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ABSTRACT

Retrieval-augmented generation models offer many benefits over standalone lan-
guage models: besides a textual answer to a given query they provide provenance
items retrieved from an updateable knowledge base. However, they are also more
complex systems and need to handle long inputs. In this work, we introduce FiD-
Light to strongly increase the efficiency of the state-of-the-art retrieval-augmented
FiD model, while maintaining the same level of effectiveness. Our FiD-Light
model constrains the information flow from the encoder (which encodes passages
separately) to the decoder (using concatenated encoded representations). Fur-
thermore, we adapt FiD-Light with re-ranking capabilities through textual source
pointers, to improve the top-ranked provenance precision. Our experiments on
a diverse set of seven knowledge intensive tasks (KILT) show FiD-Light con-
sistently improves the Pareto frontier between query latency and effectiveness.
FiD-Light with source pointing sets substantial new state-of-the-art results on
six KILT tasks for combined text generation and provenance retrieval evaluation,
while maintaining reasonable efficiency.

1 INTRODUCTION

Enabling machine learning models to access information contained in parametric or non-parametric
storage (i.e., retrieval-enhanced machine learning) can lead to efficiency and/or effectiveness im-
provements in a wide range of learning tasks (Zamani et al., 2022). For example, retrieval-
augmented generation (Lewis et al., 2020), which is the focus of this paper, has a manifold of ben-
efits over closed-loop language modelling in knowledge intensive tasks: Answers can be grounded
in (multiple) specific pieces of information which enables clear attribution (Dehghani et al., 2019;
Rashkin et al., 2021; Lamm et al., 2021); the knowledge base can easily be managed, updated, and
swapped (Izacard et al., 2022); the decomposition of retrieval and generation module offers clear
efficiency-effectiveness tradeoff controls; and the data structure of combined retrieval and text gen-
eration enables many insightful failure analyses. However, with these benefits also come downsides,
such as a higher system complexity with higher training and inference cost. Therefore, our goal is to
reduce costs as much as possible, while retaining effectiveness, to make these benefits more widely
available.

The most effective approach for knowledge intensive tasks, such as those contained in the KILT
benchmark (Petroni et al., 2021), is the Fusion-in-Decoder (FiD) model proposed by Izacard &
Grave (2020). The FiD model uses an external retriever, such as a dense retrieval model, to gather
candidate passages, which are encoded with the query by a T5-encoder (Raffel et al., 2020); the
encoded vectors are concatenated and fed through a T5-decoder to produce a single output string.
FiD can synthesize answers from multiple different sources, which leads to state-of-the-art results in
many tasks from open domain QA to fact verification (Hofstätter et al., 2022; Izacard et al., 2022).

While undoubtedly the leading architecture – in terms of effectiveness for knowledge intensive gen-
eration tasks – the FiD model is resource intensive. In state-of-the-art configurations concatenating
all encoded tokens before the decoding leads often to sequences longer than 10 thousand vectors,
coupled with auto-regressive decoding, this leads to a high inference latency. In Figure 1 we plot the
average latency of a single query measured on a single TPUv4 of the encoder and decoder modules
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Figure 1: Average inference latency for a query of FiD & FiD-Light (T5-Base on a single TPUv4).

of FiD.1 The first observation is the overpowering 93% of time spent on decoding in FiD. A common
and straightforward approach to reduce the latency of FiD is to reduce the number of input passages,
e.g., to only 10 passages. While this approach naturally reduces the overall latency, the decoding
latency still requires 10 times as long as the encoding (see Figure 1). Crucially, this approach will
also reduce the model’s effectiveness substantially, as we show later in this work (see §4.3).

To overcome the inefficiencies of the decoding, we propose FiD-Light, a simple yet effective adap-
tation of the FiD model. The connection between the encoder and decoder has a large capacity for
information in FiD. In contrast, the retrieval community, showed that in applications, such as dense
retrieval with dot-product scoring, encoded information may be compressed to a fraction of the
original input length, including representing passages in a single (Hofstätter et al., 2021) or multiple
vectors (Chen et al., 2020). Following these footsteps, we propose to compress the number of vec-
tors per encoded passage, to a fraction of the input vectors, before they are accessed by the decoder.
Using this approach FiD-Light is able to ingest a large number of passages with strongly reduced
latency, as illustrated in Figure 1. Here we still use 40 passages, showing the same encoding time
as FiD, but a substantially faster decoding (now on par with the encoding time), for a total latency
lower than FiD with 10 passages.

The knowledge intensive tasks we aim to solve ideally require a system to produce both a generated
output text, as well as a ranked list of provenance items from the knowledge base. However, FiD is
limited to only produce output text. Falling back to return the original candidate ranking is usually
sub-optimal with low-precision. To incorporate re-ranking capabilities into FiD-Light we adapt a
passage marker workflow proposed by Lakhotia et al. (2021) as part of FiD-Ex. They marked the
input passages with textual indices, and trained the model to output the relevant indices in the output
text. We find that using these textual indices or source pointers directly as output, as Lakhotia
et al. (2021) proposed, is brittle and prone to distribution shifts in the number of expected relevant
passages between training and evaluation (see §4.2). Therefore, our FiD-LightSP approach re-ranks
the selected passages to the top of the ranked list, without discarding the rest of the retrieved list, for
higher robustness and improved results.

We conduct experiments on seven tasks of the KILT benchmark composed by Petroni et al. (2021)
spanning open domain QA, slot filling, fact verification, and dialogue tasks. We study the following
research questions to demonstrate the efficacy of our proposed FiD-LightSP model:

RQ1 What impact does training the retrieval module have on FiD-LightSP downstream results?

The quality of the final result is strongly bound by the recall quality of the retriever module. While
many complex end-to-end training procedures have been proposed (Singh et al., 2021; Izacard et al.,
2022), we focus on simple, yet effective directly supervised dense retrieval training. We show that a
simple retrieval training comfortably outperforms a zero-shot retrieval baseline from Hofstätter et al.
(2022) and the resulting FiD-LightSP downstream results take a major step towards a realistic oracle
retriever ceiling.

RQ2 How robust is our source pointing and re-ranking workflow applied to FiD and FiD-Light?

We use available passage relevance information for each task in the KILT benchmark to train our
source pointer output via text markers. We train the FiD(-Light) generator to output the indices for

1All our measurements in this work are conducted on TPUv4s, however we confirmed that using V100
GPUs we observe a similar ratio of time spent in the encoder vs. the decoder of FiD and FiD-Light.
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all relevantly retrieved passages during training, before generating the textual answer. We observe
that FiD(-Light)SP is learning an expected distribution for the number of selected passages, which
might not match relevance distributions during evaluation. To mitigate this problem we propose to
use the source pointer to re-rank the initial list. We show this improves the results over FiD-Ex.
Comparing the effectiveness of the source pointers between different FiD-Light settings and the FiD
baseline we find FiDSP to rapidly lose effectiveness when the number of input passages is reduced,
while FiD-LightSP is able to hold the passage precision at much lower latency.

RQ3 How does FiD-LightSP compare to the FiDSP baseline in efficiency-effectiveness tradeoffs?

The common approach to speed up FiD is to reduce the number of input passages. To this we
compare our FiD-LightSP model using a static number of passages, but varying the number of vectors
fed into the decoder as well as changing the T5 backbone size. We show that while FiDSP with fewer
passages strongly degrades, FiD-LightSP is able to hold most of the initial maximum effectiveness
of FiDSP, while being 3× faster. This Pareto optimal result between latency and effectiveness is
complemented when we increase the T5-backbone sizes in FiD-LightSP to receive the benefits of
larger models, while still outperforming the initial FiDSP baseline in terms of efficiency. Overall
FiD-LightSP is Pareto optimal on six out of the seven tested tasks.

RQ4 How does FiD-LightSP compare to related methods on the KILT benchmark?

We submitted three representative configurations of FiD-LightSP to the blind-evaluated KILT leader-
board test set to compare them to other methods for knowledge intensive tasks. We evaluate FiD-
LightSP on the main metric of the KILT benchmark: combined KILT-scores (which only counts a
text generation score if the R-Precision for the query is 1). We show FiD-LightSP outperforms pre-
vious SOTA models by considerable margins on the KILT-scores on six tasks. We set new SOTA
results compared to the previous best methods on:

- QA HotpotQA +11.1 K-EM (+61.3%), NQ +7.5 K-EM (+17.2%), TriviaQA +5.8 K-EM (+10.0%)
- Slot Filling zsRE +10.8 K-AC (+14.8%), T-REx +0.5 K-AC (+0.7%)
- Fact Verification FEVER +6.0 K-AC (+7.6%)

We hope these results demonstrate to the community that SOTA results are achievable with reason-
able efficiency and that efficient retrieval-augmented generation has a promising future ahead.

2 BACKGROUND AND RELATED WORK

In this section, we first review the FiD model and FiD-Ex workflow, which adds textual explanation
markers to FiD. We further discuss other related work in this area.

2.1 FID (FUSION IN DECODER) WITH EXPLANATIONS

A critical capability for retrieval-augmented models is to be able to synthesize and utilize infor-
mation from multiple distinct retrieved items (Zamani et al., 2022). To effectively implement this
paradigm Izacard & Grave (2020) proposed the FiD model, which re-wires the computational graph
between an of-the-shelf pre-trained Transformer Encoder and Decoder (Vaswani et al., 2017). Usu-
ally FiD is initialized with the pre-trained T5 model (Raffel et al., 2020). Given a query q, we re-
trieve a set of n candidate passages using a separate retrieval module. The retriever is independently
trained, and can take any traditional, neural or hybrid architecture. As in Izacard & Grave (2020),
we use a single dense retriever, as it has been shown to outperform traditional retrieval methods
(Hofstätter et al., 2022). To encode the information, FiD concatenates the query q with each re-
trieved passage p and independently feeds (one per index i) the sequences through a Transformer
encoder (TE):

ei = TE([“query: ”; q; “context: ”; pi]) (1)
The resulting encoded representations – using one vector per token – are concatenated into a single
long sequence, which is fed through the Transformer decoder (TD), autoregressively during infer-
ence, to produce a single output sequence o:

o = TD([e1; e2; ...; en]) (2)
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FiD has two main limitations: (1) the text-only output does not provide any information about the
exact passage(s) which were used to synthesize the output; and (2) the long input sequence leads
to highly inefficient autoregressive decoding (as shown in Figure 1). While the expected output
is relatively short (in the magnitude of dozens of tokens), the input to the decoder is large with
O(n ∗ (|q|+ |p|)) tokens (in the magnitude of thousands of tokens).

To alleviate limitation (1) Lakhotia et al. (2021) adapt the FiD workflow with textual explanations
(FiD-Ex) inspired by the WT5 (Why?, T5) concept proposed by Narang et al. (2020). For FiD-Ex,
the FiD architecture is left untouched; Lakhotia et al. (2021) only adapt the textual input and target
output. The input to the encoder is augmented with indices (from 1 to n) to identifiy individual
passages:2

ei = TE([“query: ”; q; “index: ”; i; “context: ”; pi]) (3)
And the target output t during training is augmented with the indices (using the regular tokens for
the numbers and spaces as separators for multiple indices) of all the known relevant passages R+ in
the retrieved set:

t̂ = [“index: ”; {r|r ∈ R+}; “text: ”; t] (4)
On one hand, this textual formulation packs more capabilities in the same text based architecture, on
the other hand we note that this discrete selection of the top-|R+| passages from the candidate set is
a strong departure from the prevalent pairwise re-ranking models. It opens a new range of induced
biases about expected distributions of |R+| not studied before. During inference the output is parsed
to extract the indices as numbers and remove the additional textual markers to evaluate the output
text.

2.2 RELATED WORK

Efficient Generation Models. To enable their ubiquitous use, a key component besides their
safety, is the efficiency of text generators to run at scale. Naturally, many studies work to achieve this
goal from various angles. Schuster et al. (2022) propose an adaptive early exiting language model,
which exits the decoder stack of Transformer layers early for easy to predict tokens. The LongT5
model focuses on improving the efficiency of the encoder for long input sequences (Guo et al., 2021),
in contrast we focus on the decoder efficiency, as FiD’s encoder input is usually short. We believe
our FiD-Light adaptations are orthogonal to many other algorithmic and engineering-based genera-
tion efficiency improvements and can be combined in future work. For a comprehensive overview
over efficient transformer architectures, we refer the reader to Tay et al. (2022).

Retrieval-Enhanced Machine Learning. The foundational retrieval-augmented models, e.g.,
FiD (Izacard & Grave, 2020), RAG (Lewis et al., 2020), and REALM, (Guu et al., 2020) are trained
to solve individual tasks. Many of their recent improvements optimized end-to-end processes (e.g.,
EMDR2 (Singh et al., 2021)), ensembling multiple modules (e.g., R2-D2 (Fajcik et al., 2021)), or
creating multiple training loops to update the indexed documents multiple times (e.g., Hindsight
(Paranjape et al., 2021)). In contrast, we focus on architectural efficiency improvements with a
simple training paradigm. Recently, more task-independent retrieval-enhanced language models
emerged, such as retrieving from a text-snippet database (Borgeaud et al., 2021) or learning to re-
trieve from the web with reinforcement learning (Nakano et al., 2021). For more information on
retrieval-enhanced machine learning models, we refer the reader to Zamani et al. (2022).

Improving and Adapting the FiD Model. To integrate passage relevance prediction into FiD,
Asai et al. (2021) add a second decoding module, which is called for every query-passage sequence
to indicate its relevance. They also use this setup to generate silver-relevance scores for unjudged
passages. Yu et al. (2022) replace the retrieval module with a large language model to generate
supporting documents, which are then fused to generate the answer by a default FiD implementa-
tion. The current top-systems on the KILT leaderboard (Hofstätter et al., 2022; Izacard et al., 2022)
use strong retrievers in combination with large T5-backbones for FiD. They also improve the su-
pervised training by using better data sampling or pre-training procedures for more data efficient
fine-tuning. We continue in the spirit of these related works with additional efficiency and capability
improvements of FiD.

2Note we adapted the formulation of Lakhotia et al. (2021) from sentence markers to passage indices, to
make the formulation more general.
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Figure 2: Overview of the FiD-Light architecture and workflow with source pointers. We highlight
our two main contributions: Ê Compressing the encoded vectors per passage, before concatenating
and feeding them through the decoder; Ë Increasing the robustness of source pointers, by using the
model as re-ranker.

3 FID-LIGHT WITH SOURCE POINTERS

With FiD-LightSP we overcome the two main limitations of the FiD-Ex model and workflow: We
drastically increase the efficiency of the decoder, by reducing its computational requirement, and
we improve the robustness of the passage selection with a source pointing workflow, by shifting
our view from an explanation to a second, parallel-solved task: re-ranking passages. We provide an
overview of our FiD-LightSP model and source pointer workflow in Figure 2.

Decoder Efficiency. Following our initial observation, that FiD spends most time in the decoding
phase (Figure 1), we adapt the original FiD decoding step (Eq. 2) to reduce the length of each
encoded query-passage pair to k vectors via a function f :

ô = TD([fk(e1); fk(e2); ...; fk(en)]) (5)

This reduces the input length from the previous O(n ∗ (|q|+ |p|)) to O(n ∗ k), where k � |q|+ |p|.
The exact compression ratio depends on the required tokens for the used tasks; we experiment with
configurations from a 6x to 384x fold reduction. In our experiments, for simplicity, we instantiate fk
as the first k vectors of each sequence. While this architecture change is simple, it strongly disrupts
previous assumptions that every encoded token is accessible for decoding in the T5 architecture. Its
simplicity also means that the community can easily adapt existing codebases with this change to
benefit from the efficiency improvements.

Source Pointing Robustness To enable source pointing in FiD-Light, we train the model with
the source pointing concept proposed by Lakhotia et al. (2021) in FiD-Ex. Our novel contribution
is how we handle the output of the source pointers at inference time. If we use them directly as
result, as in FiD-Ex, we are prone to instability in the number of returned passages. The question
of processing the output further almost becomes philosophical: if we treat the source pointers as
explanations we can not process them any further without corrupting the explanation. While, there
might be a correlation between the textual output and the source pointed passages, we are treating
finding the source passages as a concurrent task to generating the text output. Because we are not
claiming them to be explanations we can now process them further.

We propose to merge the initial ranked candidate list of passages C with the source pointing selected
passage by re-ranking the selected passages (found in the decoded output ô) to the top of the list:

Ĉ1:r =

[
[r|r ∈ ô]; [r|r ∈ C, r /∈ ô]

]
(6)

To compute all selected passages r ∈ ô we first parse the output ô with a simple parser for the
trained format given in Eq. 4, including a conversion from the text-tokens representing the indices to
integers. In case the model selects multiple passages we keep the selection order of the model output.
If a task contains graded relevance annotations for training passages, we can train the model to
follow the grades, if only binary relevance is available (as in the case with KILT), we keep the rank-
ordering of the multiple selected passages from the initial candidate list. This change leads to higher
robustness in our provenance results, as distribution differences between training and evaluation
otherwise lead to a disadvantaged position, as we demonstrate in Section 4.2.
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Table 1: FiD-Light downstream KILT-scores for different retrievers (realistic & oracle evaluation).

GTR Retriever
Open Domain QA Fact Slot Filling Dialog

NQ HotpotQA TriviaQA FEVER T-REx zsRE WOW
KILT-EM KILT-EM KILT-EM KILT-AC KILT-AC KILT-AC KILT-F1

Real-World Evaluation
1 Zero-Shot 38.0 ±.3 11.3 ±.2 30.8 ±.3 71.6 ±.4 64.9 ±.2 67.0 ±.6 9.5 ±.2
2 KILT Fine-Tuned 41.4 ±.4 24.1 ±.2 37.6 ±.2 78.1 ±.2 71.5 ±.1 71.4 ±.4 10.9 ±.2
3 FT + Relevant (Train) 40.3 ±.3 25.7 ±.1 37.5 ±.3 78.1 ±.3 71.7 ±.2 71.5 ±.6 11.4 ±.1

Oracle Evaluation
4 FT + Rel. (Train&Eval) 44.9 ±.6 45.9 ±.3 54.3 ±.4 83.0 ±.2 77.4 ±.2 75.2 ±.4 14.8 ±.2
5 Only Relevant 63.9 ±.4 58.7 ±.3 78.6 ±.2 90.9 ±.1 90.6 ±.1 79.9 ±.3 21.8 ±.2

4 RESULTS

We empirically address the research questions laid out in the introduction. We study the importance
of the retriever module, the efficacy of the source pointer workflow, the tradeoff between efficiency
and effectiveness using a controlled baseline, and finally we compare our FiD-LightSP to related
methods on the blind-evaluated KILT leaderboard. We detail our experiment design in Appendix A.

4.1 INFLUENCE OF THE RETRIEVER

The retrieval module is the backbone for all retrieval-augmented generation. The generation qual-
ity is to a large extent bound by the retrieval quality, especially if the retrieved information is not
memorized by the generator. To answer RQ1 What impact does training the retrieval module have
on FiD-LightSP downstream results? we have to be careful to acknowledge the uncertainty of sparse
ranking annotations (Hofstätter et al., 2022).

To accurately quantify the retriever’s contribution, we compare the downstream effect of a zero-shot,
a fine-tuned (methodology described in detail in Appendix B), and two oracle retrievers in Table 1.
In the first section (rows 1-3) retrievers are evaluated without access to relevance judgements (a
real-world environment), whereas in the second section (rows 4 & 5) we infuse relevance informa-
tion during the evaluation (oracle environment). We find that training the retriever with in-domain
training data (row 2) consistently improves results over a zero-shot retriever (row 1) as used by
(Hofstätter et al., 2022). While always ingesting all known relevant passages during training (row
3) does not significantly change the downstream performance.

To account for annotation uncertainty in our retriever as oracle experiments, we study two scenar-
ios: 1) infusing all known relevant passages into the retrieved candidate list (row 4) and 2) setting the
candidates to be only the known relevant passages (row 5). Commonly, the community compares
their results only against the second oracle scenario, showing a large headroom for future improve-
ments for the retriever (Glass et al., 2021; Shuster et al., 2021). However, we argue, due to the
sparsity of the annotations, we should compare the results to our more realistic first oracle scenario
(row 4). It still shows a significant opportunity for improvement, albeit the total headroom is roughly
halfed across the board. Future work may explore more fine-tuning aspects, but we decide to select
the simple fine-tuned retriever (row 2).

4.2 SOURCE POINTER ROBUSTNESS

While the initial source pointer concept has been proposed by FiD-Ex as sentence markers for ex-
plainability, we are the first to study their application in the more complex passage ranking context
combined with our compressed FiD-Light architecture. Therefore, we study RQ2 How robust is our
source pointing and re-ranking workflow applied to FiD and FiD-Light?

As introduced earlier, we train the source pointing capabilities into FiD(-Light) by flagging all
known relevant passages retrieved in the candidate passage set. By directly using the size of the
known relevant item set during training we instill a strong expectation prior into the model of how
many passages ought to be relevant for a given task. Note, if a known relevant passage is not re-
trieved we cannot use it for training the generator. In Figure 3, we observe these effects for four
representative tasks of the KILT benchmark. Each of these tasks shows a different expected distri-
bution target. We note that the training distribution differs from the target, as it skips non-recalled
relevant items. We find the model output distribution on the validation set to closely match the
training distribution (albeit here we make no claims about the correctness of the selected passages).
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Figure 3: Distributions of source pointer
passages for FiD-LightSP (T5-Base).

Table 2: Comparing our source pointer (SP) re-ranking
with the direct model output (Ex) using KILT scores for
passages and documents. Bold indicates improvement
of SP over Ex larger than the 95% CI.

Model
Open Domain QA Fact Slot Fill.

HotpotQA TriviaQA FEVER zsRE
Pas. Doc. Pas. Doc. Pas. Doc. Pas. Doc.

T5-Base
1 FiD-Ex 25.4 25.6 22.0 34.1 70.1 77.2 70.1 71.6
2 FiDSP 25.8 26.1 23.1 39.5 71.1 78.3 70.1 71.7

3 FiD-Light-Ex 23.5 23.7 18.8 32.1 70.0 77.1 69.3 71.2
4 FiD-LightSP 23.8 24.1 19.8 37.6 71.6 78.1 69.3 71.4

T5-Large
5 FiD-Light-Ex 26.6 26.9 22.6 36.3 72.6 79.2 70.9 72.7
6 FiD-LightSP 26.9 27.3 23.5 41.4 74.2 80.4 70.9 72.8

T5-XL
7 FiD-Light-Ex 28.2 28.4 24.8 38.7 73.9 80.5 73.1 75.9
8 FiD-LightSP 28.4 28.7 25.7 43.8 75.5 81.7 73.2 76.1

However, focusing on higher passage counts in Figure 3 (a) TriviaQA and (c) FEVER shows that
the model struggles to output 3 passages as often as it is expected to do. This weakness becomes
visible, when we evaluate the standard R-Precision of the selection, which needs at least R returned
items to reach the full score, given R known relevant items.

To overcome this limitation, we propose instead of directly outputting the selection (FiD-Ex) to
move the selected passages to the top of the ranked list. This essentially transforms FiD(-Light) into
a re-ranking model. In Table 2, we show the ablation study to confirm the usefulness of the proposed
re-ranking on final downstream results. Our approach is strictly positive or neutral for the results,
as we are filling up holes, that would result in penalties. Confirming our hypothesis originating in
Figure 3, we see stat. significant improvements across all configurations on the two task, where the
model struggled to fill up the full distribution: TriviaQA and FEVER.

While in this work we do not change the KILT evaluation methodology and optimize our models
towards the current standard evaluation, we note that these findings represent interesting avenues for
future work requiring evaluation setup changes: We may choose to train the model to only select a
single passage or even re-rank the whole list with our textual source pointers as re-rankers.
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Figure 4: Comparing the capability to se-
lect the two relevant passages in HotpotQA
for FiD-LightSP and FiDSP.

We might be tempted to directly compare the inter-
setting results in Table 2, for example FiDSP in row
2 with FiD-LightSP in row 4 (T5-Base). Here we ob-
serve, especially on HotpotQA and TriviaQA, a quality
reduction, which would lead us to the conclusion that
source pointing in FiD-Light is less robust than FiD.
To put these results into perspective, we exemplary se-
lected HotpotQA and plot the query latency as well as
the R-Precision of the models in Figure 4. For FiDSP,
we modulate the number of input passages; for FiD-
Light we modulate the number of vectors k fed to the
decoder and the backbone size. We clearly observe a
stark reduction in quality for the FiDSP model, when
the number of input passages is reduced. On the other
hand our FiD-LightSP variants are able to almost keep
the same level of effectivness, and larger backbones,
while still faster than the FiDSP baseline also produce
a higher quality. Therefore, an equal-efficiency com-
parison in Table 2 involves row 2 and row 8 (using
T5-XL). We are diving deeper in these tradeoffs in the
next section.
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Figure 5: Comparing FiD-LightSP with FiDSP on KILT-scores modulating the number of input pas-
sages on FiD and the number of decoder-input vectors on FiD-Light.

4.3 EFFICIENCY - EFFECTIVENESS TRADEOFF

Ultimately, we as a community want our research be applied to real world use, to benefit society.
A major component, besides concerns about safety and social biases as summarized by Bender
et al. (2021), is the efficiency of the deployed system. To understand the impact of our proposed
FiD-Light architecture we study RQ3 How does FiD-LightSP compare to the FiDSP baseline in
efficiency-effectiveness tradeoffs?

The KILT benchmark gives us the opportunity to study our changes in a large variety of tasks, with
different properties, so that we can make confident claims about the efficacy of our changes. In
Figure 5 we show our ablation results per task. For each task we report the average query latency
(y-axes) and the main KILT-score effectiveness metric (x-axes). The gray line indicates our FiD
baseline by modulating input passage counts – from 40 down to 1. Our FiD-Light models all have
access to the full 40 passages, and here we are modulating T5 sizes as well as the number of vectors
(1, 8, 32, 64) fed into the decoder.

We start our discussion with the open domain QA tasks in Figure 5 (a, b, & c) as they provide
a similar picture: Comparing our FiD-LightSP model with the baseline we do observe a drop in
effectiveness from the strongest baseline (gray dotted vertical line) when using the same T5-Base
model. However, due to the more efficient architecture we are able to swap backbones and earn
the benefits of those larger models in terms of effectiveness. At the same time we outperform the
latency of the baseline as well, shifting the Pareto optimum. Interestingly, the FiD-LightSP model
with T5-XL and only a single encoded vector per passage shows a larger drop in effectiveness than
the counterparts for smaller T5’s. The only 2-label classification task, FEVER, shown in Figure 5
(d), exhibits the lowest reduction in effectiveness, when constraining the number of encoded vectors
in FiD-LightSP. This is likely due to the fact, that only little generation is necessary to solve the task.
Therefore, our FiD-LightSP configurations improve the Pareto optimum again. The slot-filling tasks
in Figure 5 (e & f) show less impact of the T5 size, with little improvement for Large and XL over
the Base configurations. Fortunately, we also observe a similarly small reduction in effectiveness
for reducing the number of encoded FiD-LightSP vectors, leading to our final Pareto gains.

In conclusion we observe clear and statistically significant improvements between FiDSP and FiD-
LightSP – both in terms of effectiveness and efficiency – across a variety of KILT tasks. FiD-LightSP
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Table 3: Comparing our models with related work on the KILT test set via the leaderboard (as of
September 21, 2022). Highest result in bold; improvement over prior state-of-the-art underlined.

Model
Open Domain QA Fact Slot Filling Dialog

NQ HotpotQA TriviaQA FEVER T-REx zsRE WOW
KILT-EM KILT-EM KILT-EM KILT-AC KILT-AC KILT-AC KILT-F1

Top Leaderboard Entries
1 RAG (Petroni et al., 2021) 32.7 3.2 38.1 53.5 23.1 36.8 8.8
2 DPR + FiD (Piktus et al., 2021) 35.3 11.7 45.6 65.7 64.6 67.2 7.6
3 KGI (Glass et al., 2021) 36.4 – 42.9 64.4 69.1 72.3 11.8
4 Re2G (Glass et al., 2022) 43.6 – 57.9 78.5 75.8 – 12.9
5 Hindsight (Paranjape et al., 2021) – – – – – – 13.4
7 SEAL + FiD (Bevilacqua et al., 2022) 38.8 18.1 50.6 71.3 60.1 73.2 11.6

Ours
8 FiD-LightSP (T5-Base, k = 64) 45.6 25.6 57.6 80.6 76.0 81.1 11.9
9 FiD-LightSP (T5-Large, k = 32) 49.9 28.2 61.4 82.1 76.7 84.1 12.2
10 FiD-LightSP (T5-XL, k = 8) 51.1 29.2 63.7 84.5 76.3 84.0 13.1

can lower the query latency by more than 2x and still deliver higher effectiveness by upgrading the
language model backbone size.

4.4 COMPARISON TO RELATED WORK

In addition to showing improvements over our own baselines, we now demonstrate the effectiveness
of FiD-LightSP in a broader context and answer RQ4 How does FiD-LightSP compare to related
methods on the KILT benchmark? The community is fortunate to have a blind-evaluation leader-
board for all KILT tasks3 at our disposal to compare our approaches on a level playing field, where
everyone may submit their highly-tuned systems. While the top spots of a leaderboard are typi-
cally not populated by efficient methods, we nevertheless submitted three different configurations of
FiD-LightSP – all more efficient than our FiD baseline with 40 input passages. We selected a single
checkpoint to submit for all tasks, so as to demonstrate our multi-task capabilities and not overfit a
single submission to a single task.

We show the leaderboard results for the main KILT-score metrics in Table 3. For the independent
breakdown of text generation and retrieval leaderboard scores we direct the reader to Appendix C.
Even our T5-Base configuration in row 8 already outperforms previous SOTA results on five out
of the seven tasks. With T5-Large and T5-XL (both continuously reducing the number of encoded
vectors, to increase efficiency) set new SOTA results on six out of the seven tasks. Only WoW
remains a weak spot, albeit not dramatically different to previous results. The fusion capabilities
of FiD paired with our robust source pointing set especially impressive results on the challenging
HotpotQA task, where exactly two distinct passages containing parts of the answer have to be placed
on top of the ranked list. Here, we outperform previous methods by 61% or 11.1 KILT-EM points.
On the other two QA task we reach +7.5 K-EM (+17.2%) for NQ and +5.8 K-EM (+10.0%) for
TriviaQA. The zsRE task with +10.8 K-AC (+14.8%) and FEVER with +6.0 K-AC (+7.6%) round
off our strong new SOTA results across a variety of tasks.

5 CONCLUSION

We proposed the FiD-Light model with a robust source pointing workflow to overcome efficiency
and versatility limitations in the previous state-of-the-art retrieval-augmented generation model FiD.
We adapted the FiD model architecture to compress the amount of information fed to the decoder, for
drastically reduced inference latency. We demonstrated at the same time only a modest reduction in
effectiveness, which can be alleviated with larger T5-backbones leading to Pareto optimal results on
six KILT tasks. Our multi-task system achieved substantial new state-of-the-art results for combined
retrieval and generation metrics on six KILT tasks compared to previous methods on the public
leaderboard. These results demonstrate that we do not need to always scale up to achieve the highest
effectiveness, enabling more researchers to work on this problem in the future.

3The leaderboard is available at: https://eval.ai/web/challenges/challenge-page/689
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anov, and Gargi Ghosh. Multi-task retrieval for knowledge-intensive tasks. arXiv preprint
arXiv:2101.00117, 2021. 14

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332,
2021. 4

Sharan Narang, Colin Raffel, Katherine Lee, Adam Roberts, Noah Fiedel, and Karishma Malkan.
Wt5?! training text-to-text models to explain their predictions. arXiv preprint arXiv:2004.14546,
2020. 4

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernández Ábrego, Ji Ma, Vincent Y Zhao,
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Table 4: KILT tasks grouped by category with training example and query set size statistics.

Category Dataset Name Reference Training # Dev # Leaderb. #

Open Domain QA
HotpotQA (Yang et al., 2018) 68,659 5,600 5,569
TriviaQA (Joshi et al., 2017) 177,238 5,359 6,586
Natural Questions (NQ) (Kwiatkowski et al., 2019) 89,372 2,837 1,444

Slot Filling T-REx (Elsahar et al., 2018) 197,439 5,000 5,000
Zero Shot RE (zsRE) (Levy et al., 2017) 137,945 3,724 4,966

Fact Verification FEVER (Thorne et al., 2018) 83,141 10,444 10,100

Dialog Wizard of Wikipedia (WoW) (Dinan et al., 2018) 54,330 3,054 2,944

A EXPERIMENT DESIGN

Implementation. Our experiment setup follows the state-of-the-art multi-task relevance sampled
training sets of Hofstätter et al. (2022). All our experiments are based on the T5X framework
(Roberts et al., 2022). We start with a GTR-Base dense retrieval model (Ni et al., 2021), which
is pre-trained on the MSMARCO passage retrieval task (Bajaj et al., 2016) and has been shown to
generalize well on the BEIR benchmark (Thakur et al., 2021). We train our FiD(-Light) models
using T5 v1.1 as language model backbone (Raffel et al., 2020) on TPUs. We attach task-specific
markers to the queries for the multi-task training. We cap the input at 384 tokens (combined query
and passage) and a maximum of 64 output tokens. For training, we use a batch size of 128 with
up to 40 retrieved passages, and a learning rate of 10−3 with the Adafactor optimizer (Shazeer &
Stern, 2018). We do not tune our models to a specific checkpoint, rather train them all for 50K steps.
The only special case is T5-XL, which uses a learning rate of 5 ∗ 10−4 and is trained for 30K steps.
During decoding we use beam search with a beam size of 4.

Datasets. We conduct experiments on 7 KILT tasks: HotpotQA (Yang et al., 2018), TriviaQA
(Joshi et al., 2017), Natural Questions (NQ) (Kwiatkowski et al., 2019), T-REx (Elsahar et al., 2018),
Zero Shot RE (zsRE) (Levy et al., 2017), FEVER (Thorne et al., 2018), and Wizard of Wikipedia
(WoW) (Dinan et al., 2018). We give an overview over the dataset in Table 4. We used the filtered
training & passage sets from Hofstätter et al. (2022) and the original evaluation sets from Petroni
et al. (2021).

Evaluation. We follow the KILT evaluation setup proposed by Petroni et al. (2021), in particular
we focus on the main KILT-score metrics, which combines both a text output metric M (such as
EM, Accuracy, or F1) with R-Precision (RP ) per query, before aggregating the individual query
results over the query result set Q:

KM =
1

|Q|
∑
q∈Q

M(qtext) ∗ (RP (qprovenance) == 1) (7)

In essence, KILT-scores only count the text score M if the R-Precision of the query is 1, meaning
all R relevant passages or documents are returned on the top-R positions of the ranked list. This
metric makes the assumption that only a few (1 to 2) items are marked as relevant, as is the case in
the KILT dataset. To reduce the noise in our dev results, we present the mean and a 95% confidence
interval measured with a t-statistic of the last 10 checkpoints (every thousand steps from 40K to
50K training steps). For our leaderboard submission, we selected a single checkpoint for all tasks.
Unfortunately, we can not compute statistical significance tests compared to other methods, as the
submission files and gold-labels are not publicly available.
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Table 5: Passage-level Recall@40 KILT dev results of the GTR dense retrieval model with an addi-
tional relative difference to the respective Recall@40 on the training set (∆ T) – a lower difference
is better.

Open Domain QA Fact Slot Filling Dialog
NQ Hotpot TriviaQA FEVER T-REx ZS-RE WOWRetrieval Model

R@40 ∆ T R@40 ∆ T R@40 ∆ T R@40 ∆ T R@40 ∆ T R@40 ∆ T R@40 ∆ T

Zero-Shot 0.73 3% 0.52 -1% 0.48 1% 0.84 4% 0.75 -1% 0.89 0% 0.58 -3%

Trained LR: 0.1 0.83 -17% 0.70 -33% 0.64 -39% 0.80 -16% 0.84 -7% 0.86 -9% 0.73 -34%
Trained LR: 0.05 0.85 -13% 0.73 -28% 0.66 -33% 0.88 -11% 0.86 -5% 0.89 -7% 0.73 -33%
Trained LR: 0.01 0.86 -6% 0.72 -12% 0.66 -15% 0.93 -5% 0.88 -2% 0.92 -5% 0.75 -13%
Trained LR: 0.005 0.85 -3% 0.72 -7% 0.66 -9% 0.94 -4% 0.88 -1% 0.93 -4% 0.75 -8%
Trained LR: 0.001 0.83 -1% 0.69 -2% 0.64 -2% 0.94 -2% 0.88 -1% 0.94 -4% 0.75 -4%

B DENSE RETRIEVAL TUNING RESULTS

In our experiments we use a ”double-finetuned” GTR dense retriever retriever: First it was trained
on the MSMARCO retrieval task (Bajaj et al., 2016) by Ni et al. (2021) and then we fine-tuned their
checkpoint further on our combined KILT training set to create a single generalized KILT retrieval
module, akin to Maillard et al. (2021). We created passage retrieval training triples containing a
query, a known relevant passage, and a sampled negative passage (randomly sampled from the top-
100 GTR zero-shot rankings for the query). We then fine-tuned the retriever for 100K steps using the
GTR default parameters in the t5x Retrieval framework. We did not employ knowledge distillation
(Hofstätter et al., 2020) or complex end-to-end losses (Izacard et al., 2022), to demonstrate the
effectiveness of our approach in a simple setting which likely is orthogonal to more complex training
setups.

This approach means, that while we expect to learn retrieve better results, we may overshoot our
target and overfit on the training data, leading to a growing divide in the the train vs. test perfor-
mance. This matters strongly in our retrieval-augmented generation setup, because we use the fully
trained retrieval model as the source for our generation training data. We aim to detect and avoid
unnecessary distribution shifts to actually train the generator on the expected retrieval performance
and not an overfitted training set.

We choose to modulate the learning rate to control for and study the train vs. test distribution shift.
We focus on the recall at the highest cutoff we use in our experiments (the top-40) and provide
our results in Table 5. First, we show the zero-shot results, as used by the previous state-of-the-art
FiD models from Hofstätter et al. (2022), followed by our novel fine-tuned GTR models. Our first
observation is that in all tasks we are able to achieve significant R@40 gains on the dev set compared
to the zero-shot baseline – ranging from 0.13 to 0.20 absolute changes. Concerning our learning rate
study, we find too high learning rates (especially 0.1 and 0.05) show a high ∆T, which indicates a
strong distribution shift between train and test. If we were to only train one of the high learning
rate checkpoints and compare the dev results to the zero-shot baseline we could be tempted to use
them, as their dev results look strong. However, due to our fine-grained analysis we see that it would
introduce a strong distribution shift.

Another interesting observation we make is how different task categories seem to converge at dif-
ferent velocities – the open domain QA tasks reach their optimal dev results with higher learning
rates, while the other tasks fare better with lower rates. Curiously, we would have guessed a reverse
trend, as the initial MSMARCO retrieval task is more closely aligned to QA, suggesting less needed
movement. We did not continue to tune the composition of our retrieval training as it is only a
secondary contribution to this work and the differences are quite small compared to the margin we
achieve to the zero shot baseline. Therefore, we decided to go forward with the 0.005 learning rate,
as it overall gives the best results with low distribution shifts.
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Table 6: Comparing our models with related work on the KILT test set via the leaderboard (as of
September 21, 2022). Highest result in bold; improvement over prior state-of-the-art underlined.

Model
Open Domain QA Fact Slot Filling Dialog

NQ HotpotQA TriviaQA FEVER T-REx zsRE WOW
EM R-P EM R-P EM R-P AC R-P AC R-P AC R-P F1 R-P

Top Leaderboard Entries
1 RAG (Petroni et al., 2021) 44.4 59.5 27.0 30.6 71.3 48.7 86.3 61.9 59.2 28.7 44.7 53.7 13.1 57.8
2 DPR + FiD (Piktus et al., 2021) 51.6 59.8 36.9 47.2 72.7 59.7 89.0 74.8 81.3 75.6 74.0 89.6 15.7 41.5
3 KGI (Glass et al., 2021) 45.2 63.7 – – 61.0 60.5 85.6 75.6 84.4 74.4 72.6 98.5 18.6 60.1
4 Re2G (Glass et al., 2022) 51.7 70.8 – – 76.3 72.7 89.6 88.9 87.7 80.7 – – 18.9 60.1
5 Hindsight (Paranjape et al., 2021) – – – – – – – – – – – – 19.2 56.1
7 SEAL+FiD (Bevilacqua et al., 2022) 53.7 63.2 40.5 58.8 70.9 68.4 89.5 81.5 83.7 67.8 74.7 98.0 18.3 57.6
8 FiD with RS (Hofstätter et al., 2022) 61.2 – 39.1 – 84.6 – 92.3 – 85.2 – 83.7 – 20.6 –
9 FiD with Atlas (Izacard et al., 2022) 61.3 – 50.6 – 84.0 – 93.5 – 85.1 – 80.8 – 21.6 –

Ours
10 FiD-LightSP (T5-Base, k = 64) 52.6 71.5 37.1 65.6 73.3 72.8 89.3 91.4 85.5 81.5 81.9 96.1 16.5 62.8
11 FiD-LightSP (T5-Large, k = 32) 57.3 74.2 40.2 66.6 77.1 74.4 90.9 91.4 86.4 81.7 84.9 96.2 16.9 65.5
12 FiD-LightSP (T5-XL, k = 8) 58.4 75.5 42.5 67.2 80.1 74.7 92.9 92.1 86.2 81.4 85.3 96.1 17.8 66.1

C DETAILED RELATED WORK COMPARISONS

In Table 3 we focused on the combined retrieval and text generation KILT scores. Now, we inves-
tigate our results further, by analyzing the two components independently in Table 6. For each task
we report the leaderboard text generation test score (EM, AC, or F1) and the retrieval quality via
R-Precision. As previously noted, (Izacard & Grave, 2020; Hofstätter et al., 2022), there is a strong
correlation between model size and text generation quality on KILT. For better comparability, and
to not ”poison” the task with only very large models, that are not trainable for many of our fellow
researchers, we report small and large model numbers for FiD-Light.

Looking at the existing leaderboard entries we observe the top systems mostly rely on the FiD
architecture. The most recent and highest performing approaches are FiD generators with relevance
sampling and Atlas training regimes (row 8,9). It is important to note, that these two systems are
very inefficient: They run 50 and 100 passages through FiD per query and use T5-XL and T5-XXL
respectively. They also only focus on the text generation part of the KILT challenge, and chose not
to submit any supporting passages for the generation. This is in large part due to the fact, that FiD
on its own does not provided a ranking component to the passages, which leads to under-performing
results.

Our FiD-LightSP entries cover multiple T5 and k encoded vector sizes. While there is our expected
spread of the text generation quality based on the the T5 size, we observe that this spread is sub-
stantially smaller for the R-Precision metric. To be able to compare methods, the KILT leaderboard
computes the R-Precision on a document level. We transformed our passage ranking to document
ranks, by taking the highest ranked passage per document as the document rank, and removing
subsequent passages from that document from the ranked list. Overall all our models beginning
with T5-Base set new SOTA results across the board for the ranking sub-task, even considering we
only re-rank 40 passages. Analysing the text generation quality, we see no new SOTA results for
FiD-LightSP, but we remain competitive with the largest and slowest entries in the leaderboard.

To conclude, we showed the reason for our overall strong SOTA results on the KILT scores in Table
3 is the combination of competitive text generation quality with strong SOTA ranking results shown
in Table 6.
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Figure 6: Failure type analysis on KILT dev sets per task for FiD-LightSP with T5-Base (hatched)
and T5-XL (plain) backbones.

D FAILURE ANALYSIS

The setup of the knowledge intensive text generation with supporting passages, not only enables
positive evaluation via the KILT scores, but also a rich quantitative failure analysis. As Boyd-
Graber & Börschinger (2019); Hofstätter et al. (2022) argued, we should spend more time and
energy looking beyond our aggregated metrics. Therefore, in Figure 6 we look at the composition of
the raw output results of FiD-LightSP (without re-ranking) in 4 potential outcomes: 1) both passage
and text results are wrong; 2) correct passage, but wrong text; 3) correct text, but wrong passages;
and 4) both result parts are correct. We analyze the results of two T5-backbones across our KILT
tasks.

Interestingly, we do not observe converging trends in their failures between the Base and XL back-
bones across tasks. But we do see strong differences in the distribution of failure types between
tasks. The open domain QA tasks are more likely to fail, especially both parts. For the FEVER
fact verification, if we scored the relevant passage on top we are very likely to also get the right
boolean answer. The large part of wrong passage selection, but right answer in TriviaQA is likely
attributed to its high degree of noise as observed by Hofstätter et al. (2022). HotpotQA remains the
most challenging task with the highest double failure rate.

We note that the KILT tasks are highly noisy: we only have 1-2 relevant marked passages in most
cases and few if any textual variations of the text answers. This is also the reason we did not run this
analysis on WoW, which has no exact text matches. We hypothesize, that if both result parts fail, we
are more likely to have a true failure of the model compared to only failing one aspect, which could
indicate a noise issue in the datasets. However, to confidently claim this we would need to conduct
a thorough annotation campaign of the existing results.

We created an interactive website for inspecting all model outputs of FiD-Light split by our failure
analysis modes from Figure 6. The website displays the user 10 random results, per category and
task, so as not to enable cherry picking by us. Every refresh of the website creates a new random
sample allowing the users to playfully, yet targeted explore the datasets and results in a qualitative
way. The website is available at: anonymized
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