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Abstract

Image restoration (IR) is challenging due to the complex-
ity of real-world degradations. While many specialized and
all-in-one IR models have been developed, they fail to effec-
tively handle complex, mixed degradations. Recent agen-
tic methods RestoreAgent and AgenticIR leverage intelli-
gent, autonomous workflows to alleviate this issue, yet they
suffer from suboptimal results and inefficiency due to their
resource-intensive finetunings, and ineffective searches and
tool execution trials for satisfactory outputs. In this paper,
we propose MAIR, a novel Multi-Agent approach for com-
plex IR problems. We introduce a real-world degradation
prior, categorizing degradations into three types: (1) scene,
(2) imaging, and (3) compression, which are observed to
occur sequentially in real world, and reverse them in the op-
posite order. Built upon this three-stage restoration frame-
work, MAIR emulates a team of collaborative human spe-
cialists, including a “scheduler” for overall planning and
multiple “experts” dedicated to specific degradations. This
design minimizes search space and trial efforts, improving
image quality while reducing inference costs. In addition,
a registry mechanism is introduced to enable easy integra-
tion of new tools. Experiments on both synthetic and real-
world datasets show that proposed MAIR achieves compet-
itive performance and improved efficiency over the previous
agentic IR system. Code and models will be made available.

1. Introduction

Image restoration (IR) is a long-standing, challenging prob-
lem in computer vision. It aims to reconstruct high-quality
(HQ) original images from low-quality (LQ) degraded ones.
Traditional deep IR networks [8, 37, 41, 59, 65, 67, 73, 76,
83] are typically designed for specific IR tasks, focusing on
single degradations such as rain, haze, noise, blur, and JPEG
compression. However, in real-world scenarios, images of-
ten suffer from multiple degradations that can interact with
each other, significantly increasing the complexity of IR.
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Figure 1. Comparison between our proposed MAIR and typi-
cal agentic IR approaches. (a) The state-of-the-art method Agen-
ticIR [85] employs a single agent for perception, planning, restora-
tion, etc., suffering from resource-intensive searches and trials for
degradation removal. (b) We decompose the complex IR problem
into manageable sub-tasks and address them using multiple collab-
orative agents, under our proposed three-stage restoration frame-
work, achieving improved performance, efficiency, and flexibility.

To address this, researchers have developed All-in-One
(AiO) IR methods [3, 14, 29, 32, 34, 42, 46, 48, 69] that can
handle multiple degradations simultaneously using one uni-
fied model. While current AiO IR networks are more effec-
tive than traditional ones designed for single degradations,
training them is more challenging due to the potential con-
flicts among different optimization objectives [10, 28, 85].
Moreover, these models are typically limited to 3-5 specific
tasks seen during training and struggle to generalize to un-
seen ones. When encountering degradations not included in
training, they either require retraining or suffer from a large
drop in the quality of recovered images. This hampers their
practical application in real-world scenarios, where images
are often affected by a wider range of degradations.

The success of large language model (LLM) [2, 54, 68]-
based autonomous AI agents [47, 51, 63] in handling com-
plex tasks has inspired researchers [10, 85] to develop intel-
ligent systems to improve the practical applicability of IR
methods. In general, agentic systems intelligently perceive
degradations in the given LQ image and invoke a series of
off-the-shelf pretrained IR networks (referred to as “tools”)
to reverse multiple degradations. They reflect on each step’s
output and can roll back to previous results to explore more
effective tool execution plans. This methodology expands
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the potential for IR performance improvement while offer-
ing greater flexibility than most existing AiO networks. For
instance, RestoreAgent [10] finetunes a multi-modal LLM
(MLLM) [54] to serve as the perception and planning model
of an agent, enabling it to solve complex IR problems step-
by-step. AgenticIR [85] incorporates statistical experience
from pre-collected effective tool execution sequences into
LLM [26]’s text prompts to guide agent in planning, leading
to improved quality and consistency of recovered results.

Despite holding potential for autonomous and intelligent
IR, existing agentic approaches [10, 85] still suffer from is-
sues in performance and efficiency, as shown in Fig. 1 (a).
First, given an LQ input, they search for an effective execu-
tion plan in a vast space of tool sequences without consider-
ing the characteristics of real-world degradation processes,
leading to high resource consumption due to excessive trials
and rollbacks with a large number of tool/LLM invocations.
For example, AgenticIR can require up to 200 seconds and
20 invocations to restore a 256× 256 input image with two
NVIDIA 3090 GPUs. Second, they rely on a single agent to
handle all of perception, planning, invoking tools for degra-
dations, etc. This often results in suboptimal tool execution
plans due to the limited capability of one single agent, con-
straining their effectiveness and practical applicability.

To improve performance while reducing resource con-
sumption, we propose MAIR, a novel Multi-Agent system
for complex IR problems. Moving beyond the single-agent
designs in existing methods, MAIR establishes a real-world
degradation prior-augmented multi-agent system. The prior
is based upon our induction of real-world degradation pro-
cesses and statistics of effective tool execution plans. As il-
lustrated in Fig. 1 (b), we categorize degradations into three
types, and assume that they occur sequentially in most real-
world cases: (1) degradations in the scene (e.g., low light
and rain) [45, 53, 57], (2) degradations introduced by the
imaging process (e.g., noise and blur) [17, 44, 80], and (3)
degradations caused by post-processings (e.g., JPEG com-
pression) [43, 56]. Based on this, we propose a three-stage
framework that reverses these degradations in the order op-
posite to their occurrences, effectively reducing the search
space and accelerating execution compared to previous ap-
proaches that lack the prior. To overcome the performance
limitations of single agent, our design incorporates multi-
ple collaborative agents at two levels for more effective IR
problem-solving: a “scheduler” agent at the first level con-
trols the overall IR process, while multiple “expert” agents
at the second level leverage tools to address specific single
degradations. All tools are registered in our MAIR system
using textual descriptions, allowing users to easily add or
modify them, and flexibly control the execution process and
recovered result using instructions. This agentic system de-
sign enables MAIR to perform IR in an autonomous manner
more effectively and efficiently, particularly when handling

real-world LQ inputs. In summary, our contributions are:
❑ (1) We propose a novel agentic IR system that consists of
a three-stage framework and a two-level multi-agent design.
❑ (2) We develop a three-stage restoration framework based
on our proposed real-world image degradation prior.
❑ (3) We develop a two-level multi-agent design that con-
sists of a “scheduler” agent for overall perception and plan-
ning, and multiple “expert” agents for degradation removal.
❑ (4) Experiments manifest that MAIR achieves competi-
tive image quality and superior efficiency than the previous
agentic method [85]. In addition, it enjoys flexibility in fol-
lowing instruction and extensibility in adding new tools.

2. Related Work
Image Restoration (IR) aims to reconstruct original HQ
images from their LQ observations. In the past, a large num-
ber of methods have focused on solving single-degradation
problems, such as denoising [67, 83], deraining [20, 21],
dehazing [18, 23, 52], and super-resolution [8, 59, 65, 76].
These methods have generally achieved state-of-the-art per-
formance for specific types of degradations. However, real-
world images can often suffer from multiple mixed degra-
dations, causing these methods to perform poorly in the sce-
narios beyond their intended scope. Recent research has ex-
plored AiO IR methods [3, 14, 29, 32, 34, 42, 46, 48, 69],
aiming to develop a unified framework capable of handling
multiple degradations. For example, AirNet [34] employs
contrastive learning to help the network distinguish image
features between different IR tasks and apply the most ap-
propriate processing. PromptIR [48] and InstructIR [14] in-
troduce additional degradation context to guide the restora-
tion model. MiOIR [32] incorporates sequential and prompt
learning strategies to enable the network to incrementally
learn individual IR tasks in an organized manner. AutoDIR
[29] automatically detects and removes degradations step-
by-step. DA-CLIP [42] integrates a pre-trained CLIP model
[49] within a restoration network to enhance image quality.
Despite these advancements, existing AiO approaches still
struggle with multi-task learning, making it difficult to bal-
ance generalization ability and reconstruction performance.

Autonomous Agents are systems developed to perceive
environment, make decisions, and execute actions indepen-
dently. In recent years, a growing body of research has ex-
plored the use of LLMs as core controllers in autonomous
agents [51, 63, 70, 71]. To enhance the ability of AI sys-
tems to solve complex problems, researchers have designed
various multi-agent frameworks [22, 25, 31, 61, 64] that en-
able agents to specialize, coordinate, and collaborate. Some
works [47, 74, 86] simulate sociological dynamics utilizing
multiple agents, further expanding their capabilities.

A series of notable approaches have emerged in this field.
For instance, MetaGPT [25] introduces human role struc-
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tures into multi-agent systems, assigning different respon-
sibilities to agents in software development tasks. CAMEL
[36] proposes a role-playing framework, demonstrating the
power of structured agent interactions in problem-solving.
AutoGen [64] enhances collaborative agentic AI systems by
automating agent communications and coordination, while
AutoAgents [9] dynamically generates and organizes spe-
cialized agents into teams tailored for various specific tasks.

This evolution of agents has inspired new approaches for
IR. RestoreAgent [10] finetunes an MLLM [54] as the per-
ception and planning model of agent on synthetic datasets,
enabling autonomous evaluation and tool execution. Agen-
ticIR [85] develops a system to mimic a human user, lever-
aging statistical experience for complex IR tasks. However,
the performance and efficiency of existing agentic IR meth-
ods are constrained due to the limited capability of single-
agent systems and their resource-intensive search for effec-
tive tool execution plans. To tackle these problems, we pro-
pose a three-stage restoration framework based on our real-
world degradation prior to reduce the search space of plans.
Additionally, a two-level multi-agent system is introduced,
with specialized agents for perception, planning, and reflec-
tion, as well as handling individual degradations, improving
performance while suppressing total resource consumption.

3. Method

3.1. Problem Definition
The task of IR addressed in this work is to recover the orig-
inal HQ image xHQ from its LQ input image xLQ, which
undergoes a complex degradation process D, assumed to be
a composition of n single degradations {D1,D2, · · · ,Dn}
(such as rain, haze, noise, and blur) applied sequentially. To
be formal, this degradation process can be formulated as:

xLQ = D(xHQ) = (Dn ◦ · · · ◦ D2 ◦ D1)(xHQ)

= Dn(· · · D2(D1(xHQ))).
(1)

The goal is to produce a prediction x̂HQ from xLQ that
closely approximates xHQ by applying n tools (i.e., IR mod-
els) {R1,R2, · · · ,Rn}, assumed to counteract the effects
of {D1,D2, · · · ,Dn} in the reverse order of their applica-
tion. Formally, this restoration process can be expressed as:

x̂HQ = R(xLQ) = (R1 ◦ R2 ◦ · · · ◦ Rn)(xLQ)

= R1(R2(· · ·Rn(xLQ))).
(2)

Under the two assumptions about the degradations and
restoration tools outlined above, and building on previous
works [10, 85], the problem in the context of agentic IR is
to determine the optimal selection of tools and their exe-
cution order (i.e., a plan for their applications). Given the
constraints of limited resources, the challenge is to devise

and execute this plan in a way that achieves the highest pos-
sible image quality in the recovered output, while minimiz-
ing computational cost. In the following, we will elaborate
on our induced prior regarding real-world degradations and
explain how we use this prior and MLLM-based agents to
design an autonomous system that simulates a group of hu-
mans to collaboratively implement the process in Eq. (2).

3.2. Three-Stage Restoration Framework
Real-World Degradation Prior. In most real-world cases,
image degradation does not occur in all permutations of sin-
gle degradations but instead generally follows a structured
process with an inherent order. This process can be broadly
divided into three phases. First, the scene itself introduces
inherent degradations due to environmental factors such as
low light, rain, and haze [20, 23, 32, 33, 35]. Second, dur-
ing the imaging process, additional degradations arise due
to the imperfect propagation of light from the scene to the
image sensors. These can include noise, blur, and low res-
olution, which result from sensor limitations, physical dis-
turbances during capture, and signal processing constraints
[17, 44, 80]. Finally, once captured, the image is often post-
processed by several information-lossy digital compression
techniques like JPEG [56] to reduce its storage requirement.

Although the exact ordering of degradations within each
phase could vary and some exceptions may exist, the overall
degradation often follows a sequence of degradations which
can be classified into three types: inherent scene degrada-
tion Dscene, degradation introduced during imaging Dimaging,
and degradation caused by storage compression Dcompression.
Later-stage degradations can alter the feature distribution of
earlier ones. Formally, this process can be expressed as:

D = Dcompression ◦ Dimaging ◦ Dscene. (3)

Each of Dscene, Dimaging, and Dcompression can be the identity
or compositions of single degradations within its respective
category. We refer to this structured degradation sequence
as real-world degradation prior, which extends the previous
synthesis pipelines [59, 79] by incorporating scene degrada-
tions and broadening the scope from blind super-resolution
to general IR tasks. It serves as a simplified guideline for
reducing the space of degradation orderings in agentic IR.

Three-Stage Framework. Based on our assumption in
Sec. 3.1 that the restoration tools are sufficiently powerful
to reverse their corresponding single degradations, the ideal
restoration process should follow the inverse of the degrada-
tion sequence in Eq. (3). To be more specific, the restoration
should sequentially counteract compression, imaging, and
scene degradations. We refer to this approach as three-stage
restoration framework, which can be formally expressed as:

R = Rscene ◦ Rimaging ◦ Rcompression, (4)

where Rscene, Rimaging, and Rcompression represent either the
identity mapping, or the compositions of tool applications
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Figure 2. Illustration of the inference workflow of MAIR. (Left) Given an LQ image and a user instruction, a “scheduler” agent first
obtains the coarse perception results of degradation types using DepictQA. It then inputs the experience, perception results, and user
instruction into GPT-4o to formulate an overall restoration plan, following our three-stage framework. (Right) A group of “expert” agents
sequentially removes degradations and outputs the reconstructed result, adhering to scheduler’s plan. Each expert specializes in a single
degradation and uses GPT-4o to intelligently select and apply a list of candidate tools to current image, effectively removing degradation
based on the image, instruction, DepictQA’s fine-grained perception results of degradation levels, tool registry information, and reflection.

Table 1. Verification of our degradation prior and three-stage
restoration framework on five real-world validation sets, report-
ing the probability of the best plans adhering to our framework.
Set T-OLED-Val RealSR-Val DRealSR-Val LHP-/Real-Rain-Val SIDD-Val
Top-1 98% 88% 93% 87% 91%
Top-3 100% 100% 100% 95% 100%

to reverse the corresponding three types of degradation, i.e.,
Dscene, Dimaging, and Dcompression, respectively.

To verify the effectiveness of proposed prior and frame-
work, inspired by the approach in [85] for exploring effec-
tive plans, we conduct exhaustive restoration attempts using
over 13,000 tool execution sequences as plans on our pre-
collected five real-world validation image sets. Specifically,
we employ the MLLM DepictQA [75] of AgenticIR as the
perception model to identify the degradations present in LQ
inputs. Based on these perception results, we apply all per-
mutations and combinations of corresponding tools in [85]
to reverse the degradations, select the best plans, and check
if they align with proposed three-stage framework. To cover
a wide range of degradations, the validation datasets include
50 LQ-HQ pairs captured with under-display cameras in T-
OLED [84] (T-OLED-Val), 85 and 85 low-resolution LQ-
HQ pairs from RealSR [6] and DRealSR [62] (RealSR-Val
and DRealSR-Val), 75 and 25 rain-degraded LQ-HQ pairs
from LHP-Rain [21] and RealRain [38], merged into a sin-
gle set (LHP-/Real-Rain-Val), and 100 noisy LQ-HQ pairs
from SIDD [1] (SIDD-Val). To evaluate plans, we employ
an extended version of the scoring function in [10], which
aggregates multiple image quality assessment (IQA) met-
rics, including PSNR, SSIM [60], LPIPS [82], DISTS [16],
MANIQA [72], CLIP-IQA [58], and MUSIQ [30]. These
metrics are standardized and summed as in [10] to compute

an overall score for each recovered image, reflecting the ef-
fectiveness of a plan in restoring each given LQ input, with
higher scores indicating better restoration performance.

Tab. 1 presents the statistical results of best plans align-
ing with our framework across the five sets. We can observe
that the top-1 plans follow our framework with a probability
of at least 87%, while the top-3 plans exhibit an even higher
probability exceeding 95%. These findings provide strong
empirical support for our prior and three-stage framework,
demonstrating their applicability to real-world scenarios.

3.3. Two-Level Multi-Agent System Design

Overview. As illustrated in Fig. 2, our MAIR adopts a two-
level multi-agent design. The restoration process begins at
the first level, where a “scheduler” agent coarsely perceives
single degradations present in the LQ input, and formulates
an overall restoration plan based on user instruction to coun-
teract them. This plan is then executed at the second level of
MAIR system by a group of “expert” agents, each special-
izing in removing a specific type of degradation. During its
turn, each expert first conducts a fine-grained perception of
degradation level, selects the most appropriate tools from its
toolset according to the user instruction, and applies them
to the current image while reflecting on their results. Once
its restoration is completed, the updated image is passed to
the next expert for further processing. This iterative process
continues until all relevant expert agents have finished their
restorations, ultimately producing the final recovered result.

“Scheduler” for Overall Perception and Planning. At
the first level, a scheduler employs a perception model De-
pictQA [75] (a finetuned MLLM Vicuna-v1.5-7B [13]), as
in [85], to perceive the degradations present in the LQ im-
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Input AirNet PromptIR MiOIR DA-CLIP InstructIR AutoDIR AgenticIR MAIR (Ours)
Figure 3. Qualitative comparison on three images from real-world paired (top), unpaired (middle) datasets, and Group A [85] (bottom).

Table 2. Quantitative comparison of different methods on three
synthesized sets. Throughout this paper, the best and second-best
results are marked in bold red and underlined blue, respectively.
Dataset Method PSNR SSIM LPIPS↓ MANIQA CLIP-IQA MUSIQ

AirNet 19.13 0.6019 0.4283 0.2581 0.3930 42.46
PromptIR 20.06 0.6088 0.4127 0.2633 0.4013 42.62

MiOIR 20.84 0.6558 0.3715 0.2451 0.3992 47.82
Group A DA-CLIP 19.58 0.6032 0.4266 0.2418 0.4139 42.51

InstructIR 18.03 0.5751 0.4429 0.2660 0.3528 45.77
AutoDIR 19.64 0.6286 0.3967 0.2500 0.3767 47.01
AgenticIR 21.04 0.6818 0.3148 0.3071 0.4474 56.88

MAIR (Ours) 21.02 0.6715 0.2963 0.3330 0.4751 59.19

AirNet 19.31 0.6567 0.367 0.2882 0.4274 47.88
PromptIR 20.47 0.6704 0.3370 0.2893 0.4289 48.10

MiOIR 20.56 0.6905 0.3243 0.2638 0.4330 51.87
Group B DA-CLIP 18.56 0.5946 0.4405 0.2435 0.4154 43.70

InstructIR 18.34 0.6235 0.4072 0.3022 0.3790 50.94
AutoDIR 19.9 0.6643 0.3542 0.2534 0.3986 49.64
AgenticIR 20.55 0.7009 0.3072 0.3204 0.4648 57.57

MAIR (Ours) 20.92 0.7004 0.2788 0.3544 0.5084 60.98

AirNet 17.95 0.5145 0.5782 0.1854 0.3113 30.12
PromptIR 18.51 0.5166 0.5756 0.1906 0.3104 27.91

MiOIR 15.63 0.4896 0.5376 0.1717 0.2891 37.95
Group C DA-CLIP 18.53 0.5320 0.5335 0.1916 0.3476 33.87

InstructIR 17.09 0.5135 0.5582 0.1732 0.2537 33.69
AutoDIR 18.61 0.5443 0.5019 0.2045 0.2939 37.86
AgenticIR 18.82 0.5474 0.4493 0.2698 0.3948 48.68

MAIR (Ours) 19.42 0.5544 0.4142 0.2798 0.4239 51.36

age. As shown in Fig. 2 (left), it then processes the LQ im-
age, user instruction, and coarse perception results (in text
form) using MLLM GPT-4o [26] to generate a plan that fol-
lows our three-stage framework and adheres to the instruc-
tion to meet user’s specific needs. The plan is an execution
sequence of expert agents that reverse single degradations.

One challenge in the planning of scheduler is that while
restoration is constrained by our three-stage framework de-
scribed in Eq. (4), the optimal ordering of single degrada-
tion reversions within each stage is unknown without addi-
tional priors. For example, noise and blur can coexist in an
image, but their optimal reversion order in Stage 2 is uncer-
tain without further guidance. A straightforward approach
would be to rely solely on the internal knowledge of GPT-

Table 3. Quantitative comparison on real-world paired dataset.
Method PSNR SSIM LPIPS↓ DISTS↓ NIQE↓ MANIQA CLIP-IQA MUSIQ
AirNet 22.24 0.7509 0.3535 0.2256 6.59 0.2708 0.3236 42.86
PromptIR 24.13 0.7724 0.3337 0.2159 6.49 0.2827 0.3301 42.65
MiOIR 23.44 0.7499 0.3241 0.2231 5.61 0.2531 0.3225 44.76
DA-CLIP 22.76 0.7149 0.3694 0.2390 6.46 0.2860 0.3126 45.24
InstructIR 26.01 0.7910 0.3457 0.2268 6.71 0.2882 0.3341 44.25
AutoDIR 20.82 0.6770 0.3352 0.2304 5.49 0.3329 0.3623 55.74
AgenticIR 19.14 0.6574 0.3841 0.2315 5.67 0.3152 0.3779 52.69
MAIR (Ours) 21.67 0.7271 0.3244 0.2171 5.25 0.3199 0.4030 55.21

Table 4. Quantitative comparison on real-world unpaired dataset.
Method NIQE↓ MANIQA CLIP-IQA MUSIQ
AirNet 5.68 0.3426 0.5175 51.16
PromptIR 5.89 0.3518 0.5168 51.41
MiOIR 6.19 0.3677 0.5209 52.92
DA-CLIP 6.48 0.3802 0.5301 53.74
InstructIR 7.02 0.3647 0.5258 56.14
AutoDIR 6.32 0.3730 0.5439 53.35
AgenticIR 5.56 0.3773 0.5117 59.13
MAIR (Ours) 5.14 0.3968 0.5308 60.08

Table 5. Efficiency comparison of average running time and tool
invocations per image on real-world paired and unpaired datasets.

Method Time (s)↓ Invocations↓
AgenticIR 63.04 5.15
MAIR (Ours) 35.42 1.82

4o. However, this can result in suboptimal plans, as GPT-4o
lacks specialized knowledge about intra-stage orderings.

To fully leverage our attempt records, and the powerful
understanding and summarization capabilities of GPT-4o,
we adopt an experience-driven technique inspired by [85].
Specifically, we reuse the attempt results from our experi-
ment in Tab. 1, incorporating both tool execution sequences
and corresponding scores. These records are pre-processed
offline by GPT-4o in a separate phase to generate text sum-
maries describing typically effective intra-stage restoration
orders as experience for planning. Since these attempts con-
tain valuable information about the performance of different
plans, the extracted “experience” serves as a valid guidance
input, as shown in Fig. 2 (left), helping the scheduler make
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Figure 4. Ablation study of three-stage framework on two images from real-world paired (left) and LHP-/Real-Rain-Val (right) datasets.

Table 6. Ablation study of framework on real-world paired set.
Method PSNR SSIM LPIPS↓ NIQE↓
w/o Three-Stage Framework 21.05 0.7187 0.3256 5.30
w/ Three-Stage Framework (Ours) 21.67 0.7271 0.3244 5.25

more informed decisions when determining the intra-stage
restoration order in the inference workflow of our MAIR.

“Experts” for Fine-Grained Degradation Removals.
At the second level, we design experts to recover the image
according to the scheduler’s plan in a collaborative manner.
As shown in Fig. 2 (right), we assign each expert to handle a
single degradation (e.g., rain). Concretely, each expert first
uses DepictQA to perceive the degradation and its level in
the current image (e.g., high-level additive white Gaussian
noise). It then intelligently selects a list of “candidate” tools
based on the image, user instruction, and the characteristics
of its assigned tools. These tools are applied sequentially on
the current image, with each result evaluated by DepictQA
to check if the degradation has been successfully reduced
below the set threshold (e.g., “low”). If successful, the re-
sult is passed to the next agent, and the current agent’s task
is complete; otherwise, the expert tries other tools from the
list. If all candidate tools fail to produce satisfactory results,
the expert compares each outcome pairwise and selects the
highest-quality image as its restoration output.

Tool Registry Mechanism. Providing the experts with
information about tools is crucial for guiding their selection
of restoration candidates. While previous agentic methods
achieve tool selection and degradation removal by finetun-
ing perception and planning MLLMs (e.g., LLaVA-Llama3-
8B) on pairs of LQ images and tool execution sequences
[10], or by directly attempting all tools corresponding to a
single degradation [85], they could either require resource-
intensive dataset construction and MLLM finetuning, or in-
cur high computational cost due to less intelligence in tool
selection. To address this issue, we propose a registry mech-
anism that equips the experts with specialized knowledge
of tools. Specifically, we pre-organize tool information into
a set of “registry” forms, each corresponding to a specific
tool (e.g., SwinIR [40]). These forms record details about
all tools’ functionality (e.g., denoising), applicable scenar-

Table 7. Ablation study of the intelligent candidate tool selec-
tion of our “expert” agents on the synthetic dataset Group B.

Method PSNR LPIPS↓ MANIQA CLIP-IQA MUSIQ
w/o Experts 20.14 0.3427 0.2583 0.3981 50.93
w/ Expert (Ours) 20.92 0.2788 0.3544 0.5084 60.98

ios (e.g., mild levels), efficiency (e.g., fast inference), and
other characteristics (e.g., might produce unnecessary de-
tails). When an expert agent handles a specific single degra-
dation (e.g., dehazing), the corresponding tool forms are in-
put into GPT-4o as a part of its text input for effective tool
selection, eliminating the need for dataset construction and
MLLM finetuning, while achieving the flexibility for users
to add new tools by simply specifying their corresponding
degradation types and filling out the tool registry forms.

Compared to existing single-agent approaches [10, 85],
as shown in Fig. 1 and our experiments, this two-level multi-
agent design with a tool registry mechanism offers superior
effectiveness in complex IR problem-solving. This is due to
the specialization and coordination of our “scheduler” and
“expert” agents, which decompose the entire problem into
manageable sub-tasks, ensuring that both planning and exe-
cution are intelligent while preventing any single agent from
being overwhelmed. As a result, each agent addresses a fo-
cused problem, enhancing both performance and efficiency.

4. Experiment
4.1. Experimental Setting
Implementation Details. We conduct experiments on both
synthesized and real-world test image sets. For synthesized
datasets, following [85], we employ the pre-trained mod-
els of SwinIR [40], FBCNN [27], DiffBIR [41], Restormer
[78], X-Restormer [12], DRBNet [50], DehazeFormer [52],
RIDCP [66], MPRNet [77], MAIXM [55], and HAT [11]
along with traditional operations including gamma correc-
tion, constant shift, and histogram equalization as tools for
degradation removal. These tools are used to address JPEG
artifact removal (Stage 1), denoising, deblurring, and super-
resolution (Stage 2), as well as low-light enhancement, de-
raining, and dehazing (Stage 3). For real-world images, we
incorporate RetinexFormer [7], DWGAN [19], and CoTF
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w/  Two-Level Multi-Agent Design
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Input
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Figure 5. Ablation study of two-level multi-agent system design regarding the selection of appropriate tools for effective noise removal
on an image from Group B (left), and experience-guided formulation of restoration plans on a synthesized LQ image from MiO100 (right).

Table 8. Ablation study of multi-agent system design on Group B.
Method PSNR SSIM MANIQA MUSIQ Tokens ↓
Single-Agent 20.25 0.6612 0.3170 56.56 2410
Multi-Agent (Ours) 20.92 0.7004 0.3544 60.98 883

[39] into the toolsets of AgenticIR and MAIR for more ef-
fective restoration. The DepictQA model of AgenticIR, and
GPT-4o, are used for perception, planning, and reflection.
All experiments are conducted on two NVIDIA RTX 3090
GPUs. More details on our MAIR’s workflow, tool models,
MLLM inputs, experience summarization, and tool registry
forms are provided in the Supplementary Material.

Test Datasets. We evaluate MAIR and compare it with
other methods using three synthesized test sets: Groups A,
B, and C from [85] and two real-world test sets collected
by us. The three synthesized test sets contain 1,440 LQ im-
ages processed with 16 combinations of mixed 2 or 3 types
of degradations applied to images from MiO100 [32]. The
two real-world test sets consist of real-world samples suf-
fering from multiple unknown degradations. The first set
includes 100 paired LQ-HQ image pairs: 10, 10, 15, 15, 10,
20, and 20 pairs from I-Haze [4], NH-Haze [5], DRealSR
[62], RealSR [6], T-OLED [84], SIDD [1], and LHP-Rain
[21], which do not overlap with the validation sets in Tab. 1.
The second testset contains 100 unpaired real-world LQ im-
ages, including 20 hazy images from the internet, 40 images
from ImageNet [15], and 40 images from RealSR200 [6].

Compared Methods include six AiO IR models: AirNet
[46], PromptIR [48], MiOIR [32], DA-CLIP [42], Instruc-
tIR [14], and AutoDIR [29], along with AgenticIR [85].

Evaluation Metrics for assessing the quality of recov-
ered image results include four full-reference IQA metrics:
PSNR, SSIM [60], LPIPS [82], and DISTS [16], as well as
the four no-reference IQA metrics: NIQE [81], MANIQA
[72], CLIP-IQA [58], and MUSIQ [30]. Additionally, FID
[24] is also employed to measure the distance between the

Table 9. Ablation study of “experience” on real-world paired set.
Method PSNR SSIM LPIPS↓ FID↓
w/o Experience 20.99 0.7041 0.3408 120.66
w/ Experience (Ours) 21.67 0.7271 0.3244 115.61

distributions of ground truth and restored images.

4.2. Comparison with State-of-the-Arts

Image Quality Comparison. As reported in Tabs. 2, 3, and
4, MAIR achieves competitive image quality across all five
test sets. Specifically, it ranks first or second in Groups A,
B, and C, outperforming AgenticIR in all perceptual met-
rics, including LPIPS, MANIQA, CLIP-IQA, and MUSIQ,
while surpassing all the six AiO models. On real-world sets,
MAIR delivers competitive results across all metrics, signif-
icantly outperforming its baseline agentic approach [85].

Fig. 3 visually demonstrates the superiority of MAIR in
restoring three test images. Concretely, it employs a set of
tools to effectively remove complex degradations, including
haze, noise, low resolution, and compression degradation in
the top and middle real-world images, as well as rain and
haze in the bottom synthesized image. In contrast, other ap-
proaches struggle to reconstruct vivid details around the old
man’s eye and the anime character’s face, or fail to remove
JPEG artifacts and haze, leading to suboptimal IR outputs.
These results comprehensively validate the effectiveness of
proposed MAIR in handling diverse degradation scenarios.

Efficiency Comparison. Tab. 5 exhibits that MAIR re-
duces running time and tool invocations by 44% and 65%,
respectively, compared to [85]. This efficiency gain is due
to our three-stage framework and multi-agent design, which
constrain the search space of plans and enable training-free
intelligent tool selection, minimizing unnecessary trials and
rollbacks while maintaining competitive performance.
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Figure 6. Evaluation of MAIR’s extensibility and flexibility in
adding new tools on two images from real-world unpaired dataset.

4.3. Ablation Study
Effect of three-stage framework. Tab. 6 exhibits that re-
moving the framework from scheduler results in consistent
performance drops of 0.62dB in PSNR, 0.0084 in SSIM,
0.0012 in LPIPS, and 0.05 in NIQE. Fig. 4 further demon-
strates that without our framework, the scheduler often for-
mulates suboptimal execution orders, which are crucial for
removing multiple degradations [10, 85]. These findings in-
dicate that our proposed prior and framework are effective.

Effect of the intelligent tool selection of experts. Tab. 7
exhibits that eliminating intelligent selection (i.e., experts’
Step 3 in Fig. 2) and instead using random tool selections
for each degradation leads to performance drops of 0.78 dB
in PSNR, 0.0639 in LPIPS, 0.0961 in MANIQA, 0.1103 in
CLIP-IQA, and 10.05 in MUSIQ, validating the necessity
of expert agents selecting appropriate tools using GPT-4o.

Effect of multi-agent system design. Tab. 8 shows that
replacing multi-agent design with one single agent that han-
dles all model information and experience—aggregated into
the input of GPT-4o to address all the sub-tasks—results in
image quality drops of 0.67dB in PSNR, 0.0392 in SSIM,
0.0374 in MANIQA, and 4.42 in MUSIQ. Additionally, it
increases GPT-4o’s token consumption by 2.73× due to the
aggregation of text descriptions of tool registry forms, ex-
perience, etc., leading to higher costs. Fig. 5 further mani-
fests that a single-agent approach often selects inappropriate
tools and fails to follow the summarized experience, result-
ing in suboptimal planning and execution, as evidenced by
unremoved noise (left) and agents’ thoughts (right). These
results verify the effectiveness of our multi-agent design in
collaboratively solving complex IR tasks while maintaining
training-free, intelligent tool selection and flexibility.

Effect of experience. Tab. 9 exhibits that the elimination
of our summarized experience results in performance drops
of 0.68dB in PSNR, 0.023 in SSIM, 0.0164 in LPIPS, and

Output

Input

“Remove all degradations 
except for the haze.”

Output
Input

“Restore the image.”

Output
Input

“Help me only remove the 
rain in the picture.”

Output
Input

“Remove all degradations 
to the best of your ability.”

Figure 7. Evaluation of MAIR’s instruction-following capabil-
ity on two images from the synthetic Groups A (left) and B (right).

5.05 in FID, highlighting its importance for guiding MAIR
in real-world scenarios, as also previously validated in [85].

4.4. Evaluation of Extensibility and Flexibility
Fig. 6 shows that MAIR allows users to easily extend its ca-
pabilities by adding new tools through our registry mecha-
nism. Specifically, we register two models, Real-ESRGAN
[59] (fast inference with moderate quality) and SUPIR [76]
(higher quality with lower speed), into super-resolution ex-
pert. When users request higher speed or quality, MAIR in-
telligently calls these models to either reduce running time
by 2.3s or enhance details in Stage 2. Fig. 7 demonstrates
the instruction-following capabilities of MAIR: when users
request retaining certain degradations, such as haze or rain,
MAIR is able to understand these preferences and perform
personalized restoration accordingly. These results compre-
hensively verify the extensibility, flexibility, and controlla-
bility of MAIR—features that are lacking in RestoreAgent
[10] and AgenticIR [85], which require MLLM fine-tuning
when adding tools or exhibit less intelligence in selection.

5. Conclusion

This paper introduces MAIR, a novel Multi-Agent system
that emulates a team of human specialists to tackle complex
IR problems. We model real-world image degradations as a
composition of three categories of single degradations and
reverse them in the opposite order of their occurrence. Built
upon this three-stage framework, we develop a multi-agent
system consisting of a “scheduler” for planning and multi-
ple “experts” specialized in counteracting individual degra-
dations using pre-trained IR models (referred to as “tools”).
A registry mechanism is further introduced to enable easy
integration of tools. Experiments on both synthetic and real-
world datasets exhibit that proposed MAIR achieves com-
petitive image quality and higher efficiency than the previ-
ous agentic IR method [85], while offering greater flexibil-
ity and controllability compared to non-agentic approaches.

Despite being effective, our proposed three-stage frame-
work can not fully cover all real-world degradations, which
are often highly complicated and unknown. In addition, al-

8



though MAIR shows greater flexibility than most AiO mod-
els, its inference remains slow, requiring tens of seconds for
an image. We leave these limitations for future research.
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