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Abstract

Generalized policy and execution efficiency constitute the two critical challenges in
robotic manipulation. While recent foundation policies benefit from the common-
sense reasoning capabilities of internet-scale pretrained vision-language models
(VLMs), they often suffer from low execution frequency. To mitigate this dilemma,
dual-system approaches have been proposed to leverage a VLM-based System 2
module for handling high-level decision-making, and a separate System 1 action
module for ensuring real-time control. However, existing designs maintain both sys-
tems as separate models, limiting System 1 from fully leveraging the rich pretrained
knowledge from the VLM-based System 2. In this work, we propose Fast-in-Slow
(FiS), a unified dual-system vision-language-action (VLA) model that embeds the
System 1 execution module within the VLM-based System 2 by partially sharing
parameters. This innovative paradigm not only enables high-frequency execution
in System 1, but also facilitates coordination between multimodal reasoning and
execution components within a single foundation model of System 2. Given their
fundamentally distinct roles within FiS-VLA, we design the two systems to incorpo-
rate heterogeneous modality inputs alongside asynchronous operating frequencies,
enabling both fast and precise manipulation. To enable coordination between the
two systems, a dual-aware co-training strategy is proposed that equips System 1
with action generation capabilities while preserving System 2’s contextual under-
standing to provide stable latent conditions for System 1. For evaluation, FiS-VLA
outperforms previous state-of-the-art methods by 8% in simulation and 11% in real-
world tasks in terms of average success rate, while achieving a 117.7 Hz control
frequency with action chunk set to eight. Project web page: fast-in-slow.github.10.

1 Introduction

The undamental objective of robotic manipulation learning [3} 4} 5,16] is to convert real-world sensory
data and human instructions into precise control signals. Simultaneously, enabling robots to execute
a broad spectrum of tasks while adapting to variations in objects and environments remains the
core challenge. Recently, some works [7, 18} 9 [10L [11} [12] have sought to leverage the pretrained
knowledge of foundational vision-language-models (VLMs) [13} [14} [15} 16, 17, [18] to enable
generalized manipulation by fine-tuning these models on robotic datasets [[19,20], giving rise to the
vision-language-action (VLA) models. However, these methods, with their billion-scale parameters
and autoregressive action generation, lead to low operating frequencies, which constrain responsive
closed-loop control and hinder real-world application.
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Figure 1: Overview of FiS-VLA. (a) Unlike previous dual-system VLA methods [, 2] that attach a
separate policy head as System 1, FiS-VLA (b) repurposes the final transformer blocks of an intact
VLM as System 1, while retaining the full model for System 2 reasoning. Under this paradigm,
FiS-VLA achieves superior performance and high-frequency control, as shown in (c) and (d).

Drawing inspiration from Kahneman’s dual-system theory [21]] that “System I is fast, intuitive, and
unconscious, while System 2 is slow, logical, and involves deliberate reasoning”, recent works have
explored incorporating dual-system design into VLA models. Most recent end-to-end approaches
[22,1231124] leverage VLM as System 2 for high-level feature extraction, while appending an additional
policy head as System 1 to transform VLM outputs into executable action poses. Building on a
similar architecture, methods such as [2} 1, 25] design dual-system frameworks with asynchronous
operating frequencies, further clarifying the distinct roles of System 1 and System 2. While these
methods improve execution efficiency, their System 1, as a lightweight separate model, lacks internet-
scale pretrained knowledge and depends solely on feature representations extracted by System 2,
thus failing to fully leverage the reasoning capabilities within System 2’s VLM. Considering these
limitations, and motivated by the functional abstraction of Kahneman’s dual-system theory, we raise a
question: “If a VLM model serves as the central decision-making module of the robot, can it integrate
System 1 and System 2 processes to enable coordinated reasoning and execution?”

To this end, we propose Fast-in-Slow (FiS), a VLA foundation model that integrates the fast execution
capabilities of System 1 into a pretrained VLM, while preserving its inherent System 2 contextual
understanding and generation capabilities. As shown in Figure [T} unlike prior dual-system VLA
approaches [}, 125] that attach System 2 with an independent policy model as System 1, FiS-VLA
repurposes the final transformer blocks of System 2 into a high-efficiency execution module, serving
as System 1. Under this dual-system paradigm, FiS-VLA enables seamless coordination between the
two systems, as both are derived from the same foundation model without altering its connectivity
structure. Since System 2 handles understanding and reasoning while System 1 focuses on rapid
action execution, we design the two systems with heterogeneous modality inputs and asynchronous
operating frequencies. For System 2, it operates at a lower frequency, processing 2D observations
and language instructions into multimodal latent representations that guide System 1’s actuation.
For System 1, we systematically investigate the impact of various high-frequency inputs for robot
control, including the robot state, 2D images, and 3D point clouds. Notably, since 3D geometric
information is critical for precise manipulation [26, 27]], we utilize a fast 3D embedding strategy that
tokenizes point clouds [28]] and processes them through a shared vision encoder to extract spatial
features, which directly condition the System 1 for geometry-aware interaction.

To jointly optimize the reasoning and execution components in FiS-VLA, we introduce a dual-
aware co-training strategy. For the execution component (System 1), we adopt the probabilistic and
continuous nature of diffusion modeling [3} 29, 30] by injecting noised actions as latent vectors into
the embedding space of System 1 to learn action generation. For the multimodal comprehension
component (System 2), we exploit an autoregressive next-token prediction objective to maintain
its discrete action generation or high-level language planning capabilities and preserve the overall
coherence and integrity of System 2. Under this co-training approach, FiS-VLA first undergoes
large-scale pretraining on open-source robotic datasets [31} 20l 32] comprising more than 860K
trajectories. It is then fine-tuned on high-quality, self-collected real-world and simulation data [33]]. In
both real-world and simulated experiments, FiS-VLA achieves state-of-the-art (SOTA) manipulation
performance. Meanwhile, FiS-VLA demonstrates strong generalization to unseen objects, complex



backgrounds, and diverse lighting conditions, regardless of the robot type. With a 1:4 operating
frequency ratio between System 2 and System 1, FiS-VLA achieves a 117.7 Hz control frequency on
an NVIDIA 4090 GPU with action chunk set to eight. In summary, our contributions are as follows:

* We propose Fast-in-Slow (FiS), a unified dual-system VLA model that embeds System
1 execution within a pretrained VLM while preserving its inherent System 2 reasoning
capabilities, thereby enabling seamless coordination between both systems.

* Given that System 2 and System 1 serve fundamentally distinct roles within FiS-VLA, we
systematically design them with heterogeneous modality inputs and asynchronous operating
frequencies, enabling both fast and precise manipulation.

* We propose a dual-aware co-training strategy to jointly optimize System 2 and System 1 in
FiS-VLA. Our model demonstrates SOTA performance in both single-arm simulation and
dual-arm real-world experiments, while maintaining a high execution frequency.

2 Related Work

Vision-language-action models. Early approaches for robot manipulation primarily relied on rein-
forcement learning with reward functions derived from proprioceptive signals [|34} 35,136 137], as
well as imitation learning based on visual observations [38] 39, 140l 13]]. More recently, increasing
attention has been directed toward integrating vision-language models (VLMs) into robotic sys-
tems [411 142114311441 [12] [11}145] 146} 30], leading to the emergence of Vision-Language-Action (VLA)
models. These models leverage the reasoning capabilities of VLMs to directly predict low-level
SE(3) poses for manipulation tasks. A common approach among prior works [47, |48, (7} 49] in-
volves autoregressive next-token prediction to generate action sequences. However, such methods
often suffer from action discontinuities and low execution frequency. To mitigate this, some VLA
models [50, 51} 152} 53] incorporate a policy head to enable continuous action prediction. Recent
studies [27} 154,155 156 I57]] emphasize the value of 3D spatial information for robotic manipulation,
making 3D observations a common strategy to boost spatial understanding and accuracy. Further-
more, it has been demonstrated [[7, 122} 30} [10] that pretraining VLA models on large-scale robotic
datasets [19} 20} 32, |58]] can significantly improve their generalization capability. However, these
VLA methods commonly suffer from low action generation frequency and still lack the adaptability
to adjust their behavior with low latency in response to dynamic task requirements.

Dual-system design in VLA. To improve the execution frequency of VLA models, some recent
methods split the framework into two systems. System 2 is responsible for high-level task reasoning,
while System 1 focuses on low-level action generation. Methods such as [23] 22} 159, 24] adopt a
VLM as System 2 to produce a latent feature. This latent feature is then used as a condition for a
diffusion-based action head (System 1). However, in these methods, System 1 and System 2 typically
operate at the same frequency, limiting System 1’s potential for high-frequency action generation. We
refer to this design as a synchronous dual-system architecture. Additionally, [60}[1}61} 2} [25]] adopt
a similar architecture but operate System 2 and System 1 at different frequencies. This asynchronous
design further improves the overall action generation frequency of the VLA model. Moreover, some
methods [62}63] attempt to incorporate subtask decomposition within a synchronous dual-system
architecture to enhance task planning. Nevertheless, all of these methods introduce a new untrained
System 1 policy head and rely solely on features extracted by the System 2 VLM, thus failing to fully
leverage the VLM’s pretrained knowledge and reasoning capabilities [64]. In this work, we propose
FiS-VLA, an asynchronous architecture that integrates a System 1 execution module into a System 2
VLM, enabling seamless coordination between the two systems within a single pretrained model.

3 Fast-in-Slow Dual-System VLA

In this section, we introduce our proposed FiS-VLA framework, as shown in Figure[2] We begin in
section [3.1] with a formal problem formulation. In section[3.2] we describe the overall architecture
of FiS-VLA. The core idea of our approach is to retain an intact VLM for System 2 reasoning,
while repurposing its final transformer blocks into a System 1 execution module. This design
constructs System 1 not as an independently injected module, but as a component that inherits the
VLM’s pretrained knowledge and maintains coherent understanding of the intermediate reasoning
outputs of System 2, while meeting the low-latency demands of real-time control. In Section [3.3]
we present the motivation and detail the mechanisms for designing the two systems to operate at
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Figure 2: Framework of FiS-VLA. FiS-VLA leverages an intact VLM for System 2 reasoning
while repurposing the final transformer blocks of the LLM for System 1 execution module. System 2
handles low-frequency inputs such as 2D images and language instructions and produces intermediate
latent features that serve as conditioning information for System 1. Instead of being conditioned
solely on these periodically updated high-level representations, System 1 processes high-frequency
inputs including 3D point clouds, 2D images, and robot states to produce stable and responsive
actions. For joint optimization, we introduce a dual-aware co-training strategy that combines a
diffusion denoising objective with an autoregressive objective which enables FiS-VLA to support fast
action generation while retaining System 2’s multimodal reasoning capabilities.

asynchronous frequencies with different input modalities. Finally, in Section 3.4} we show our
dual-aware co-training strategy that jointly optimizes both systems. Within this training framework,
FiS-VLA leverages System 1 for continuous action generation while employing System 2 for discrete
action or language generation.

3.1 Problem Formulation

Following 22]), VLA models typically learn robotic control policies through imitation learning
on heterogeneous demonstration datasets D. The training objective is to maximize the likelihood of
generating temporally extended action sequences a;.; f7, conditioned on multimodal observations
o¢—1 and language instructions . In this work, we construct comprehensive observations, including
the robot state, multi-view images, and 3D point clouds. Formally, given the policy model 7y, this
corresponds to the optimization problem:

max E(as.sm001,0)~D 108 To(ars4m | 0t-1,1)] .

The action a can represent different control spaces and control modes. In this work, we employ 7-DoF
end-effector pose control for the single-arm Franka Panda robot in simulation, consisting of 3-DoF
for relative positional offsets ([Az, Ay, Az] € R?), 3-DoF for rotation (represented as Euler angles,
€ R3), and 1-DoF for gripper state (open/closed, € R!). For real-world experiments, to validate
our model’s robustness across different robot embodiments and control modes, we employ 14-DoF
control on the AgileX and 16-DoF control on the AlphaBot dual-arm robots, under the end-effector
pose control and joint position control, respectively.

3.2 FiS-VLA Architecture

We begin by presenting an overview of the FiS-VLA architecture, as shown in Figure 2] Similar
to prior VLA methods [7, 22]], FiS-VLA inherits the base architecture and initializes pretrained
parameters from Prismatic VLMs [16]. The model primarily consists of a vision encoder and a LLM,
with an additional lightweight 3D tokenizer introduced to efficiently process point cloud inputs.

Vision encoder. We employ both SigLIP [65] and DINOv2 [66] to jointly extract visual repre-
sentations that capture high-level semantic features and local spatial details. Specifically, for each



input image, we first resize it to 224x224 pixels. The image is then processed by both encoders,
yielding two distinct feature representations fS8L1FP ¢ RNvx1024 apd fDINO ¢ RNuvx1152 \where
N, represents the token dimension. These two features are concatenated along the channel dimension,
resulting in a unified visual embedding for further processing.

Point cloud encoder. To investigate the impact of 3D geometric information on robotic manipulation,

we incorporate point cloud data P = {p; € RB}&}, which is derived from a single-view depth map
using camera intrinsics and extrinsics. [V, denotes the number of points. Unlike some approaches [54,
27 that directly process point clouds with newly injected 3D encoders, our method first transforms
the point cloud into high-dimensional tokens using a lightweight 3D tokenizer [67]. Specifically, the
3D tokenizer consists of three blocks, each containing farthest point sampling [68]] for downsampling,
the k-nearest neighbors algorithm for local aggregation, and a learnable linear layer for feature
encoding. The tokenized representation is then processed by our shared vision encoder to extract local
spatial features, following [28]]. This design offers two key advantages: first, it effectively projects
3D information into the LLM’s embedding space by leveraging the vision encoder of the pretrained
VLM with vision-language alignment capabilities; and second, it avoids obvious parameter increase
and maintains computational efficiency.

LLM backbone. The 7B LLaMA2 [69] model is adopted as the LLM backbone for FiS-VLA.
LLaMAZ? is a decoder-only transformer architecture consisting of 32 blocks, where the input and
output of each block can be viewed as high-dimensional representations of a token sequence. Previous
works [24} 70] find that, in VLA models, leveraging intermediate LLM representations instead of
the final layer for action generation improves downstream policy success rates without degrading
multimodal representation quality. Therefore, we repurpose the final few blocks of the LLM for
System 1 to condition on intermediate latent features from System 2, enabling efficient, low-latency
responses. To ensure that System 2 maintains its full reasoning capability, we incorporate the complete
LLM as its core component, forming a “fast system within slow system" architecture that balances
rapid action generation with deep contextual reasoning.

MLP components. To further clarify the FiS-VLA architecture, we describe the remaining auxiliary
components, all of which are implemented as MLPs. First, a pretrained vision-language projector is
employed to map 2D and 3D features into the LLM’s textual embedding space, which is initialized
from the pretrained VLM. In parallel, the robot proprioceptive state is encoded using a state encoder.
Given that we adopt diffusion-based action generation for System 1, two additional MLPs are
incorporated to project the timestep and noised actions as continuous vectors.

3.3 Dual-System Coordination

Asynchronous frequency design. FiS-VLA is structured into two components: a slow System 2
and a fast System 1, inspired by Kahneman’s dual-system theory [21]. Since System 2 VLM with
billion-scale parameters, it operates at a low frequency to perform high-level semantic understanding
and contextual reasoning. In our framework, it interprets task-relevant visual observations and
language instructions, and produces a comprehension output in the form of latent features from an
intermediate block of the LLM. Building on previous action chunking methods [39, 3], the instruction
and scene observation at time step ¢ can provide guidance for a future horizon of action steps (a;.¢4 ).
Consequently, System 2’s intermediate output serves as a latent condition that temporally guides
System 1’s action generation across the following H time steps. In contrast, System 1 focuses on
generating executable actions in real time. At each time step, it leverages the most recent observation
to generate actions, while being conditioned on the periodically updated high-level reasoning output
from System 2. This behavior resembles intuitive and reactive responses, positioning System 1 as a
high-frequency action generation module.

To achieve this, we investigate the coordination frequency between the two systems. A central question
is that “How many future action steps can be effectively guided by the intermediate comprehension
output from System 2?" We empirically explore the effect of varying horizon lengths (e.g., 1, 2,
4, ..., n) in the ablation study. This corresponds to setting the operating frequency ratio between
System 2 and System 1 to 1:n, as our robot’s hardware does not support deploying the two systems
on separate GPUs for parallel inference, unlike the implementation in Helix [25]]. While parallel
inference can further improve model speed, we focus on the fundamental research question of
identifying the optimal coordination ratio between two systems. In Figure[2] to ensure that System 1
can effectively interpret the latent conditions produced by System 2 from earlier horizon steps, we



employ asynchronous sampling during training to reduce the operating frequency of System 2. This
encourages the System 1 execution module to maintain temporal consistency in task understanding.

Heterogeneous modality input. The two systems in FiS-VLA are designed to serve fundamentally
distinct purposes. System 2 is responsible for high-level task understanding and scene reasoning,
whereas System 1 is optimized for fast, reactive control. In line with these different objectives, we
propose that each system should be provided with input modalities specifically tailored to its function.
Since the System 2 VLM has undergone internet-scale pretraining on image-text paired data, we
provide it with both language instructions and 2D visual observations to fully exploit high-level
semantic reasoning capabilities. In contrast, System 1 is tasked with generating executable actions
in real time, conditioned on a comprehensive representation of the robot’s current environment.
We carefully explore the information required for accurate and responsive control. First, System
1 must receive low-latency 2D images of the current scene. To enhance temporal consistency in
closed-loop control, the robot’s current state is also essential. Furthermore, since the robot must
reason about spatial relationships and interact with complex spatial configurations, we additionally
provide 3D point cloud data to support precise manipulation. Ultimately, the System 1 execution
module integrates the three input modalities with the periodically updated latent feature from System
2, jointly serving as the conditioning context for diffusion-based action generation. Our experimental
results confirm that each modality contributes meaningfully to the success of the manipulation tasks.

3.4 Training Objective and Recipe

Dual-aware co-training strategy. The core objective of FiS-VLA is to generate accurate and
executable actions. To this end, we leverage the continuous nature of diffusion modeling, which
typically yields more reliable actions than discrete prediction approaches [22} 23]]. Given an initial
action sequence @, we inject Gaussian noise 7 ~ N(0, I) at a randomly chosen timestep 7 ~ U(1, T,
where 7 € Z and T = 100. The forward process adds noise in closed form: a, = v/B,a++/1 — 3.1,
where (3, denotes the noise scaling factor according to a predefined schedule [71]. To train System 1
7o, , we formulate the learning process as an optimization problem over the following objective:

Lo =Ercan |In =70, (V/Bra+ V1= Brne. 7). M

where ¢ denotes the conditioning sources. In FiS-VLA, ¢ consists of two components: the low-
frequency latent feature extracted from System 2, and the high-frequency input to System 1. Since the
System 1 execution module is embedded within the System 2 VLM, exclusively training the model for
diffusion-based action generation may lead to catastrophic forgetting of its autoregressive reasoning
capability. To mitigate this issue, we propose a joint training objective to the entire VLA model that
preserves System 2’s reasoning ability by incorporating next token prediction with a cross-entropy
loss. The autoregressive supervision signal can be either discrete actions [7, 49]] or language-based
plans [50, 8], depending on the construction of the robotic training data. As an example with discrete
actions, we define the objective as follows:

D,
Lijow = — Z log P(a; | (context), ), )

i=1
where D, represents the total length of discrete action tokens, a; denotes the i-th ground-truth action
action token, and P(a; | context, 6) is the probability predicted by the LLM given the input context
and model parameters ¢ (6 C ¢). Finally, we derive the overall training objective to update the

FiS-VLA model.

Lris-via = Lpast + Lstow- 3)

Pretraining recipe. Prior to pretraining FiS-VLA, we initialize the model with parameters from
a pretrained VLM [16], following the method established in [7, 22]]. We curated a specialized
pretraining dataset by carefully processing and filtering large-scale cross-embodiment datasets
including Open X-Embodiment [19]], DROID [20], ROBOMIND [32], and so on. As detailed in
Appendix [A] this dataset comprises over 860K trajectory samples. FiS-VLA was trained on this
dataset for five epochs, with both system inputs consisting solely of a single image as observation.
Since the pretraining data contains no subgoal-level language instructions, we initially supervise
System 2 using discrete action sequences. During fine-tuning, we enhance the System 2 objective with
additional language supervision by incorporating manually annotated sub-task plans and applying
automated augmentation.



Table 1: Comparison of FiS-VLA and baselines on RLBench. All methods are trained in the
multi-task setting [73], and we report success rates (S.R.) based on the evaluation criteria defined in
RLBench. Inference speed is evaluated on an NVIDIA 4090 GPU with action chunk set to one.

Models Close Close( Toilet Sweep Close Phone  Umbrella frame Wine at ~ Water ‘ Mean Infer.
box laptop lid  seatdown todustpan fridge on base out off hanger rack plants | S.R. & Var speed
ManipLLM [48]  0.50 0.80 0.40 0.20 0.80 0.35 0.10 0.25 0.15 0.20 | 0.38 £0.04 | 22Hz
OpenVLA [7 0.65 0.40 0.75 0.50 0.80 0.20 0.35 0.15 0.10 0.10 | 040 +0.04 | 63Hz
7o [23 0.90 0.80 0.95 0.30 0.85 0.30 0.30 0.70 0.10 0.30 | 0.55+0.03 | 13.8 Hz
CogACT [22] 0.90 0.80 0.95 0.50 0.85 0.50 0.55 0.45 0.30 025 | 0.61 £0.04 | 9.8Hz
FiS-VLA 1.00 1.00 0.95 0.55 0.90 0.50 0.50 0.70 0.55 0.20 | 0.69 +0.03 | 21.9Hz

4 Experiments

In Section 4.1 we compare the manipulation performance and inference speed of FiS-VLA with prior
methods in simulated environments. The effectiveness of each component is evaluated in Section
and Appendix [B] Section[d.3] presents both quantitative and qualitative results for FiS-VLA on real-
world manipulation tasks, including dual-arm control under different robot configurations. Finally, in
Section[4.4] we demonstrate the generalization capabilities of FiS-VLA by assessing its performance
on previously unseen objects, backgrounds, and lighting conditions.

4.1 Simulation Experiment

Simulation benchmark. In order to fully evaluate our method, we tested on 10 various manipulation
tasks in the RLBench [33] benchmark based on the CoppeliaSim simulator, including Close box,
Close Laptop, Toilet seat down, Sweep to dustpan, Close fridge, Phone on base, Take umbrella out,
Frame off hanger, Wine at rack, and Water plants. All the tasks were performed on a Franka Panda
robot, using the front-view camera to get the input RGB image and point cloud. We collect the data
by following pre-defined waypoints and utilizing the Open Motion Planning Library [72]. Building
upon the frame-sampling technique employed in previous studies [[73} 15, 28], we construct a training
dataset where each task contains 100 trajectories.

Training and evaluation details. We compare FiS-VLA against four state-of-the-art (SOTA) VLA
models, including ManipLLM [48], OpenVLA [7]], m([23], and CogACT][22], where the latter two
are dual-system methods but operate with synchronous frequencies. For baselines, we load the official
pretrained parameters provided by each method and adhere to their respective fine-tuning settings. For
FiS-VLA’s input, the single-view RGB image is resized to 224 x 224, the point cloud is downsampled
to 1024 points, the text instruction is derived from simulation, and the robot state is aligned with the
predicted actions. FiS-VLA model is trained for 300 epochs using the AdamW optimizer [[74] on 8
NVIDIA A800 GPUs, with mixed-precision training employed. All methods utilized the officially
provided pre-trained parameters and underwent full fine-tuning. Following [22| S]], we evaluate all
methods using 20 rollouts from the latest epoch checkpoint, repeating the evaluation three times for
each task and reporting the average success rate along with the variance.

Quantitative results. As shown in Table [1} FiS-VLA achieves an average success rate of 69%
across 10 diverse tasks, surpassing the previous SOTA methods CogACT and 7y by margins of
8% and 14%, respectively. In particular, FiS-VLA achieves superior performance on 8 out of 10
tasks, highlighting the robustness of its action generation capabilities. By embedding the System
1 execution module within the intact VLM (System 2), FiS-VLA leverages the VLM’s pretrained
knowledge for action generation and enables more effective interpretation of System 2’s latent feature
guidance. In terms of control frequency, FiS-VLA operates at 21.9 Hz, over 2x faster than CogACT
(9.8 Hz) and more than 1.6x faster than 7wy (13.8 Hz), with action chunk set to one. Note that 7
employs a 2.6B-parameter LLM, while both CogACT and our FiS-VLA are based on a 7B-parameter
LLM. The results demonstrate that our asynchronous input frequency design significantly improves
the inference speed of VLA models. Moreover, the Fast-in-Slow framework facilitates effective
coordination between the two systems, leading to enhanced manipulation accuracy.

4.2 Ablation Study

To analyze the impact of each component on overall performance within the FiS-VLA, we conduct
ablation experiments on 10 RLBench tasks using the same settings as the simulation experiments.
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Figure 3: Ablation study. We investigate the impact of (1) the parameters of System 1’s shared
blocks within System 2, (2) different modality inputs to System 1, and (3) the operating frequency
ratio between the two systems on final manipulation success rates.

(1) The parameters of System 1’s shared blocks within System 2. In this exploration, we set the
operating frequency ratio between the two systems to 1:4 and use all modality inputs. By gradually
increasing the number of shared transformer blocks reconstructed from the VLM-based System
2 into the fast System 1 (from 1 to 8), we observe an improvement in manipulation performance,
which tends to saturate when two blocks are used. These results show that embedding System 1
within the VLM-based System 2 enables it to inherit rich pretrained knowledge, achieving stable
manipulation with relatively few parameters while maintaining high inference speed. (2) Different
modality inputs to System 1. We compare the combinations of input information into fast System 1,
evaluating the cases of using only latent features from slow System 2, adding robot state, and further
incorporating 2D images and 3D point clouds. System 1 is composed of 2 transformer blocks, and
the asynchronous frequency ratio between the two systems is set to 1:4. The results show that each
modality substantially contributes to improving manipulation performance. The robot state provides
access to the robot’s internal status, while 3D point clouds enhance the understanding of geometric
structure and spatial relationships. (3) The operating frequency ratio between the two systems.
We empirically set different asynchronous frequency ratios between System 2 and System 1 (from
1:1 to 1:8). Note that in this experiment, we use 2 transformer blocks for System 1 while retaining all
modality inputs. The results show that when the ratio is 1:4, FiS-VLA excels the best performance,
striking a perfect balance between slow reasoning and fast action generation. This validates that
the asynchronous coordination frequency design not only improves the action generation rate but
also increases the informational richness of observations provided to the execution module. (4)
Training strategy. If Loy, is removed during training, manipulation performance drops from 69% to
62%. This result underscores the importance of our dual-aware co-training strategy, which preserves
the integrity and inherent reasoning capabilities of the System 2 model, thereby providing more
effective latent guidance for System 1 execution. To further assess whether preserving System 2’s
reasoning improves FiS-VLA'’s action generation, we replaced discrete action supervision with task
plans automatically generated by Gemini [75] and manually verified. FiS-VLA achieves a 73%
average success rate with plan-based co-training, outperforming the 69% obtained using discrete
actions. This suggests that explicit reasoning supervision leads to more accurate conditioning of
System 1 and improved performance. More ablation experiments can be found in Appendix [B]

4.3 Real-World Experiment

Self-collected data. For dual-arm tasks, we evaluate four tasks on the Agilex Robot and AlphaBot
respectively, each equipped with three camera views: a static exterior view, a right-wrist view, and
a left-wrist view. On the Agilex Robot, we conduct the following four tasks: 1) Pick objects and
place in basket, 2) Lift ball and place in basket, 3) Place bottles at rack, 4) Wipe blackboard. On the
AlphaBot, we perform another set of four tasks: 1) Pick bowl and place object, 2) Handover object
and place, 3) Pour water and move cup, 4) Fold towel and place in bucket. For each task, we collect
100 demonstrations via master-puppet teleoperation, with objects placed in varying positions on the
table to ensure diversity. Additional implementation details can be found in the Appendix [A]

Training and evaluation details. We evaluate FiS-VLA against 7y [23]], using the same training
setup as in simulation, with the exception of three-view RGB inputs for real-world dual-arm tasks.
Evaluation is conducted using the final checkpoint over 20 rollouts across varied tabletop positions.
Note that we control the Agilex Robot using end-effector poses and the AlphaBot using joint positions,
demonstrating our model’s effectiveness across different robot control paradigms.



Table 2: Comparison of FiS-VLA and 7 in real-world scenarios. We train all methods in a

single-task setting [26] and report the success rates. Success is determined by human evaluation
based on whether the task is completed.

Agilex Dual-Arm Robot Task ‘ AlphaBot Dual-Arm Robot Task
Models Pick Liftball  Place bottles Wipe Mean | Pick bowland Handover Pour water Fold towel Mean
and place  and place at rack blackboard S.R.T | place object and place and move  and place S.R. T
o [23] 0.70 0.75 0.55 0.35 0.59 0.65 0.75 0.65 0.40 0.61
FiS-VLA 0.80 0.75 0.70 0.45 0.68 0.80 0.80 0.75 0.60 0.74

Grasp Wine Bottles and Place at Rack : Handover Object and Place into Plate

"

Figure 4: Visualization of real-world experiments with Agilex and AlphaBot dual-arm robots.

-

-:.:i':;

Use Eraser to Wipe Blackboard

Pour Water and Move Cup onto Coaster

Quantitative and qualitative results. As shown in Table 2] FiS-VLA consistently outperforms the
baseline 7 across eight real-world tasks. On the Agilex Robot, FiS-VLA achieves a mean success
rate of 68%, compared to 59% for 7y. Notably, FiS-VLA achieves significantly higher success rates
in complex manipulation tasks requiring precise spatial reasoning. For example, in the Place Bottles
at Rack task, our method attains a 70% success rate compared to my 55%. Similarly, on the AlphaBot
platform, FiS-VLA achieves a higher mean success rate of 74%, surpassing 7y 61%. The greatest
improvement is seen in the Fold towel and put task, which involves manipulating deformable objects.
Qualitative results in Figure f] showcase FiS-VLAs ability to execute diverse tasks across robots,
including sequential bottle manipulation and blackboard erasing on Agilex, as well as fine-grained
actions like pouring water on AlphaBot. These outcomes highlight the model’s effective coordination
of high-level reasoning and low-latency control, enabling adaptive behavior in real-world settings.
Additional visualizations and failure cases are provided in Appendix [Cland [D] respectively.

4.4 Generalization Experiment

To evaluate the generalization of FiS-VLA in real-world settings, we conduct three test scenarios
involving unseen manipulated objects, complex backgrounds, and varying lighting conditions, as
shown in Table[3|and Figure[5] We compare FiS-VLA with the baseline model 7 on two tasks: place
bottles at rack using the Agilex platform and Pick bowl and place object using the AlphaBot platform.
(1) Unseen manipulated objects. This experiment evaluates the generalization of FiS-VLA to
novel object instances. For example, the banana is replaced with a visually distinct hot dog bun.
FiS-VLA demonstrates a smaller performance drop compared to 7y across both platforms. Notably,
on AlphaBot, FiS-VLA experiences only a 19% reduction in accuracy, whereas my suffers a 38%
drop. These results demonstrate that under the proposed FiS-VLA dual-system paradigm, embedding
the System 1 execution module within the VLM-based System 2 allows it to better inherit the rich
pretrained knowledge of the VLM and more effectively interpret the high-level reasoning latent
features provided by System 2. (2) Complex backgrounds. To simulate distracting environments,
we introduce visually cluttered scenes containing irrelevant objects such as mugs, hamburgers,
and bottles. These test whether the model can comprehend human instructions and task-relevant
information while ignoring distractions. FiS-VLA demonstrates more stable performance than g,
with only a 25% drop in accuracy on AlphaBot and a 29% drop on Agilex. This validates that System
2 of FiS-VLA excels at focusing on semantically relevant objects through contextual reasoning,
while System 1 ensures execution remains aligned with real-time visual cues. (3) Varying lighting
conditions. Lighting variation is a common real-world challenge that often negatively impacts the
model’s perception. In this setting, FiS-VLA still demonstrates strong generalization capabilities,
achieving over 50% manipulation success on both robotic platforms. These results highlight the



Table 3: Generalization experiments. “Object”, “Background”, and “Lighting” refer to unseen
manipulated objects, complex backgrounds, and illumination disruption, respectively.

Task Place Bottles at Rack Pick Bowl and Place Object

Robot Agilex Robot AlphaBot

Models FiS-VLA o | FiS-VLA 0

Original 0.70 0.55 0.80 0.65

Object 0.55 (-21%) 0.40 (-27%) 0.65 (-19%) 0.40 (-38%)

Background 0.50 (-29%) 0.35 (-36%) 0.60 (-25%) 0.40 (-38%)

Lighting 0.50 (-29%) 0.40 (-27%) 0.55 (-31%) 0.35 (-46%)
Object Background Lighting

Original Object Background Lighting

A BV

Figure 5: Visualization of generalization setting with key differences highlighted using red box.
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importance of the heterogeneous modality input design in FiS-VLA’s dual systems, which enhances
robustness to perceptual perturbations.

5 Conclusion and Limitation

In this paper, we introduce Fast-in-Slow, a novel dual-system VLA foundation model that embeds a
fast execution module (System 1) seamlessly within a VLM-Based slow reasoning model (System 2),
thereby achieving high-frequency action generation while maintaining the reasoning capability of
pre-trained VLMs. We conducted a comprehensive investigation into the dual-system architecture,
analyzing their divergent task objectives, asynchronous operating frequencies, and heterogeneous
input modalities. Furthermore, we propose a novel dual-aware co-training strategy that enables joint
optimization of both systems. However, FiS-VLA statically configures the shared parameters of Sys-
tem 1 within System 2 and the collaboration frequency between the two systems. We hypothesize that
enabling dynamic adaptation of these factors based on task demands and environmental complexity
could lead to a more robust and generalizable model, which will be a key focus of our future work.
Finally, the social impact of our work is detailed in Appendix [E]
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We did.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We did.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not have theoretical proof.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We did.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We did.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We did.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We did.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We did.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Yes.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We did not pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We did.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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14.

15.

16.

Answer: [NA]
Justification: We did not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We did not involve with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We didn’t.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix [A] Additional Dataset Details. In this section, the construction of real-world datasets
for large-scale pretraining is described. Subsequently, the self-collected simulator and real-world
datasets used for downstream task fine-tuning are introduced.

AppendixE]Additional Quantitative Results. In this section, we present additional ablation studies,
which include an investigation into the impact of action chunking on manipulation performance
and control frequency, as well as a deeper exploration of heterogeneous modality inputs for System
1 and System 2. Moreover, we conducted experiments to validate the effectiveness of both the
shared parameters in FiS-VLA and the proposed method using a small-scale LLM backbone. Finally,
we report the detailed success rates for each task across all ablation experiments, including those
presented in both the main paper and the appendix.

Appendix [C|Additional Qualitative Results. In this section, we provide additional visualizations of
both simulation and real-world tasks. Compared to the main paper, this part offers a more detailed
illustration of the execution process for each task.

Appendix [D| Failure Case Analysis. In this section, we analyze failure cases observed when
deploying FiS-VLA to control dual-arm robots in real-world scenarios.

Appendix [E| Broader Impact. A brief discussion on the potential broader impact of our work.

A Additional Dataset Details

A.1 Large-scale pretraining dataset

Similar to RDT [29]] and CogACT [22]], we assemble a large-scale pre-training dataset by integrating
existing open-source robotic datasets. Our pre-training corpus consists of 37 datasets, totaling 860k
trajectories and 36 million frames. By including both single-arm and recent dual-arm datasets such as
RDT and RoboMIND [32], our pre-training corpus enhances the model’s ability to generalize across
diverse robotic control configurations. Table ] provides a comprehensive list of all datasets used in
pre-training along with their corresponding sampling weights. Both the number of trajectories and
sampling weights can be automatically adjusted during dataset assembly. Following the preprocessing
pipeline introduced in [7]], we reformulate the dataset to preserve both end-effector trajectory control
and joint position control for robot actions. Regarding observations, due to structural discrepancies
across datasets, we use only single-view 2D RGB images as visual inputs during pre-training.
During fine-tuning, FiS-VLA supports both single-view and multi-view inputs, depending on the task
requirements and robot hardware configuration. For instance, in AgileX and AlphaBot dual-arm robot
tasks, we use three camera views: one exterior camera and two wrist cameras, in order to mitigate
occlusions caused by the robot arms. Furthermore, leveraging our heterogeneous modality design,
the Fast System 1 of FiS-VLA is equipped to process point cloud data derived from exterior-view
depth maps, computed using the camera’s intrinsic and extrinsic parameters. It is worth noting
that, although the number and modality of input images differ between pre-training and fine-tuning,
the training objectives and overall training recipe remain consistent. Consequently, this variation
does not degrade downstream manipulation performance; instead, the integration of multi-view and
multimodal inputs contributes to a more robust manipulation policy.

A.2 Simulation dataset

We follow the simulation setup used in PerAct and RVT, employing CoppeliaSim to collect 10
RLBench[33] tabletop tasks, which are executed using a Franka Panda robot equipped with a two-
finger parallel gripper. These tasks cover pick-and-place, tool use, articulated object manipulation,
and several precise control tasks, including: Close box, Close laptop, Toilet seat down, Sweep to
dustpan, Close fridge, Phone on base, Take umbrella out, Frame off hanger, Wine at rack, and Water
plants, similar to prior work [30L 28]]. Although the simulator environment includes multiple RGB-D
cameras, we only leverage the front-view camera to obtain RGB images and point cloud inputs.
Following previous work [5[73]], we collect 100 trajectories per task using pre-defined waypoints and
the Open Motion Planning Library, and apply the same frame-sampling method to extract keyframes
for building the training dataset. The visualizations of the execution process in simulation are shown
in Figure[§|and Figure[9]
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Table 4: The dataset name and sampling weight used in our mixed large-scale pretraining
dataset.

Training Dataset Mixture

Fractal [40] 6.8%
Kuka [76] 10.5%
Bridge[77., 78] 4.9%
Taco Play [[79,180] 2.5%
Jaco Play [81]] 0.4%
Berkeley Cable Routing [82] 0.2%
Roboturk [83]] 2.0%
Viola [84] 0.8%
Berkeley Autolab URS [85]] 1.0%
Toto [86]] 1.7%
Language Table [87] 3.7%
Stanford Hydra Dataset [88]] 3.8%
Austin Buds Dataset [89] 1.8%
NYU Franka Play Dataset [90] 0.7%
Furniture Bench Dataset [91]] 2.1%
UCSD Kitchen Dataset [92] <0.1%
Austin Sailor Dataset [93]] 1.9%
Austin Sirius Dataset [[94] 1.5%
DLR EDAN Shared Control [95]] <0.1%
IAMLab CMU Pickup Insert [96] 0.7%
UTAustin Mutex [97] 1.9%
Berkeley Fanuc Manipulation [98]] 0.6%
CMU Stretch [99] 0.1%
BC-Z [100] 6.3%
FMB Dataset [101]] 6.0%
DobbE [102] 1.2%
DROID [20] 14.2%
Stanford Kuka Dataset [103]] 0.3%
Stanford Robocook Dataset [104] 0.2%
Columbia Cairlab Pusht Real [3]] <0.1%
UCSD Pick and Place 0.8%
Maniskill [[105] 7.5%
Berkeley RPT [106] <0.1%
QUT Dexterous Manipulation [107] <0.1%
RoboSet [108]] 5.2%
BridgeData V2 [78]] 9.3%
RoboMind [32] 1.2%

A.3 Self-collected real-world dataset

For real-world experiments, we evaluate four tasks each on the Agilex Robot and the AlphaBot robot.
Below, we detail the hardware configurations, data collection protocols, and task setting for both
platforms.

Agilex robot setup. As summarized in Table[5] the Agilex Robot is equipped with two 6-DoF arms
mounted on a mobile base. As shown in Figure[6] two Orbbec DABAI cameras capture the left and
right wrist views, while a RealSense 435 camera mounted overhead provides exterior-view RGB
images and point cloud data. All cameras record at 30 Hz. For trajectory recording and control, we
use end-effector poses. The four tasks conducted on the Agilex Robot are as follows:

1) Pick objects and place in basket. The robot uses both arms to pick up two objects according to a
language command and place them into a container. This task assesses the model’s understanding of
spatial positioning.
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RealSense 435

(a) Agilex dual-arm robot (b) AlphaBot dual-arm robot

Figure 6: Real-world assets and camera configurations. We present visualizations of the real-world
assets and camera setups used in the Agilex and AlphaBot dual-arm robot tasks, respectively.

Table 5: The hardware setups of the two dual-arm robots, including the number of joints and
their corresponding angle ranges of motion.

Agilex dual-arm robot AlphaBot dual-arm robot
Joint number Angle range Joint number Angle Range

J1 —154° ~ +154° 1 —178° ~ +178°
12 0° ~ +195° 2 —130° ~ +130°
I3 —175° ~ 0° I3 —178° ~ +178°
J4 —106° ~ +106° J4 —135° ~ +135°
J5 —75° ~ +75° J5 —178° ~ +178°
J6 —100° ~ +100° J6 —128° ~ +128°
- - J7 —180° ~ +180°

2) Lift ball and place in basket. The robot must synchronize both arms to grasp a ball held between
the grippers and transport it without slippage. This task evaluates dual-arm coordination.

3) Place bottles at rack. Each arm grasps a bottle from its side, rotates it, and aligns it parallel to the
rack. This task tests inter-object relationship reasoning and precise rotational manipulation.

4) Wipe blackboard. One arm holds the board while the other erases red marker using an eraser. This
setup tests precise, coordinated actions in dual-arm scenarios.

AlphaBot robot setup. As shown in Table[3] the AlphaBot leverages two 7-DoF arms mounted on a
mobile base. As shown in Figure[6] three RealSense 435 cameras are used to capture the left wrist,
right wrist, and exterior views, while only the exterior view is used for point cloud generation. All
modalities are recorded at 30 Hz. To evaluate the model’s robustness to different control schemes, we
adopt joint position control for both trajectory collection and inference execution. For each task, we
collect 100 demonstrations using master-puppet teleoperation, with object positions randomized on
the table to promote data diversity. Language instructions are manually created and diversified via
augmentation. The four tasks evaluated on the AlphaBot include:

1) Pick bowl and place object. The robot uses its left arm to pick up a bowl and its right arm to pick
up an object, placing the object into the bowl. This task involves coordinated dual-arm manipulation,
where each arm performs distinct, asymmetric roles.

2) Handover object and place. The right arm picks up an object and hands it to the left arm. The
arms must avoid collisions and ensure proper grasp alignment. The left arm then places the object
into a plate. This task serves as a comprehensive benchmark for evaluating the model’s capabilities in
3D perception, grasp reasoning, and dual-arm motion planning. It poses significant challenges while
remaining highly practical for real-world bimanual manipulation scenarios.

3) Pour water and move cup. The robot grasps a cup handle with its right arm, rotates it to pour
water into another cup, then moves the receiving cup to a coaster. This task combines high-precision
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Figure 7: Ablation studies on action chunk size and input variants of FiS-VLA. (Left) Impact
of different action chunk sizes on success rate and inference speed. While increasing action chunk
size leads to improved inference speed, success rate remains relatively stable. (Right) Comparison of
success rates among FiS-VLA and its input variants, showing FiS-VLA achieves the best performance.

pose control, physical reasoning, and multi-stage planning, making it a representative benchmark for
evaluating precision-oriented manipulation capabilities

4) Fold towel and place in bucket. The robot folds a deformable towel using both arms, then places it
into a bucket. This task evaluates coordinated manipulation of deformable objects.

B Additional Quantitative Results

B.1 Action chunking for robust and high-Frequency robot control

In closed-loop control of robots, a key challenge is the compounding of errors, where an early mistake
can cascade into subsequent decisions, ultimately driving the system’s observations far from the
training distribution and leading to unrecoverable failures [109]. To mitigate this issue, inspired
by the concept of action chunking, researchers have explored predicting multiple actions at once
[29} 122,123 [110]. This approach reduces the number of decision points along a trajectory, thereby
decreasing the opportunity for error accumulation. Moreover, it enables higher effective control
frequencies, resulting in smoother and more continuous robot motions. By considering sequences
of actions jointly, the model can enforce temporal consistency and avoid abrupt changes that could
physically damage the robot. In this work, we investigate the effect of action chunking by predicting
future action sequences of length H ranging from one to eight, as illustrated in Figure|/|and Table
E} We observe that the performance of FiS-VLA remains stable across different values of H, while
the control frequency increases proportionally. Notably, when predicting eight future actions in a
single step, the theoretical control frequency reaches up to 117.7 Hz, demonstrating the potential of
our method for high-speed, high-fidelity robotic control.

B.2 Multi-modal input configuration analysis

In our study, we found that incorporating multi-modal inputs consisting of 2D images, 3D point
clouds, and robot state information into System 1 of FiS-VLA significantly improves execution
accuracy. Based on this observation, we conducted a more comprehensive investigation to evaluate
the impact of different combinations of these modalities when provided to System 1 and System
2. We refer to these configurations as the input variants of FiS-VLA. The results are presented in
Figure[7]and Table[I2] In Variant 1, System 2 receives language instructions, 2D images, and 3D
point clouds, while System 1 takes 2D images and robot state as input. This configuration leads to
slightly lower control accuracy compared to the original FiS-VLA. In Variant 2, the robot state input
is moved from System 1 to System 2, resulting in a marginal performance drop relative to Variant 1.
Finally, in Variant 3, we explored a configuration where both System 1 and System 2 receive 2D
images and 3D point clouds. Additionally, System 1 receives the robot state and System 2 receives
the language instruction. This setup achieves performance that is nearly equivalent to the original
FiS-VLA. These results demonstrate the robustness and flexibility of the FiS-VLA architecture in
integrating multi-modal information for high-precision robotic control.
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B.3 Effectiveness of Parameter Sharing

To evaluate the effectiveness of our parameter-sharing design, we conducted the following ablation
studies. Experiment 1: The VLM serves as System 2, and the last two LLM layers are duplicated
to form an independent System 1. This configuration supports both autoregressive generation from
System 2’s VLM and diffusion-based action prediction through the duplicated LLM layers. The entire
system is trained using identical settings with FiS-VLA. Experiment 2: This experiment mirrors
the setup of Experiment 1, with the difference being that four LLM layers are duplicated instead
of two. As shown in the Table[6] both variants underperform compared to FiS-VLA. We attribute
this to feature misalignment. The LLM was pretrained across all 32 layers, enabling hierarchical
(layer-by-layer) processing. Duplicating the last few layers breaks this chain (e.g., in Experiment 1,
the new 31st layer in System 1 must process outputs from System 2’s 32nd layer), despite never being
pretrained to do so. This disrupts feature compatibility and limits performance. In contrast, FiS-VLA’s
parameter-sharing keeps the LLM’s original structure and information flow intact. System 1 remains
embedded within System 2, preserving pretrained knowledge while enabling action execution. This
design proves more efficient and effective than separated architectures.

Table 6: Results of additional Transformer blocks as System 1 on RLBench.

Close Close Toilet Sweep Close  Phone  Umbrella Frame Wine at ~ Water Mean

box  laptoplid seatdown todustpan fridge on base out off hanger rack plants | S.R. & Var
Experiment 1 0.80 0.95 0.95 0.55 0.80 0.55 0.40 0.70 0.30 0.10 | 0.61 +0.03
Experiment 2 0.90 0.85 0.90 0.35 0.90 0.45 0.45 0.50 0.45 0.10 | 0.59 +0.05
FiS-VLA 1.00 1.00 0.95 0.55 0.90 0.50 0.50 0.70 0.55 0.20 | 0.69 +0.03

B.4 Performance of FiS-VLA with a Smaller-Scale LLM

We further conducted an additional comparison using the 2.7B Phi-2 model as the LLM backbone.
To ensure fairness, FiS-VLA (2.7B) was also pretrained on the same assembled robotic datasets under
identical settings. As shown in the Table below, the compact-sized FiS-VLA also achieves satisfactory
performance, which demonstrates the effectiveness of our approach and its generalizability to different
VLM backbones.

Table 7: Results of FiS-VLA with 2.7B and 7B LLMs on RLBench.

Close Close Toilet Sweep Close  Phone  Umbrella Frame Wine at ~ Water Mean
box laptoplid seatdown todustpan fridge on base out off hanger rack plants | S.R. & Var
FiS-VLA (2.7B) 0.90 0.85 0.90 0.55 0.80 0.55 0.40 0.65 0.45 0.15 | 0.62 +0.03
FiS-VLA (7B) 1.00 1.00 0.95 0.55 0.90 0.50 0.50 0.70 0.55 0.20 | 0.69 +0.03

B.5 The detailed results for each experimental setting
We have presented all the results of the ablation studies in both the main paper and the appendix in a

fine-grained manner, as shown in Table[§|to Table[12]

Table 8: Results of different fast System 1 blocks on RLBench. The results in this table correspond
to the first subplot of Figure 3 in the main paper.

Fast System 1 blocks Close Close Toilet Sweep Close  Phone  Umbrella Frame Wine at ~ Water ‘ Mean
box laptoplid seatdown todustpan fridge on base out off hanger rack plants | S.R. & Var
One block 0.70 0.55 0.95 0.55 0.80 0.05 0.20 0.70 0.30 0.10 | 0.49 +0.05
Two blocks (FiS-VLA)  1.00 1.00 0.95 0.55 0.90 0.50 0.50 0.70 0.55 0.20 | 0.69 +0.03
Four blocks 1.00 0.90 1.00 0.45 0.85 0.35 0.60 0.75 0.40 0.25 | 0.66 +0.02
Eight blocks 0.90 0.80 0.95 0.55 0.95 0.45 0.45 0.65 0.40 0.30 | 0.64 +0.03
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Table 9: Results of different fast System 1 input on RLBench. The results in this table correspond
to the second subplot of Figure 3 in the main paper.

Fast System 1 input Close Close Toilet Sweep Close  Phone  Umbrella Frame Wine at ~ Water Mean

) box laptop lid seatdown todustpan fridge on base out off hanger rack plants | S.R. & Var
FiS-VLA 1.00 1.00 0.95 0.55 0.90 0.50 0.50 0.70 0.55 0.20 | 0.69 +0.03
No PC 0.90 0.90 0.85 0.35 0.85 0.20 0.55 0.80 0.50 0.15 | 0.61 +0.02
No PC and Img 0.45 0.45 0.95 0.30 0.75 0.10 0.50 0.50 0.30 0.10 | 0.44 +0.03
No PC, Img and State 0.50 0.30 0.15 0.00 0.65 0.05 0.55 0.45 0.00 0.00 | 0.22 +0.05

Table 10: Results of different slow fast frequency ratio on RLBench. The results in this table
correspond to the third subplot of Figure 3 in the main paper.

Frequency ratio Close Close Toilet Sweep Close  Phone  Umbrella Frame Wine at ~ Water Mean
box  laptop lid seatdown todustpan fridge on base out off hanger rack plants | S.R. & Var
1:1 0.95 0.80 0.85 0.30 1.00 0.40 0.40 0.65 0.45 0.20 | 0.60 +0.02
1:2 0.90 0.85 1.00 0.30 0.90 0.30 0.55 0.70 0.45 0.30 | 0.63 £0.03
1:4 (FiS-VLA) 1.00 1.00 0.95 0.55 0.90 0.50 0.50 0.70 0.55 020 | 0.69 +0.03
1:8 0.85 0.90 0.95 0.55 0.95 0.30 0.45 0.85 0.15 0.10 | 0.61 +0.04

Table 11: Results of different action chunk size on RLBench. The results in this table correspond
to the first subplot of Figure[/|in the appendix.

Action chunk size Close Close_ Toilet Sweep C!ose Phone  Umbrella Frame Wine at ~ Water Mean

: box laptop lid ~ seat down  to dustpan fridge on base out off hanger rack plants | S.R. & Var
1 1.00 1.00 0.95 0.55 0.90 0.50 0.50 0.70 0.55 0.20 | 0.69 0.03
2 1.00 0.85 1.00 0.50 0.85 0.40 0.75 0.65 0.35 0.40 | 0.68 +0.03
4 1.00 0.90 1.00 0.25 0.90 0.70 0.65 0.55 0.25 0.40 | 0.66 +£0.04
8 0.70 0.90 0.95 0.30 0.90 0.70 0.65 0.60 0.50 0.65 | 0.69 +0.02

Table 12: Results of different input variants of FiS-VLA on RLBench. The results in this table
correspond to the second subplot of Figure |Z| in the appendix.

Input variant Close Close_ Toilet Sweep C_lose Phone  Umbrella Frame Wine at ~ Water Mean
box laptop lid ~ seat down  to dustpan fridge on base out off hanger rack plants | S.R. & Var
FiS-VLA 1.00 1.00 0.95 0.55 0.90 0.50 0.50 0.70 0.55 020 | 0.69 +0.03
Variant 1 0.95 0.90 1.00 0.45 0.85 0.40 0.55 0.70 0.45 0.05 | 0.63 £0.02
Variant 2 0.90 0.90 0.95 0.35 0.80 0.50 0.45 0.55 0.45 020 | 0.61 +0.03
Variant 3 1.00 0.90 0.95 0.50 0.85 0.70 0.50 0.65 0.55 0.20 | 0.68 +0.02

C Additional Visualizations

This section presents keyframe visualizations of FiS-VLA performing tasks in the RLBench simulator
and on two real-world robotic platforms: the Agilex Robot and AlphaBot. These visualizations
complement the experimental results discussed in the main paper. Figures[8|and[J]depict the execution
of tasks by the Franka Panda Arm within the RLBench simulation environment. In this simulated
setting, ten representative tasks are demonstrated, each broken down into key execution steps. These
keyframes intuitively illustrate FiS-VLA’s action selection and execution logic at various stages,
showecasing its robust capabilities in sequential action prediction and gripper state control.

In real-world scenarios, FiS-VLA is evaluated across eight diverse tasks on two distinct robotic
platforms. Figures [T0]and [TT] provide keyframe snapshots of task execution by the Agilex Robot and
AlphaBot, respectively. On the Agilex Robot, tasks such as Place bottles at rack and Wipe blackboard
highlight FiS-VLA’s ability to perform reliable dual-arm coordination and spatial generalization in
cluttered, unstructured environments. Furthermore, we evaluate FiS-VLA on long-horizon, multistage
tasks, such as Handover object and place and Pour water and move cup, which require managing
sequential dependencies and diverse manipulation skills. In these scenarios, FiS-VLA demonstrates
consistent performance across stages and effectively utilizes dual-arm collaboration when necessary,
enabling the successful execution of tasks that require both synchronized actions and long-term
planning. These results collectively validate FiS-VLA’s strong generalization across domains and
platforms, reinforcing its promise as a versatile and scalable visuomotor policy for real-world robotic
manipulation.
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Figure 8: RLBench visualization. We visualize key frames of the agent’s execution process from the
front perspective.
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Figure 9: RLBench visualization. We visualize key frames of the agent’s execution process from the
front perspective.
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Figure 10: Agilex robot task execution visualization. We visualize key frames of the agent’s
execution process from a static exterior view.
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Figure 11: AlphaBot task execution visualization. We visualize key frames of the agent’s execution
process from a static exterior view.

D Failure Case Analysis.

Through real-world experiments on the AlphaBot platform, we observe four specific failure cases
encountered by our proposed FiS-VLA, as visualized in Figure[I2] Red bounding boxes highlight the
critical error frames during each execution sequence.
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1) The first case involves a bimanual collision during the Handover object and place into plate task.
The left and right arms interfere with each other while attempting to transfer the object, indicating
insufficient inter-arm motion coordination and suboptimal wrist camera placement.

2) The second case, observed in the Fold towel and place in bucket task, is related to an error in
manipulation height. The predicted joint positions fail to control gripper contact with the towel,
revealing the difficulty of height prediction when dealing with thin, deformable objects.

3) The third case, from the Pick bowl and place object task, reflects a failure in manipulation
position. The robot mispredicts the location of the banana, resulting in a failed grasp attempt.

4) The fourth case presents a handover rotation error in the Handover object and place into plate
task. The right arm rotates the object into an unsuitable orientation, preventing the left arm from
executing a stable handover grasp.

These issues can be mitigated by collecting more high-quality demonstrations and incorporating
efficient constraints during training to improve robustness in real-world control. Furthermore, enabling
our System 2 to recognize and correct failure actions will be a key direction for future work.

k Process ( AlphaBot

L Handover Object and Place into Plate J

)

Fold towel and place in bucket

- u
Pick bowl and place object

L Handover Object and Place into Plate |

Figure 12: Failure case visualization. We visualize the failure cases observed in four real-world
experiments, with key error frames during execution highlighted using red bounding boxes.

E Broader Impact

Our work proposes a foundation model for robotic manipulation that integrates high-level reasoning
and low-latency action execution within a unified end-to-end Vision-Language-Action (VLA) frame-
work. While the FiS-VLA model improves control efficiency and leverages pretrained reasoning
capabilities, it may introduce potential risks when deployed in real-world environments. These risks
include safety concerns in high-speed closed-loop control and unsafe behaviors resulting from the
misinterpretation of human instructions. To mitigate such risks, future deployments should incorpo-
rate strict safety constraints and task-specific operational boundaries. Furthermore, our framework
provides robust control and generalizable reasoning capabilities for robotic assistance in domains
such as elder care and home automation, where responsiveness and reliability are critical.
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