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ABSTRACT

Asynchronous federated learning, which enables local clients to send their model
update asynchronously to the server without waiting for others, has recently
emerged for its improved efficiency and scalability over traditional synchronized
federated learning. In this paper, we study how the asynchronous delay affects the
convergence of asynchronous federated learning under non-i.i.d. distributed data
across clients. Through the theoretical convergence analysis of one representative
asynchronous federated learning algorithm under standard nonconvex stochastic
settings, we show that the asynchronous delay can largely slow down the conver-
gence, especially with high data heterogeneity. To further improve the convergence
of asynchronous federated learning under heterogeneous data distributions, we
propose a novel asynchronous federated learning method with a cached update
calibration. Specifically, we let the server cache the latest update for each client and
reuse these variables for calibrating the global update at each round. We theoreti-
cally prove the convergence acceleration for our proposed method under nonconvex
stochastic settings. Extensive experiments on several vision and language tasks
demonstrate our superior performances compared to other asynchronous federated
learning baselines.

1 INTRODUCTION

Federated learning (FL) (Konečnỳ et al., 2016) has become an increasingly popular large-scale
machine learning paradigm where machine learning models are trained on multiple edge clients
guided by a central server. FedAvg (McMahan et al., 2017) (McMahan et al., 2017), also known as
Local SGD (Stich, 2018), is one of the most popular federated optimization methods, where each
client locally performs multiple steps of SGD updates followed by the synchronous server aggregation
of the local models. However, the traditional synchronous aggregation scheme may cause efficiency
and scalability issues as the server need to wait for all participating clients to complete the task
before conducting the global update step. This promotes the development of asynchronous federated
learning methods such as FedAsync (Xie et al., 2019), FedBuff (Nguyen et al., 2022), which adopt
flexible aggregation schemes and allow clients to asynchronously send back their model update and
thus improve the overall training efficiency and scalability.

Such an asynchronous aggregation scheme does not come with no costs: the asynchronous delay,
which describes the fact that the delayed local model update could be computed based on a past global
model rather than the current global model, slows down the convergence of asynchronous federated
learning. Moreover, the negative impact of the asynchronous delay on the convergence gets even
worse when the training data are non-i.i.d. distributed across clients. This is intuitive since empirical
observation suggests that the global model changes more significantly in adjacent rounds when the
data heterogeneity is high. Consequently, the asynchronous delay would cause the delayed local
model update to be more outdated and inconsistent with the current global model, hence worsening
the overall model convergence. Furthermore, each global update in asynchronous federated learning
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is, by nature, contributed from only a fraction of clients (similar to the partial participation scenarios
in synchronous FL). This intensifies the global variance arising from data heterogeneity and leads to
a further slowdown in convergence. Therefore, it is crucial to tackle the data heterogeneity issue to
improve the overall convergence of asynchronous federated learning.

In this work, we rigorously study how the asynchronous delay affects the convergence of asynchronous
federated learning under non-i.i.d. distributed data across clients. Through a theoretical convergence
analysis of FedBuff (Nguyen et al., 2022)1, one representative asynchronous federated learning
algorithm, we show that the asynchronous delay can largely slow down the convergence, especially
with high data heterogeneity. To further improve the convergence of asynchronous federated learning
under heterogeneous data distributions, we propose a novel asynchronous federated learning method,
Cache-Aided Asynchronous Federated Learning (CA2FL). CA2FL allows the server to cache the
latest update from each client and reuses this cached update for calibrating the global update, which
does not incur extra communication/computation overhead on clients, or raise any additional privacy
concerns (same as the traditional synchronous and asynchronous federated learning methods). We
summarize our contribution in this paper as follows:

• We present a convergence analysis of FedBuff (Nguyen et al., 2022), one representative asyn-
chronous federated learning algorithm, under non-i.i.d. distributed data across clients (with
fewer assumptions and slightly tighter bound on the asynchronous delay term). We demonstrate
that the asynchronous delay can theoretically slow down the convergence and such an impact
could be further amplified by the highly non-i.i.d. distributed data.

• To tackle the convergence degradation in asynchronous federated learning caused by the joint
effect of data heterogeneity and asynchronous delay, we propose a novel asynchronous federated
aggregation method with cached update calibrations (CA2FL) in which the server maintains
cache updates for each client and reuse the cached update for global aggregation calibration. We
theoretically show that with the help of cached updates, our proposed method can significantly
improve the convergence rate under nonconvex stochastic settings.

• Extensive experiments on several vision and language tasks demonstrate our superior perfor-
mances compared to other asynchronous federated learning baselines and back up our theory.

2 RELATED WORK

Synchronous FL and Heterogeneity Issues. Federated learning (Konečnỳ et al., 2016) plays a
critical role in jointly training models at edge devices without sharing local data. Since FedAvg
(McMahan et al., 2017), many federated learning variants are proposed (Li et al., 2019b; Stich, 2018;
Yang et al., 2021) for various training scenarios. Reddi et al. (2021); Tong et al. (2020); Wang et al.
(2022) propose adaptive federated optimizers for dealing with heavy-tail stochastic gradient noise
distributions. Gu et al. (2021); Yan et al. (2020) focus on improving the overall FL performance by
leveraging the latest historical gradients. Recently, many works also focused on addressing the data
heterogeneity issue through several aspects. FedProx (Li et al., 2020) adds a proximate term to align
the local model with the global one. FedDyn (Acar et al., 2021) involves a dynamic regularization
term for local and global model consistency. FedNova (Wang et al., 2020b) proposes a normalized
averaging mechanism that reduces objective inconsistency with heterogeneous data. Moreover,
several works studied how to eliminate the client drift caused by data heterogeneity from the aspect
of variance reduction including Karimireddy et al. (2020b;a); Khanduri et al. (2021); Cutkosky &
Orabona (2019); Jhunjhunwala et al. (2022). They usually introduce additional control variables to
track and correct the local model shift during local training, at the cost of extra communications for
synchronizing these control variables. Besides, FedDC (Gao et al., 2022) involves both dynamic
regularization terms and local drift variables for model correction.

Asynchronous SGD and Asynchronous FL. Asynchronous optimization methods such as asyn-
chronous SGD and its variants have been discussed for many years. Hogwild! SGD (Niu et al.,
2011) studies a coordinate-wise asynchronous method without any locking, and (Nguyen et al., 2018)

1Here we focus on the FedBuff algorithm without differential privacy for the entire paper.
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provided a tight convergence analysis for SGD and Hogwild! algorithm. Some other works focus on
the theoretical analysis for the asynchronous SGD such as (Mania et al., 2017; Stich et al., 2021).
(Leblond et al., 2018) studies the asynchronous SAGA method and demonstrates its theoretical
convergence. (Glasgow & Wootters, 2022) explored asynchronous SAGA methods for the distributed-
data setting and provided a theoretical analysis. In the context of federated learning, FedAsync (Xie
et al., 2019) is proposed for clients to update asynchronously to the server. FedBuff (Nguyen et al.,
2022) proposed a buffered asynchronous aggregation strategy. Later Toghani & Uribe (2022) studies
the convergence analysis of FedBuff with fewer assumptions. Anarchic Federated Averaging (Yang
et al., 2022) focuses on letting the clients decide when and whether to participate in global training.
Stripelis et al. (2022) proposed a semi-synchronous federated learning method for energy-efficient
training and accelerating convergence in cross-silo settings. SWIFT (Bornstein et al., 2023) is an
interesting wait-free decentralized FL paradigm that shares a similar idea to asynchronous FL, and
SWIFT also involves caching models by storing the neighboring local models. Moreover, there are
several works studying the theoretical convergence analysis in asynchronous federated learning with
arbitrary delay (Avdiukhin & Kasiviswanathan, 2021; Mishchenko et al., 2022) or the complete
theoretical analysis under various assumptions (Koloskova et al., 2022).

3 PRELIMINARIES FINDINGS ON ASYNCHRONOUS FEDERATED LEARNING

Federated Learning. In general federated learning framework, we aim to minimize the following
objective through N local clients:

min
x∈Rd

f(x) :=
1

N

N∑
i=1

Fi(x) =
1

N

N∑
i=1

Eξ∼Di [Fi(x; ξi)], (3.1)

where x represents the model parameters with d dimensions, Fi(x) = Eξ∼Di
[Fi(x, ξi)] represents

the local loss function corresponding to client i and let Di denotes the local data distribution on client
i. FedAvg (McMahan et al., 2017) is a popular synchronous optimization algorithm to solve Eq. 3.1,
where each participating client performs local SGD updates, and the server performs global averaging
steps after receiving all the updates from assigned clients.

Asynchronous Federated Learning. Asynchronous federated learning has been introduced to
facilitate efficiency and scalability for clients in solving Eq. 3.1 asynchronously. In asynchronous
federated learning, clients are allowed to train and synchronize local models on their own pace. For
example, FedBuff (Nguyen et al., 2022) studied an asynchronous federated learning method with a
global update buffer and differential privacy mechanism. To give a more concrete idea, we present
a general asynchronous federated learning framework, which is essentially FedBuff without the
differential privacy part, as shown in Algorithm 1. Specifically, the server initializes by randomly
selecting an active client setM1 with the size of the concurrency2 Mc. Then each assigned client
will conduct K steps of local training asynchronously. This means the server does not need to wait
until all assigned clients finish their local training to proceed, instead, the server just accumulates the
model update in ∆t (Line 5 in Algorithm 1) and updates the global model every time it accumulates
M updates3 (Lines 9-11 in Algorithm 1). Meanwhile, once the server receives a client update, it will
instantly re-sample another available client to continue the federated learning procedure. In this way,
the server always maintains a fixed number of active clients (i.e., the concurrency Mc).

Heterogeneity Across Clients. Several works (Karimireddy et al., 2020b;a; Acar et al., 2021; Wang
et al., 2020b) have shown that synchronized federated learning methods suffer from convergence and
empirical degradation when data is heterogeneously distributed across local clients. This issue of
model inconsistency also occurs in asynchronous federated learning and may even become worse
with the existing of gradient delay, since the model used for local gradient computation is usually
different from the current global model, which makes local updates less representative of the global
update direction. In order to formally illustrate such a relationship, we conduct the following
convergence analysis on Algorithm 1 under standard stochastic nonconvex optimization settings.
First, we introduce some necessary assumptions.

2The concurrency implies that the maximum size of the simultaneously active clients is Mc.
3M denotes the buffer size as in Fedbuff and M ≥ 1.

3



Published as a conference paper at ICLR 2024

Algorithm 1 FedBuff without DP
Input: local step size ηl, global stepsize η, server concurrency Mc, buffer size M ;

1: Initialize ∆1 = 0,m = 0 and sample a set of Mc active clients to run local SGD updates.
2: repeat
3: if receive client update then
4: Server accumulates update from client i: ∆t ←∆t +∆i

t and set m← m+ 1
5: Samples another client j from available clients
6: Broadcast the current model xt to client j, and run local SGD updates on client j
7: end if
8: if m = M then
9: Update global model xt+1 = xt + η∆t

M
10: Set m← 0, ∆t+1 ← 0, t← t+ 1
11: end if
12: until Convergence

Assumption 3.1 (Smoothness). Each loss function on the i-th worker Fi(x) is L-smooth, i.e.,
∀x,y ∈ Rd, ∣∣Fi(x)− Fi(y)− ⟨∇Fi(y),x− y⟩

∣∣ ≤ L

2
∥x− y∥2.

This also implies the L-gradient Lipschitz condition, i.e., ∥∇Fi(x) − ∇Fi(y)∥ ≤ L∥x − y∥.
Assumption 3.1 is a standard assumption in nonconvex optimization problems, which has been also
adopted in (Kingma & Ba, 2015; Reddi et al., 2018; Li et al., 2019a; Yang et al., 2021).

Assumption 3.2 (Bounded Variance). Each stochastic gradient on the i-th worker has a bounded local
variance, i.e., for all x, i ∈ [N ],we have E

[
∥∇fi(x, ξ)−∇Fi(x)∥2

]
≤ σ2, and the loss function on

each worker has a global variance bound, 1
N

∑N
i=1 ∥∇Fi(x)−∇f(x)∥2 ≤ σ2

g .

Assumption 3.2 is widely used in federated optimization problems (Li et al., 2019a; Reddi et al., 2021;
Yang et al., 2021). The bounded local variance represents the randomness of stochastic gradients,
and the bounded global variance represents data heterogeneity between clients. Note that σg = 0
corresponds to the i.i.d setting, in which datasets from each client have the same distribution.

Assumption 3.3 (Bounded Gradient Delay). Let τ it represent the delay for global round t and client
i which is applied in Algorithm 1 and 2. τ it implies the difference between the current global round t
and the global round at which client i started to compute the gradient. We assume that the maximum
gradient delay is bounded, i.e., τmax = maxt∈[T ],i∈[N ]{τ it} <∞.

Assumption 3.3 is a common assumption in convergence analysis for asynchronous federated learning
method (Koloskova et al., 2022; Yang et al., 2020). Note that Assumption 3.3 naturally means that
the average delay τavg = 1

NT

∑T
t=1

∑N
i=1 τ

i
t <∞ is bounded.

Theorem 3.4. Under Assumptions 3.1-3.3, denote f∗ = argminx f(x) and f1 = f(x1), let T be
the total global rounds and K be the number of local SGD training steps. If the local learning rate
η = Θ(

√
KM) and ηl = Θ(1/

√
TK) then the global rounds of Algorithm 1 satisfy

1

T

T∑
t=1

E[∥∇f(xt)∥2] = O
(
[(f1 − f∗) + σ2]√

TKM

)
+O

(
σ2 +Kσ2

g

TK

)

+O
( √

K√
TM

σ2
g

)
+O

(
Kτmaxτavgσ

2
g + τmaxσ

2

T

)
. (3.2)

Remark 3.5. Theorem 3.4 presents the convergence analysis for Algorithm 1 w.r.t. global commu-
nication round T , local steps K and the update accumulation amount M . From Eq. equation 3.2,
it can be seen that the maximum delay τmax and the average delay τavg term indeed affects the
overall convergence of the asynchronous federated learning algorithm. Particularly, the last term
involves joint effect term O(Kτmaxτavgσ

2
g/T ) where the global variance σ2

g and the delay terms
τmax and τavg are multiplied together. This implies that the convergence degradation brought by the
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asynchronous delay is amplified by the high data heterogeneity (large σg). If data are i.i.d. distributed
across clients, i.e., σg = 0, then O(Kτmaxτavgσ

2
g/T ) term vanishes to 0. On the other hand, if data

are non-i.i.d. distributed, i.e., σg ̸= 0, the term O(Kτmaxτavgσ
2
g/T ) will largely slow down the

overall convergence (in fact, when T ≤ KM , this term would become the dominant term in the
convergence rate). This verifies our intuition that the data heterogeneity can worsen the impact of
asynchronous delay and jointly deteriorate the convergence, which motivates us to develop a novel
method for reducing such joint effects and improving the convergence for asynchronous federated
learning. Compared to the original analysis in FedBuff, our analysis requires fewer assumptions and
enjoys a slightly tighter bound on the asynchronous delay term4.

4 PROPOSED METHOD: CACHE-AIDED ASYNCHRONOUS FL

To address the challenges of data heterogeneity and gradient delay across clients and achieve better
convergence in asynchronous federated learning, we propose a novel Cache-Aided Asynchronous
FL (CA2FL) method. The proposed CA2FL enables the server to maintain and reuse the cached
updates for global update calibration. Algorithm 2 summarizes our proposed CA2FL. In general, the
CA2FL largely follows the FedBuff framework in Algorithm 1, while the main difference between
our proposed CA2FL and Algorithm 1 lies primarily in the global update steps. Specifically, we
introduce a cached variable updating shown in Line 5 and 13, and we incorporate a global calibration
process in Line 4 and 11.

Algorithm 2 Cached-Aided Asynchronous FL
Input: local step size ηl, global stepsize η, server concurrency Mc, buffer size M ;

1: Initialize ∆1 = 0,hi
1 = 0 for i ∈ [N ], h1 = 0, m = 0 and sample a set of Mc active clients to

run local SGD updates.
2: repeat
3: if receive client update then
4: Server accumulates calibrated update from client i: ∆t ←∆t + (∆i

t − hi
t)

5: Server update clients’ cached variables: hi
t+1 = ∆i

t

6: Set m← m+ 1, St ← St ∪ {i}
7: Samples another client j from available clients
8: Broadcast the current model xt to client j, and run local SGD updates on client j
9: end if

10: if m = M then
11: vt = ht +

1
|St|∆t

12: Update global model xt+1 = xt + ηvt

13: Server maintains the cached variable hi
t+1 = hi

t for i /∈ St
14: Server initialize ht+1 = 1

N

∑N
i=1 h

i
t+1

15: Set m← 0, ∆t+1 ← 0, St+1 ← ∅, t← t+ 1,
16: end if
17: until Convergence

Cached variable update. In CA2FL, the server maintains the latest cached update for each client,
and reuses this cached update as an approximation of each client’s contribution to the current round’s
update. Denote hi

t as the latest cached variable for client i and ht as the global cached variable which
is the average of hi

t among all clients, i.e., ht =
1
N

∑N
i=1 h

i
t. Once the server received ∆i

t from
client i, then the server updates the cached variable for it, i.e., hi

t+1 = ∆i
t (Line 6). For clients which

don’t contribute to round t, the server keeps the state variable unchanged as hi
t+1 = hi

t (Line 14).
This update rule for cached variable enforces the server maintains the latest model update difference
for each client for global update calibration.

4Due to space limitations, we leave further discussions about Theorem 3.4 and the comparison with FedBuff
analysis in (Toghani & Uribe, 2022) in Appendix B.
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Global calibration. Once client i finish the local training and send ∆i
t to the server, the server

accumulates ∆i
t−hi

t to ∆t. Let St represent a set of clients in which the server received their update
at round t. After the server receives M updates, we calculate the server updates vt as the summation
of the global cached variable ht with the average global update ∆t

|St| (Line 11). The global model
xt+1 is then updated by this calibrated variable vt. Note that vt is actually a linear combination in
terms of the latest received model update difference ∆i

t and cached variable ht, i.e.,

vt = ht +
1

|St|
∑
i∈St

(∆i
t − hi

t). (4.1)

Discussion. The design (Eq. 4.1) for the calibration and cached variables felt somewhat similar to
SAGA (Defazio et al., 2014), a well-recognized stochastic variance-reduction method that stores
previously computed gradients and leverages them for reducing the gradient variance. Eq. 4.1
looks like a special form of SAGA by treating model update difference ∆i

t as gradients and applied
globally over different clients. However, it is important to note that our method does not adhere to the
properties of unbiased incremental gradients that SAGA mainly relies on for its variance reduction
purposes, which makes our theoretical analysis non-trial and different from that of SAGA. Therefore,
CA2FL should not be considered as a direct application of SAGA to asynchronous federated learning.
Note that CA2FL does not require extra communication and computation overhead on clients, and it is
compatible with privacy persevering approaches such as differential privacy and secure aggregation.

5 CONVERGENCE ANALYSIS

We first introduce the additional assumption needed for the convergence analysis of our proposed
CA2FL algorithm.

Assumption 5.1 (Bounded State Delay). Let ζjt represent the delay of the state variable for global
round t and client j /∈ St in Algorithm 2. ζjt is state in the context of client j which does not update
the model difference in round t and then maintains the state variable hj

t as the last step. ζjt implies
the difference between the current global round t and the global round at which this client j started
to compute the last gradient. We assume that the maximum gradient delay is also bounded, i.e.,
ζmax = maxt∈[T ],j∈[N ]{ζjt } <∞.

Assumption 5.1 is also commonly used in convergence analysis for memory-aided federated learning
method (Gu et al., 2021; Yang et al., 2022). In a nutshell, the state delay describes how many
global rounds has it been since the last local training for a client. In the following, we will show the
convergence results for our proposed CA2FL.
Theorem 5.2. Under Assumptions 3.1-3.3 and Assumption 5.1, if the local learning rate η =
Θ(
√
KM) and ηl = Θ(1/

√
TK) then the global rounds of Algorithm 2 satisfy

1

T

T∑
t=1

E[∥∇f(xt)∥2] = O
(

f1 − f∗√
TKM

)
+O

(
σ2

√
TKM

)
+O

(
σ2 +Kσ2

g

TK

)
+O

(
(τmax + ζmax)σ

2

T

)
,

(5.1)

where f∗ = argminx f(x).
Remark 5.3. Theorem 5.2 suggests that with a sufficient amount of global rounds T , i.e., T ≥ KM ,
our proposed CA2FL method achieves a desired convergence rate of O( 1√

TKM
) w.r.t. global

round T , local steps K and the update accumulation amount M , which matches the convergence
rate in traditional synchronous federated learning baselines (Yang et al., 2021; Reddi et al., 2021;
Jhunjhunwala et al., 2022).
Remark 5.4. Compared with Eq. 3.2, the joint effect term O(Kτmaxτavgσ

2
g/T ) no longer exists,

while in Eq. 5.1, the asynchronous delay τmax only relates to the stochastic noise σ. This suggests
that our proposed CA2FL can benefit from the design of reusing the cached update for global update
calibration, which tackles the data heterogeneity issue across clients and reduces the joint impact
caused by the asynchronous delay and data heterogeneity. Note that our design also contributes to the
general data heterogeneity issue in that the O(

√
K√
TM

σ2
g) term in Eq. 3.2 also gets smaller. Together,

those two improvements finally lead to a better convergence rate for our proposed CA2FL algorithm.
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6 EXPERIMENTAL RESULTS

Datasets, models, and methods. We present the experimental results on both vision and language
tasks to verify the effectiveness of the proposed method. For the vision tasks, we train the CIFAR-10
dataset with CNN (Wang & Ji, 2022) and ResNet-18 (He et al., 2016) models, and we also train
CIFAR-100 (Krizhevsky et al., 2009) datasets with ResNet-18 model, and we provide various data
sampling levels and client concurrency settings. For the language tasks, we conduct experiments on
fine-tuning a pretrained Bert-base model (Devlin et al., 2018) on several datasets in GLUE benchmark
(Wang et al., 2018). We evaluate experiments on non-i.i.d. data distributions by a Dirichlet distribution
partitioned strategy similar to (Wang et al., 2020a;b) with several parameters for both vision and
language tasks. We adopt the same CNN network as in and ResNet-18 network (He et al., 2016).
We compare our proposed CA2FL with the asynchronous FL baseline, FedBuff (without differential
privacy) (Nguyen et al., 2022) and FedAsync Xie et al. (2019) (constant), and with the synchronized
FL method, FedAvg McMahan et al. (2017). Due to the space limit, we leave additional experiments
on more datasets and models together with the experiment details in Appendix A 5.

Implementation overview of vision tasks. For experiments on CIFAR-10 and CIFAR-100, the
number of local training iterations K on each client is set to two local epochs (the amount of iteration
depends on the amount of data for each client, and the batch size is set to 50 for all experiments
by default). For local update, we use the SGD optimizer with a learning rate gridding from {0.001,
0.01, 0.1, 1} with momentum 0.9 and weight decay of 1e-4, and the global learning rate is gridding
from {0.1, 1.0, 2.0} for all methods. We set a total of 100 clients in the network and the concurrency
Mc = 20 if there is no further instructions, and we set the update accumulation amount M = 10 by
default.

Implementation overview of language tasks. For experiments on fine-tuning Bert-base model
on the MRPC, SST-2, RTE and CoLA datasets from the GLUE benchmark, the number of local
iterations K on each client is one local epoch (the amount of iteration depends on the amount of data
for each client, and the batch size is set to 32 for all experiments by default). We employ Dir (0.6)
for non-i.i.d. data partitioned among clients. We adopt the low-rank adaptation (LoRA) (Hu et al.,
2021) as the parameter-efficient fine-tuning method. Specifically, for a pre-trained weight matrix
W0 ∈ Rd×k, LoRA freezes W0 but tuned the ∆W by representing with a low-rank decomposition
with rank r ≪ min(d, k), W0 + ∆W = W0 + BA, where B ∈ Rd×r and A ∈ Rr×k are two
trainable parameters. For all experiments, we choose r = 1 and αLoRA = 1. For local update, we
use the widely-used AdamW optimizer with a learning rate gridding from {5e-5, 1e-4, 5e-4,
1e-3 5e-3} with weight decay of 1e-4, and the global learning rate is gridding from {0.1, 1} for
all methods. We set a total of 10 clients in the network and the concurrency Mc = 5 if there are no
further instructions, and we set the update accumulation amount M = 3 by default.

6.1 MAIN RESULTS

Table 1 shows the overall performance of training CIFAR-10 with a CNN model and the ResNet-18
model. We observe that the proposed CA2FL shows improvement upon the FedBuff and FedAsync.
Particularly, when training with the lightweight CNN model (with about 2.2M trainable parameters),
the training loss of FedAsync is severely fluctuating and cannot converge when α = 0.1, while our
proposed CA2FL are more robust to the highly heterogeneous settings and achieve better result than
FedBuff.

Table 2 presents the overall test accuracy of experiments on CIFAR-100 with two data heterogeneity
levels. For α = 0.1, our proposed CA2FL achieves higher test accuracy compared to FedBuff but has
lower accuracy than FedAsync. Specifically, when the data is highly heterogeneously distributed,
e.g., α = 0.01, our CA2FL method significantly outperforms than FedBuff and FedAsync.

For fine-tuning the Bert-base model on the GLUE benchmark, Table 3 presents the evaluation results
for four datasets with several tasks. Note that the MRPC, SST-2, and RTE datasets are evaluated

5We also provide experimental results on fine-tuning TinyImageNet with two ResNet models, and parameter-
efficient fine-tuning GPT-2 small model on E2E NLG Challenge.
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Table 1: The test accuracy of different models on the CIFAR-10 dataset with different models and
data heterogeneity degrees. We report the mean accuracy and the standard derivation for the last 5
rounds.

Method
Dir(0.3) Dir(0.1)

CNN ResNet-18 CNN ResNet-18
Acc. & std Acc. & std Acc. & std Acc. & std

FedAsync 62.29 ± 0.16 79.8 ± 2.28 - 40.58 ± 2.92
FedBuff 60.74 ± 1.18 78.53 ± 3.31 53.96 ± 0.10 63.03 ± 3.17
CA2FL 64.40 ± 0.32 83.79 ± 0.34 57.62 ± 0.42 68.37 ± 1.97

by the validation accuracy, while the CoLA dataset is evaluated by Matthew’s correlation. We
observe that FedAsync achieves higher validation accuracy in MRPC, for other tasks and datasets,
our proposed CA2FL obtains better evaluation results. Moreover, we plot the training loss w.r.t. the
global rounds in Figure 1, and it verifies the theoretical convergence improvements of our proposed
CA2FL.
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Figure 1: Training/fine-tuning loss on several models and datasets.

Table 3: The result of Bert-base model on several language datasets with data heterogeneity degrees
Dir(0.6). We report the mean evaluation metrics and the standard derivation for the last 5 rounds.

Method MRPC SST-2 RTE CoLA
Acc. & std. Acc. & std. Acc. & std. Acc. & std.

FedAsync 82.86 ± 0.42 87.32 ± 3.76 62.09 ± 0.76 54.53 ± 1.52
FedBuff 78.68 ± 0.41 86.06 ± 3.86 60.07 ± 1.09 55.57 ± 0.94
CA2FL 79.26 ± 0.12 90.76 ± 1.02 65.63 ± 0.35 56.10 ± 0.25

Table 2: The test accuracy of different models on the
CIFAR-100 dataset with different data heterogeneity
degrees. We report the mean accuracy and the standard
derivation for the last 5 rounds.

Method Dir(0.1) Dir(0.01)
Acc. & std Acc. & std

FedAsync 62.91 ± 1.67 -
FedBuff 57.12 ± 0.60 32.49 ± 1.31
CA2FL 59.50 ± 0.24 37.30 ± 0.26

We also conduct a detailed comparison
for studying the overall training/fine-tuning
speedup for our proposed method to investi-
gate the efficiency of our proposed method
in Table 4. We simulate the wall-clock
delay by assuming 80% of clients have
normal local training processes, 10% have
mild delays, and the last 10% have severe
delays. Specifically, we observe that for
each task, a client would finish the local
training in ttrain seconds, then the simulated
local training time for the normal clients
would be ti × ttrain, where ti ∼Uniform(0.5, 1) ×ttrain, for the mild delay clients, there is ti × ttrain,
where ti ∼ Uniform(1, 2)×ttrain, for severe delay clients, there is ti ∼ Uniform(2, 3). We’ve provided
an ablation study about different simulation settings in the Appendix. From Table 4 we observe
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that our proposed CA2FL maintains better training/fine-tuning efficiency among all asynchronous
methods. CA2FL also shows the advantage of asynchronous learning in image classification tasks.
However, the efficiency of CA2FL is still challenged compared to synchronized FL in the case of
fine-tuning pre-trained models. We would like to take this phenomenon as a conclusion of future
work for further research.

Table 4: Training/fine-tuning time simulation (in units of 10 seconds) to reach target validation
accuracy (Matthew’s correlation for CoLA). For each dataset, the concurrency is fixed for fair
comparison. Bold represents the best evaluation results and the underline represents the best results
for asynchronous FL.

Acc. FedAsync FedBuff CA2FL FedAvg

CIFAR-10 80% 268.80 291.53 214.16 388.64
CIFAR-100 55% 333.47 295.49 233.49 476.78
MRPC 80% 2549.54 403.95 87.39 97.71
SST-2 90% 2853.5 2079.35 648.71 572.01
RTE 63% 815.94 420.83 79.61 95.17
CoLA 55% 217.23 144.64 34.75 0.79
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Figure 2: Test accuracy of ablation studies for FedBuff and CA2FL in training CIFAR-10 on ResNet-
18 model.

We conduct ablation studies to investigate the effect of the effect of data heterogeneity, the delay
simulation strategies, and the relationship between the concurrency and the buffer size M . Due to
constraints on space, we leave detailed ablation results and discussions in Appendix A. From Figure
3 plots (a) and (b), we can observe the impact of data heterogeneity for FedBuff and CA2FL. They
show that the CA2FL is overall less sensitive to data heterogeneity than FedBuff with less fluctuation.
Plot (c) shows the the ablation study for the concurrency Mc for fixed buffer M = 10, it shows that
the accuracy decreases as the concurrency increases, with the same buffer M = 10. Plot (d) shows
the impact of the buffer M with fixed concurrency Mc = 20. We observe that as the increase of
buffer size M , the overall performance increases w.r.t. the global round T .

7 CONCLUSIONS

In this paper, we first investigate the convergence of FedBuff under non-convex heterogeneous
data distribution settings and we show that the data heterogeneity amplifies the negative impact of
asynchronous delay which slows down the convergence of asynchronous federated learning. To
address this convergence degradation issue, we propose a novel asynchronous federated learning
method, CA2FL, which involves caching and reusing previous updates for global calibration. We
provide theoretical analysis under non-convex stochastic settings that demonstrate the significant
convergence improvement of our proposed CA2FL. Empirical results demonstrate the superior
performance of the proposed CA2FL compared to general asynchronous federated learning, and it
also shows that the proposed MF-CA2FL could largely save the memory overhead while maintaining
the superior performance benefits from the cached update.
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A ADDITIONAL EXPERIMENTS

In this section, we present additional empirical results for our proposed methods in training CNN
network as in Wang & Ji (2022) on CIFAR-10, and ResNet-18 network He et al. (2016) on CIFAR-
10/100 Krizhevsky et al. (2009) datasets, and fine-tuning Bert-base Devlin et al. (2018) model on
GLUE datasetWang et al. (2018). Ablations and discussions about our proposed methods are also
provided. All experiments in this paper are conducted on 4 NVIDIA RTX A6000 GPUs.

A.1 MEMORY FRIENDLY CACHED-AIDED ASYNCHRONOUS FL

While CA2FL successfully tackles the data heterogeneity issue in Asynchronous FL, it involves extra
memory costs for maintaining the cached variable for each client on the server. However, this memory
overhead can pose challenges when applying CA2FL in practice, especially for large models with
massive trainable parameters. To overcome this memory overhead, we extend the proposed CA2FL
to a memory-friendly adaption method (MF-CA2FL). The main difference between CA2FL and
MF-CA2FL lies in whether the server maintains a full-size or a quantized latest update. Specifically,
in MF-CA2FL, after the client i obtains the model differences ∆i

t−τ i
t

and sends it to the server, the
server quantizes ∆i

t−τ i
t

to Q(∆i
t−τ i

t
) via unbiased quantization approaches such as 8-bit or 4-bit

quantization and keeps Q(∆i
t−τ i

t
) in memory. The server updates the global calibration variable vt

same as CA2FL. Note that for each global round t, the server updates the quantized Q(∆i
t−τ i

t
) as the

cached update, i.e., hi
t+1 = Q(∆i

t−τ i
t
),∀i ∈ St, that being said, the cached variable hi

t+1 for each
client represents the latest quantized model update difference. Therefore, compared to CA2FL, this
memory-friendly adaption effectively reduces the memory overhead.

A.2 ADDITIONAL EXPERIMENTAL RESULTS

Results on CIFAR-10. Table 5 shows the overall test accuracy of experiments on CIFAR-10 on
training different models with two data heterogeneity levels. It demonstrates that our proposed
CA2FL achieve better test accuracy than asynchronous federated learning baselines. Particularly,
when the data is highly heterogeneously distributed across clients, indicated by smaller α values in
Dirichlet sampling strategies, our CA2FL method significantly outperforms the other asynchronous
baseline. Particularly, when α = 0.1, CA2FL can significantly outperform FedBuff with more than a
5% increase on training ResNet-18. Moreover, in the memory-friendly version MF-CA2FL, which
reduces the memory overhead by keeping the quantized cached update, the superior performance of
the cached variable is still observed and leading to better test accuracy than asynchronous baseline.
Furthermore, Figure 3 provides the test accuracy curves of training CNN and ResNet-18 networks on
CIFAR-10 with α = 0.3, offering a visual illustration of the effectiveness of our proposed method.

Table 5: The test accuracy of different models on the CIFAR-10 dataset with different models and
data heterogeneity degrees. We report the mean accuracy and the standard derivationfor the last 5
rounds.

Method
Dir(0.3) Dir(0.1)

CNN ResNet-18 CNN ResNet-18
Acc. & std Acc. & std Acc. & std Acc. & std

FedAsync 62.29 ± 0.16 79.8 ± 2.28 - 40.58 ± 2.92
FedBuff 60.74 ± 1.18 78.53 ± 3.31 53.96 ± 0.10 63.03 ± 3.17
CA2FL 64.40 ± 0.32 83.79 ± 0.34 57.62 ± 0.42 68.37 ± 1.97
MF-CA2FL (8 bits) 62.43 ± 0.04 83.07 ± 0.43 57.00 ± 0.40 71.85 ± 1.57
MF-CA2FL (4 bits) 62.41 ± 0.19 82.72 ± 0.39 56.20 ± 0.54 70.98 ± 1.82

Results on CIFAR-100. Table 6 presents the overall test accuracy of experiments on CIFAR-100
with two data heterogeneity levels. It demonstrates that our proposed CA2FL achieve higher test
accuracy compared to the asynchronous federated learning baselines. Specifically, when the data is
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Figure 3: The test accuracy for our proposed CA2FL and MF-CA2FL (4 bits) with asynchronous
federated learning baselines in training CIFAR10 data on ResNet-18 model.

highly heterogeneously distributed, e.g., α = 0.01, our CA2FL method significantly outperforms
asynchronous baselines with more than 4.5% improvement compared to Asynchronous FL. The
memory-friendly version MF-CA2FL also shows its advantage over asynchronous federated learning
baselines when severely data heterogeneity settings.

Table 6: The test accuracy of different models on the CIFAR-100 dataset with different data hetero-
geneity degrees. We report the mean accuracy and the standard derivation for the last 5 rounds.

Method Dir(0.1) Dir(0.01)
Acc. & std Acc. & std

FedAsync 62.91 ± 1.67 -
FedBuff 57.12 ± 0.60 32.49 ± 1.31
CA2FL 59.50 ± 0.24 37.30 ± 0.26
MF-CA2FL (8 bits) 59.12 ± 0.21 37.34 ± 0.43
MF-CA2FL (4 bits) 59.50 ± 0.35 37.29 ± 0.36

Results on Tiny Imagenet. Table 7 shows the overall test accuracy of experiments on Tiny Imagenet-
200 (Le & Yang, 2015; Krizhevsky et al., 2012) on fine-tuning a pre-trained ResNet-18 (He et al.,
2016) and ResNet-34 (He et al., 2016) models under non-i.i.d. data distribution settings. Similar to
previous image classification tasks, there are 100 clients in total, and we set the concurrency Mc = 20
and update buffer M = 10, and we set a highly heterogeneous data distribution with Dir (0.01). Table
7 demonstrates that our proposed CA2FL achieves better test accuracy than asynchronous federated
learning baselines.

Table 7: The test accuracy of two models on the Tiny Imagenet dataset. We report the mean accuracy
and the standard derivation for the last 5 rounds.

Method ResNet-18 ResNet-34
Acc. & std Acc. & std

FedAsync 50.74 ± 1.08 54.13 ± 1.12
FedBuff 55.55 ± 0.37 61.85 ± 0.38
CA2FL 56.17 ± 0.23 62.51 ± 0.20

Results on E2E NLG Challenge. Table 8 shows the validation loss of experiments on E2E NLG
Challenge (Novikova et al., 2017) on parameter-efficient fine-tuning a pre-trained GPT-2 small
(Radford et al., 2019) model under non-i.i.d. data distribution settings. We set 10 clients in total,
with concurrency Mc = 5 and update buffer M = 2. Since there are no labels for the generation
tasks, we naturally sample a heterogeneous data distribution among clients. Similar to the previous
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Figure 4: Ablation for several settings for wall-clock delay simulation.

language classification tasks, we adopt a LoRA fine-tuning with αLoRA = 1 and r = 1. Table 8
demonstrates that our proposed CA2FL achieves lower validation loss than asynchronous federated
learning baselines. This further shows the effectiveness of our proposed method on various tasks.

Table 8: The validation loss of fine-tuning GPT-2 small model on E2E NLG Challenge. We report
the mean loss value and the standard derivation for the last 5 rounds.

Method Loss & std.

FedAsync 0.1533 ± 0.0438
FedBuff 0.1241 ± 0.0110
CA2FL 0.1025 ± 0.0004

A.2.1 ADDITIONL RESULTS

Table 9: Several settings for wall-clock delay simulation.
Setting 1 80% from U(0.5, 1), 10% from U(1, 2), 10% from U(2, 3)
Setting 2 80% from U(0.5, 1), 10% from U(1, 3), 10% from U(3, 5)
Setting 3 80% from U(0.5, 1), 10% from U(1, 5), 10% from U(5, 10)
Setting 4 80% from U(0.5, 1), 20% from U(5, 10)
Setting 5 60% from U(0.5, 1), 40% from U(5, 10)

Simulated delay distributions. We simulate the delay distributions on various settings summarized
in Table 9. From Figure 4, it shows that changing the setting of delay sampling would not make
significant effect on both convergence and generalization.

Performance under concept shift. In real-world applications, the non-stationary data sources (model
drift) can result in some long-term challenges. Although this is not the main focus of this paper,
we conduct an experiment to examine whether our proposed method maintains its advantage under
time-varying distribution shifts. We utilize a similar setting of sudden drift as in Flash (Panchal et al.,
2023): all the clients suffer from the distribution change abruptly at the same round (the concept
drift occurs at the 200th and 400th rounds). The concept shift is conducted as follows: for a task
with n labels, we swap the i-th label with i+ 1-th label, i ∈ [0, 1, ..., n− 1], and we swap the n-th
label with label 0. The following results, demonstrate that our proposed CA2FL still achieves better
performance compared to other asynchronous FL baselines when there exist distribution shifts. Since
this is not our main focus in this paper, we did not have any specific design for the model drift issues
but it is an interesting direction and we will leave it as our future work.
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Table 10: The test accuracy training ResNet-18 model on CIFAR-10 dataset. We report the mean
accuracy and the standard derivation for the last 5 rounds.

Method Acc. & std.

FedAsync 78.49 ± 3.24
FedBuff 74.17 ± 4.61
CA2FL 79.91 ± 1.00

A.3 HYPER-PARAMETERS DETAILS

Image classifications. We conduct detailed hyper-parameter searches to find the best hyper-parameter
for each baseline. We grid over the local learning rater ηl ∈ {0.001, 0.01, 0.1, 1.0}, and the global
learning rate η ∈ {0.1, 1.0, 2.0} for each methods. Table 11 summarizes the hyper-parameter details
in our experiments. Experiments are set up with 100 total clients, the concurrency is Mc = 20 by
default, and we let the server update the global model once it receives M = 10 updates from clients.
For each method, we conduct 2 local epochs (the explicit local iterations K may differ from clients)
of local training with a batch size of 50 by default. We set the weight decay as 10−4 for the local SGD
optimizer. For FedAsync Xie et al. (2019), we additionally grid over the weight of the regularization
term ρ ∈ {0.01, 0.1, 1.0}, the momentum factor αt ∈ {0.1, 0.3, 0.5, 0.9}.

Languages tasks. We conduct detailed hyper-parameter searches to find the best hyper-parameter for
each baseline. We grid over the local learning rater ηl ∈ {5× 10−5, 10−4, 5× 10−4, 10−3}, and the
global learning rate η ∈ {0.1, 1.0, 2.0} for each methods. Table 11 summarizes the hyper-parameter
details in our experiments. Experiments are set up with 10 total clients, the concurrency is Mc = 5
by default, and we let the server update the global model once it receives M = 3 updates from
clients. For each method, we conduct 1 local epochs (the explicit local iterations K may differ from
clients) of local training with a batch size of 32 by default. We set β1 = 0.9, β2 = 0.999, ϵ = 10−6

and weight decay as 10−4 for the local AdamW optimizer. For FedAsync Xie et al. (2019), we
additionally grid over the weight of the regularization term ρ ∈ {0.01, 0.1, 1.0}, the momentum
factor αt ∈ {0.1, 0.3, 0.5, 0.9}.

Table 11: Hyper-parameters details.
CIFAR-10

FedAsync FedBuff CA2FL MF-CA2FL (8 bits) MF-CA2FL (4 bits)
Models & Dir(α) ηl η ηl η ηl η ηl η ηl η

CNN & Dir(0.3) 0.001 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0
ResNet-18 & Dir(0.3) 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0
CNN & Dir(0.1) - - 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0
ResNet-18 & Dir(0.1) 0.001 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0

CIFAR-100

FedAsync FedBuff CA2FL MF-CA2FL (8 bits) MF-CA2FL (4 bits)
Models & Dir(α) ηl η ηl η ηl η ηl η ηl η

ResNet-18 & Dir(0.1) 0.001 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0
ResNet-18 & Dir(0.01) - - 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0

B FURTHER DISCUSSION ABOUT THEOREM 3.4

Discussions. Compare to the original proof in FedBuff (Nguyen et al., 2022), our analysis for
Theorem 3.4 eliminates the unrealistic bounded gradient assumption of ∥∇Fi∥2 ≤ G. Furthermore,
it obtains a tighter dependency of gradient delay τ it . While FedBuff’s original analysis has a τ2max

dependency, and we obtain a τmaxτavg dependency. Compared to FedAsync (Xie et al., 2019),
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Table 12: Hyper-parameters details.

GLUE

FedAsync FedBuff CA2FL
Models & Dir(α) ηl η ηl η ηl η

MRPC 5× 10−4 1.0 5× 10−4 1.0 5× 10−4 1.0
SST-2 5× 10−4 1.0 5× 10−4 1.0 5× 10−4 1.0
RTE 5× 10−4 1.0 5× 10−4 1.0 5× 10−4 1.0
CoLA 5× 10−4 1.0 5× 10−4 1.0 5× 10−4 1.0

Theorem 3.4 eliminates the assumption for weak convexity, providing a more common nonconvex
analysis for the asynchronous FL method.

It’s worth noting that (Koloskova et al., 2022) relaxes the delay dependency in the convergence rate
for distributed asynchronous SGD to√τmaxτavg. In our study, we focus on the FL scenario where
each client performs multiple local update steps prior to global aggregation. Particularly, by setting
K = 1 and selecting a delay-dependent learning rate of η = Θ(

√
M√

τmaxτavg
), we can achieve the same

delay dependency in convergence rate of √τmaxτavg as in (Koloskova et al., 2022). Additionally,
while (Mishchenko et al., 2022) explores the arbitrary delay in asynchronous SGD, our approach
yields an improved convergence rate in heterogeneous scenarios compared to their results under
similar assumptions.

Comparisons with Toghani & Uribe (2022). Our original FedBuff analysis in Theorem 3.4 obtains

a convergence rate of O
(

(|f1−f∗|+σ2)√
TKM

)
+O

(
σ2+Kσ2

g

TK

)
+O

(√
Kσ2

g√
TM

)
+O

(
Kτmaxτavgσ

2
g+τmaxσ

2

T

)
.

• If we only consider the T and τ related terms, we obtain a similar convergence rate of
O( 1√

T
) +O( τmaxτavg

T ) compared to O( 1√
T
) +O( τ

2
max

T ) in Toghani & Uribe (2022).

• If we consider the convergence rate w.r.t. T,K,M and τ related terms, when M > K,
we obtain a similar convergence rate of O( 1√

T
) + O(Kτmaxτavg

T ) compared to O( 1√
T
) +

O(Kτ2
max

T ) in Toghani & Uribe (2022).

Moreover, the convergence rate is highly related to the learning rate choosing. For example, when
adopting a different learning rate as in Theorem 3.4, our convergence rate can match the result in
[1] w.r.t. T,K,M and τ without any further constraints: following Equation (C.15) in Appendix,
choosing η = O(1) and ηl = O( 1√

TK
), then we get 1

T

∑T
i=1 E[∥∇f(xt)∥2] = O( (f0−f∗)√

T
) +

O( σ2
√
TKM

)+O(
σ2
g√

TM
)+O(

τmaxτavgσ
2
g

TM )+O( τmaxσ
2

TKM )+O(
σ2+Kσ2

g

TK2 ). If we look at the T and delay
related terms, our rate would beO( 1√

T
)+O( τmaxτavg

TM ), and this is slighlty better on the non-dominant
O( τmaxτavg

TM ) term than the rate in Toghani & Uribe (2022).

C CONVERGENCE ANALYSIS FOR ASYNCHRONOUS FL

Proof of Theorem 3.4. Since f is L-smooth, taking conditional expectation at time t, we have

E[f(xt+1)]− f(xt)

≤ E[⟨∇f(xt),xt+1 − xt⟩] +
L

2
E[∥xt+1 − xt∥2]

= E[⟨∇f(xt)), η∆t⟩]︸ ︷︷ ︸
I

+
η2L

2
E[∥∆t∥2]︸ ︷︷ ︸
II

. (C.1)
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Bounding I
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=
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, (C.2)

where the second and third equation holds by the update rule. The fifth one holds by the unbiasedness
of stochastic gradient. By the fact of ⟨a, b⟩ = 1

2 [∥a∥
2 + ∥b∥2 − ∥a− b∥2], we have

− ηηlE
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for the last term, we have

ηηl
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For the second term, we have

E[∥xt−τ i
t
− xi

t−τ i
t ,k
∥2] = E

[∥∥∥∥ k−1∑
m=0

ηlg
i
t−τ i

t ,m

∥∥∥∥2]
≤ 5Kη2l (σ

2 + 6Kσ2
g) + 30K2η2l E[∥∇f(xt−τ i

t
)∥2] (C.5)

19



Published as a conference paper at ICLR 2024

For the first term, we have
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For simplicity, we assume that the clients’ participation distributions are simulated as independently
uniform distribution, then for the last term, we have
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where the first inequality is inspire from Lemma E.1. Then
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Thus we have
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Thus for I , we have
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Bounding II
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where the inequality holds by Lemma E.1. For simplicity, in the following, we define Vt =∑N
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2 + 6Kσ2
g) + (30K4L2η2l +K2)E[∥∇f(xs−τj

s
)∥2]

]
+ 6η3η3l K

3L2τmax
N −M

M(N − 1)

1

N

N∑
i=1

τ itσ
2
g

+ η2L

{
Kη2l
M

σ2 +
η2l (N −M)

M(N − 1)

[
15K3L2η2l (σ

2 + 6Kσ2
g)

+ (90K4L2η2l + 3K2)
1

N

N∑
i=1

E[∥∇f(xt−τ i
t
)∥2] + 3K2σ2

g

]}
+

(
η2η2l L(M − 1)

NM(N − 1)
− ηηl

2KN2

)
E[∥Vt∥2].
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By organizing and merging similar terms, we have

E[f(zt+1)]− f(zt)

≤ −ηηlK

2
E[∥∇f(xt)∥2] + ηηlKL2

[
5Kη2l (σ

2 + 6Kσ2
g) + 30K2η2l

1

N

N∑
i=1

E[∥∇f(xt−τ i
t
)∥2]

]

+
2η3η3l K

2L2τmax

M
σ2 + 2η3η3l KL2τmax

1

MN

N∑
i=1

t−1∑
s=t−τ i

t

[
3(N −M)

N − 1
+

2N(M − 1)

N − 1

]

·
[
5K3L2η2l (σ

2 + 6Kσ2
g) + (30K4L2η2l +K2)E[∥∇f(xs−τj

s
)∥2]

]
+ 6η3η3l K

3L2τmax
N −M

M(N − 1)

1

N

N∑
i=1

τ itσ
2
g

+ η2L

{
Kη2l
M

σ2 +
η2l (N −M)

M(N − 1)

[
15K3L2η2l (σ

2 + 6Kσ2
g)

+ (90K4L2η2l + 3K2)
1

N

N∑
i=1

E[∥∇f(xt−τ i
t
)∥2] + 3K2σ2

g

]}
+

(
η2η2l L(M − 1)

NM(N − 1)
− ηηl

2KN2

)
E[∥Vt∥2].

(C.13)

Summing over t = 1 to T , we have

E[f(zT+1)]− f(z1)

≤ −ηηlK

2

T∑
t=1

E[∥∇f(xt)∥2] + ηηlKL2

[
5Kη2l T (σ

2 + 6Kσ2
g) + 30K2η2l

1

N

T∑
t=1

N∑
i=1

E[∥∇f(xt−τ i
t
)∥2]

]

+
2η3η3l K

2L2τmaxT

M
σ2 + 2η3η3l KL2τmax

1

MN

T∑
t=1

N∑
i=1

t−1∑
s=t−τ i

t

[
3(N −M)

N − 1
+

2N(M − 1)

N − 1

]

·
[
5K3L2η2l (σ

2 + 6Kσ2
g) + (30K4L2η2l +K2)E[∥∇f(xs−τj

s
)∥2]

]
+ 6η3η3l K

3L2τmax
N −M

M(N − 1)

1

N

T∑
t=1

N∑
i=1

τ itσ
2
g + η2L

{
KTη2l
M

σ2 +
η2l (N −M)

M(N − 1)

[
15K3TL2η2l (σ

2 + 6Kσ2
g)

+ (90K4TL2η2l + 3K2)
1

N

N∑
i=1

T∑
t=1

E[∥∇f(xt)∥2] + 3K2Tσ2
g

]}
+

(
η2η2l L(M − 1)

NM(N − 1)
− ηηl

2KN2

) T∑
t=1

E[∥Vt∥2]

≤ −ηηlK

2

T∑
t=1

E[∥∇f(xt)∥2] + ηηlKTL2[5Kη2l (σ
2 + 6Kσ2

g) + 30K2η2l τmax

T∑
t=1

E[∥∇f(xt)∥2]]

+
2η3η3l K

2L2τmaxT

M
σ2 +

2η3η3l KL2τ2max

M

T∑
t=1

[
3(N −M)

N − 1
+

2N(M − 1)

N − 1

]
·
[
5K3L2η2l (σ

2 + 6Kσ2
g) + (30K4L2η2l +K2)τmaxE[∥∇f(xt)∥2]

]
+ 6η3η3l K

3L2τmaxτavgT
N −M

M(N − 1)
σ2
g

+ η2L

{
KTη2l
M

σ2 +
η2l (N −M)

M(N − 1)

[
15K3TL2η2l (σ

2 + 6Kσ2
g)

+ (90K4TL2η2l + 3K2)

T∑
t=1

E[∥∇f(xt)∥2] + 3K2Tσ2
g

]}
+

(
η2η2l L(M − 1)

NM(N − 1)
− ηηl

2KN2

) T∑
t=1

E[∥Vt∥2].
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thus by specific constraint on the learning rate ηl and η, i.e., ηl ≤ 1
K and ηηlK ≤ 1

4τ
3/2
max

, we have

1

T

T∑
t=1

E[∥∇f(xt)∥2] ≤
1

ηηlKT
[f(x1)− E[f(xt+1)]] + L25Kη2l (σ

2 + 6Kσ2
g)

+
2Kη2η2l L

2τmax

M
σ2 +

2η2η2l L
2τ2max

M

[
3(N −M)

N − 1
+

2N(M − 1)

N − 1

]
· [5K3L2η2l (σ

2 + 6Kσ2
g)] + 3η2η2l K

2L2τmaxτavg
N −M

M(N − 1)
σ2
g

+
ηL

2

{
ηl
M

σ2 +
ηl(N −M)

M(N − 1)
[15K2TL2η2l (σ

2 + 6Kσ2
g) + 3Kσ2

g ]

}
(C.15)

By choosing η = Θ(
√
KM) and ηl = Θ(1/

√
TK), we have

1

T

T∑
t=1

E[∥∇f(xt)∥2] = O
(
[(f0 − f∗) + σ2]√

TKM

)
+O

(
σ2 +Kσ2

g

TK

)

+O
( √

K√
TM

σ2
g

)
+O

(
Kτmaxτavgσ

2
g + τmaxσ

2

T

)
, (C.16)

where f∗ = argminx f(x).
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D CONVERGENCE ANALYSIS FOR CA2FL

Proof of Theorem 5.2. By the update scheme of Algorithm 2, we have

vt ← ht +
1

M
(∆i

t−τ i
t
− hi

t−1)⇒ vt = ht−1 +
1

M

∑
i∈St

(∆i
t−τ i

t
− hi

t−1).

vt =
1

N

∑
i/∈St

hi
t−1 +

1

N

∑
i∈St

hi
t−1 +

1

M

∑
i∈St

(∆i
t−τ i

t
− hi

t−1)

=
1

N

∑
i/∈St

hi
t−1 +

∑
i∈St

[(
1

N
− 1

M

)
hi
t−1 +

1

M
∆i

t−τ i
t

]
(D.1)

Since we hi
t represents the state update for client i, and hi

t keeps unchanged if i /∈ St. We also have
the following

ht = ht−1 +
1

N

∑
i∈St

(∆i
t−τ i

t
− hi

t−1) =
1

N

∑
i∈St

∆i
t−τ i

t
+

1

N

∑
i/∈St

∆i
t−ζi

t
, (D.2)

Since f is L-smooth, taking conditional expectation at time t, we have

E[f(xt+1)]− f(xt)

≤ E[⟨∇f(xt),xt+1 − xt⟩] +
L

2
E[∥xt+1 − xt∥2]

= E[⟨∇f(xt)), ηvt⟩]︸ ︷︷ ︸
I

+
η2L

2
E[∥vt∥2]︸ ︷︷ ︸
II

. (D.3)
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Bounding I

I = E[⟨∇f(xt), ηvt⟩]

= E
[〈
∇f(xt),

η

M

∑
i∈St

∆i
t−τ i

t
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M
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η
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1
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1
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∑
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i
t−τ i

t ,k
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) ∑
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∇Fi(x
i
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)

+
1
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∑
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i
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)
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1
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2
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M
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)

∥∥∥∥2]

+
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2
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1

K

[ ∑
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(
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M
∇Fi(x
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1
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∑
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∇Fi(x
i
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]∥∥∥∥2], (D.4)

where the second and third equation holds by the update rule. The forth one holds by the unbiasedness
of stochastic gradient, and the last one holds by the fact of ⟨a, b⟩ = 1

2 [∥a∥
2 + ∥b∥2 − ∥a − b∥2].

For the last item, we have

ηηlK

2
E
[∥∥∥∥∇f(xt)−

1
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K−1∑
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∇Fi(x

i
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]∥∥∥∥2] = (∗), (D.5)
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then

(∗) =ηηlK

2
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[∥∥∥∥ 1

MK

∑
i∈St

K−1∑
k=0

[∇Fi(xt−τ i
t
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(D.6)

where we have
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[∥∥∥∥ 1

MK

∑
i∈St

K−1∑
k=0

[∇Fi(xt−τ i
t
)−∇Fi(x

i
t−τ i

t ,k
)] +

(
1

N
− 1

M

)
1

K

∑
i∈St

K−1∑
k=0

[∇Fi(xt−ζi
t
)−∇Fi(x

i
t−ζi

t ,k
)]

+
1

NK

∑
i/∈St

K−1∑
k=0

[∇Fi(xt−ζi
t
)−∇Fi(x

i
t−ζi

t ,k
)]

∥∥∥∥2]

≤3ηηlK

M
E
[ ∑
i∈St

∥∥∥∥ 1

K

K−1∑
k=0

[∇Fi(xt−τ i
t
)−∇Fi(x

i
t−τ i

t ,k
)]

∥∥∥∥2]

+
3ηηlK(N −M)2

N2M
E
[ ∑
i∈St

∥∥∥∥ 1

K

K−1∑
k=0

[∇Fi(xt−ζi
t
)−∇Fi(x

i
t−ζi

t ,k
)]

∥∥∥∥2]

+
3ηηlK(N −M)

N2
E
[ ∑
i/∈St

∥∥∥∥ 1

K

K−1∑
k=0

[∇Fi(xt−ζi
t
)−∇Fi(x

i
t−ζi

t ,k
)]

∥∥∥∥2]
≤3ηηlK

M

∑
i∈St

[5KL2η2l (σ
2 + 6Kσ2

g) + 30K2L2η2l E[∥∇f(xt−τ i
t
)∥2]]

+
3ηηlK(N −M)2

N2M

∑
i∈St

[5KL2η2l (σ
2 + 6Kσ2

g) + 30K2L2η2l E[∥∇f(xt−ζi
t
)∥2]]

+
3ηηlK(N −M)

N2

∑
i/∈St

[5KL2η2l (σ
2 + 6Kσ2

g) + 30K2L2η2l E[∥∇f(xt−ζi
t
)∥2]]

≤3ηηlK · [5KL2η2l (σ
2 + 6Kσ2

g)] +
90ηη3l K

3L2

M

∑
i∈St

E[∥∇f(xt−τ i
t
)∥2]

+
6ηηlK(N −M)2

N2
[5KL2η2l (σ

2 + 6Kσ2
g)] +

90ηη3l K
3L2(N −M)2

N2M

∑
i∈St

E[∥∇f(xt−ζi
t
)∥2]]

+
90ηη3l K

3L2(N −M)

N2

∑
i/∈St

E[∥∇f(xt−ζi
t
)∥2]] (D.7)

27



Published as a conference paper at ICLR 2024

We also have

ηηlKE
[∥∥∥∥ 1
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Then we have
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Similar to the proof in the previous section, we have
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and
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(
1

M
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i
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(
1

N
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)
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Bounding II

II =
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Merging pieces. For simplicity, we define Vt =
∑

i∈St

∑K−1
k=0

(
1
M∇Fi(x

i
t−τ i

t ,k
) +

(
1
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1
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)
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+ 1
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∑
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i
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t ,k
) Therefore, by merging pieces together, we
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have

E[f(xt+1)]− f(xt) = I + II
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E[∥∇f(xt)∥2]−

ηηl
2K

E[∥Vt∥2] +
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6τmaxη
2η2l L

2

M2

t−1∑
s=t−τ i

t

E[∥Vs∥2] +
12ζmaxKη2η2l L

2

M
σ2 +

12ζmaxη
2η2l L

2

M2

t−1∑
s=t−ζi

t
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E[∥Vt∥2]. (D.13)

Summing over t = 1 to T , we have
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with some conditions on the learning rate ηl and η, i.e., ηl ≤ 1
K , ηηlK

M ≤ 1
36τ2

maxL
2 , ηηlK

M ≤ 1
72ζ2

maxL
2 ,

ηlK ≤ 1
36

√
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√
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. Therefore,
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Therefore,
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Hence by choosing ηl =
1√
TK

and η =
√
KM , then the convergence rate satisfies

1
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, (D.17)

where f∗ = argminx f(x).

E SUPPORTING LEMMAS

Lemma E.1. The model difference ∆t =
1
M

∑
i∈Mt

∆i
t =

1
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∑
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k=0 gi
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Proof. We have
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where the fifth equation holds due to P{i ∈Mt} = M
N . Note that we have∥∥∥∥ N∑
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where the second equation holds due to ∥
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where the third equation holds due to ⟨x,y⟩ = 1
2 [∥x∥

2 + ∥y∥2 − ∥x− y∥2] and the last equation
holds due to 1
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∑
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∑N
i=1 N∥xi∥2 − ∥

∑N
i=1 xi∥2. Therefore, for the last term in

equation E.1, we have
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(E.4)
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The second term in equation E.4 is bounded partially following Reddi et al. (2021),

N∑
i=1
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∥∥∥∥2

≤ 3
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E[∥xi
t,k − xt∥2] + 3NK2σ2

g + 3NK2∥∇f(xt)∥2

≤ 15NK3L3η2l (σ
2
l + 6Kσ2

g) + (90NK4L2η2l + 3NK2)∥∇f(xt)∥2 + 3NK2σ2
g ,

(E.5)

where the last inequality holds by applying Lemma E.2 (also follows from Reddi et al. (2021)).
Substituting equation E.5 into equation E.4, this concludes the proof.

Lemma E.2. (This lemma directly follows from Lemma 3 in FedAdam Reddi et al. (2021). For local
learning rate which satisfying ηl ≤ 1

8KL , the local model difference after k (∀k ∈ {0, 1, ...,K − 1})
steps local updates satisfies

1

N

N∑
i=1

E[∥xi
t,k − xt∥2] ≤ 5Kη2l (σ

2
l + 6Kσ2

g) + 30K2η2l E[∥∇f(xt)∥2]. (E.6)

Proof. The proof of Lemma E.2 is exactly same as the proof of Lemma 3 in Reddi et al. (2021).
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