an expression, a
numerical answer, or a specific outcome.
False - The problem is not a question (e.g., it is a statement, conversation, or unrelated
content).

Question answering prompt for Quest. Finally, we prompt gpt-4o to answer with a chain-of-
thought to each verified question using:

Please answer the following question. Let’s think step by step.

{question}

C.3 EXAMPLES OF INVALID QUESTIONS IN QUEST

Previously, we presented the prompt used for validating and filtering out incomplete or incorrectly
extracted questions. Since we score for question completeness and question validity, our filtering
mechanism only keeps questions that are marked as complete and valid. Here, we show examples of
questions that were marked as invalid i.e. marked as incomplete, invalid, or both.

Question
Example of mechanical?
complete: False
is question: False

Question
How does this picture show social impacts of imperialism? helppp me
complete: False
is question: True

Question
Minimum duration for diagnosis for: Selective Mutism
complete: True
is question: False

Question
Audience analysis examples
complete: False
is question: False
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D TRAINING DATA STATISTICS

Text-only dataset. For our text-only continued pretraining dataset, we use the dataset used in the
continual pretraining experiments of Li et al. (2025b), which roughly comprises of 2.2T tokens.

Speech-text datasets. Here, we provide the exact details of all our speech-text training data sources.
Note that since our tokenizer processes audio at 12.5Hz, our token yield per second is 12.5 speech
tokens. Hence, an hour of audio (3600s) corresponds to 45k speech tokens. In Tab. 8, for each dataset,
we report the number of raw hours of speech content along with the total number of speech tokens.
As is evident, web-crawl data contains the most number of unique tokens followed by Krist and
Quest.

Table 8: Training Data Statistics.

Training dataset # Hours # Speech tokens
Web-crawl 8.03M 361.3B
Krist 4.72M 212.4B
Quest 0.86M 38B

D.1 DETAILS OF DATA MIXTURES FOR SYNTHETIC DATA EXPERIMENTS

Here, we break down the exact token counts used for each data mixture in the experiments in Tab. 2.
Remember that we train for a total of 200k steps with a batch-size of 512 and sequence-length of
16, 384 yielding 1.67T multimodal tokens for the full training run. For each experiment, we use 60%
text-only and 40% speech-text mixing ratio. Hence, the text-only ratio corresponds to ∼1T tokens.
The speech-text ratio corresponds to the remaining ∼670B tokens. Now, in Tab. 9, we report for
each data source (text-only, web-crawl, Krist and Quest), the exact mixing proportion in the training
mixture (%mix), total number of tokens in the training mixture (#toks) and the number of repeats
(epochs) of the original data source (#repeats) used across all our experiments in Tab. 2. As is evident
from the table, due to the heterogenity of data sources and their corresponding token-sizes, it is quite
complex to determine an optimal mixing proportion. Our results also corroborate existing results in
language (Guha et al., 2025) and vision-language (Bansal et al., 2025) reasoning domains, finding
that mixing several data sources to improve performance is non-trivial.

Table 9: Data mixture statistics for experiments in Tab. 2.

Training dataset Text-only dataset Web-crawl Krist Quest
%mix #toks #repeats %mix #toks #repeats %mix #toks #repeats %mix #toks #repeats

Web-crawl 100% 0.60 1T 0.45 0.40 670B 1.85 0.00 0.00 0.00 0.00 0.00 0.00
Web-crawl 53% + Krist 47% 0.60 1T 0.45 0.21 355B 0.98 0.19 315B 1.48 0.00 0.00 0.00
Web-crawl 66% + Quest 34% 0.60 1T 0.45 0.26 442B 1.22 0.00 0.00 0.00 0.14 228 6.00
Web-crawl 59% + Quest 6% + Krist 35% 0.60 1T 0.45 0.24 395B 1.09 0.14 232B 1.10 0.02 43B 1.13
Web-crawl 40% + Quest 27% + Krist 33% 0.60 1T 0.45 0.16 267B 0.74 0.13 221B 1.04 0.11 182 4.79
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E TRAINING DETAILS

All our models are 3.8B-parameter transformer-based (Vaswani et al., 2017) speech-language models.
We use a global-batch-size of 512 for all our experiments. Our models use a packed-sequence-length
of 16, 384 tokens. We train for 200k steps in total, yielding a total of 1.67T multimodal tokens
for our training runs. Using the standard 6ND rule (Kaplan et al., 2020), this equates to about
3.81×1022FLOPs (note that this estimate is a rough lower bound since we do not count the FLOPs
associated with the speech tokenizer in this estimate). We only tune the language model weights
while keep the speech tokenizer frozen. We use a cosine-decay learning rate schedule with 1000
steps of linear-warmup. We use the AdamW (Loshchilov & Hutter, 2017) optimizer with β1=0.9 and
β2=0.95, a peak learning rate of 3e−4, weight decay of 1e−5 and clip gradients to a max norm of
1.0. We use the axlearn (Lee et al., 2025) codebase for all our experiments using jax (Bradbury
et al., 2021) and pygrain (Ritter et al., 2023) for dataloading. One training run takes approximately
7 days on 512 TPU-v6e chips.
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F EXTENDED RELATED WORK

In the main paper, we briefly described some related work in speech-language pretraining. Further,
we focused on situating our work in the SpeechLM literature and emphasized the lack of data-centric
research in speech-language pretraining. Here, we provide a deeper dive into SpeechLMs and
reference some related data-centric work that does exist in the speech-language domain.

Speech Language Models. There has been a recent push for training end-to-end SpeechLMs (Arora
et al., 2025). Early efforts like Whisper (Radford et al., 2023), SALMONN (Tang et al., 2023), and
LTU-AS (Gong et al., 2023) employed multi-task pretraining to enable tasks like automatic speech
recognition, emotion classification etc. Scaling these principles by increasing model-size and training
compute (Chu et al., 2023; 2024; Liu et al., 2025; Geng et al., 2025; Kong et al., 2024; Ghosh et al.,
2025; Goel et al., 2025) has yielded continued gains. Further works considered pretraining models
with speech understanding and generation capabilities (Lakhotia et al., 2021; Algayres et al., 2023;
Hassid et al., 2023; Nguyen et al., 2025b; Nachmani et al., 2023; Rubenstein et al., 2023; Zhang
et al., 2023; Défossez et al., 2024). More recently, models like Kimi-Audio (Ding et al., 2025), Step-
Audio-2 (Wu et al., 2025a), Baichuan-Audio (Li et al., 2025c), GLM-4-Voice (Zeng et al., 2024a),
and MiMo-Audio (Xiaomi, 2025) have emerged as strong foundation models that seamlessly perform
several tasks, including spoken-question answering. While demonstrating impressive performance,
details behind their data curation strategies are scant. Through our controlled experiments, we aim to
fill this gap by shedding light on how to effectively construct speech-text pretraining datasets.

Data Curation for Speech-Language Models. Whisper (Radford et al., 2023) was one of the first
works to effectively leverage web-scale data for training a multi-task speech-text model, using a
dataset of 680k hours. Attempting to openly reproduce the original Whisper dataset, (Ngo et al.,
2025) introduced OLMOASR-POOL, a dataset of 3M hours of audio and 17M transcripts. They
conducted heuristic-based filtering on their data pool, showcasing benefits on ASR tasks. Tian
et al. (2024) and Peng et al. (2025) similarly conducted comprehensive studies to understand the
effects of data heterogenity, ASR error rate based filtering and LLM-based transcription rephrasing,
while training Whisper-style models. However, these efforts were limited to training models that
were primarily capable of performing ASR tasks. The data curation literature in the end-to-end
SpeechLM literature is much more sparse. Kimi-Audio (Ding et al., 2025) describes their speech-text
dataset construction pipeline, beginning from 13M audio hours and processing them into speech-text
interleaved training data. However, why certain design decisions were taken remain unanswered.
Contrarily, Zeng et al. (2024b) constructed synthetic interleaved data sourced from high-quality text
pretraining data, but yet again omit clear details on key design choices. MiMo-Audio (Xiaomi, 2025)
scaled up their training dataset size by an order of magnitude to an unprecedented 100M hours of
audio data. While they showcased the benefits of dataset quantity using few-shot experiments, they
did not conduct any explicit controlled experiments to justify the filtering and curation decisions
they made. In our work, we aim to fill this gap on the data-centric side of SpeechLMs, by describing
and understanding data curation pipelines for speech-text interleaved pretraining through three key
questions around interleaved data chunking, synthetic dataset construction and modality sampling
schemes during interleaved training.
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G DETAILS AND EXAMPLES OF SQA EVALUATION DATASETS

We aim to evaluate the speech-to-text transfer capability of SpeechLMs, where the model is asked a
question in speech and tasked with responding in text (S→T). In the literature, there is a lack
of standardized evaluations for this task of Spoken-Question-Answering (SQA). While efforts
like Spectron-LM (Nachmani et al., 2023) and Voxtral (Liu et al., 2025) have open-sourced some
evaluation sets, they use different text-to-speech engines and generation parameters for synthesizing
the spoken questions, rendering comparisons across different models unfair. Moreover, these datasets
only consist of a question and answer, requiring models to generate free-form text outputs. However,
prior works in LM evaluation standardization (Gu et al., 2024; Allal et al., 2025; Li et al., 2024;
Brown et al., 2020) recommend using a cloze-form of MCQ evaluation for evaluating base-models
with question-conditioned completion log-probabilities rather than decoding free-form text outputs.
The log-probability method removes evaluation confounds such as decoding temperature, sampling
method and other decoding parameters, which are known to induce large variance (Hochlehnert
et al., 2025). Therefore, we construct a standardized SQA evaluation suite of three datasets—Spoken-
LLaMA-Questions, Spoken-Web-Questions and Spoken-TriviaQA. We source the raw audio questions
from OpenAudioBench (Li et al., 2025c). We then prompt gpt-4o-mini with the original text
question and answer of each sample to provide a set of three distractor choices (the prompts for
generating choices are in Appx. H). Hence, our final evaluation datasets consist of a spoken-question
and 4 choices, with one correct answer (chance-level is 25%). In Tab. 10, we provide details about
the number of test samples, the TTS engine used for synthesizing the speech questions, and the links
to the original audio source files.

Table 10: Details of SQA evaluation datasets.

Evaluation Dataset Num. samples Chance% TTS Engine Audio Source
Spoken-LLaMA-Questions 300 25% Google Cloud TTS Link
Spoken-TriviaQA 1000 25% Baichuan-Audio TTS Link
Spoken-Web-Questions 1000 25% Baichuan-Audio TTS Link

Below, we also provide a few examples from each evaluation dataset, with the question (in text),
choices, and the ground-truth answer.

• Spoken-LLaMA-Questions

Question: What is the capital of France?
Choices: Paris, London, Berlin, Madrid
Ground-Truth: Paris

Question: Which river is the longest in South America?
Choices: Nile, Amazon, Paraná, Orinoco
Ground-Truth: Amazon

• Spoken-TriviaQA

Question: Who was Jackie Kennedy’s second husband?
Choices: John F. Kennedy, Robert F. Kennedy, Frank Sinatra, Aristotle Onassis
Ground-Truth: Aristotle Onassis

Question: What is the oldest vegetable known to man?
Choices: Carrot, Potato, Pea, Onion
Ground-Truth: Pea

• Spoken-Web-Questions
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Question: What language do most Italians speak?
Choices: Italian, French, Spanish, German
Ground-Truth: Italian

Question: Who did Shaq first play for?
Choices: Los Angeles Lakers, Miami Heat, Boston Celtics, Orlando Magic
Ground-Truth: Orlando Magic

Evaluation details. We use log-likelihood based scoring for our evaluation protocol following
standard language modeling works (Brown et al., 2020; Allal et al., 2025; Gu et al., 2024).

For each test sample and each answer-choice (out of 4 total choices), we use the following cloze-form
to prompt the model:

Question:\n<question-in-audio>\nAnswer:<answer-choice>

Then, we compute the completion log-probability for each of the 4 answer choices. We normalize
the completion log-probability by answer length to prevent biasing against long answer choices. A
question is marked correct if the model assigns highest normalized log-probability to the ground-truth
answer. We use standard accuracy metric (random chance level is 25%) for reporting results. For
running all our model evaluations, we use a fork of lm-eval-harness (Gao et al., 2024a).
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H PROMPTS FOR GENERATING DISTRACTOR CHOICES FOR EVALUATION SETS

We use the following prompt for generating the distractor options for Spoken-LLaMA-Questions and
Spoken-TriviaQA.

SYSTEM PROMPT
You are a helpful assistant.

INPUT PROMPT
I will give you a simple question and answer pair. This pair comes from an evaluation dataset.
I am trying to convert it into an MCQ format dataset. You have to give three more plausible
distractor options that I can use along with the correct option to create the MCQ test set.
Give the three distractor options one after the other, comma-separated, all in one line.

Here are a few examples:

Input:
Question: What colour is the sky?
Answer: blue

Output:
green,red,yellow

Input:
Question: What season comes after spring?
Answer: summer

Output:
winter,monsoon,autumn

I will give you the question and the answer now. Remember, please give the three
options in one line, comma-separated.

Question: <question>
Answer: <answer>
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For Spoken-Web-Questions, as there can be multiple correct answers for a question, we pick the first
reference answer as ground-truth and use the following prompt for generating distractor options.

SYSTEM PROMPT
You are a helpful assistant.

INPUT PROMPT
I will give you a simple question and answer pair. This pair comes from an evaluation dataset.
Note that the answer might be one of out many possible correct answers. I am trying to con-
vert it into an MCQ format dataset. You have to give three more plausible distractor options
that I can use along with the correct option to create the MCQ test set. Since the provided
answer might be one of many possible correct answers, ensure that the distractor options you
provide are definitely incorrect for the given question. For example, if the question is “What
is a leap year?” and the answer I provide is 2004, do not give distractor options like 2000
or 2012. Give the three distractor options one after the other, comma-separated, all in one line.

Here are a few examples:

Input:
Question: What colour is the sky?
Answer: blue

Output:
green,red,yellow

Input:
Question: What season comes after spring?
Answer: summer

Output:
winter,monsoon,autumn

I will give you the question and the answer now. Remember, please give the three
options in one line, comma-separated.

Question: <question>
Answer: <answer>
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I PROMPT TEMPLATE FOR GPT-4O-AUDIO IN AUTO EVAL

We use the following prompt template when using GPT-4o-audio in our auto evaluation pipeline
for audio responses.

SYSTEM PROMPT

Please act as an impartial judge and evaluate the quality of the responses provided
by two AI assistants.

INPUT PROMPT:

¡user audio¿

You are given an audio clip from a user talking to an AI assistant. And you will be given two
audio responses to this user request. The first response is denoted as *Response A* and the
second response is denoted as *Response B*. Your job is to evaluate which response is better.

Begin your evaluation by first generating your own answer to the user’s request. You must
provide your answers before judging any answers.

Here is the transcript of the audio clip to help you understand the conversation history:
¡user audio transcription¿.

When evaluating the responses, compare both responses with your answer. You must identify
and correct any mistakes or inaccurate information.

Then consider if the responses are helpful, relevant, and concise. Helpful means the answer
correctly responds to the prompt or follows the instructions. Note when user request has
any ambiguity or more than one interpretation, it is more helpful and appropriate to ask
for clarifications or more information from the user than providing an answer based on
assumptions. Relevant means all parts of the response closely connect or are appropriate to
what is being asked. Concise means the response is clear and not verbose or excessive.

Then consider if the responses correctly understand user’s emotion and address user’s request
in a considerate, empathetic, and appropriate manner.

Then consider the creativity and novelty of the responses when needed.

Finally, identify any missing important information in the responses that would be beneficial
to include when responding to the user request.
After providing your explanation, you must output only one of the following choices as your
final verdict:
1. Response A is better: [[A¿B]]
2. Response B is better: [[B¿A]]
3. Tie, relatively the same: [[A=B]]
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J DIVERGENCE ANALYSIS BETWEEN MODALITY DISTRIBUTIONS

In this section, we describe in detail the exact setup used for our analysis in Sec. 4.1.

We start with a spoken question-answering test set. Each test sample consists of (qa, qt, gt) triplets,
where qa denotes the spoken question in audio modality, qt denotes the question in text modality, and
gt denotes the ground-truth answer in text modality.

Goal. We aim to measure the divergence between the token-wise teacher-forced (Williams &
Zipser, 1989) conditional probability distributions of the audio and text modality. That is, we compare
the next–token distributions under audio vs. text question conditioning, evaluated along the same
ground–truth (GT) answer path (the answer is always in text modality).

Notation. For each test sample s, let {t1,t2· · ·tm} and {a1,a2· · ·an} represent the question tokens
in text and audio modality respectively. That is, the tokenized representation of qt is {t1,t2· · ·tm}
and the tokenized representation of qa is {a1,a2· · ·an}. For brevity, let us denote these tokenized
representations as t1:m and a1:n. Note that since the length of the question tokens in text and audio
modalities might differ, it is possible that n ̸= m. Let {g1,g2 · · · go} represent the ground-truth
answer tokens in text modality i.e. the tokenized representation of gt is {g1,g2 · · · go}. Again, for
brevity, we denote this as g1:o. Let V be the vocabulary of the SpeechLM.

For a given test sample s, for each answer token i ∈ {1,2· · ·o}, we define the teacher-forced
next–token distributions as:

P
(s)
aud,i(v) = Pr

θ

(
X = v | a1:n, g1:i−1

)
, v ∈ V, (1)

P
(s)
text,i(v) = Pr

θ

(
X = v | t1:m, g1:i−1

)
, v ∈ V. (2)

where Prθ(X=v|Y ) represents the conditional probability distribution for all values v ∈ V , condi-
tioned on the previous context Y .

Per–token divergences. We now compute (1) forward KL, (2) reverse KL, and (3) Jensen–Shannon
(JS) divergence at each step i, between the two next-token distributions:

D
(s)
KL→(i) =

∑
v∈V

P
(s)
aud,i(v) log

P
(s)
aud,i(v)

P
(s)
text,i(v)

, (3)

D
(s)
KL←(i) =

∑
v∈V

P
(s)
text,i(v) log

P
(s)
text,i(v)

P
(s)
aud,i(v)

, (4)

D
(s)
JS (i) =

1
2 DKL

(
P

(s)
aud,i

∥∥M (s)
i

)
+ 1

2 DKL

(
P

(s)
text,i

∥∥M (s)
i

)
,M

(s)
i = 1

2

(
P

(s)
aud,i + P

(s)
text,i

)
. (5)

Answer–span aggregation (per example). To get a mean divergence value per sample, we average
the per-token divergences over the answer length o (masking any padded positions in practice):

D
(s)

KL→ =
1

o

o∑
i=1

D
(s)
KL→(i), D

(s)

KL← =
1

o

o∑
i=1

D
(s)
KL←(i), D

(s)

JS =
1

o

o∑
i=1

D
(s)
JS (i). (6)

The distribution of these per-sample mean divergences is what we plot in Fig. 5 and Appx. J.1.

Dataset–level metrics. Over each test set S we also report the dataset means across metrics
in Tab. 11:

DKL→ =
1

|S|
∑
s∈S

D
(s)

KL→, DKL← =
1

|S|
∑
s∈S

D
(s)

KL←, DJS =
1

|S|
∑
s∈S

D
(s)

JS . (7)
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J.1 MORE RESULTS ACROSS DIFFERENT METRICS AND TEST SETS

In the main paper Sec. 4.1, we showcased the divergence plots between the conditional next-token dis-
tributions, on the Spoken-LLaMA-Questions test with the reverse KL-divergence metric only. Here,
we showcase the divergence distributions across all three of our test sets—Spoken-LLaMA-Questions,
Spoken-Web-Questions and Spoken-TriviaQA—across three divergence metrics—Forward KL Di-
vergence, Reverse KL Divergence and Jensen Shannon Divergence. The plots for Spoken-LLaMA-
Questions are in Fig. 10, for Spoken-Web-Questions are in Fig. 11, and for Spoken-TriviaQA are
in Fig. 12. Furthermore, in Tab. 11, we report the mean values of the divergence distributions obtained.
Across all plots and the table, we observe that our data interventions consistently close the distribution
mismatch between the conditional probability distributions of audio and text modalities. This suggests
that our data intervention implicitly induce a self-distillation behaviour (Zhang et al., 2021a; Mobahi
et al., 2020; Zhang et al., 2019) in our trained SpeechLMs. Such an implicit “distillation through data”
property has also been observed in prior works in the multimodal and language domains (Udandarao
et al., 2025; Rawat et al., 2024; Wang et al., 2024; Sachdeva & McAuley, 2023; Wang et al., 2018).
Further, Wang et al. (2025a) showed that explicitly applying a cross-modal distillation objective
further helps to reduce the modality distribution gap, and our results further implicitly confirm this.
In the future, further methods that have been proposed to reduce the modality gap in vision-language
models (Schrodi et al., 2024; Udandarao, 2022; Liang et al., 2022; Li et al., 2025a) can also be
experimented with in the speech-language domain.
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Figure 10: Conditional-distribution divergences on Spoken-LLaMA-Questions.
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Figure 11: Conditional-distribution divergences on Spoken-Web-Questions.
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Figure 12: Conditional-distribution divergences on Spoken-TriviaQA.

Table 11: Dataset-level means of all divergence metrics b/w conditional next-token distributions.
We report the means of all three divergence distributions (as computed in eq. (7)). FKL represents
forward KL-divergence, RKL is reverse KL-divergence and JSD is Jensen-Shannon divergence.

Method Spoken-Web-Questions Spoken-TriviaQA Spoken-LLaMA-Questions
FKL RKL JSD FKL RKL JSD FKL RKL JSD

Coarse 2.07 2.78 0.32 2.97 3.70 0.40 2.57 3.20 0.35
Fine 1.68 1.84 0.27 2.72 2.80 0.36 2.15 2.21 0.30
Fine + Syn 1.90 1.35 0.24 2.71 1.94 0.31 2.23 1.47 0.27

K TOPIC DOMAIN ANALYSIS

K.1 DETAILS ABOUT TOPIC DOMAIN CLASSIFIER

For conducting the topic domain analysis in Fig. 6, we used the topic domain classifier that was
released by (Wettig et al., 2025). The classifier is a gte-base-en-v1.5 model that was fine-
tuned on web-texts annotated by LLaMA models. We used the No-URL version of the classifier that
takes only the raw text as input and classifies it into one of 24 output classes. For getting the topic
distribution of each of our datasets, we randomly sample 5000 examples, concatenate all the text
chunks from each example (for web-crawled data, these are the annotated transcriptions while for
synthetic data, these are the source text data samples), and use that as input to the topic classifier.

K.2 TOPIC DISTRIBUTION FOR SPOKEN-WEB-QUESTIONS

In Fig. 13, we showcase the topic distribution of Spoken-Web-Questions. Similar to the takeaways
in Fig. 6, we find that some of the topics that Spoken-Web-Questions contains are severely under-
represented in the web-crawled dataset while being represented adequately in the synthetic datasets.
This further corroborates our findings that synthetic datasets help close the distribution mismatch
between the web-crawled dataset and the evaluation datasets. Our findings regarding the under-
representation of concepts in web-crawled datasets have also been echoed in the language and vision
domains (Wiedemer et al., 2025; Parashar et al., 2024; Elazar et al., 2023; Kandpal et al., 2023;
Udandarao et al., 2024; Zhao et al., 2024; Samuel et al., 2024; Dodge et al., 2021).

K.3 A MORE FINE-GRAINED TOPIC DISTRIBUTION ANALYSIS

For all the topic domain analyses we have conducted previously, we used a coarse-level topic
classifier that could categorize between 24 different topics. Here, we use a more fine-grained
topic classifier that can produce a finer-grained categorization into 67 different topics. We use the
finefineweb-domain-fasttext-classifier, which is a bi-gram fasttext model that was
used for curating the FineFineWeb dataset (Zhang et al., 2024a). We use the same procedure as
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Figure 13: Topic domain distribution for Spoken-Web-Questions eval and training datasets.

before for annotating our evaluation and training datasets. We plot the fine-grained topic distributions
for Spoken-LLaMA-Questions in Fig. 14, Spoken-TriviaQA in Fig. 15 and Spoken-Web-Questions
in Fig. 16, along with all training datasets. Across all the plots, our findings from Figs. 6 and 13
hold—our synthetic datasets increase the diversity and topic coverage of our training data distribution,
thereby more closely matching the distribution of concepts encompassed in the evaluation datasets.
This helps improve model generalization, yielding better downstream performance.
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Figure 14: Fine-grained topic domain distribution for Spoken-LLaMA-Questions eval and training
datasets.

L DETAILS ABOUT CONTAMINATION ANALYSIS

L.1 EXAMPLES OF CONTAMINATED MATCHES

In this section, we show some examples of the matches we get from our contamination identification
procedure. For each match, we show the training dataset, the training sample, the contaminated test
sample, the test dataset it belongs to, and the contaminated n-gram span.

Train dataset: Quest
Train sample:
What is the definition of vitreous? The word derives from Latin viteus, “of glass,” and is
used to describe either a glass-like quality or the glass-like substance filling the eye. Vitreous
(adjective): 1. Having the appearance or properties of glass; glassy, transparent, brittle. 2. In
anatomy, relating to the vitreous humor or vitreous body—the clear, gelatinous substance
filling the space between the lens and the retina of the eye.
Test dataset: Spoken-TriviaQA
Test sample:
What is the thick watery substance filling the space between the lens and the retina of the
eye?
Contaminated span:
substance filling the space between the lens and the retina of the eye
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Figure 15: Fine-grained topic domain distribution for Spoken-TriviaQA eval and training datasets.
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Figure 16: Fine-grained topic domain distribution for Spoken-Web-Questions eval and training
datasets.
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Train dataset: Quest
Train sample:
When did Arthur & Catherine marry? Prince Arthur, the eldest son of Henry VII, married
Catherine of Aragon — daughter of Ferdinand II of Aragon and Isabella I of Castile. Their
wedding took place at St. Paul’s Cathedral in London on 14 November 1501. Arthur and
Catherine were married on 14 November 1501.
Test dataset: Spoken-TriviaQA
Test sample:
What was founded by Ferdinand II of Aragon and Isabella I of Castile to keep Catholic
orthodoxy as the major religion of their kingdoms?
Contaminated span:
ferdinand ii of aragon and isabella i of castile

Train dataset: Krist
Train sample:
What conclusions can be drawn about the USA’s actions in the 1920s and 1930s? One
conclusion to this statement, which seems to be addressing the approach to foreign policy
during the period, might be ”...reflected a strong, if uneven, commitment to isolationism.”
On the one hand, the United States was fairly steadfast in its unwillingness to get directly
involved in the affairs of the world, particularly Europe. Except for a few non-binding pacts
and negotiations over the repayment of reparations and war debts, the United States remained
generally aloof from European affairs during the 1920s.
Test dataset: Spoken-TriviaQA
Test sample:
What was the name of the democratic government of Germany in the 1920s and early 1930s,
destroyed by Adolf Hitler?
Contaminated span:
in the 1920s and early 1930s,

Train dataset: Krist
Train sample:
In 1912, Lenin, then in exile in Switzerland, appointed Joseph Stalin to serve on the first Cen-
tral Committee of the Bolshevik Party. Three years later, in November 1917, the Bolsheviks
seized power in Russia. The Soviet Union was founded in 1922, with Lenin as its first leader.
During these years, Stalin had continued to move up the party ladder, and in 1922 he became
secretary general of the Central Committee of the Communist Party, a role that enabled him
to appoint his allies to government jobs and grow a base of political support.
Test dataset: Spoken-Web-Questions
Test sample:
what led to stalin rise in power?
Contaminated span:
to serve on the first central committee of the bolshevik party
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Train dataset: Krist
Train sample:
James Harold Doolittle
Doolittle, James Harold (1896– ), U.S. pilot and World War II air hero. Famous as a racing
pilot in the 1920s and early 1930s, he led the first air raid on Tokyo on April 18, 1942, thereby
slowing the Japanese offensive. After the war he was an executive in the aerospace industry.
See also: World War II.
Test dataset: Spoken-TriviaQA
Test sample:
What was the name of the democratic government of Germany in the 1920s and early 1930s,
destroyed by Adolf Hitler?
Contaminated span:
in the 1920s and early 1930s,

L.2 PROPORTION OF CONTAMINATION IN EVAL DATASETS

Table 12: Proportion of contamination. For each evaluation dataset, we report the proportion of test
samples detected as contaminated. We also report the absolute number of matches in brackets.

Evaluation dataset % Contamination [# samples]
Krist Quest All

Spoken-Web-Questions 0.4% [4] 0.1% [1] 0.4% [4]
Spoken-TriviaQA 2.2% [22] 0.8% [8] 2.5% [25]
Spoken-LLaMA-Questions 6.7% [20] 0.2% [5] 7.7% [23]

L.3 EXPANDED DESCRIPTION OF SIGNIFICANCE TESTING SETUP AND RESULTS

Null hypothesis. We start from the full test set (containing contaminated samples). In our signifi-
cance test, we test whether removing contaminated test items reduces accuracy beyond what would be
expected under random removal of an equal number of items. Formally, for accuracy A, the null is:

H0 : Aclean ∼ distribution of Arand,

i.e., the clean accuracy is not lower than the random-removal distribution. Because the contamination
claim is directional (contamination would inflate accuracy), we use a one-sided test.

Test procedure. For each training mix and dataset from Sec. 3.4, we compute: (i) Full accuracy on
the full test set; (ii) Clean accuracy after removing all known contaminated items; (iii) a random-
removal baseline by drawing 100 random subsets (without replacement) of the same size as the
contaminated set, recomputing accuracy on the remaining items each time. Accuracies for (ii) and
(iii) are computed over the reduced denominators (remaining items). From the bootstrap distribution
we report the mean and 95% percentile CI and compute the empirical one-sided p-value as:

p = Pr
(
Arand ≤ Aclean

)
,

This p-value is appropriate for the hypothesis that contamination inflates accuracy (so clean should
be lower if inflation is present). With 100 replicates, the p-value granularity is 0.01. Hence, we report
p<0.01 when no replicate from the bootstrap distribution is as low as the clean accuracy.

Results and interpretation. Tables 13–15 summarize results for Spoken-TriviaQA, Spoken-
LLaMA-Questions, and Spoken-Web-Questions. We highlight the difference ∆ = Clean−RandMean
and give the decision at a significance level α=0.01.

Takeaways. Across STQ and SWQ, clean accuracies consistently fall within the random-removal
confidence intervals. Therefore, we find no significant contamination-driven inflation. For SLQ,
the Web-crawl 59% + Quest 6% + Krist 35% mix shows a drop in clean accuracy relative to the

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Table 13: One-sided contamination test on STQ (N=1000).

Data mix Full (%) Clean (%) Random mean (95% CI) (%) ∆ (pp) One-sided p Decision
Web-crawl 53% + Krist 47% 29.20 29.03 29.22 [28.77, 29.64] −0.19 0.32 Fail to reject H0

Web-crawl 66% + Quest 34% 34.70 34.56 34.73 [34.26, 35.28] −0.17 0.38 Fail to reject H0

Web-crawl 59% + Quest 6% + Krist 35% 30.80 30.46 30.81 [30.36, 31.18] −0.35 0.09 Fail to reject H0

Web-crawl 40% + Quest 27% + Krist 33% 31.70 31.59 31.70 [31.28, 32.10] −0.11 0.41 Fail to reject H0

Table 14: One-sided contamination test on SLQ (N=300).

Training mix Full (%) Clean (%) Random mean (95% CI) (%) ∆ (pp) One-sided p Decision
Web-crawl 53% + Krist 47% 52.00 50.54 52.16 [50.54, 53.62] −1.62 0.10 Fail to reject H0

Web-crawl 66% + Quest 34% 66.33 66.79 66.34 [64.62, 68.06] +0.45 0.82 Fail to reject H0

Web-crawl 59% + Quest 6% + Krist 35% 50.33 48.01 50.33 [48.91, 51.62] −2.32 < 0.01 Reject H0

Web-crawl 40% + Quest 27% + Krist 33% 49.33 47.29 49.43 [47.65, 50.90] −2.14 0.02 Fail to reject H0

Table 15: One-sided contamination test on SWQ (N=1000).

Training mix Full (%) Clean (%) Random mean (95% CI) (%) ∆ (pp) One-sided p Decision
Web-crawl 53% + Krist 47% 43.40 43.27 43.39 [43.22, 43.57] −0.12 0.23 Fail to reject H0

Web-crawl 66% + Quest 34% 42.70 42.57 42.69 [42.47, 42.87] −0.12 0.20 Fail to reject H0

Web-crawl 59% + Quest 6% + Krist 35% 43.80 43.67 43.80 [43.62, 43.98] −0.13 0.19 Fail to reject H0

Web-crawl 40% + Quest 27% + Krist 33% 43.30 43.17 43.29 [43.07, 43.47] −0.12 0.23 Fail to reject H0

random baseline that is statistically significant under our one-sided p-test (p<0.01), consistent
with contamination inflating test performance. However, for the other three data mixes we again
see no significant evidence of inflation, under our testing setup. Hence, overall we conclude that
contamination does not have a major effect on inflating model performance.

L.4 LIMITATIONS OF OUR CONTAMINATION ANALYSIS

Post-hoc analysis. Our contamination analysis is entirely post-hoc, after training of a model is
complete. In the ideal case, one would decontaminate the training sets with respect to the test sets
a-priori (Beyer et al., 2024; Zhai et al., 2022; Oquab et al., 2023; Trinh & Le, 2018; Gao et al., 2020;
Mizrahi et al., 2025; Allal et al., 2025; OLMo et al., 2024). In practice, however, this is unrealistic,
since this assumes prior knowledge of all possible test sets that the model may encounter in the wild.
Infact, several popular language model trainers do not decontaminate their training sets precisely for
this reason (Su et al., 2024; Weber et al., 2024; Maini et al., 2025; Rae et al., 2021; Penedo et al.,
2023; Kandpal et al., 2025). Further, while we acknowledge that our post-hoc contamination analysis
can be limiting and would benefit from a more causal treatment such as in works like (Li et al., 2024;
Soldaini et al., 2024; Bordt et al., 2024; Jiang et al., 2024), we however note that the downside of
such a causal analysis is the significant overhead of re-training our models. Hence, we also note that
many works in the literature refrain from a fully causal treatment of contamination (Radford et al.,
2019; Brown et al., 2020; Dubey et al., 2024; Achiam et al., 2023).

Language-only detection. Our contamination detection only operates on the seed text-datasets that
we generate our synthetic datasets from. We have not done any contamination analysis between the
spoken question audio in our test sets with the audio in our training sets (we note that prior works in
speech-language processing also mainly do contamination analysis at the text-level (Ngo et al., 2025;
Tseng et al., 2025)). While this is a reasonable proxy for our synthetic datasets, such a method might
not transfer well for decontamination analyses of web-crawled datasets. This is because many of the
speech transcriptions of the web-crawled speech might be noisy, incorrect or contain hallucinations
induced by the transcription model. Hence, measuring, detecting and quantifying contamination on
the audio modality is an important research problem that warrants futher research attention.

Testing on non-contaminable benchmarks. While research in optimal ways to do test-set con-
tamination in language models is still nascent, many works take the alternate approach of building
benchmarks that are by construction non-contaminated (Ghosh et al., 2024; White et al., 2024; Zeng
et al., 2025; Wildman et al., 2025; Jain et al., 2024; Zhang et al., 2024b; Yang et al., 2023; Srivastava
et al., 2024). We note that there is a huge gap in such robust evaluations in the speech-language
modeling community, and striving for better benchmarks would enable stronger significance in results,
while diminishing the impacts of train-test contamination on downstream model performance.
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L.5 CODE FOR IDENTIFYING MATCHES

Algorithm 1 PyTorch-style code for identifying contaminated samples
def find_contamination_hits():

"""
Code to get all n-gram contaminated spans in the train set within a window.
- Finds all n-grams from all evalsets
- Finds intersection with all n-grams from training set
"""
# loading eval texts. Question + Answer combined.
eval_texts: t.List[str] = load_eval_set_texts()
# loading trainset texts
train_texts = load_training_set_texts()
hits = []
# we consider a window from 6-gram to 13-gram
for n in range(6, 14):

# set of all n-grams from all evalsets
eval_tokens = set()
for eval_text in eval_texts:

# tokenizer used is ‘tiktoken.encoding_for_model("gpt-4o")‘
tokenized = tokenizer(eval_text)
for i in range(n, len(tokenized)):

cur_window = tokenized[i-n:i]
eval_tokens.update(",".join(cur_window))

for train_text in train_texts:
tokenized = tokenizer(train_text)
for i in range(n, len(tokenized)):

cur_window = tokenized[i-n:i]
if ",".join(cur_window) in eval_tokens:

# record hits from training set
hits.append(train_text)
break

return hits
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M POST-TRAINING DETAILS

M.1 POST-TRAINING DATA

Our SFT data consists of the following components:

• Question-and-Answer Conversations: We start from about 1.5 million question-answer
conversations in text between users and simulated assistants (more details can be found
in Section 4.3.2 in Gunter et al. (2024)). We filter out conversations that are not suitable
for spoken dialogue (e.g., conversations involving coding or large chunks of math equa-
tions) and rewrite the assistant responses to make them more concise. We then use both
melo-TTS (Zhao et al., 2023) and gpt4o-audio to synthesize text conversations into
speech. About 1 millon spoken dialogues are generated in this manner. Further, to improve
the robustness to voice variations and background noises on the user side, we mined about
500k speech segments whose transcription indicates that it is a question that can be answered
with the given context. We then generate the text response and synthesize it in speech. Both
mining and response generation are done by querying gpt-4o. Speech synthesizing is
done via gpt4o-audio.

• TTS and ASR-style Conversations: We convert utterances from ASR/TTS datasets into
natural conversation, in which users ask assistants to either transcribe a given audio (ASR)
or synthesize a given text (TTS). We also include instruction-following TTS data where
users ask to synthesize text responses with specific instructions (e.g., synthesize speech in a
given volume, pace, style or emotion).

• Conversations with emotion and general audio understanding knowledge: Here, we include
spoken conversations where users ask assistants questions that require emotion, sound
and music understanding. As before, we generate such conversations using gpt-4o and
synthesize speech using gpt4o-audio.

M.2 SFT TRAINING DETAILS

For SFT training, we used a constant learning rate of 5e−5 with 0.1 dropout. We train for 20k
steps using a batch size of 256 and sequence length of 16, 384. To prevent regression on text-related
metrics, we mix in a text pre-training dataset with a 0.6 sampling weight, i.e., 40% of the joint SFT
mix is audio SFT data.

Unlike pretraining, we found it useful to explicitly generate the chain-of-thought trajectory, i.e.,
before the model generates assistant’s audio response for the t-th turn, Aat , we ask the model to
generate text tokens for what the user has said in the t-th turn, Tut , and what assistant would say
in text, Tat . Therefore, for a T -turn conversation, (Au1,T

u
1), (A

a
1,T

a
1), · · · , (AuT ,TuT ), (AaT ,TaT ), we

formulate a sequence, Au1,T
u
1,T

a
1,A

a
1, · · · ,AuT ,TuT ,TaT ,AaT . The loss from users’ audio tokens (those

marked with underlines) are masked out during training.

M.3 SFT EVALUATION DETAILS

Text response quality. We use two evaluation datasets: spoken-alpaca and noisy-alpaca. The first is
obtained by synthesizing the alpaca evaluation dataset (Li et al. (2023)). On top of spoken-alpaca,
we added various background noise with a SNR randomly sampled from 5 to 15 dB. This produces
noisy-alpaca. During the evaluation, 804 spoken alpaca questions were fed in, and the model’s
text response, Ta1, is extracted. These text responses are pair-wise compared with the responses
generated from a performant internal baseline model using the standard evaluation protocol with
gpt-4o-mini-2024-07-18 as the judge model.

Audio response quality. To evaluate audio response quality, we work with several third-party
vendors to collect diversified user prompts in audio. For multi-turn dialogue evaluation, we adopt
the last-turn-with-context strategy to evaluate the last turn’s assistant response, while the previous
assistant responses are generated by gpt-4o-audio and fed in as context. In total, we constructed
5 evaluation sets, each having a different focus, such as knowledge-rich, multi-turn, long-context,
and challenging speech environments. We also notice pair-wise comparison of audio is often harder
than text, in which judges (LLM or human) cannot tell which response is better. In order to reduce
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variance of judge scores, we ask the judge to output whether audio response A is better than, worse
than or tied with audio response B. The auto-grading prompt template we used is in Appx. I.
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N PRELIMINARY EVALUATIONS ON SPEECH-TO-SPEECH TASKS

We emphasize that the primary goal of our work is to conduct a clean, controlled empirical study of
data-centric choices for improving spoken question-answering in the speech-to-text (S→T) setting.
We focus on S→T for three reasons: (i) S→T benchmarks have more mature and structured evaluation
protocols, which makes them well-suited for targeted ablations, (ii) producing correct text outputs
is a necessary first step before meaningfully assessing speech-to-speech (S→S) generation, and
(iii) S→S evaluation is considerably more delicate, as it can entangle semantics (what is said) with
acoustics (how it is said). In particular, using ASR to convert S→S outputs back to text introduces
additional error from the ASR system, whereas directly relying on speech-token log-likelihoods risks
over-emphasizing acoustic fidelity relative to semantic correctness.

We however believe S→S evaluation is also an important dimension to measure. As a first step,
we hence evaluated our models on Sblimp and StoryCloze (both Spoken [SSC] and Topic [TSC]
variants). The results for each individual setting studied in Sec. 3 are presented below.

Interleaving Granularity Sblimp SSC TSC
Coarse 54.1 51.3 73.2
Fine 54.5 53.3 73.5

Data Mix Sblimp SSC S→S TSC S→S
Web-crawl 100% 54.5 53.3 73.5
Web-crawl 53% + Krist 47% 54.6 52.7 74.1
Web-crawl 66% + Quest 34% 54.4 51.6 73.0
Web-crawl 59% + Quest 6% + Krist 35% 54.5 52.0 73.3
Web-crawl 40% + Quest 27% + Krist 33% 54.4 51.8 73.2

Sampling Scheme Sblimp SSC S→S TSC S→S
Stochastic 54.4 51.8 73.2
Deterministic 54.5 51.7 69.1

We mainly find:

1. Fine interleaving outperforms coarse interleaving on both Sblimp and Storycloze evaluations.
This emphasizes that our main takeaways regarding the interleaving strategy holds true even
for speech-to-speech evaluations.

2. For the synthetic data variants, the results are not fully conclusive. We note that the Web-
crawl 53% + Krist 47% checkpoint improves on TSC while degrading on SSC. For the other
checkpoints, on SSC most of them seem to drop, whereas for TSC the drop seems to be
much more minor.

3. For the deterministic vs stochastic experiment, we note that both checkpoints used synthetic
data in the training mix, and due to this it is hard to draw conclusions as to whether there is
a large improvement in favour of either strategy.

Finally, we note that our synthetic data uses different voices from the natural evaluation data, which
can affect audio-token log-likelihoods and thus these S→S scores. This is precisely the challenge we
mentioned above regarding the coupling of semantics and acoustics in S→S evaluation. Nonetheless,
our preliminary results suggest that synthetic data does not collapse the model’s speech generation
capabilities, at most, it leads to mild degradations.
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O COMPARISON TO CASCADED BASELINE

In this section, we also include comparisons to a two-stage pipeline that first produces the text
transcriptions of the test set audio question using Whisper-v3-large, and then decodes the final answer
using the Text-init language model (i.e. the original language model we start continued pretraining
from). We observe that the simple cascaded pipeline outperforms all the SpeechLMs we compared in
the main paper. This observation is consistent with recent results in the SpeechLM literature (Sakshi
et al., 2024; Cui et al., 2025) showcasing that speech-language cascades (that first transcribe the
question from audio and then process the text using a language model) outperform end-to-end
speech-language models. However, our SpeLangy model does close the gap to the performance of
the cascade, especially in the Spoken-Web-Questions evaluation, highlighting that we are making
progress towards closing the gap between end-to-end speech-language models and cascaded systems.

Table 16: Spoken Question-Answering (S→T) comparison with cascade baseline.

Type Model # Params SWQ STQ SLQ Average

Cascade Whisper-v3-large + Text-init – 51.1 68.8 76.3 65.4

Base

Kimi-Audio 10.5B 44.0 33.8 47.0 41.6
Qwen-Audio 8.4B 45.7 30.3 46.0 40.7
Qwen-2-Audio 8.4B 45.7 33.4 47.0 42.0
SpeLangy 3.8B 45.7 44.6 65.0 51.8

SFT Voxtral-mini 4.7B 41.6 46.6 65.3 51.2
GLM-4-Voice 9.9B 43.3 52.4 64.7 53.4
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P LIMITATIONS AND FUTURE DIRECTIONS

While we conducted extensive experiments to study the three data-centric questions outlined in Fig. 1,
there are still a few limitations in our work that can be improved upon:

Model sizes and compute budgets. All our experiments were at the 3.8B parameter scale trained for
1.67T speech-text tokens (roughly ∼3.81×1022 FLOPs). While our results are strong (outperforming
models that are 3× the size, trained for similar compute budgets), it would still be interesting
to explore if our data-centric strategies would hold at larger model scales. While recent papers
like Nezhurina et al. (2025), DataComp-LM (Li et al., 2024), HoneyBee (Bansal et al., 2025) and
DataComp-CLIP (Gadre et al., 2023) suggest transferability of data curation methods across model
scales, recent work in language and vision-language modeling has posited that there may be trade-offs
when applying data curation across different model sizes and compute budgets (Mizrahi et al., 2025;
Goyal et al., 2024). To the best of our knowledge, no existing work showcases such trade-offs in the
SpeechLM community. It would be an interesting direction to explore the interaction of data recipes
with model scale and compute budget.

More speech-text tasks. Since the focus of our work was mainly on improving spoken question-
answering capabilities of SpeechLMs, all our experiments used the standard benchmarks that are
prevalent in the literature for our task of interest (Liu et al., 2025; Xiaomi, 2025; Li et al., 2025c;
Ding et al., 2025). We therefore did not explore how our models would perform on more targeted
tasks like automatic speech recognition, emotion recognition or text-to-speech synthesis. One caveat
preventing us from a direct comparison on such tasks is that we do not employ any task-specific
training, unlike other SpeechLMs that explicitly add in a task-specific component into their training
mixture (e.g., ASR-specific training datasets) (Li et al., 2025c; Ding et al., 2025; Liu et al., 2025).

End-to-end evaluation. Currently, our evaluations involve testing on text-only benchmarks (text-
in text-out) and spoken question-answering benchmarks (audio-in text-out). However, end-to-end
spoken question-answering, where both the input and output is in audio (audio-in audio-out) is an
important capability that remains untested. While there have been some prior works testing explicitly
for the full end-to-end capability (Ding et al., 2025; Li et al., 2025c; Hassid et al., 2023; Xiaomi, 2025;
Nachmani et al., 2023), we note that reliable evaluation for this task is still quite challenging—there
is a lack of standardization in the evaluation procedures used across the different model releases. For
example Kimi-Audio (Ding et al., 2025) uses a human judgement rating for comparing model outputs,
while GLM-4-Voice (Zeng et al., 2024a), MiMo-Audio (Xiaomi, 2025), Spectron-LM (Nachmani
et al., 2023) and Baichuan-Audio (Li et al., 2025c) use automated methods with ASR transcription
models and LLM-as-judges. However, the ASR and judge-models used can be biased and impact
results quite a lot (Ye et al., 2024b; Panickssery et al., 2024), which has not been discussed in
these prior works. More importantly, previous works in image omni-models have demonstrated that
the data curation procedures for targeting understanding and generation capabilities might differ
significantly (Tong et al., 2024b; Chen et al., 2025; Deng et al., 2025; Wu et al., 2025b; Zhang et al.,
2025). Hence, we posit that similar takeaways might also hold for the speech-language pretraining
task, where the data processing and curation strategies for understanding only tasks (audio-in text-out)
are potentially different from generation tasks (audio-in audio-out). However, it is an interesting and
important direction to test if our approaches transfer to the full end-to-end evaluation setting as well.

Few-shot capabilities. Currently, all our evaluations for spoken question-answering used a 0-shot
prompting strategy i.e. the model would be fed in an input audio question and has to respond in text,
with no additional examples in-context. However, many of the text-only evaluations including MMLU
and WebQuestions are few-shot / in-context evaluations (MMLU is 5-shot and WebQuestions is 1-
shot). Evaluating our models’ abilities in the few-shot / in-context setting can further yield important
insights on transferability and steerability of our models. Importantly, the few-shot capability has
been emphasized to large degrees in both the vision-language (Zhou et al., 2022; Zhang et al., 2021b;
Gao et al., 2024b; Udandarao et al., 2023; Alayrac et al., 2022; Awadalla et al., 2023; Laurençon
et al., 2024) and text-only (Brown et al., 2020; Achiam et al., 2023; Touvron et al., 2023; Dong et al.,
2022; Olsson et al., 2022) foundation modeling literature. Recently, MiMo-Audio (Xiaomi, 2025)
also described their experimental settings which included few-shot speech-text tasks. Studying the
transfer of our data interventions to the few-shot evaluation setting is an important open problem.
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Training from scratch. All our training runs initialize the language model backbone for our
SpeechLM using a pretrained base-LM. This is the standard recipe used by almost all the existing
foundation SpeechLMs (Li et al., 2025c; Défossez et al., 2024; Liu et al., 2025; Wu et al., 2025a;
Xiaomi, 2025; Chu et al., 2024; Ding et al., 2025; Zeng et al., 2024a). However, recent work in the
vision-language literature has advocated for full native multimodal pretraining from scratch (Shukor
et al., 2025), where both the language model and the modality-specific encoder/tokenizer are trained
from scratch. It would be interesting to explore if our data-centric methods also enable more efficient
SpeechLM pretraining from scratch in the future.

Better training recipes. In all our experiments, we freeze the speech tokenizer while only training
the language model. In the SpeechLM literature, there is no strong consensus regarding freezing or
unfreezing the speech tokenizer. A potential next step could be to unfreeze the tokenizer and study the
transferability of our data-centric recipes. Additionally, we conduct only one continued-pretraining
stage—however, recent SpeechLM works have explored more sophisticated multi-stage pipelines
involving pretraining and mid-training (Wu et al., 2025a; Xiaomi, 2025; Li et al., 2025c; Goel et al.,
2025). It would again be interesting to test our methods in a multi-stage pipeline.

Better data mixtures. In our experiments, we always used a mixture ratio of 60% text and 40%
speech-text tokens. While we followed existing multimodal literature for these ratios (Shukor et al.,
2025; McKinzie et al., 2024; Tong et al., 2024a), it is likely that this mixture ratio could be further
tuned. A key reason for having such a large text-only proportion was to ensure the model does
not lose its language-only base capabilities. However, for larger models (7B-parameter scales and
beyond), a smaller text-proportion might be viable since larger models generally are prone to lesser
catastrophic forgetting (Yıldız et al., 2024; Roth et al., 2024; Dziadzio et al., 2025; Ramasesh et al.,
2021; Ibrahim et al., 2024). Indeed, recent SpeechLMs like MiMo-Audio (Xiaomi, 2025) and
StepAudio-AQAA (Huang et al., 2025) use much smaller text-proportions in their training mix,
suggesting that this is a valid strategy to improve speech-language pretraining.
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