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Abstract

The potential of realistic and useful synthetic data
is significant. However, current evaluation meth-
ods for synthetic tabular data generation predomi-
nantly focus on downstream task usefulness, often
neglecting the importance of statistical proper-
ties. This oversight becomes particularly promi-
nent in low sample scenarios, accompanied by a
swift deterioration of these statistical measures.
In this paper, we address this issue by conducting
an evaluation of three state-of-the-art synthetic
tabular data generators based on their marginal
distribution, column-pair correlation, joint distri-
bution and downstream task utility performance
across high to low sample regimes. The popu-
lar CTGAN models shows strong utility, but un-
derperforms in low sample settings in terms of
utility. To overcome this limitation, we propose
MargCTGAN that adds feature matching of de-
correlated marginals, which results in a consistent
improvement in downstream utility as well as sta-
tistical properties of the synthetic data.

1. Introduction
Tabular data, despite being the most widely used data
type (Kaggle), presents substantial challenges ranging from
data heterogeneity and quality measurement to imbalance
and privacy concerns. Encouragingly, recent advancements
in synthetic tabular data generators have shown considerable
promise in tackling these issues. These models have shown
effectiveness in handling heterogeneous data attributes (Xu
et al., 2019; Zhao et al., 2021), facilitating the safe sharing
of personal records (Choi et al., 2017; Park et al., 2018;
Mottini et al., 2018), and mitigating class imbalance (En-
gelmann & Lessmann, 2021). Nonetheless, the evaluation
of existing models predominantly focuses on downstream
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machine learning tasks and large datasets. This evaluation
paradigm overlooks their utility in broader practical scenar-
ios, especially the data-limited, low-resource settings, and
fails to consider other crucial aspects of synthetic datasets
including fidelity, diversity, and authenticity (Alaa et al.,
2022).

In response to these challenges, we introduce a comprehen-
sive evaluation framework, integrating nine distinct met-
rics across four critical dimensions: downstream task util-
ity, joint fidelity, preservation of attribute correlations, and
alignment of marginals (Section 4). Our objective is to
thoroughly evaluate the representative models using diverse
metrics, aiming at a comprehensive understanding of their
quality and adaptability, particularly for scenarios that are
underexplored in existing literature.

Our evaluation uncovers intriguing insights into the charac-
teristics of state-of-the-art models. For instance, the popular
CTGAN (Xu et al., 2019) model typically demonstrates high
attribute fidelity but falls short in utility for low-data sce-
narios. Conversely, TableGAN (Park et al., 2018) exhibits
better utility but lacks performance in other dimensions.
To capitalize on the strengths of both models, we propose
MargCTGAN that improves upon CTGAN by introducing
feature matching of decorrelated marginals in the principal
component space. This approach consistently improves util-
ity without compromising other fidelity measures, especially
in the data-limited settings.

2. Related Works
Tabular Data Generators. In recent years, deep generative
models have seen significant advancements in their appli-
cation to diverse forms of tabular data, including discrete
attributes (Choi et al., 2017), continuous values (Mottini
et al., 2018), and heterogeneous mixtures (Park et al., 2018;
Xu & Veeramachaneni, 2018; Xu et al., 2019; Zhao et al.,
2021). Notably, TableGAN (Park et al., 2018), CTGAN (Xu
et al., 2019), and TVAE (Xu et al., 2019) stand out as state-
of-the-art benchmark models and will be the focus of our
empirical evaluation. On the other hand, the issue of limited
data availability remains underexplored in literature, despite
several attempts to bypass such challenges by effectively
combining multiple data sources (Chen et al., 2019; Ma
et al., 2020; Yoon et al., 2018). Our work aims to fill this
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research gap by introducing a systematic evaluation across
various scenarios, ranging from full-resource to data-limited
cases. Additionally, we propose model improvements that
designed to effectively capture the underlying data structure
in low-sample settings.

Evaluation of Tabular Data Generators. The evaluation
of generators, particularly for tabular data, is a challenging
area due to its requirement for complex metrics, unlike sim-
pler visual inspection for image data (Theis et al., 2016).
Recent studies have introduced a variety of metrics: promi-
nent among these are downstream machine learning efficacy,
unified metrics evaluation (Chundawat et al., 2022), and
evaluations focusing on distinct aspects (Alaa et al., 2022;
Dankar et al., 2022). In this work, we consider comprehen-
sive evaluation methods encompassing machine learning ef-
ficacy, statistical properties such as divergence on marginals,
column correlations, and joint distance.

3. Method: MargCTGAN
MargCTGAN adheres to the standard Generative Adversar-
ial Networks (GANs) paradigm (Goodfellow et al., 2014),
which involves training a generator G and a discriminator D
in an adversarial manner. The training target is to enhance
the discriminator’s ability to distinguish between real and
fake data, while simultaneously updating the generator to
produce samples that are increasingly realistic. We adopt
the WGAN-GP objective (Gulrajani et al., 2017) in which
the overall training process can be interpreted as optimizing
the generator to minimize the Wasserstein distance between
the distributions of the generated and real data:

LWGP = E
z∼pz

[
D
(
G(z)

)]
− E

x∼pdata

[
D(x)

]
+ λ

(
∥∇x̂D(x̂)∥2 − 1

)2
where x̂ is constructed by interpolating real and generated
samples and λ denotes the weight for the gradient penalty.
The discriminator is trained to minimize LWGP, while the
generator is trained to maximize it.

Following the CTGAN (Xu et al., 2019) framework, we adopt
several key techniques to adapt GAN models for tabular data.
Firstly, one-hot encoding is applied to pre-process categor-
ical attributes, paired with the Gumbel-softmax function
serving as the network output activation function, thereby
ensuring differentiability. Secondly, for numerical attributes,
we apply a technique known as mode-specific normalization
in the pre-processing phase, enabling an accurate reflection
of the multi-modality in the values distribution. Lastly, we
employ the training-by-sampling strategy during the train-
ing process, which effectively balances the occurrences of
different classes in the categorical columns to match their
real distribution. This strategy introduces an additional loss
term on the generator, which we denote as Lcond.

While CTGAN generally demonstrates promising utility for
training downstream machine learning classifiers, it often

falls short in low-sample scenarios (See Figure 2). Drawing
inspiration from TableGAN , we propose a moment match-
ing loss that proactively encourages the generator to learn
and mirror the first and second-order data statistics. Notably,
unlike TableGAN which attempts to match statistics on the
features extracted by the discriminator, we compute the first
and second moments after conducting the Principal Compo-
nent Analysis (PCA) on the data. Specifically, the transform
is performed while maintaining the original data dimension-
ality, i.e., we simply decorrelate without down-projection.
Intriguingly, this straightforward technique proves effective
(Figure 6), likely because the decorrelated feature represen-
tation supports the independent moment matching.

Formally,

Lmean =
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x∼pdata

[
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)]∥∥∥
2

(2)

Lmarg =Lmean + Lstd (3)

LG =− LWGP + Lcond + Lmarg (4)

where f(·) denotes the PCA transformation function. Lmean
targets the mean, while Lstd focuses on the standard devia-
tion. The total training losses for the generator and discrimi-
nator are LG and LWGP, respectively.

4. Multi-Dimensional Evaluation Metrics
We present a comprehensive evaluation that accesses tabular
data generators performance across four critical dimensions:
application utility, joint fidelity, column-pair fidelity, and
marginal fidelity. The implementation details can be found
in Appendix A.

Application Utility. This dimension focuses on the efficacy
of synthetic data as a substitute for real data in specific tasks.
This effectiveness is typically quantified by machine learn-
ing efficacy that evaluates the performance (e.g., F1-score
or accuracy) on a distinct real test dataset when training
predictive ML models on synthetic data. In situations where
knowledge of the target downstream task is unavailable, an
alternate methodology known as dimension-wise prediction
(or all-models test) may be employed. This methodology
considers each column as a potential target variable for the
task and reports the mean performance across all cases.

Joint Fidelity. This category aims to quantify the similarity
between the overall joint distributions of real and synthetic
data. While an exact measurement is always intractable,
the most commonly used approximation is the distance to
closest record. This computes the Euclidean distance be-
tween each synthetic data sample and its nearest neighbors
in the real test dataset, intending to assess the possibility
of each synthetic sample being real. Conversely, the likeli-
hood approximation computes the distance between each
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real test sample and its closest synthetic sample. This mir-
rors the probability of each real sample being potentially
generated by the model, thereby encapsulating a concept of
data likelihood.

Column-Pair Fidelity. This dimension investigates the
preservation of feature interactions, specifically focusing
on the direction and strength of correlations between pairs
of columns in the synthetic dataset as compared to the real
dataset. A commonly used metric for this purpose is the
association difference, also referred to as the pairwise cor-
relation difference. This measure quantifies the discrepancy
between the correlation matrices of the real and synthetic
datasets, where the correlation matrix encapsulates the pair-
wise correlation of columns within the data.

Marginal Fidelity. A key prerequisite for accurately
replicating the real data distribution is to ensure a match
in the distribution of each individual column, i.e., align-
ing the marginals. The evaluation of this criterion essen-
tially involves quantifying the disparity between two one-
dimensional variables. Commonly used metrics for this pur-
pose include the Jensen-Shannon divergence, Wasserstein
distance, column correlation, and histogram intersection.
While the divergence measures are directly computed for
categorical attributes, numerical columns typically undergo
a pre-processing discretization step via binning prior to di-
vergence computation to ensure tractability.

5. Experiments
Setup. We conducted evaluations on four benchmark tabu-
lar datasets: Adult (Kohavi & Becker, 1996), Census (Lane
& Kohavi, 2010), News (Fernandes et al., 2015), and Texas.
These datasets exhibit diverse properties in terms of size
(spanning 30-110 thousand samples), column heterogeneity,
and distinct characteristics (Refer to Table 1 and Appendix B
for details). Our investigation spans a geometric progres-
sion of sample sizes, extending from 40 to the full dataset
size (notated as “−1”), to emulate a range from low to high
resource settings. In line with existing studies (Xu et al.,
2019), models were trained for 300 epochs. The evalua-
tions were conducted on a separate test set that was never
used during the whole training process of the tabular data
generators. To account for potential randomness, experi-
ments were conducted over three different random seeds for
model training and repeated across five trials for generating
synthetic datasets. See details in Appendix A.

5.1. Correlation of Metrics

We begin by a thorough correlation analysis of various met-
rics discussed in Section 4, as illustrated in Figure 1. Our
observations revealed that metrics within each dimension
generally exhibit a high degree of correlation. This is par-
ticularly evident in the case of the marginal-based metrics,

Table 1: Summary of Datasets. Col refers to number of
columns. N/B/M correspond to the number of numerical,
binary, and multi-class categorical columns, respectively.

Dataset Train/Test size Col N/B/M Task

Adult 34118/14622 15 7/2/6 classification
Census 199523/99762 41 7/3/31 classification
News 31644/8000 60 45/15/0 classification
Texas 60127/15032 18 7/1/10 classification
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0.72 0.14 0.26 0.58 0.59 0.31 1 0.63 0.79

0.84 0.64 0.71 0.83 0.84 0.69 0.63 1 0.92
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Figure 1: Pearson correlation coefficients (in absolute value)
among different metrics across multiple experimental trials
on all datasets.

as demonstrated by Pearson coefficients ranging between
0.74 and 0.98. Consequently, any of these metrics could
adequately represent their respective dimension. For the
sake of clarity and computational efficiency, we specifi-
cally chose to employ the efficacy test (machine learning
efficacy), closeness approximation (distance to closest
record), associations difference, and histogram intersec-
tion as representative metrics for summarizing each vital
dimension discussed in Section 4.

5.2. Methods Comparison

Downstream Utility. The efficacy score measures the util-
ity of synthetic data in downstream tasks, as illustrated in the
left-most plot of Figure 2. In the best-case scenario (marked
as “-1” in x-axis), the performances of CTGAN, TVAE, and
MargCTGAN are comparable. Performance generally de-
grades in low-sample settings, with the most significant
drop around the size of 640. This decline is particularly
notable for CTGAN, which exhibits a relative error up to
57%. While TVAE generally outperforms the other models
across varying sample sizes, our MargCTGAN performs ro-
bustly, demonstrating particular advantages in low-sample
settings. Notably, MargCTGAN consistently outperforms
its backbone model, CTGAN, across all settings.

Joint Fidelity & Memorization. The distance to the clos-
est record metric, depicted in the second subplot of Figure 2,
measures the alignment between the real and synthetic joint
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Figure 2: Averaged score across datasets. The X-axis represents the size of the training dataset, with “-1” indicating the full
dataset size. Real data (reference) corresponds to the metrics directly measured on the real (train vs. test) data, serving as
the reference (oracle score) for optimal performance.

distribution and simultaneously illustrates the memorization
effects of the generators. Striking a balance is crucial as
over-memorization might compromise privacy. TableGAN
consistently maintains the most substantial distance from
the real data reference, aligning with its design objective of
privacy preservation. Conversely, TVAE displays the closest
proximity, even exceeding the real reference, indicating a
potential overfitting risk and privacy leakage. This may be
attributed to its use of reconstruction loss in its training ob-
jective (Chen et al., 2020). As the training size reduces, the
distance between the synthetic and real data first increases
then decreases, potentially signifying the generator’s shift
from generalization to memorization. While both CTGAN
and MargCTGAN maintain a moderate distance from real
data, our MargCTGAN generally demonstrates a closer prox-
imity to the reference, presenting an appropriate balance
between alignment and privacy protection.

Pairwise Correlation. The association difference metric
(third subplot in Figure 2) quantifies the disparity between
the correlation matrices of the real and synthetic data. As ex-
pected, this disparity increases as the sample size decreases,
a trend also seen in the real data reference. This could be
attributed to data diversity, where different smaller subsets
might not retain the same statistical characteristics while the
sampling randomness is accounted for in our repeated exper-
iments. Among all models, TableGAN exhibits the largest
associations difference score, particularly in the low-sample
regime, indicating challenges in capturing associations with
limited training samples. Both MargCTGAN and TVAE dis-
play similar behavior, with our MargCTGAN following the
trend of real data reference more precisely, specifically in
low-sample settings.

Marginal Matching. The histogram intersection metric,
depicted in the right-most subfigure in Figure 2, assessing
the overlap of real and synthetic marginal distributions. Our
moment matching objective within MargCTGAN explicitly
encourages such coverage of low-level statistics, leading
to consistent superior performance of MargCTGAN across
various settings. A more detailed analysis, presented in
Figure 3, reveals performance differences across numerical
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Figure 3: Histogram intersection score for numerical and
categorical columns respectively, which is averaged across
datasets.

and categorical columns. Here, TVAE demonstrates good
performance with numerical attributes but exhibits limita-
tions in handling categorical ones, whereas CTGAN excels
in handling categorical columns, possibly due to its training-
by-sampling approach, but falls short with the numerical
ones. Notably, MargCTGAN balances both aspects, out-
performing CTGAN in numerical columns while matching
its performance in categorical ones. Moreover, while most
models show decreased performance in low-resource set-
tings, TableGAN exhibits improvement, potentially due
to its similar moment matching approach to ours, thereby
further validating our design choice.

6. Conclusion
In conclusion, our comprehensive evaluation of state-of-
the-art synthetic tabular data generators provided valuable
insights, particularly regarding their performance in low-
resource settings. By introducing the MargCTGAN model
as an improvement over CTGAN, we addressed some of
the limitations observed. Our results demonstrated that
MargCTGAN outperformed CTGAN across multiple metrics,
exhibiting stronger utility and marginal-based performance.
These findings highlight the effectiveness of MargCTGAN
in enhancing both the utility and marginal score of the gen-
erated synthetic data. Our code and setup is published to
ensure reproducibility and increase impact1.

1https://github.com/tejuafonja/margctgan
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A. Implementation Details
All the code was implemented in the Python and all experiments are conducted on a single Titan RTX GPU.

A.1. Metrics

Application Utility. For the machine learning efficacy and all models test metrics, we implemented them using the
SDMetrics package 2. We trained logistic regression, decision tree classifier, and multilayer perceptron models for the
classification tasks, and linear regression, decision tree regressor, and multilayer perceptron models for the regression tasks.
We kept the default hyperparameter settings. For the classification models, we standardized the numerical columns during
training, while for the regression models, no normalization scheme was applied as it yielded more stable results without it.
The categorical columns for both regression and classification tasks were one-hot encoded. Each classification model was
evaluated using the F1-score while each regression model is evaluated with R2-score. The R2-score has a range of [−∞, 1],
so we normalized it to [0, 1] using the normalization scheme from the SDMetrics package.

Joint Fidelity. We applied a min-max normalization scheme to all numerical columns to constrain their value range
between 0 and 1. Additionally, we one-hot encoded the categorical columns. We used the scikit-learn nearest-neighbor
implementation 3 and chose the number of nearest neighbors in the range of [1, 2, 3, . . . , 9] while using the Euclidean
distance. For the likelihood approximation, we calculated the distance between each of 5000 random test samples to its
closest synthetic sample and report the average over real test samples. For the distance to closest record metric, we compute
the distance of each sample in the synthetic set to its nearest neighbor in a set of 5000 random test samples and report the
average over the synthetic samples. We use the default hyperparameters from the package.

Column-Pair Fidelity. The associations difference metric was inspired by the “plot correlation difference” function from
the tabular-evaluator package 4 and implemented using the dython package 5. We used Pearson correlation coefficient for
numerical columns, Cramer’s V for categorical columns, and the Correlation Ratio for numerical-categorical columns. The
range of Cramer’s V and Correlation Ratio is between 0 and 1, while Pearson correlation coefficient ranges from -1 to 1. We
calculated the absolute difference between the association matrices of the synthetic data and the real data, reporting the
mean absolute difference.

Marginal Fidelity. We applied a min-max normalization scheme to all numerical columns to constrain their value range
between 0 and 1, and label-encoded the categorical columns. The marginal metrics were applied to each column in the
dataset. To speed up the calculation, we parallelized the process with joblib 6. The histogram intersection, Wasserstein
distance, and Jenson-Shannon distance used the same binning strategy for the numerical columns. We assumed a uniform
grid between 0 and 1 and computed the bin width △i for the real data (train and test) using a pre-defined bin sizes
∈ {25, 50, 100}. We also used the real data (train and test) to determine the number of categories for each categorical
column. The categorical columns has △i = 1. The normalized count for each bin was calculated for the synthetic and
real data. We used the SciPy package 7 to calculate Wasserstein distance by passing the grids as empirical values and the
normalized bin values as weights, and to calculate Jenson-Shannon distance with the base=2 setting. We used the dython
package to compute column correlation metric. As for the histogram intersection metric, we implemented it ourselves.
Unless otherwise specified, the hyperparameter settings were taken from the packages.

A.2. Generative Models

We used the open-source implementation provided by the authors for CTGAN and TVAE (Xu et al., 2019) and the SDGym
package8 for TableGAN. For the MargCTGAN, we modified the CTGAN model and follow the default hyperparameter
setting. We use the same number of training epochs and batch size for all models. The data generators were trained on each

2https://docs.sdv.dev/sdmetrics/metrics/metrics-in-beta/ml-efficacy-single-table/
binary-classification

3https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html

4https://github.com/Baukebrenninkmeijer/table-evaluator
5http://shakedzy.xyz/dython/modules/nominal/
6https://joblib.readthedocs.io/en/latest/
7https://docs.scipy.org/
8https://github.com/sdv-dev/SDGym/tree/41ffcc1982e2c5081271ce0e138792550c2a3480/sdgym/

synthesizers
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subset of the datasets, and after training, the synthetic datasets were sampled. To ensure robustness, we repeated this process
three times using different random seeds.

To evaluate the performance of the generators, we sampled five synthetic datasets with 20,000 samples from each data
synthesizer. We fitted utility and joint-based metrics on the synthetic datasets and then evaluated the fitted model against
the real test dataset. For the column-pair-based and marginal-based metrics, we first computed statistics for the synthetic
datasets and real test dataset separately and then compared the statistics for evaluation. For the real data reference (always
shown as gray lines in the figures), we run the same evaluation process as above but replace the synthetic set by the real
training set.

B. Datasets
Adult 9. The UCI Adult dataset (Kohavi & Becker, 1996) is from the 1994 U.S. Census and contains 14 attributes with
a total sample size of 48,000. The associated task is a binary classification to determine if an individual earns more than
50,000 dollars a year.

Census 10. The UCI Census-income dataset (Lane & Kohavi, 2010) is a weighted dataset of the 1994-5 U.S. Census
conducted by the U.S. Census Bureau. It includes over 299,000 samples and 40 attributes with an associated binary
classification task of determining whether a person earns more than 50,000 dollars a year.

News 11. The UCI Online News Popularity dataset (Fernandes et al., 2015) summarizes a heterogeneous set of features
about articles published by Mashable over a two-year period. It includes over 39,000 instances with 58 attributes whose goal
is to predict the number of shares on social networks (we dropped the non-predictive attributes). It is a regression task, but
it can be transformed into a classification task. As executed in Fernandes et al. (2015), we assume a binary classification
task, where an article is considered “popular” if the number of shares is higher than a fixed decision threshold t, else it is
“unpopular”. t = 1400.

Texas 12. The Texas Hospital Discharge dataset is a large public use data file provided by the Texas Department of
State Health Services 13. We used the preprocessed version from Stadler et al. (2022), which consists of 100,000 records
uniformly selected from a pre-processed file containing patient data from 2013. We retain 18 attributes and assume a binary
classification task by predicting only minor and major mortality risk. The final size of the dataset was therefore reduced to
75,159.

C. Extended Results
C.1. Insights into Performance and Behavior of Histogram Intersection Metric

Figure 3 highlighted that TVAE excels in datasets with numerical columns but struggles with categorical columns, resulting
in subpar marginal performance due to its inability to accurately reproduce different categories. Surprisingly, despite
this limitation, the synthetic datasets generated by TVAE showed high utility in downstream tasks, suggesting that a
good marginal distribution is not always a prerequisite for usefulness. On the other hand, CTGAN demonstrated superior
performance in capturing associations within categorical columns, showcasing the effectiveness of its training-by-sampling
approach. Notably, MargCTGAN achieved similar performance to CTGAN in categorical columns while outperforming it in
numerical columns, aligning more closely with TVAE in this aspect.

It is important to note that all models experienced degraded performance in low-resource settings. However, interestingly,
TableGAN exhibited improved performance in such scenarios. This improvement may be attributed to its information loss,
which share similar idea of our moment matching objective. Figures 4(a), 4(b), 4(c), 4(d) further shows the breakdown
across the different datasets.

9https://archive.ics.uci.edu/ml/datasets/adult
10https://archive.ics.uci.edu/ml/datasets/US+Census+Data+%281990%29
11https://archive.ics.uci.edu/ml/datasets/online+news+popularity
12https://github.com/spring-epfl/synthetic_data_release/blob/master/data/texas.csv
13https://www.dshs.texas.gov/thcic/
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Figure 4: Histogram intersection score on Adult 4(a), Census 4(b), News 4(c), and Texas 4(d) dataset, respectively.

C.2. Relative Error

We additionally provide the relative error w.r.t. real data (reference) for each metric (averaged across datasets) in Table 2,
3, 4, and 5.

subset -1 20480 10240 5120 2560 1280 640 320 160 80 40

TableGAN 32.24 23.61 25.55 23.13 23.65 29.90 42.05 39.89 34.19 26.03 26.21
TVAE 11.03 10.29 12.49 16.50 19.30 23.54 34.96 34.99 31.65 26.08 25.40
CTGAN 15.07 19.81 25.25 35.55 33.75 59.07 57.35 54.45 52.57 52.38 47.66
MargCTGAN 13.14 16.04 16.89 21.05 25.56 31.72 38.36 36.14 32.13 31.55 26.57

Table 2: Averaged relative error of machine learning efficacy. The lower the better.

subset -1 20480 10240 5120 2560 1280 640 320 160 80 40

TableGAN -55.76 -67.57 -74.93 -85.25 -94.39 -110.51 -118.69 -114.20 -108.63 -100.92 -90.18
TVAE -16.59 -11.23 -8.28 -1.41 3.44 8.92 6.89 7.49 7.95 6.99 5.49
CTGAN -36.92 -46.24 -58.97 -63.89 -77.39 -94.15 -92.71 -92.43 -91.71 -92.02 -88.41
MargCTGAN -29.65 -29.96 -34.60 -43.51 -54.38 -74.16 -80.52 -79.75 -78.25 -80.00 -82.99

Table 3: Averaged relative error of closeness approximation. Generally, a lower value is considered
better. However, an excessively low value may suggest memorization.

subset -1 20480 10240 5120 2560 1280 640 320 160 80 40

TableGAN -312.05 -308.51 -291.45 -319.78 -258.71 -245.16 -186.87 -113.52 -62.23 -27.60 -2.90
TVAE -221.95 -222.38 -219.46 -253.43 -209.10 -161.99 -88.33 -51.00 -11.69 17.34 34.10
CTGAN -278.87 -280.84 -286.25 -311.11 -241.34 -221.51 -133.71 -75.76 -30.71 2.29 25.52
MargCTGAN -328.64 -347.45 -345.54 -340.73 -251.48 -174.78 -108.87 -54.71 -14.36 2.76 12.69

Table 4: Averaged relative error of associations difference. The lower the better.
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subset -1 20480 10240 5120 2560 1280 640 320 160 80 40

TableGAN 13.72 14.44 15.74 17.98 19.59 23.21 25.66 22.84 18.98 15.40 11.10
TVAE 7.99 8.27 8.68 9.34 10.69 11.58 14.03 15.64 15.03 13.38 11.78
CTGAN 8.83 9.60 10.87 12.67 13.85 14.13 13.83 12.98 12.42 11.89 10.38
MargCTGAN 6.90 6.92 6.67 6.82 6.93 6.63 6.82 7.01 6.74 9.13 10.94

Table 5: Averaged relative error of histogram intersection. The lower the better.

C.3. Metrics Results for Different Datasets

Figure 5(a), 5(b), 5(c), and 5(d) show the results of metric evaluation on each dataset respectively.
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Figure 5: Metric evaluation results on each dataset, which is supplementary to Figure 2 in the main paper.
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D. Ablation
D.1. Moment Matching in Raw Data Space

We conducted an additional ablation study to investigate the effect of the moment matching technique with and without
applying PCA in MargCTGAN. As shown in Figure 6, while both moment matching without PCA (CTGAN+Raw) and
with PCA (MargCTGAN) performs generally better than the baseline CTGAN, the PCA adopted in our MargCTGAN does
provide additional notable improvement consistently across different metrics considered in our study.
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Figure 6: Comparison between CTGAN trained with PCA loss objective (MargCTGAN) and CTGAN trained with raw
moment matching loss objective.

D.2. Training for Longer Epoch

Previous work (Karlsson & Sjöberg, 2020) has shown that the performance of CTGAN generally improves with further
training, and we validate this finding in our experiments. Nevertheless, we limited the training epochs to 300 to align with
the specified hyperparameters by the authors, considering the common usage of these models as off-the-shelf solutions
without extensive tuning. Despite this constraint, our MargCTGAN model consistently outperforms CTGAN as shown in
Figure 7(a), and 7(b). This highlights the enhanced performance of MargCTGAN in comparison to CTGAN in synthetic
data generation tasks.
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(a) Adult, Epoch=300
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Figure 7: Comparison showing performance of Adult dataset trained for 300 (top) and 1000 (bottom) epochs.

E. Limitations
The evaluation of associations difference uncovered insightful observation regarding the performance of MargCTGAN
in low-resource settings. As the sample size decreased to 40, the performance of MargCTGAN exhibited degradation,
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while CTGAN demonstrated better results for this metric. A similar trend was observed for the marginal-based metric.
This behavior can be attributed to the inherent characteristics of the PCA-moment matching loss method employed by
MargCTGAN. The effective number of PCA components used in the transformation is determined by the minimum value
between the size of the data and the size of the feature. In other words, the method can accurately capture features up to the
limit set by the smaller value of these two factors. Consequently, in scenarios where the sample size is smaller than the
number of features, the PCA-moment matching approach becomes less competitive (due to the rank-deficiency during the
matrix computation). This limitation arises from the method’s inability to effectively match and reproduce the characteristics
of all features due to the constrained number of components available. Consequently, the performance of MargCTGAN
deteriorates in terms of both the associations difference metric and the marginal-based metric. Supporting evidence for
this limitation can be found in the experiment conducted with raw features (see Appendix D.1). It is crucial to consider
this constraint when selecting an appropriate model for synthetic data generation. In scenarios where the sample size is
significantly smaller than the number of features, alternative models such as CTGAN+Raw may offer better performance in
capturing associations and reproducing marginal distributions. Understanding the strengths and weaknesses of different
models under varying resource constraints empowers researchers and practitioners to make informed decisions and select
the most suitable synthetic data generation approach for their specific requirements.
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