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Abstract

Incorporating the audio stream enables Video Saliency
Prediction (VSP) to imitate the selective attention mech-
anism of human brain. By focusing on the benefits of
joint auditory and visual information, most VSP methods
are capable of exploiting semantic correlation between vi-
sion and audio modalities but ignoring the negative effects
due to the temporal inconsistency of audio-visual intrinsics.
Inspired by the biological inconsistency-correction within
multi-sensory information, in this study, a consistency-
aware audio-visual saliency prediction network (CASP-
Net) is proposed, which takes a comprehensive considera-
tion of the audio-visual semantic interaction and consistent
perception. In addition a two-stream encoder for elegant
association between video frames and corresponding sound
source, a novel consistency-aware predictive coding is also
designed to improve the consistency within audio and vi-
sual representations iteratively. To further aggregate the
multi-scale audio-visual information, a saliency decoder is
introduced for the final saliency map generation. Substan-
tial experiments demonstrate that the proposed CASP-Net
outperforms the other state-of-the-art methods on six chal-
lenging audio-visual eye-tracking datasets. For a demo of
our system please see our project webpage.

1. Introduction

The task of saliency prediction is to automatically esti-

mate the most prominent area in a scenario by simulating

human selective attention. It has been extended to an al-

ternative way to extract the most valuable information from

a massive of data, which serves wide applications such as

robotic camera control [7], video captioning [35], motion

tracking [30], image quality evaluation [50] and video com-

pression [51], etc.

In recent years, a lot of saliency prediction works have

been developed by their increasing attention [4, 15, 41–43,

*Indicates equal contributions.
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Figure 1. The example figure shows the saliency results of our

model compared to STAViS [39] in audio and video temporal se-

quences. In the last time segment, the audio information that oc-

curs in the event is inconsistent with the visual information. Our

method can cope with such challenge by automatically learning to

align the audio-visual features. The results of STAViS, however,

show that it is incapable to address the problem of audio-visual

inconsistency. GT denotes ground truth.

49]. According to different data types, these studies can be

categorized into Image Saliency Prediction (ISP) and Video

Saliency Prediction (VSP). The ISP investigates how to

combine the low-level heuristic characteristics (e.g., colour,

texture and luminance) with high-level semantic image at-

tributes to predict prominent areas in the scene [15, 41, 42].

Differently, VSP exploits how to apply the spatio-temporal

structure information in videos, and benefits the perception

and identification of dynamic scenes [4, 49].

From the view of data modalities, the vision and au-

dio present the video content from different sensing, which

complement each other to enhance the perception. Based

on multi-modal data, more recent studies have that audio

information can significantly improve the understanding of

the video semantics [33, 37, 39]. Min et al. [33] conduct

a cross-modal kernel canonical correlation analysis (CCA)
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by exploring audio-visual correspondence clues, and ef-

fectively enhance the video-level saliency prediction accu-

racy. Tsiami et al. [39] propose a deep model by combin-

ing spatio-temporal visual and auditory information to ad-

dress the video saliency estimation efficiently. Neverthe-

less, these works heavily depend on temporal consistency

of visual and audio information, and thus may suffer an

unexpected degradation in practical scenarios, where such

consistency cannot be satisfied as shown in Figure 1.

Temporal inconsistency commonly exists in real-life

videos because realistic visual scenarios usually contain

multiple sound sources, which may come from on-screen

(e.g., dialogue in a talk show), or from off-screen (e.g., nar-

ration in a movie). Without understanding the complex sce-

nario components, simply performing audio-visual consis-

tency learning would result in an irrelevant semantic match-

ing. A promising solution to this challenge is motivated

by the study of neuroscience [18, 36], which explains how

our brain minimizes the matching errors within multisen-

sory data using both iterative inference and learning, and

also inspired the Consistency-aware Audio-visual Saliency

Prediction network CASP-Net of this study.

By substantially exploring the latent semantic correla-

tions of cross-modal signals, in CASP-Net, the potential

temporal inconsistency between different modalities can be

corrected as well. In addition, a two-stream network is

also introduced to elegantly associate video frames with

the corresponding sound source, which is able to achieve

semantic similarities between audio and visual features by

cross-modal interaction. To further reason the coherent vi-

sual and audio content in an iterative feedback manner, a

consistency-aware predictive coding (CPC) module is de-

signed. Subsequently, a saliency decoder (SalDecoder) is

proposed to aggregate the multi-scale audio-visual informa-

tion from all previous decoder’s blocks and to generate the

final saliency map. The main contributions in this work can

be summarized as follows:

(1) A novel audio-visual saliency prediction model is

proposed by comprehensively considering the functionali-

ties of audio-visual semantic interaction and consistent per-

ception. (2) A consistency-aware predictive coding module

is designed to improve the consistency within audio and vi-

sual representations iteratively. (3) Solid experiments have

been conducted on six audio-visual eye-tracking datasets,

which demonstrate a superior performance of the proposed

method in comparison to the other state-of-the-art works.

2. Related Work

2.1. Video Saliency Prediction
For video saliency prediction, different strategies of

modeling temporal motion information have been proposed

to estimate the saliency maps over consecutive frames [4,

26,31]. Bak et al. [4] propose a two-stream spatio-temporal

network to process video frames with optical flow maps, si-

multaneously. The Long-Short Term Memory (LSTM) [24]

and Gated Recurrent Unit (GRU) [14] have also been in-

corporated into the video saliency prediction, and subse-

quently Wang et al. [43] propose to combine the Conv-

LSTM with dynamic attention mechanism into a network

to further enhance the prediction performance. Similarly

to model long-term temporal characteristics, Lai et al. [29]

propose STRA-Net based on a lightweight convGRU. After

Min et al. [31] adopt a S3D model [45] to build TASED-Net

with 3D convolutions, the training paradigm of 3D convo-

lution has been widely used in the VSP task. Bellitto et
al. [5] design a 3D fully convolutional architecture to ob-

tain multi-scale saliency instances for the combination of

output saliency maps. Jain et al. [26] adopt a 3D encoder-

decoder structure in a U-Net-like fashion, this enables the

decoding features of various layers to be constantly con-

catenated with the corresponding feature of an encoder in

the temporal dimension. Also benefit from spatio-temporal

modeling of 3D convolution but unlike previous works, a

novel saliency decoder is designed in our work to perform

aggregation of the multi-scale features.

2.2. Audio-Visual Saliency Prediction
Early audio-visual saliency prediction methods at-

tempted to establish the cross-modal connections between

the two modalities by using CCA [32,33], but an end-to-end

deep learning scheme is still far from in-depth study. More

recently, Tavakoli et al. [37] propose to train two indepen-

dent 3D ResNet for audio and visual modalities, and the

outputs are directly concatenated as a late fusion strategy.

With SoundNet [3] for audio representation learning, Tsi-

ami et al. [39] perform a spatial sound source localization to

obtain audio features, which are then fused with the visual

feature maps by bilinear operation. In the same way, Jain et
al. [26] also employ bilinear fusion operation on the audio

features of SoundNet and visual features to predict saliency

maps. For these solutions based on a bilinear-based fusion

scheme, the large number of learning parameters causes the

model learning not easy to converge [38, 48]. In our work,

an attention-based fusion is exploited to learn the cross-

modal semantic interaction to overcome such a limitation.

2.3. Audio-Visual Consistency Learning
For the intrinsic structure of video stream, the audio

is naturally paired and synced with the visual component,

which means that the audio-visual correspondence can be

effectively utilized to draw direct supervision for differ-

ent tasks: such as visually guided-source separation [19],

audio-visual navigation [11], active speaker detection [46],

and audio-visual speech recognition [1], etc. Unfortunately,

most current audio-visual saliency predictions [26, 39] rely

heavily on temporal consistency of visual and audio infor-

mation, while ignoring the negative impacts of inconsistent
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Figure 2. An overview of the proposed CASP-Net. By combining multi-scale visual features and audio features, the designed AVIM and

CPC modules enable the network to learn audio-visual semantic interaction and consistent perception. The final saliency decoder utilizes

multi-scale audio-visual information to generate saliency maps.

samples. As a promising solution, audio-visual consistency

detection can be taken into consideration to ensure the per-

formance of saliency prediction [12,47]. This also becomes

a motivation for this study to devise consistency-aware pre-

dictive coding that reasons coherent visual and audio con-

tent in an iterative feedback manner.

3. CASP-Net
As shown in Figure 2, the proposed CASP-Net is com-

posed of: a two-stream network to obtain visual saliency

and auditory saliency feature, an audio-visual interaction

module to integrate the visual and auditory conspicuity

maps, a consistency-aware predictive coding module to rea-

son the coherent spatio-temporal visual feature with audio

feature, and a saliency decoder to estimate saliency map

with multi-scale audio-visual features. Each part is elab-

orated in the below.

3.1. Two-Stream Encoders
Let X ∈ R

Hv×Wv×3×Tv and A ∈ R
TA denote video

frames and the corresponding audio signal, respectively.

Video Encoder: We employ the off-the-shelf S3D [45] as a

video backbone network to encode the spatio-temporal in-

formation. This is because that S3D is lightweight and pre-

trained on a large dataset, which makes it fast and effective

for transfer learning. The backbone consists of 4 convo-

lutional stages, and outputs hierarchical visual feature maps

during the encoding process, as shown in Figure 2. The gen-

erated features are denoted as fXi
∈ R

hi×wi×Ci×Ti , where

(hi, wi) = (Hv,Wv)/2
i+1, i = 1, ..., 4.

Audio Encoder: For audio representation, the 1D audio

waveform needs to be converted into the 2D spectrogram by

Short-Time Fourier Transform (STFT). Instead of directly

applying 1D CNNs on time domain audio signals, a 2D

fully convolutional network is employed for this operation.

When audio is cropped to match the visual frames duration

(e.g., Tv = 16), the log-Mel spectrogram is calculated for

each matched signal by taking absolute values of a complex

STFT, following the natural logarithm. For the high-level

semantic information, we employ the VGGish network [23]

with pre-trained weights on AudioSet. An audio embedding

is generated as the original audio feature fA ∈ R
CA from

the layers before the final post-processing stage.

3.2. Cross-Modal Semantic Interaction
To find cross-modal semantics with implicitly associ-

ated audio and visual representations in videos, we per-

form Atrous Spatial Pyramid Pooling (ASPP) [13] on the

post-process of visual features fXi
to fVi

∈ R
hi×wi×C×Ti ,

where C = 256. With multiple parallel filters of differ-

ent rates, the pooling operation helps to recognize visual

objects with different receptive fields, e.g., different-sized

moving objects.
Considering visual and auditory features have different

feature dimensions, an affine transformation is applied to

the audio feature to match the channel of visual feature fVi .

Then it is duplicated hiwiTi times in spatio-temporal di-

mension, and reshaped to the same size as fVi
, which is

denoted as fÂ. To learn the correspondence between the au-

dio and visual features fÂ, fVi
, two different audio-visual

interaction approaches are investigated:

Audio-Visual Interaction (Quadratic): For the encoding
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(a) Quadratic-attention (b) Linear-attention

Figure 3. Quadratic vs. Linear. L denotes the number of tokens

(Tihiwi) in feature, and C denotes a constant (i.e., C = 256).

Quadratic-attention scales with the square of the L. Using a de-

composable kernel φ(·), we can rearrange the order of operations

such that linear attention scales linearly with L. Dashed-blocks in-

dicate order of computation with corresponding time complexities

attached.

of audio-video correlations, the mechanism of self-attention

[40] is adopted. According to the calculation method of

self-attention , the audio and visual feature matrices need to

be transformed into the vector format as fVi
∈ R

Tihiwi×C

and fÂ ∈ R
Tihiwi×C , respectively. Such an audio-visual

interaction can be measured by dot-product, then the up-

dated feature maps fVi
at the i-th stage becomes,

Q = α(fVi
); K = β(fÂ); V = γ(fVi

)

Ã = softmax(
QKT

N
)V

fVi
= fVi

+ δ(Ã)

(1)

where α, β, γ and δ are 1× 1× 1 convolutions, N = Ti ×
hi × wi is a scale factor, and Ã denotes the audio-visual

similarity matrix. Each visual pixel can be associated with

all auditory information by audio-visual interaction.

However, Equation 1 shows that the computational cost

of self-attention increases quadratically with the number of

tokens (Tihiwi) in feature. The same is true for the memory

requirements because the similarity matrix Ã must be saved

to calculate the gradients with respect to the Q, K and V
(see also Figure 3(a)).

Audio-Visual Interaction (Linear): As in [27], the audio-

visual similarity matrix Ã can be generalized by treating

softmax(·) as a pairwise similarity between Q and K.

That is, for some similarity function sim(·), we have,

Ã = sim(Q,K)V (2)

If choose a decomposable kernel with feature represen-

tation φ(·) ≥ 0 as sim(x, y) = φ(x)φ(y)T , we have

Ã(φ) = (φ(Q)φ(K)T )V (3)

Then by associativity, the order of computation can be

changed as,

Ã(φ) = φ(Q)(φ(K)TV ) (4)

which allows us to compute φ(K)TV . This leads to an

operation O(TihiwiC
2) to create a C2 matrix instead of
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Figure 4. Consistency-aware Predictive Coding combines two dif-

ferent phases as follows. For brevity, we use vis and aud to denote

fV4 and fA, respectively. (A) The vis propagated up the hierarchy

in a feedforward manner, utilising the non-linear function fϕ(·).
(B) The initial values for μ are then used to predict the activity

at the layer below, transformed by the iterative functions fθ(·).
These predictions incur prediction error ε, which are then used to

update activity μ. This process is repeated N times, after which

perceptual inference is complete.

a (Tihiwi)
2 one, where C is usually much less than Tihiwi

(see also Figure 3(b)). To implement the similarity matrix,

the following kernel function is designed as:

φ(x) = gelu(x) + 0.2 (5)

where gelu(·) denotes the gaussian error linear units [22].

3.3. Consistency-aware Predictive Coding
To overcome the potential inconsistencies introduced by

audio and visual features, consistency-aware predictive cod-

ing (CPC) is proposed to improve the performance of rea-

soning multi-modal features. Inspired by the predictive cod-

ing (PC) in theoretical neuroscience [2,6], it represents top-

down signalling in the perceptual hierarchy to predict the

cause of sensory data. For predictive coding, each hierar-

chical layer predicts the activity of the layer below it (with

the lowest layer predicting the sensory data). Such predic-

tions are then iteratively refined by minimizing the predic-

tion errors, (i.e., the difference between predictions and the

actual activity), in each layer [18, 36]. Comparatively, the

proposed CPC adopts bottom-up fϕ(·) and top-down fθ(·)
paths to represent the prediction and iterative process re-

spectively, as shown in Figure 4. The CPC inputs the visual

feature vis as a type of prior knowledge to predict the au-

dio feature aud iteratively. It is composed of L hierarchical

layers, in which each layer i is composed of a variable unit

μi and an error unit εi.
Feedforward Process: A set of feedforward parameters ϕ
are defined in correspondence to bottom-up connections.

The feedforward parameters represent non-linear functions

which map activity at one layer to activity at above layer.

Thereby a bottom-up prediction is implemented as:

μi = fϕ(μi−1) (6)
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Iterative Inference: The iterative phase updates the activity

μi again by generating top-down prediction fθ(μi+1) with

the prediction error εpredi .

εpredi = MSE(μi − fθ(μi+1))

μi ← μi − α∇εpredi

(7)

where ∇εpredi denotes the gradient with respect to the activ-

ity of μi+1, the hyper-parameter α is introduced to reduce

the prediction error.

To decrease the prediction error in CPC, the operations

of feedforward process and iterative inference are alter-

nately performed while gradually improving the represen-

tations of all layers. When the entire inference ends, the

bottom layer is directly output with perceptually consistent

audio-visual features.

3.4. SalDecoder
A new decoder architecture is also proposed for saliency

estimation. The decoder consists of 4 blocks, i.e., decx,

where x = 1, ..., 4. Figure 2 presents the overview of the

decoder’s block. Each of the blocks consists of a dense

block [25] and a feature generation block. Moreover, the

blocks dec1, dec2, and dec3 have a fusion function among

them named fusion blocks, which combine the output of

the previous decoder with the output from the dense block.

The final saliency map is obtained using the combination of

Conv and Upsample in the dec1 stage.

Specifically, the audio-visual feature representations

{fXi
}(i = 1, ..., 4) are taken as input from AVIM to the

decoder. In each stream, the dense block is firstly utilized

to process representation by its feature propagation, and

align the temporal dimensions of each feature to facilitate

subsequent fusion. All blocks except dec4 contain a fu-

sion block to integrate multi-scale features. For the explicit

operation in the fusion block, each feature is initialized to

align in the spatial dimension via upsampling, and fused by

element-wise summation. The fused feature are fed into the

feature generation block, which consists of BN-ReLU-3D

Conv layers, to obtain the semantic features with context

information. In the dec1, the combination of 3D Conv and

Upsample is also performed to generate the final saliency

map.

3.5. Saliency Losses
We refer to the training paradigm of multiple loss func-

tions in [10, 39], which contains: Kullback-Leibler (KL)

divergence, Linear Correlation Coefficient (CC) and Simi-

larity Metric (SIM ). Assuming that the predicted saliency

map is Spred ∈ [0, 1], the labeled binary fixation map is

Sfix ∈ {0, 1}, and the dense saliency map generated by the

fixation map is Sden ∈ [0, 1], then LKL, LCC , and LNSS

are employed to signify three different loss functions, re-

spectively. The first is the KL loss between the predicted

map Spred and the dense map Sden:

Data Method #Params CC↑ NSS↑ SIM↑

AVA

CASP-Net(FCN) 1.77 0.659 3.57 0.509

CASP-Net(UNet) 3.94 0.665 3.65 0.512

CASP-Net(Sal) 2.49 0.671 3.67 0.515

ETMD

CASP-Net(FCN) 1.77 0.606 3.21 0.463

CASP-Net(UNet) 3.94 0.611 3.27 0.468

CASP-Net(Sal) 2.49 0.613 3.30 0.471

Table 1. Comparison between SalDecoder and the other different

decoders on AVAD and ETMD datasets (visual-only). #Params

represent the number of parameters per decoder.

LKL(Spred, Sden) =
∑
x

Sden(x)ln
Sden(x)

Spred(x)
(8)

where x represents the spatial domain of a saliency map.

The second loss function is based on the CC that has been

widely used in saliency evaluation, and used to measure

the linear relationship between the predicted saliency map

Spred and the dense map Sden:

LCC(Spred, Sden) = −cov(Spred, Sden)

ρ(Spred)ρ(Sden)
(9)

where cov(·) and ρ(·) represent the covariance and the stan-

dard deviation respectively. The last one is derived from the

SIM , which can measure the similarity between two distri-

butions:

LSIM (Spred, Sden) =
∑
x

min{ζ(Spred(x)), ζ(Sden(x))}
(10)

where ζ represents the normalization operation. The

weighted summation of the above KL, CC and SIM is

taken to represent the final loss function:

Ltotal = LKL + λ1LCC + λ2LSIM (11)

where λ1, λ2 are the weights of CC and SIM , respec-

tively.

4. Experiment
Experiments are conducted on a total of seven datasets

including a pure visual dataset and six audio-visual eye-

tracking datasets. In the following subsections, the imple-

mentation details and evaluation metrics are firstly intro-

duced. We represent the experimental results with analysis

via the ablation studies and comparison with the state-of-

the-art works.

4.1. Setup

4.1.1 Datasets
Visual Dataset: The DHF1k [43] is one of the most pop-

ular visual-only datasets in the study of video saliency, It

contains 1000 videos where 600 videos are for training and

100 for validation. In addition, a test set of 300 videos is

also released but without public ground truth. Considering

that the main focus of our model is on multi-modal scenar-

ios, its visual branch is pre-trained using this dataset.
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Method
AVAD ETMD

CC ↑ SIM ↑ CC ↑ SIM ↑
Visual-Only 0.671 0.515 0.613 0.469

V+A+Bilinear 0.670 0.510 0.609 0.469

V+A+IQuadratic 0.674 0.517 0.615 0.471

V+A+ILinear 0.675 0.519 0.615 0.470

V+A+ILinear +C 0.685 0.528 0.616 0.476

Table 2. Ablation Studies. The visual-only (V) denotes the visual

branch of CASP-Net. A refers to the audio branch, I refers to the

audio-visual interaction module, C refers to the consistency-aware

predictive coding, and the subscripts represent two schemes with

different computational complexity.

Data Metric
i-th stage of Video Encoder, i ∈ {1, 2, 3, 4}

1 2 3 4 2,3,4 1,2,3,4

AVA
CC 0.670 0.672 0.673 0.671 0.674 0.675
SIM 0.510 0.512 0.514 0.513 0.515 0.518

ETMD
CC 0.610 0.613 0.611 0.611 0.613 0.615
SIM 0.467 0.469 0.468 0.467 0.471 0.470

Table 3. Audio-visual Interaction at various video encoder stages.

In both the AVAD and ETMD datasets, the model achieves almost

the best performance when the AVIM is used in all four stages.

Audio-Visual Dataset: There are six audio-visual datasets

in video saliency: AVAD [32], Coutrot1 [16], Coutrot2 [17]

, DIEM [34], ETMD [28], and SumMe [21], which are

used for our evaluation comparison. In detail, (i) the AVAD

dataset contains 45 video clips with a duration of 5-10 sec-

onds. These clips cover a variety of audio-visual activities,

e.g., playing the piano, playing basketball, making an in-

terview, etc. The dataset contains eye-tracking data from

16 participants. (ii) The Coutrot1 and Coutrot2 datasets are

separated from the Coutrot dataset. The Coutrot1 dataset

contains 60 video clips covering 4 visual categories: one

moving object, several moving objects, landscapes, and

faces. The corresponding eye-tracking data are from 72

participants. The Coutrot2 dataset contains 15 video clips,

which record 4 persons having a meeting. The correspond-

ing eye-tracking data are from 40 participants. (iii) The

DIEM dataset contains 84 video clips including game trail-

ers, music videos, advertisements and etc. which are cap-

tured from 42 participants. It should be noted that the audio

and visual tracks in these videos do not correspond natu-

rally. The ETMD dataset contains 12 video clips from sev-

eral Hollywood movies, with the eye-tracking data anno-

tated by 10 different people. The SumMe dataset consists of

25 video clips with diverse topics, e.g., playing ball, cook-

ing, travelling, etc., and the corresponding eye-tracking data

are collected from 10 viewers.

4.1.2 Implementation Details
We use pre-trained S3D model [45] on Kinetics [9] and

pre-trained VGGish [23] on AudioSet [20]. The input sam-

Figure 5. Performance analysis of CPC’s iterations on AVAD and

DIEM datasets.

GT

3 4 �

3 4 �

Visual

Audio

3 4 �

Figure 6. Comparison of saliency maps with different CPC’s iter-

ations. GT denotes ground truth.

ples of the network consist of 16-frame video clips of size

224×384×3 with the corresponding audio stream, which is

transformed into 96 × 64 log-Mel spectrograms. For a fair

comparison, two different training strategies are designed

depending on whether the DHF1k dataset is used or not.

The first is to train the entire model on the six audio-visual

datasets from scratch. The other is to train the visual branch

of the model on the DHF1k dataset, and then use this weight

to fine-tune the entire model on these audio-visual datasets.

Both strategies end up with the same evaluation as [39].

For the CPC module, we mainly adopt 3D Conv layers

in the feedforward process and 3D Deconv layers in the it-

erative inference. The hyper-parameter α is set to 0.1. The

proposed training process chooses Adam as the optimizer

with the started learning rate of 1e-4. The loss weight is to

−0.1, i.e., λ1 = λ2 = −0.1. The computation platform is

configured by an NVIDIA GeForce RTX 3090 GPU with

batch-size 8 for entire experiments.

4.1.3 Evaluation metrics
For the evaluation of CASP-Net, four widely-used evalua-

tion metrics are adopted [8]: CC, NSS, AUC-Judd (AUC-
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Method Pretrained DIEM Coutrot1 Coutrot2
CC ↑ NSS ↑ AUC-J ↑ SIM ↑ CC ↑ NSS ↑ AUC-J↑ SIM ↑ CC↑ NSS↑ AUC-J↑ SIM↑

ACLNet(V) [44] - 0.522 2.02 0.869 0.427 0.425 1.92 0.850 0.361 0.448 3.16 0.926 0.322

TASED-Net(V) [31] - 0.557 2.16 0.881 0.461 0.479 2.18 0.867 0.388 0.437 3.17 0.921 0.314

STAViS(V) [39] - 0.567 2.19 0.879 0.472 0.458 1.99 0.861 0.384 0.652 4.19 0.940 0.447

STAViS(AV) [39] - 0.579 2.26 0.883 0.482 0.472 2.11 0.868 0.393 0.734 5.28 0.958 0.511

CASP-Net(V) - 0.638 2.54 0.902 0.529 0.555 2.65 0.882 0.449 0.756 6.01 0.961 0.566

CASP-Net(AV) - 0.649 2.58 0.904 0.536 0.560 2.66 0.887 0.453 0.766 6.11 0.963 0.573
ViNet(V) [26] DHF1k 0.626 2.47 0.898 0.483 0.551 2.68 0.886 0.423 0.724 5.61 0.95 0.466

ViNet(AV) [26] DHF1k 0.632 2.53 0.899 0.498 0.56 2.73 0.889 0.425 0.754 5.95 0.951 0.493

TSFP-Net(V) [10] DHF1k 0.649 2.63 0.905 0.529 0.57 2.75 0.894 0.451 0.718 5.30 0.957 0.516

TSFP-Net(AV) [10] DHF1k 0.651 2.62 0.906 0.527 0.571 2.73 0.895 0.447 0.743 5.31 0.959 0.528

CASP-Net(V) DHF1k 0.649 2.59 0.904 0.538 0.559 2.64 0.888 0.445 0.756 6.07 0.963 0.567

CASP-Net(AV) DHF1k 0.655 2.61 0.906 0.543 0.561 2.65 0.889 0.456 0.788 6.34 0.963 0.585

Table 4. Comparison of saliency on DIEM, Coutrot1 and Coutrot2 datasets. The experimental table is divided into two groups according

to whether the DHF1k dataset is used as pre-training data. We show the modalities used for each method in brackets: (V) for visual, and

(AV) for audio-visual.

Method Pretrained AVAD ETMD SumMe
CC ↑ NSS ↑ AUC-J ↑ SIM ↑ CC↑ NSS↑ AUC-J↑ SIM↑ CC↑ NSS↑ AUC-J ↑ SIM↑

ACLNet(V) [44] - 0.580 3.17 0.905 0.446 0.477 2.36 0.915 0.329 0.379 1.79 0.868 0.296

TASED-Net(V) [31] - 0.601 3.16 0.914 0.439 0.509 2.63 0.916 0.366 0.428 2.1 0.884 0.333

STAViS(V) [39] - 0.604 3.07 0.915 0.443 0.560 2.84 0.929 0.412 0.418 1.98 0.884 0.332

STAViS(AV) [39] - 0.608 3.18 0.919 0.457 0.569 2.94 0.931 0.425 0.422 2.04 0.888 0.337

CASP-Net(V) - 0.671 3.67 0.931 0.515 0.613 3.30 0.938 0.471 0.481 2.50 0.901 0.374

CASP-Net(AV) - 0.685 3.77 0.932 0.528 0.616 3.31 0.939 0.476 0.486 2.52 0.904 0.377
ViNet(V) [26] DHF1k 0.694 3.82 0.928 0.504 0.569 3.06 0.928 0.409 0.466 2.40 0.898 0.345

ViNet(AV) [26] DHF1k 0.674 3.77 0.927 0.491 0.571 3.08 0.928 0.406 0.463 2.41 0.897 0.343

TSFP-Net(V) [10] DHF1k 0.688 3.79 0.931 0.530 0.576 3.09 0.932 0.433 0.463 2.28 0.894 0.362

TSFP-Net(AV) [10] DHF1k 0.704 3.77 0.932 0.521 0.576 3.07 0.932 0.428 0.464 2.30 0.894 0.360

CASP-Net(V) DHF1k 0.681 3.75 0.931 0.526 0.616 3.31 0.938 0.471 0.485 2.52 0.904 0.382

CASP-Net(AV) DHF1k 0.691 3.81 0.933 0.528 0.620 3.34 0.940 0.478 0.499 2.60 0.907 0.387

Table 5. Comparison of saliency on AVAD, ETMD and SumMe datasets. The experimental table is divided into two groups according to

whether the DHF1k dataset is used as pre-training data. We show the modalities used for each method in brackets: (V) for visual, and (AV)

for audio-visual.

J), and SIM. The CC measures the linear correlation coef-

ficient between the ground truth and the predicted saliency

map. The NSS focuses on measuring the saliency value on

human fixations, the AUC-J is a location-based metric for

evaluating the predicted saliency map, and the SIM mea-

sures the similarity between the predicted saliency map and

the ground truth.

4.2. Ablation Studies

Table 1 and Table 2 show ablation studies on different

configurations of CASP-Net. All the ablations are per-

formed with the training on the AVAD and ETMD training

sets and evaluated on their validation sets. From Table 1,

three different architecture of decoders are compared w.r.t.

their parameters and performance, namely FCN, UNet and

Sal (ours). The FCN decoder simply uses multi-layers net-

work with architecture: 3D Deconv + ReLU + BN. UNet

decoder represents the progressive upsampling process that

alternates 3D Conv and Trilinear layers while adding UNet

skip connections operation. Experimental results show that

CASP-Net(Sal) outperforms CASP-Net(FCN) and CASP-

Net(UNet) with a smaller parameter quantity. It suggests

that the decoder FCN and UNet can be replaced in tasks

of dense prediction such as saliency prediction, and further

confirms the effectiveness of our proposed decoder.

To analyze the performance of each part in the proposed

work, a baseline model Visual-Only is formed based on

a visual encoder and a SalDecoder as shown in Table 2.

Moreover, the Bilinear fusion operation [38] is also intro-

duced to compare with the designed AVIM, the obtained

observations are listed below: (i) The combination of AVIM

and CPC can continuously improve the performance of the

model, which achieves the best performance, (ii) The lin-

ear version of AVIM has roughly the same performance as

the quadratic version, but the computational complexity is

much lower, (iii) The Bilinear-based model performs much

worse than the AVIM-based model, and even not better than

the Visual-Only model. This means that the ability of audio-

visual feature aggregation from Bilinear operation is infe-

rior to that of the proposed AVIM.

Cross-modal Interaction at Various Stages. For cross-

modal interaction, the AVIM has a plug-in architecture that

can be applied in any stage. As shown in the Table 3, the

prediction performance fluctuates when the AVIM is used in

different single stage. On both AVAD and ETMD datasets,

it is noticed that AVIM performs better in the second and
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third stages because the acquired semantics of the visual

features is limited in the initial stage. Since our SalDecoder

adopts a skip-connection, it would be beneficial to apply

the AVIM in multiple stages, as verified in the right part of

Table 3. On both datasets, the best performance is achieved

by applying AVIM at four stages, which also indicates the

model has the ability to fuse and balance the features from

multiple stages.

Further Analysis of CPC. The impact of the iterative num-

ber of the CPC on its performance also needs to be ana-

lyzed. Figure 5 shows that the prediction metrics tend to rise

when more iterative computations are performed, especially

in the first three iterations. Thus, the iteration number N is

set to 3 by default. Figure 6 depicts the predicted saliency

maps of our method on some audio-visual samples, which

shows that the CPC iteratively resolves the internal incon-

sistencies in audio and visual features. It is also noticed

that the saliency maps are inaccurate in early iterations, till

later iterations, the model has corrected itself to pay more

accurate attention to the objects of interest.

4.3. Comparisons with State-of-the-art Methods
The proposed CASP-Net is compared with recent state-

of-the-art saliency works on six audio-visual datasets as

shown in Table 4 and Table 5. The experiment results

can be divided into two groups according to whether the

DHF1k dataset is used as pre-training data. Results in the

two groups highlight the superiority of the proposed audio-

visual scheme, as it outperforms the other state-of-the-art

works on almost all datasets and metrics. It can be observed

that the CASP-Net is able to significantly surpass the prior

saliency predictions, such as STAViS [39] and TASED-

Net [31], with the configuration trained on six audio-visual

datasets directly. The CASP-Net(AV) achieves an aver-

age performance improvement of 11.5% CC and 13% SIM

compared to STAViS(AV), and becomes a new state-of-the-

art on six benchmarks.

The proposed work also shows an obvious superiority

in audio-visual saliency prediction with the DHF1k pre-

training dataset. Compared to ViNet [26] and TSFP-Net

[10], the CASP-Net(AV) achieves the best performance in

most datasets, especially on the Countrot2, ETMD and

SumMe test sets. Moreover, after incorporating audio fea-

tures into the pure visual model, the relative improvement

on these three datasets is the most significant (average 3 %

relative improvement in CC and 2 % relative improvement

in SIM). This reflects the high audio-visual correspondence

of three datasets, as well as the model’s capability to take

full advantage of these audio-visual cues. Overall, the ex-

periment results in both groups have shown that pre-training

on a large-scale video dataset enables the proposed CASP-

Net to be effectively generalized on the other datasets. For

qualitative analysis, the CASP-Net is further compared with

the STAViS and ViNet on Coutrot2, ETMD, AVAD and

SumMe datasets to show superior performance.

In Figure 7, the advantages of the proposed work have

been demonstrated in the audio-visual scenarios having

multiple speakers. The first and second rows are the frames

and the corresponding ground truth saliency map. The third

row presents the prediction saliency maps from our CASP-

Net, and the final 2 rows are the same maps for STAViS

and ViNet. In particular, our results are closer to the ground

truth.
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Figure 7. Sample frame from Coutrot2, ETMD, AVAD and

SumMe databases with their eye-tracking data, and the cor-

responding ground truth, CASP-Net, and other state-of-the-art

audio-visual saliency maps for comparisons.

5. Conclusion
We propose a consistency-aware audio-visual saliency

prediction network (CASP-Net), which effectively ad-

dresses potential audio-visual inconsistency in video

saliency prediction. A two-stream network is designed to

elegantly associate video frames with the corresponding

sound source, achieving cross-modal semantic similarities

between audio and visual features. In addition, a novel

consistency-aware predictive coding module is introduced

to improve the consistency within audio and visual repre-

sentations iteratively. Besides, a saliency decoder is also

designed to aggregate the multi-scale audio-visual infor-

mation and obtain the final saliency map. Experiments

show surprising results that CASP-Net outperforms 5 state-

of-the-art approaches on 6 challenging audio-visual eye-

tracking datasets.
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