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Abstract

With the development of transformer-based large language models (LLMs),
they have been applied to many fields due to their remarkable utility, but
this comes at a considerable computational cost at deployment. Fortunately,
some methods such as pruning or constructing a mixture of experts (MoE)
aim at exploiting sparsity in transformer feedforward (FF) blocks to gain
boosts in speed and reduction in memory requirements. However, these
techniques can be very costly and inflexible in practice, as they often require
training or are restricted to specific types of architectures. To address this,
we introduce GRIFFIN, a novel training-free and calibration-free method
that selects unique FF experts at the sequence level for efficient generation
across a plethora of LLMs with different non-ReLU activation functions. This
is possible due to a critical observation that many trained LLMs naturally
produce highly structured FF activation patterns within a sequence, which
we call flocking. Despite our method’s simplicity, we show with 50% of the
FF parameters, GRIFFIN maintains the original model’s performance with
little to no degradation on a variety of classification and generation tasks,
all while improving latency (e.g. 1.29× and 1.25× speed-ups in Gemma
7B and Llama 2 13B, respectively, on an NVIDIA L40). Code is available at
https://github.com/hdong920/GRIFFIN.

1 Introduction

Transformers (Vaswani et al., 2017) have demonstrated incredible capabilities across a
plethora of domains (Lin et al., 2022; Khan et al., 2022; Nerella et al., 2023). Their large
language model (LLM) successors (Touvron et al., 2023; Team et al., 2023; Jiang et al., 2023;
2024; Team et al., 2024; Anthropic, 2024) have pushed the bar higher, but these behemoths
have become performative at the price of enormous amounts of computation and memory
demands. One significant contributor is the model size itself. Not only is storage an issue,
model layers tend to be wide and plenty, slowing down inference. Moreover, given the
existence of sparse structures in LLMs, especially in feedforward (FF) blocks (Geva et al.,
2020; Dettmers et al., 2022; Li et al., 2022; Liu et al., 2023), these models waste computation
on intermediate features with little to no impact on the final result. For instance, it has been
observed that in OPT-175B (Zhang et al., 2022), fewer than 5% of neurons in FF blocks have
nonzero values per token (Liu et al., 2023), meaning 95% of the compute in each FF block is
wasted. Usually consisting of around two-thirds of the parameters in an LLM, FF blocks can
be serious memory and compute bottlenecks. These inefficiencies are highly problematic in
latency-sensitive scenarios like in chatbots and autonomous vehicles.

There have been many methods to exploit sparsity in LLMs for efficiency gains, such as
pruning model weights and constructing mixtures of experts (MoEs). Pruning removes
low-impact pre-trained weights to reduce storage, yet this often does not translate to real
speed-ups in practice, unless the pruning is done in a structured and hardware-friendly
manner (Xia et al., 2022; Santacroce et al., 2023; Ma et al., 2023; Li et al., 2023; Xia et al.,
2023) which typically causes greater performance deterioration. MoEs better preserve the
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original performance by adaptively selecting subsets of the model to use per input but also
come with drawbacks. Unless the model has been trained in this fashion (Fedus et al., 2022;
Jiang et al., 2024), it will need to learn a cheap yet effective gating function (expert selection
mechanism) and sometimes even require full fine tuning. Perhaps an even bigger weakness
of many of these methods is the limited effectiveness and special considerations to strictly
enforce ReLU-like activation functions (Zhang et al., 2021; Li et al., 2022; Csordás et al.,
2023). In summary, pruning and MoEs provide enormous benefits but also come with steep
challenges:

1. Structured sparsity is difficult and costly to enforce without serious performance
degradation.

2. Adaptive selection of model subsets need to be cheap and accurate.
3. The method should be effective with various activation functions.

Daunting at first, these challenges become surmountable because of a simple observation of
a phenomenon we call flocking, highly consistent sparse activations that persist throughout a
sequence observed in many LLMs. Flocking emerges in FF activations (inputs into the FF down
projection) when we focus on a sequence’s relative activation magnitudes instead of the absolute
values. Examples from Llama 2 7B and Gemma 7B are shown in Figure 1. The key takeaway is
that neurons which produce high relative magnitudes are naturally shared across tokens within a
sequence, as seen with the distinct vertical streaks. Increasingly bizarre, the two models have
different architectures and different non-ReLU activation functions.

Figure 1: Relative FF activation magnitudes of the first 512 features and tokens across a
sequence from PG-19 (Rae et al., 2019; Gao et al., 2020) in layer 10 of Llama 2 7B (left) and
Gemma 7B (right). These heatmaps show flocking, where relative activation magnitudes are
shared within a sequence, illustrated with the distinct dark vertical streaks. More examples
in Appendix E.

Unlike existing pruning or MoE methods, we exploit flocking in our design of GRIFFIN
(Gating by Repetition In Feedforward Intermediate Neurons), a highly performative and
efficient training-free method to adaptively activate FF neurons. GRIFFIN does this by using a
sequence’s prompt to determine the experts to activate during generation, allowing it to
overcome all of the aforementioned challenges:

1. No Preparation: Our no-cost method is completely training-free and requires no
calibration. Moreover, the simple implementation of GRIFFIN means it can be
dropped into any FF block and instantly deployed.

2. Simple Expert Selection: Flocking in the prompt reveals the most relevant FF
neurons for generation with little to no performance loss. The selection process is
parameter-free and adds negligible overhead.

3. Model & Activation Function Diversity: Thorough experimentation demonstrates
the efficacy of GRIFFIN on numerous models, including Llama 2 (Touvron et al.,
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2023), Gemma (Team et al., 2024), Mistral (Jiang et al., 2023), OPT (Zhang et al.,
2022), and ReluLlama (Team, 2023). Together, the tested activation functions include
ReLU, SwiGLU, GEGLU, and ReGLU (Shazeer, 2020).

In this paper, we show GRIFFIN is a simple and strong adaptive structured pruning method
because of flocking. In the next section (Section 2), we discuss in more detail some strengths
and weaknesses of current methods that seek to improve FF efficiency. Then, we formalize
the problem we are trying to solve, along with its motivation in Section 3. We present our
novel approach in Section 4.2, which requires a thorough examination of the surprising
phenomenon of flocking shared by many LLMs in Section 4.1. Our rigorous experiments
demonstrate GRIFFIN preserves performance on classification and generation even after
removing 50% of FF neurons (Section 5.1), all while having lower latency (Section 5.2). For
instance, GRIFFIN reduces the number of active parameters in Llama 2 13B from 13B to
8.8B during generation to improve latency by 1.25× with almost no loss in performance.
Finally, we show our method’s incredible scalability and robustness in several ablation
studies (Section 5.3).

2 Background

Our novel method and FF activation observations are inspired and motivated by ample
amounts of previous research that sought to characterize FF sparsity and accelerate LLMs.

Feedforward Activation Sparsity. The observation that transformer FF blocks produce
sparse activations is not new (Geva et al., 2020; Dettmers et al., 2022; Li et al., 2022; Dong et al.,
2023; Liu et al., 2023). In ReLU-based LLMs like OPT (Zhang et al., 2022), the activations
can be exceptionally sparse and become more apparent for larger models (Liu et al., 2023).
As more models use non-sparse activation functions like GLU variants (Shazeer, 2020), it
is difficult for neurons to have no contribution to the output since these functions do not
have an interval that maps to zero. Without exact sparsity, the efficacy of these methods
becomes limited. As such, this has ushered a wave of models that are either adapted from
available models (Zhang et al., 2021; Liu et al., 2021; Mirzadeh et al., 2023; Zheng et al., 2024;
Jiang et al., 2024) or trained from scratch (Fedus et al., 2022) which can produce activations
that are exactly zero with little to no performance loss. Even so, these methods require
considerable amounts of computational resources.

Pruning. Pruning (LeCun et al., 1989) is one sparsity-guided way to tackle compute and
memory bottlenecks of models. Previously, the common method would be some variation
of iteratively rounding weights down to zero based on some score and retraining to recover
any lost performance (Frankle & Carbin, 2018; Blalock et al., 2020; Liang et al., 2021; Liu
et al., 2024). While this can result in most parameters being pruned, this method comes with
a few issues. First, with the increasing scale of LLMs, retraining becomes impractical for
most. Fortunately, cheap methods to effectively prune LLMs have been developed (Frantar
& Alistarh, 2023; Sun et al., 2023; Jaiswal et al., 2023; Dery et al., 2024). The second issue is
that unless pruning is done in a structured manner (Xia et al., 2022; Santacroce et al., 2023;
Ma et al., 2023; Li et al., 2023; Xia et al., 2023), it is difficult to see real computational savings,
yet structured pruning often leads to much more severe performance degradation. Third,
pruning usually enforces sparsity to be static at inference which can be strong assumption
since FF blocks are widely believed to contain the model’s memory (Geva et al., 2020).

Mixture of Experts. Making sparsity more dynamic has motivated the design of mixture-
of-experts (MoEs) (Jacobs et al., 1991) to avoid computing low-impact features in trained
models at varying granularities (Zhang et al., 2021; Liu et al., 2023; Piórczyński et al., 2023;
Csordás et al., 2023; Yerram et al., 2024; Zheng et al., 2024). The main idea of MoEs is to
use a gating function to identify a small subset of neurons that will be used to compute the
layer’s output, an adaptive form of pruning. In the ideal case, all active neurons are selected
and inactive neurons are ignored for each input. However, current methods either require
training or rely on ReLU or ReLU-like activation functions.
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3 Problem Formulation

This section contains an overview of different components of the FF block followed by a
formulation of the FF compression problem which our method aims to tackle. Since FF
blocks operate identically and independently for each token unlike attention, we begin with
defining the FF block with a single column vector input x ∈ RD:

FF(x) = FF2(FF1(x)︸ ︷︷ ︸
z

) (1)

where FF2(z) = W2z + b2 is a linear transformation and FF1 is nonlinear. This describes a
wide range of FF architectures and arbitrary activation functions σ. For instance, in OPT,

FF1(x) = σ(W1x + b1). (2)

For FF blocks with GLU variants such as in Llama 2 and Gemma,

FF1(x) = σ(Wgx + bg)⊙ (W1x + b1) (3)

where ⊙ signifies element-wise multiplication. For all examples, W1, Wg ∈ RDFF×D and
W2 ∈ RD×DFF where typically, DFF ≫ D. We refer to z = FF1(x) as the FF activations.

A popular method to compress FF blocks (which is also the goal of GRIFFIN, adaptive
neuron pruning, and many MoE methods) is to find Ŵ1 ∈ Rk×D, b̂1 ∈ Rk, and Ŵ2 ∈ RD×k

(additionally Ŵg ∈ Rk×D and b̂g ∈ Rk if needed) where k < DFF such that when the FF
block is reparameterized with these matrices, the output value is preserved. Namely, for

ẑ = F̂F1(x) = σ(Ŵgx + b̂g)⊙ (Ŵ1x + b̂1), (4)

F̂F2(ẑ) = Ŵ2ẑ + b2, (5)

FF(x) ≈ F̂F2(F̂F1(x)), and similarly for FF blocks with non-GLU functions. For instance,
in the MoE setting, these smaller matrices can vary from token to token and are actually
selections of chunks of the original structures. Crucially, a solution to this problem leads to
multiplication with smaller matrices which are naturally more efficient on GPUs and TPUs
(Fatahalian et al., 2004; Wang et al., 2019). Note that for all equations defined in this section,
they operate independently on each row of a length S sequence input X ∈ RS×D (e.g. the
activations for a sequence are Z = FF1(X) ∈ RS×DFF ).

4 From Flocking to GRIFFIN

Here, we take deeper dive into the phenomenon of flocking and describe the intuitive
algorithm of GRIFFIN which is directly inspired by it.

Figure 2: Average Jaccard similarity between WikiText samples’ top FF neuron activations
in Llama 2 7B (left) and Gemma 7B (right). Higher values indicate greater similarity.
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Figure 3: GRIFFIN overview. Relative activations from the prompt determine expert neurons
to use for generation.

4.1 Observing Flocking

Flocking arises when we look at the relative impact of each neuron per token within a
sequence. To see this, we normalize rows of Z to be unit vectors to construct Z ∈ RS×DFF

(i.e. [Z]i = [Z]i/∥[Z]i∥2), the relative activations. We show example relative activation
magnitudes for a sequence in Llama 2 7B and Gemma 7B in Figure 1. Since there are
distinct vertical streaks, this intriguingly implies that activations that have relatively greater
weight are common across all tokens in a sequence. Notably, Llama 2 7B and Gemma 7B
use SwiGLU and GEGLU activations, respectively, along with other major architecture
differences. We call this phenomenon flocking, like highly organized groups of birds, and
we observe this in virtually all FF layers (see Appendix E) and randomized inputs (see
Appendix C).

While relative activations magnitudes are shared within a sequence, they are not generally
shared between sequences. We show this by taking the ℓ2-norm of Z along the token axis to
obtain a length DFF vector for each sample or sequence, roughly capturing the contribution
of each FF neuron throughout a sequence. Taking the top-k of this for each sample at each
layer, we find the Jaccard similarity between two sequences based on the indices selected
for different k. In other words, we compute the intersection over union of every unique
pair of top-k sets. Higher values indicate more similar top-k sets. From Figure 2 where
we aggregate Jaccard similarities across WikiText (Merity et al., 2016) samples, we observe
a lack of inter-sample activation similarities for the vast majority of layers in Llama 2 7B
and Gemma 7B, unless the sets of selected neurons are large. This lack of consistency implies
statically pruning entire FF neurons without retraining would be less effective than a more adaptive
method.

4.2 GRIFFIN Algorithm

Using our insight on flocking, we introduce GRIFFIN as a simple general purpose and
training-free adaptive structured pruning method for efficient generation, captured in
Figure 3. In a nutshell, we select neurons during the prompt phase of each sample which
are then used for the entire duration of the generation phase. This effective approach is
based on a key observation on flocking: since tokens within a sequence share activation patterns,
the prompt and generated tokens will also share activation patterns.

Prompt Phase Expert Neuron Selection. Our expert neurons are chosen at the sequence
level, so we need to consider the dynamics of the entire input sequence rather than just
a single token when choosing our neurons. To select expert neurons, we need a statistic
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MODEL HELLASWAG PIQA COPA ARC-E ARC-C BOOLQ

LLAMA 2 7B 57.16 78.07 87.00 76.35 43.34 77.71
MAGNITUDE 57.12 77.31 84.00 70.33 40.27 66.54
GRIFFIN 57.11 77.69 86.00 74.54 42.75 73.15

LLAMA 2 13B 60.06 79.05 90.00 79.46 48.46 80.61
MAGNITUDE 60.00 79.00 88.00 74.07 46.25 70.52
GRIFFIN 60.10 79.11 89.00 77.19 46.84 78.50

GEMMA 7B 60.61 80.30 88.00 82.74 50.09 83.49
MAGNITUDE 46.24 73.12 57.00 45.20 32.76 62.84
GRIFFIN 60.62 79.98 88.00 81.65 50.09 81.90

MISTRAL 7B 61.21 80.58 92.00 80.89 50.43 83.61
MAGNITUDE 61.15 80.36 86.00 74.20 48.89 60.40
GRIFFIN 61.18 80.52 91.00 79.25 50.00 80.06

OPT 6.7B 50.48 76.28 81.00 65.53 30.55 66.12
MAGNITUDE 49.21 72.63 79.00 47.60 27.13 40.15
GRIFFIN 50.44 75.63 80.00 63.93 30.55 65.44

OPT 13B 52.46 75.90 86.00 67.05 32.94 65.81
MAGNITUDE 51.31 74.21 81.00 49.41 28.07 38.75
GRIFFIN 52.42 76.17 86.00 66.92 33.19 67.65

Table 1: Classification tasks (0-shot unnormalized accuracy) at 50% FF sparsity.

s ∈ RDFF to inform us of the importance of each neuron. At the prompt phase, we do this
by taking the ℓ2-norm of Z along the token axis:

s =
[
∥[Z]·,1∥2 · · · ∥[Z]·,D∥2

]⊤ . (6)

Taking the indices of the top-k across s gives us the neurons we will use for this sample’s
generation phase which make up the set E . Using the expert neurons in E , we can find
Ŵ1, b̂1, Ŵg, b̂g, and Ŵ2 by selecting corresponding rows and columns in W1, b1, Wg, bg, and
W2, respectively. This is done for every FF block during the prompt phase. Illustrated in
Appendix A, s highlights neurons consistently activated at relatively high intensities.

Generation with Expert Neurons. When generating tokens, we directly use the pruned
layers which contain the expert neurons, F̂F1 and F̂F2, to estimate FF(X) ≈ F̂F2(F̂F1(X))
for all future tokens. In Llama 2 13B and Gemma 7B, this reduces the active number of
parameters from 13B to 8.8B and from 8.5B to 5.4B, respectively, during generation.

5 Experiments

We showcase the superb performance of GRIFFIN on numerous tasks and models (Sec-
tion 5.1) while achieving lower latency (Section 5.2), along with a study on several of its
properties like sequence length scaling and batching (Section 5.3). All experiments are run
on NVIDIA L40 GPUs.

5.1 Performance

Using various models, we evaluate on several generation and classification tasks. For
generation, we evaluate on XSum (Narayan et al., 2018), CNN/DailyMail (Nallapati et al.,
2016), COQA (Reddy et al., 2019), and SCROLLS QASPER (Dasigi et al., 2021; Shaham
et al., 2022). For classification, we evaluate on HellaSwag (Zellers et al., 2019), PIQA (Bisk
et al., 2020), COPA (Roemmele et al., 2011), ARC-Easy/Challenge (Clark et al., 2018), and
BoolQ (Clark et al., 2019). With the exception of XSum and CNN/DailyMail, we use LM
Evaluation Harness for our experiments (Gao et al., 2023). Aside from comparing with
the original LLM, we also compare GRIFFIN with a static neuron pruning method based
on neuron magnitudes. Similar to neuron magnitude pruning, this baseline selects expert
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MODEL XSUM CNN/DAILYMAIL COQA QASPER
(ROUGE-1/2/L) (ROUGE-1/2/L) (F1/EM) (F1)

LLAMA 2 7B 27.15/9.06/22.62 10.08/0.13/9.55 77.35/63.88 26.31
MAGNITUDE 9.71/1.31/8.59 9.66/0.63/9.32 56.59/39.93 12.93
ADAPTIVE WANDA 25.59/8.18/21.34 9.90/0.26/9.39 77.16/63.53 27.61
GRIFFIN 24.75/7.41/20.55 10.97/0.66/10.37 77.18/63.58 25.76

LLAMA 2 13B 26.90/9.45/22.09 2.51/0.22/2.34 79.18/66.37 28.32
MAGNITUDE 5.72/0.78/5.06 0.02/0.00/0.02 65.69/47.87 15.55
ADAPTIVE WANDA 24.65/8.08/20.29 1.13/0.11/1.07 79.43/67.43 27.98
GRIFFIN 25.69/7.85/20.89 3.31/0.78/3.07 79.22/66.62 27.91

GEMMA 7B 26.86/9.15/22.03 17.45/4.15/15.94 79.04/65.25 30.78
MAGNITUDE 1.49/0.01/1.47 0.00/0.00/0.00 2.92/1.50 7.02
ADAPTIVE WANDA 24.76/7.79/20.39 12.10/2.21/11.20 75.79/61.87 30.62
GRIFFIN 25.86/7.81/20.93 18.26/4.75/16.58 78.52/64.62 27.37

MISTRAL 7B 28.67/10.21/23.64 0.28/0.01/0.28 80.70/67.30 24.56
MAGNITUDE 3.58/0.27/3.31 0.26/0.03/0.26 61.99/45.93 17.18
ADAPTIVE WANDA 25.42/8.40/21.16 0.16/0.00/0.14 80.68/67.60 24.73
GRIFFIN 26.59/8.70/22.17 1.26/0.21/1.17 80.15/66.50 23.92

OPT 6.7B 23.60/7.04/19.46 13.85/1.54/13.04 68.70/54.98 18.53
MAGNITUDE 1.63/0.00/1.54 1.20/0.00/1.17 31.53/16.52 7.28
ADAPTIVE WANDA 22.40/6.04/18.57 12.94/1.14/12.23 69.01/55.22 18.47
GRIFFIN 21.17/5.42/17.58 13.01/1.06/12.26 68.99/55.00 17.40

OPT 13B 25.14/7.93/20.80 13.22/1.18/12.46 69.51/55.67 20.58
MAGNITUDE 1.23/0.00/1.21 1.29/0.00/1.29 39.38/27.07 8.87
ADAPTIVE WANDA 23.68/6.97/19.71 13.58/1.48/12.82 69.60/56.03 21.30
GRIFFIN 22.11/6.28/18.29 12.92/1.13/12.20 69.07/54.83 20.16

RELULLAMA 2 7B 25.10/7.81/20.76 20.95/6.79/19.24 78.49/66.73 23.31
MAGNITUDE 9.09/0.22/8.20 8.50/0.14/8.17 19.43/6.48 7.21
ADAPTIVE WANDA 22.62/6.47/18.82 17.46/5.56/16.13 78.96/66.97 21.38
GRIFFIN 21.83/5.88/18.09 16.85/4.96/14.69 78.35/67.10 22.29

Table 2: Generation tasks XSum (1-shot), CNN/DailyMail (1-shot), CoQA (0-shot), SCROLLS
QASPER (0-shot) at 50% FF sparsity. Magnitude neuron pruning fails in almost every case
while GRIFFIN effectively preserves performance.

neurons based on neuron magnitudes in W1 for the generation phase but uses the entire FF
blocks for prompting like GRIFFIN. In the case of GLU variants, the neuron-wise norms
of W1 and Wg are elementwise multiplied to produce the pruning metric. As we will see,
this straightforward baseline achieves great classification results but falters for generation.
Another baseline we consider also uses the full model for the prompt and Wanda (Sun et al.,
2023) in FF blocks for generation, using the prompt activations to prune FF weights. We
refer to this adaptive unstructured pruning baseline as Adaptive Wanda. Note that Adaptive
Wanda is completely unstructured and does not reduce the FF activation dimension at all.

As our method is designed specifically for generation, we alter classification evaluations
to simulate generation. In typical classification tasks, LLMs do not enter the generative
phase since the final token output of the prompt phase indicates the class. Consequently,
directly applying GRIFFIN for classification tasks trivially yields the exact performance of
the original model. Therefore, we treat all tokens but the final input token as the prompt.
Then, the model is forced to go into the generation phase for one step.

We start with a look into the relationship between the sparsity levels and performance
degradation. This translates to varying k when we select the top-k of our statistic s. To
compare the performance degradation across multiple tasks, we plot the ratio of the final
performance metrics between GRIFFIN and the full model in Figure 4. We see most of the
performance is preserved at 50% FF sparsity in Llama 2 7B, Gemma 7B, and Mistral 7B.
Different tasks have different tipping points where performance sharply drops, which may
be related to the difficulty of the task (Yin et al., 2024).
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Figure 4: Relative performance of GRIFFIN for Llama 2 7B (left), Gemma 7B (center), and
Mistral 7B (right) as we enforce varying degrees of sparsity per FF block. For all tasks, the
original model’s performance for each task is normalized to 1.

MODEL SETUP PROMPT FULL MAGNITUDE GRIFFIN

LLAMA 2 13B 2048+128 0.5 6.8 5.4 / 5.0 5.4 / 5.1
2048+2048 0.5 119.1 95.0 / 83.4 94.9 / 82.8

GEMMA 7B 2048+128 0.3 4.5 4.1 / 4.2 4.2 / 4.1
2048+2048 0.3 87.1 67.7 / 65.0 67.4 / 65.0

Table 3: Generation phase latency (s). We denote “P + G” as the task of generating G tokens
from a length P prompt. When relevant, times are in the format 50% / 75% FF sparsity.

Fixing FF sparsity to be 50%, we evaluate on more tasks and models. Table 1 and Table 2
show the performance of GRIFFIN on classification and generation, respectively. We see
that magnitude neuron pruning achieves reasonable results for classification but completely
annihilates the original performance in most generation settings. For generation, Adaptive
Wanda and GRIFFIN perform similarly, preserving most of the performance for all models.
However, GRIFFIN is able to accomplish this in a structured manner which allows it to be
more efficient in practice. For example outputs, see Appendix D. Base models Mistral 7B
and Llama 2 13B perform poorly on 1-shot CNN/DailyMail, as they often repeated “\n” or
items from the example shot. With 3 shots, both obtain Rouge-1 scores above 25.

5.2 Efficiency

We now present efficiency metrics of GRIFFIN. We collect synthetic datasets with samples
having identical lengths and average results across samples. Like many MoE methods,
GRIFFIN is ideal for single sample inputs since it is adaptive, such as in the case of personal
devices, so we use batch size 1 for these experiments. Using Hugging Face implementations
of Llama 2 13B and Gemma 7B at FP16 precision, we measure the latency in different
scenarios on an NVIDIA L40 GPU.

Recalling that our magnitude selection baseline is essentially neuron pruning at generation,
this has the best possible speed-up since there is no expert neuron selection overhead per
sample. From Table 3, GRIFFIN matches the best case, producing up to a 1.29× and 1.25×
improvement in latency for long generation at 50% FF sparsity in Gemma 7B and Llama
2 13B, respectively. This illustrates that our method is as fast as a static neuron pruned
LLM during generation while being adaptive to preserve the accuracy of the full model. In
offloading settings with large models, our method has the potential to further accelerate
inference. For a prompt, GRIFFIN essentially performs structured pruning on the massive
network, and if this pruned model can fit on a single device, it will avoid offloading for the
entirety of generation.

5.3 Ablations and Analysis

Prompt vs. Generation Length. We find that GRIFFIN can potentially be made more
robust for long generation by lengthening the prompt. To see this, we use language modeling

8



Published as a conference paper at COLM 2024

on the concatenated version of WikiText to simulate generation. For a length S input into
the FF block, we designate the first P tokens as the prompt and the last G tokens as the
generated portion such that P + G = S. The prompt partition is used to calculate our
statistic s and determine the expert neurons. The prompt partition uses the full FF block
while the generation partition only uses the selected neurons. When comparing the original
model with GRIFFIN, we only compute the perplexity of the outputs from the generation
partition since the other outputs will be identical. Based on Figure 5, GRIFFIN gets closer to
the full model outputs when the prompt length increases and generation length decreases,
meaning the difficulty with long generation can be suppressed with longer prompts.

Figure 5: Prompt length vs. generation length for Llama 2 7B (left) and Gemma 7B (right) as
measured by increase in perplexity (PPL) from the full model on concatenated WikiText at
50% FF sparsity.

Sharing Selected FF Neurons. We further verify that GRIFFIN is simultaneously robust to
batching and more performative than fixed neuron pruning methods using similar pruning
metrics to s in (6). As such, GRIFFIN maintains its reliability as we extend beyond single
inputs.

For static pruning, we test two methods. One is to use the example shot in the prompt to
compute s. Then, for all samples with the same shot, we select the same FF neurons for
generation. With the other method, we can extend (6) such that s̄ can be a pruning metric
for multiple inputs (i.e. the same FF neurons will be pruned). Suppose that si is the metric
for sample i with prompt length Si. Then, we use

s̄ = ∑
i

si√
Si

(7)

to select FF neurons. Finding a global s̄ across all prompts in a dataset is the second method.
Therefore, for a particular dataset, both methods have fixed expert neurons across samples.

To extend GRIFFIN to larger batch sizes, we use s̄ from (7) where the samples in a batch
are aggregated. Thus, adaptability is maintained. From Table 4, GRIFFIN (even with batch
size >1) achieves better performance than the static methods, reinforcing the performance
benefit of adaptability. Interestingly, even though performance decays as we increase the
batch size, the decay is slow.

MODEL FULL SHOT GLOBAL GRIFFIN (1) GRIFFIN (4) GRIFFIN (16)

LLAMA 2 7B 27.15 21.11 23.28 24.75 24.26 23.75
GEMMA 7B 26.86 19.76 22.48 25.86 25.01 24.37

Table 4: Rouge-1 scores of 1-shot XSum with varying ways to use the same selected neurons
across multiple samples. From left to right, the scores are the result of the full model, FF
neurons selected based on the prompt, FF neurons selected based on the entire dataset,
and GRIFFIN in batch sizes of 1, 4, and 16. All pruning methods use the full model for the
prompt and 50% of the FF neurons during generation.
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6 Conclusion

In this work, we have shown a special form of sparsity in FF layers and a simple method to
exploit it. Flocking is a curious phenomenon present in many LLMs where tokens within
a sequence activate neurons at similar intensities. This structure motivated the design of
GRIFFIN, a learning-free adaptive structured pruning mechanism to remove FF neurons
during inference at the sequence level which preserves the full model’s performance on a
large collection of classification and generative tasks at 50% FF sparsity while achieving
lower latency. Furthermore, its applicability extends beyond just ReLU-based LLMs. With
its straightforward algorithm and no-cost deployment, GRIFFIN expands the accessibility
of numerous LLMs for generative inference.
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A Pruning Metric

Here we present visualizations of our gating statistic s from (6). For a single sample, we
find s and sort the entries normalized between 0 and 1 in Figure 6. In both models, values in
s are heavily concentrated in a handful of features. Since s aggregates the relative activation
magnitudes across tokens, this implies s can capture heavily and frequently activated
neurons.

Figure 6: Sorted entries of s for each layer of Llama 2 7B (left) and Gemma 7B (right) with a
sequence from PG-19 as the input. Each line is a layer.

B Sampling-based Selection

Here, we verify that given the statistic s, top-k expert selection produces better results than
sampling-based methods. The methods we compare against include sampling based on
the weights in s and combining top-k selection for half of the experts followed by weighted
sampling. Based on Table 5, we can see that sampling generally degrades performance
much more.

Table 5: Comparison between different expert selection methods at 50% FF sparsity.

SELECTION METHOD XSUM CNN/DAILYMAIL COQA QASPER
(ROUGE-1/2/L) (ROUGE-1/2/L) (F1/EM) (F1)

Llama 2 7B
FULL 27.15/9.06/22.62 10.08/0.13/9.55 77.35/63.88 26.31
TOP-k 24.75/7.41/20.55 10.97/0.66/10.37 77.18/63.58 25.76
SAMPLING 21.04/5.22/17.12 8.78/0.49/8.28 76.15/62.53 24.46
TOP-k + SAMPLING 24.35/7.08/20.07 10.45/0.48/9.88 77.12/64.17 25.22

Gemma 7B
FULL 26.86/9.15/22.03 17.45/4.15/15.94 79.04/65.25 30.78
TOP-k 25.86/7.81/20.93 18.26/4.75/16.58 78.52/64.62 27.37
SAMPLING 20.25/5.16/16.79 8.34/1.71/7.72 75.02/59.93 24.97
TOP-k + SAMPLING 24.47/7.43/19.98 10.93/2.60/9.98 76.76/62.12 27.09

C Sparsity in Random Sequences

As further exploration into flocking, we investigate this phenomenon with random inputs.
As input sequences, we use a sample from concatenated WikiText, a permuted version of
that sample, and completely random sequence where tokens are uniformly sampled from
the vocabulary. Seen in Figure 7, this structure exists in permuted and random inputs,
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perhaps even more consistently than in unperturbed sequences. This suggests something
within language actually diversifies the activations, the cause of which would be of interest
for future work.

Figure 7: First 512 tokens and their relative FF activation magnitudes in layer 18 of Gemma
7B when inputting the original WikiText sequence (left), permuted sequence (center), and
random tokens (right). Best viewed zoomed in.

D Generation Examples

We show example generated text in Figure 8. Adaptive Wanda and GRIFFIN produce
similar summaries compared to the those produced by the full models and the target.

E More Flocking Examples

We provide more example of flocking across different layers of the LLM. Figure 9 and
Figure 10 show flocking in Gemma 7B. Figure 11 and Figure 12 show flocking in Llama 2 7B.
Flocking in Gemma 7B is more visually distinct while activations in Llama 2 7B are more
distributed.
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Figure 8: Generation examples by Llama 2 7B and Gemma 7B, given a prompt (BBC, 2016)
from XSum (1-shot).
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Figure 9: First 512 tokens and their relative FF activation magnitudes in layers 1 to 20 of
Gemma 7B when inputting a sequence from PG-19.
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Figure 10: First 512 tokens and their relative FF activation magnitudes in layers 21 to 28 of
Gemma 7B when inputting a sequence from PG-19.

Figure 11: First 512 tokens and their relative FF activation magnitudes in layers 1 to 16 of
Llama 2 7B when inputting a sequence from PG-19.
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Figure 12: First 512 tokens and their relative FF activation magnitudes in layers 17 to 32 of
Llama 2 7B when inputting a sequence from PG-19.
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