
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HARD2VERIFY: A STEP-LEVEL VERIFICATION
BENCHMARK FOR OPEN-ENDED FRONTIER MATH

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language model (LLM)-based reasoning systems have recently achieved
gold medal-level performance in the IMO 2025 competition, writing mathemati-
cal proofs where, to receive full credit, each step must be not only correct but also
sufficiently supported. To train LLM-based reasoners in such challenging, open-
ended settings, strong verifiers capable of catching step-level mistakes are neces-
sary prerequisites. We introduce Hard2Verify1, a human-annotated, step-level ver-
ification benchmark produced with over 500 hours of human labor. Hard2Verify
is designed to rigorously assess step-level verifiers at the frontier: Verifiers must
provide step-level annotations or identify the first error in responses generated
by frontier LLMs for very recent, challenging, and open-ended math questions.
We evaluate 29 generative critics and process reward models, demonstrating that,
beyond a few standouts, open-source verifiers lag closed source models. We sub-
sequently analyze what drives poor performance in step-level verification, the im-
pacts of scaling verifier compute, as well as fundamental questions such as self-
verification and verification-generation dynamics.

20 30 40 50 60 70 80 90 100
Performance on ProcessBench

0

20

40

60

80

100

Pe
rfo

rm
an

ce
 o

n
Ha

rd
2V

er
ify GPT-5-High

Gemini 2.5 Pro

Skywork-PRM-1.5B

Skywork-PRM-7B

Llama-3.3-70B-Instruct

Qwen2.5-7B-Instruct

Qwen2.5-14B-Instruct

Qwen2.5-72B-Instruct

Qwen2.5-Math-PRM-72B

Qwen2.5-Math-PRM-7B

Figure 1: Comparison of models evaluated on both ProcessBench and Hard2Verify. Past bench-
marks do not sufficiently evaluate in the frontier-level math settings that Hard2Verify does; On
the same error identification task, Qwen2.5-Math-PRM-72B performance drops from ProcessBench
state-of-the-art at 78.3 to 38.4 on Hard2Verify.

1 INTRODUCTION

Mathematical reasoning serves as a gold-standard evaluation setting for benchmarking reasoning
progress in large language models (LLMs). Over the past half-decade, benchmarks have been in-
troduced to assess LLMs at the grade-school (Cobbe et al., 2021), high-school (Hendrycks et al.,
2021), university (Zhang et al., 2023), and competition math level (MMA, 2025; He et al., 2024a;
Gao et al., 2024). However, the progress of mathematical reasoning ability of LLMs has outpaced
benchmark creation, with every subsequent release of a frontier LLM saturating new benchmarks,
most recently with GPT-5 Pro achieving 96.5%+ on AIME 2024. As a result, recent efforts (Glazer
et al., 2024; Phan et al., 2025) have written novel, unseen mathematical questions to test LLMs.

While the training approaches of closed frontier models remain a secret, open-source progress in
mathematical reasoning has been driven by scaling reinforcement learning from verifiable rewards
(RLVR) (Lambert et al., 2024), with the breakthrough of DeepSeek-R1 (Guo et al., 2025) leading to
an explosion of interest. This paradigm requires training data with solutions that are easily verifiable,

1We will open-source the benchmark, including evaluation code.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison between Hard2Verify and existing step-level math benchmarks.

Question
Difficulty

Open-Ended
Responses?

Natural
Responses?

Generator
Strength Annotator Step-Level

Labels?

MR-GSM8K (Zeng et al., 2023) Easy ✗ ✓ Weak Human ✓
MR-MATH (Xia et al., 2025) Easy ✗ ✓ Weak Human ✓
MR-Ben (Zeng et al., 2023) Easy ✗ ✓ Weak Human ✓
ProcessBench (Zheng et al., 2024) Easy-Hard 10.3% ✓ Weak-Medium Human ✗
PRMBench (Song et al., 2025) Easy ✗ ✗ Weak Synth. + Human Check ✓

Hard2Verify (Ours) Hard 78.5% ✓ Strong Human ✓

i.e., have solutions that can be easily checked against a known ground-truth by string matching or
symbolic checkers. Math benchmarks, for the most part, also adopt the verifiable setup, where
a model response is considered correct if its final answer matches the established ground-truth.
Answer correctness, while a necessary condition for overall solution correctness, is not sufficient:
It is now established that LLMs can produce incorrect intermediate reasoning but conclude with
correct final answers (Lightman et al., 2023; Zheng et al., 2024; Setlur et al., 2025).

The next frontier for LLMs is solving problems that are hard to verify. A grand example such a
problem is proving the Riemann hypothesis, where the expected solution is not a short phrase, but
a multi-step proof. To verify correctness, each step must be rigorously checked. Hints of open-
ended problem solving abilities already exist: advanced reasoning systems (OpenAI, 2025; Google,
2025b; Huang & Yang, 2025) have achieved gold-level performance in the 2025 IMO. Here, LLM
outputs were judged at the step-level by human experts who determined if steps are both correct and
sufficiently supported, with supporting lemmas and claims all appropriately stated and applied.

Training reasoning models capable of open-ended problem solving requires scalable automatic eval-
uation: Not every LLM rollout during RLVR training can be audited by human experts. Rather, eval-
uation in open-ended settings requires step-level verifiers, typically process reward models (PRMs)
or generative critic models. Such verifiers have already been used to train policy models with dense
process rewards (Lightman et al., 2023; Shao et al., 2024; Zha et al., 2025). Furthermore, step-level
verifiers are also used in many test-time scaling methods, selecting the most promising candidate
from multiple solutions or steps (Snell et al., 2024; Yu et al., 2025; Lifshitz et al., 2025). However,
are these step-level verifiers sufficient for pushing the frontier of mathematical reasoning?

This work introduces Hard2Verify, which gauges the ability of step-level verifiers to push the fron-
tier. Hard2Verify benchmarks verifiers in assessing frontier LLM responses to difficult, recent, and
open-ended math problems. We curate challenging problems from recent international mathemat-
ics competitions like IMO and Putnam used to sample responses from three top-tier LLMs, GPT-5
(high) (OpenAI, 2025a), Gemini 2.5 Pro (Google, 2025a), and Claude Sonnet 4 (thinking) (An-
thropic, 2025), representing various frontier points in reasoning LLMs. Finally, we employ PhD-
level math experts to annotate each model-generated step. The resulting benchmark is the culmina-
tion of over 500 hours of human effort, passing three rounds of independent agreement checks. This
meticulous process yields 1860 rigorously graded responses across 200 unique model responses.

Beyond operating at the frontier, Hard2Verify distinguishes itself from existing benchmarks for step-
level annotation. First, we emphasize collecting open-ended questions, with 78.5% of our samples
being open-ended. This way, verifiers cannot “cheat” if they have seen the question or ground-truth
answer during training; rather verifiers must substantively assess each step to determine correctness.
Second, step correctness is judged not only on correctness, but also based on whether all invoked
results, such as supporting lemmas or claims, are correctly stated and applied; saying “X follows
from Y ” receives no credit if Y is not sufficiently justified or properly invoked. Third, Hard2Verify
focuses on benchmarking verifiers in naturally occurring application settings: Verifiers must assess
model-written responses, which often differ dramatically from human-written reference answers.

We benchmark 29 models spanning proprietary models to open-weight models to PRMs. Compared
to past work, Hard2Verify represents a step up in difficulty, as shown in Fig. 1; Models capable of
scoring 60%+ on ProcessBench (Zheng et al., 2024) are unable to crack 20% on Hard2Verify. Our
analysis reveals that this degraded performance is because weaker verifiers cannot identify mistakes,
marking nearly every step as correct. We additionally analyze several fundamental questions in
step-level verification: How should one to scale verifier compute? What are the impacts of self-
verification? How much easier is generation than verification for frontier models?

2

https://www.imo-official.org/
http://maa.org/putnam/


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Claude
(858)

GPT-5
(541)

Gemini
(461)

Step-level Breakdown

Claude
(72)

GPT-5
(71)

Gemini
(57)

Response-level Breakdown

Correct
Incorrect

Figure 2: Breakdown of correct vs. incorrect steps (left) and responses (right) by model. We consider
a response incorrect if any step in the response is labeled incorrect.

2 BACKGROUND AND RELATED WORK

LLM-based verification. To meet demands for scalable evaluation, LLM-based evaluators have
been proposed, originally focusing on chat settings (Zheng et al., 2023). However, as LLMs are
deployed in challenging reasoning settings (Ke et al., 2025), the need for more capable evaluators
has grown. To get denser evaluation signal, focus quickly shifted to PRMs (Lightman et al., 2023)
and synthetic ways to curate step-level training data (Wang et al., 2023; Luo et al., 2024). However,
when used as dense reward signals for policy optimization, recent work has shown only limited
improvement over outcome-level counterparts (Shao et al., 2024), which results from shortcomings
process reward formulations. PRMs only measure if a step could lead to a correct, likely short-form
final answer, not whether the step is correct in any absolute sense. As a result, recent focused has
shifted towards generative verifiers (Mahan et al., 2024; Zhang et al., 2025a), using the natural lan-
guage generation abilities of LLMs to perform verification. This allows for more precise description
of evaluation criteria while enjoying benefits of increased inference-time compute.

Benchmarking step-level verifiers in math settings. Table 1 contrasts Hard2Verify with related
benchmarks. MR-GSM8K (Zeng et al., 2023) annotate model responses to GSM8K (Cobbe et al.,
2021) questions on a per-step basis to evaluate generative models as evaluators. MR-MATH (Xia
et al., 2025) and MR-Ben (Zeng et al., 2024) follow similar approachs, increasing question dif-
ficulty with slightly harder sources like MATH (Hendrycks et al., 2021) and MMLU (Hendrycks
et al., 2020). The two most relevant works to Hard2Verify are ProcessBench (Zheng et al., 2024)
and PRMBench (Song et al., 2025). ProcessBench uses a mix of easy (GSM8K and MATH) and
hard (OlympiadBench and Omni-MATH) questions, but is comprised largely of samples with single
answer outputs. Further, ProcessBench only evaluates first error identification ability of verifiers,
rather than tasking verifiers to evalute every step. PRMBench, on the other hand, obtains step-level
annotations by taking human-written and model-generated solutions from PRM800K and injecting
errors with an LLM, yielding responses that are not naturally occurring: Human-and model-written
text may have large differences in style and substance, while injected errors may not represent natu-
rally occurring errors in model generation. Hard2Verify, in contrast, operates at the current frontier,
tasking verifiers to evaluate responses from frontier-level LLMs to difficult open-ended questions.

3 THE HARD2VERIFY BENCHMARK

3.1 DESIGN PHILOSOPHY

Hard2Verify is designed to test verifiers at the frontier of LLM-based math reasoning. At the ques-
tion, response, and annotation level, Hard2Verify is curated based on the following philosophy:

• Questions. To measure progress in step-level verification, we must characterize how verifiers
perform on extremely difficult, open-ended math questions. Open-ended problems represent the
next frontier of mathematical reasoning, one where verifiers become increasingly important in
lieu of available ground-truth answers. We focus our data collection on very recent mathematical
Olympiads, prioritizing open-ended questions.

• Model responses. The responses that verifiers evaluate must be from highly capable, frontier-
level models. To push the frontier of math reasoning, verifiers must be able to tell when the most

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Step

0

25

50

75

100

125

150

175

Co
un

t

Correct by Step
Overall Correct
GPT-5 Correct
Claude Sonnet 4 Correct
Gemini 2.5 Pro Correct

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Step

Incorrect by Step
Overall Incorrect
GPT-5 Incorrect
Claude Sonnet 4 Incorrect
Gemini 2.5 Pro Incorrect

Figure 3: Count of correct and incorrect labels by model solution step.

powerful models make potentially subtle mistakes. Moreover, such mistakes should be naturally
occurring, i.e., arise naturally from the model generation process. We do not inject or edit an ex-
isting correct model-or human-written solution. This is meant to closely approximate the response
distribution that verifiers will see “in the wild”, as they are applied in frontier math settings.

• Annotation process. We employ a strict view of response grading: Any step that contains a
mistakes or is derived from a previous mistake is considered incorrect, i.e., we do not employ
“Error Carried Forward” grading. This is inspired by competitive math settings, the entire solution
must be correct to receive full points.

Based on this philosophy, we create Hard2Verify, as we describe in detail next.

3.2 CURATING HARD QUESTIONS

We construct our benchmark by collecting problem statements and official solutions (Q,Aofficial)
from leading math competitions including the IMO, Putnam, and INMO; We provide a full list of
sources in App. B. We focus question curation on recent (2024 and beyond) Olympiad-level math
competitions. For each Olympiad, we parse the official PDFs using MathPix and extract all content
in LATEX to preserve mathematical typography and ensure stable equation rendering. We exclude
image-dependent problems and only keep questions that could be solved using textual information.
The resulting question set comprises 80 frontier-level problems from 10 distinct Olympiads.

3.3 RESPONSE GENERATION

Using our curated question pool, we sample responses from three frontier LLMs: GPT-5 (with high
reasoning), Gemini 2.5 Pro, and Claude Sonnet 4 (Thinking). We employ a standardized prompt
(App. D), instructing models to produce exam-style, stepwise proofs that mirror how an Olympiad
participant would structure a solution. We use the same prompt template and decoding settings
across models and disable access to external tools, like web search or code interpreters. Each model
produces a single solution per problem, which we record for downstream evaluation. These samples
are challenging; for example, Gemini 2.5 Pro takes up to 15 minutes to return a solution via API
access. After curating all model responses to all questions, we filter out responses with undesirable
qualities, such as a small number of long, dense steps or responses with degenerate outputs. This
leaves us with a compact but high quality set of 200 responses.

3.4 ENSURING HIGH-QUALITY ANNOTATIONS

After sampling responses to our curated questions, human annotators meticulously annotate each
model solution step-by-step. We partnered with [Data Co.] (Redacted for Review), a data annota-
tion company. [Data Co.] employs mathematical experts, with a super-majority of our annotators
having an advanced graduate level education in mathematics. To ensure consistent and high quality
evaluations, we provided comprehensive annotation instructions as well official solutions Aofficial as
references. Annotation began with a multi-round pilot study, where we hand-annotated three model
responses, then worked together with annotators to review samples, solicited feedback from annota-
tors, and finetuned evaluation instructions accordingly. We then performed annotations in batches of
samples, performing spot-checks of samples as they became available. This is in addition to internal
processes at [Data Co.], which include initial human annotation and three rounds of human review,
where annotations were reviewed for correctness and guideline alignment. Overall, this process
represents over 500 hours of manual human labor. See App. E for more annotation details.

4

https://www.imo-official.org/year_info.aspx?year=2025
http://maa.org/putnam/
https://olympiads.hbcse.tifr.res.in/mathematical-olympiad-2024-2025/
https://mathpix.com/


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.5 OVERALL DATASET STATISTICS.

Our annotation process yields 1,860 unique model steps annotated across 200 model solutions. 62%
(1,154/1,860) steps are labeled correct, while the remaining 706 are labeled incorrect. Fig. 2 shows
how models perform on a step-level and problem level. We consider a model response correct if all
steps in the solution are graded correct by humans. Claude Sonnet 4 takes the most steps but gets
the least percentage of steps correct, whereas GPT-5 and Gemini 2.5 Pro are the best performing
model in terms of step-level accuracy. However, at the response level, GPT-5 outperforms Gemini
2.5 Pro by larger margins. Claude Sonnet 4, while achieving over 50% step-level accuracy, fails to
string correct steps together, only producing 4 entirely correct solutions out of 72. Fig. 3 visualizes
how errors appear as a function of steps, with all three models following similar trends: Errors tend
to occur in the middle of model solutions appearing after a few solution steps.

3.6 EVALUATION TASKS

Our step-level annotations enable us to benchmark verifiers on three distinct tasks: (1) Step-level cor-
rectness (Step-Level), (2) Response-level correctness (Response-Level), and (3) First error
identification (ErrorID). The Step-Level task corresponds to the setup in (Song et al., 2025),
whereas the ErrorID tasks corresponds to that of Zheng et al. (2024). As we show in § 4, both
tasks are challenging settings for current verifiers. We provide our evaluation prompts in App. D.

Step-Level. Here, the verifier is tasked with determining the correctness of each step. Generative
verifiers are prompted to output a binary yes/no label for each step, whereas PRM step-level scores
are converted to binary labels via a fixed threshold.

Response-Level. We also consider a response outcome task derived from Step-Level labels
and predictions. This task reflects a strict grading of open-ended math problems: For a question to
be correct, all steps in the solution must be deemed correct. Therefore, if any step in the solution is
incorrect, we consider the solution wrong. From human labels, we create a single overall response-
level correctness label. Likewise, given step-level predictions from a verifier, we create a response-
level prediction. Note that this setting is less strict than the Step-Level setup: Exact step labels
need not match exactly for a verifier to agree with a human at the response level.

ErrorID. Here, the verifier is prompted to output the first step which contains a mistake in the
model solution, if present. If no error is present, a generative verifier may output step -1, corre-
sponding to “No error”. For PRMs, we select the first step below the correctness threshold.

4 EXPERIMENTS

4.1 EVALUATION METRICS

Let TPR and TNR denote the True Positive Rate and True Negative Rate, i.e., verifier accuracies on
the correct and incorrect samples, respectively. We define Balanced Accuracy as the mean of TPR
and TNR and Balanced F1 Score as the harmonic mean of TPR and TNR2:

Balanced F1 Score =
2 TPR · TNR
TPR + TNR

, (1)

We report Balanced Accuracy and Balanced F1 Score for all tasks. The ground-truth labels and
model predictions vary based on task. For Step-Level, we aggregate all steps and all verifier
predictions across all responses, whereas for Response-Level and ErrorID, we compute met-
rics at the response level. These metrics quantify verifier behavior in terms of correctly identifying
mistakes versus correct answers. Balanced Accuracy and Balanced F1 both serve as aggregate
measures: the former reflects average performance across both modes, while the latter penalizes
imbalanced performance. An ideal verifier scores highly on both.

2This is equivalent to the “F1 Score” used by ProcessBench, which differs from the typically used F1 Score
by using TNR instead of precision. To avoid confusion, we denote this metric Balanced F1 Score.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Main evaluation results on Hard2Verify across our three evaluation tasks (§ 3.6). We report
Balanced Accuracy and Balanced F1 Score. Best and second-best scores in each category marked.

Step-Level Response-Level ErrorID
Bal. Accuracy Bal. F1 Bal. Accuracy Bal. F1 Bal. Accuracy Bal. F1

Generative Critics, proprietary models

GPT-5 83.60 83.33 76.61 73.43 60.02 59.92
Gemini 2.5 Pro 82.85 82.74 74.42 69.83 48.14 47.45
Claude Sonnet 4 71.97 62.93 78.74 76.67 55.49 40.07
GPT-5-Mini 80.93 79.29 77.44 76.93 60.55 58.04
o3 77.95 74.99 76.93 76.91 61.32 56.81
o4-Mini 75.22 70.57 80.38 79.26 58.33 46.37
GPT-4.1 59.39 33.60 62.77 40.68 53.35 23.55

Generative Critics, large (≥ 70B) models

Kimi K2 64.19 46.46 68.66 55.85 51.20 43.39
DeepSeek-R1 73.75 68.37 71.67 69.86 54.53 48.35
Qwen3-235B-A22B 71.85 62.57 74.21 71.60 56.36 48.08
Qwen3-Next-80B-A3B 70.09 59.45 75.77 73.16 51.33 42.29
Qwen2.5-72B-Instruct 52.12 13.69 57.09 24.84 45.98 4.16
GLM-4.5-Air 61.73 41.12 66.82 56.40 48.62 24.23
gpt-oss-120B 80.50 78.38 82.17 82.16 60.36 59.81
Llama-3.3-70B-Instruct 54.43 18.72 56.82 28.94 49.01 2.80

Generative Critics, small/medium (< 70B) models

Qwen3-32B 63.83 47.68 68.38 58.08 54.14 30.60
Qwen3-30B-A3B 66.42 53.24 70.59 64.37 55.36 41.50
ByteDance Seed-OSS-36B 69.19 59.64 68.67 62.16 56.50 47.00
gpt-oss-20B 75.43 71.11 78.27 78.14 39.84 39.83
Qwen3-14B 63.31 43.83 68.30 55.12 49.19 28.15
Qwen3-8B 60.19 36.44 62.78 49.63 46.92 24.08
Qwen2.5-14B-Instruct 52.44 27.91 62.38 58.81 45.92 13.09
Qwen2.5-7B-Instruct 51.71 15.42 52.15 29.60 35.04 10.43

Process Reward Models, open-source models

Qwen2.5-Math-PRM-72B 54.89 30.46 66.54 65.76 43.85 38.38
Qwen2.5-Math-PRM-7B 56.37 44.58 60.64 45.67 28.73 28.62
Skywork-PRM-7B 44.67 21.39 53.47 46.33 21.33 13.89
Skywork-PRM-1.5B 42.41 14.36 51.69 16.31 9.23 9.22
ReasonFlux-PRM-7B 52.84 19.79 54.60 50.54 42.19 24.53
UniversalPRM-7B 61.61 57.31 56.39 44.51 26.96 26.49

4.2 EVALUATED MODELS

We select a variety of PRMs and generative models prompted as step-level critics. For PRMs, we
select Qwen2.5-Math-PRM-{7B,72B} (Zhang et al., 2025b), Skywork-PRM-{1.5B,7B} (He et al.,
2024b), ReasonFlux-PRM-{1.5B,7B} (Zou et al., 2025), and UniversalPRM (Tan et al., 2025). We
tune PRM thresholds following Zheng et al. (2024); See App. F.1 for more details. For prompted
generative critics, we test a closed-source frontier models as well as large (> 70B) and small-
medium (<70B) open-weight models. We evaluate all reasoning models at their maximum provided
reasoning level (e.g., “high” for GPT-5), using suggested sampling parameters for various baselines.
All Qwen3 models are evaluating with “thinking on”. For instruction-tuned models, we use greedy
decoding. The full set of models is enumerated in App. F.

4.3 MAIN EVALUATION RESULTS

Table 2 presents our main results, with detailed results presented in App. C. Among proprietary
models GPT-5 stands out in its overall ability, able to accurately provide step-level correctness labels
and identify the first error in reasoning. Gemini 2.5 Pro follows closely for step-level identification,
but lags in error identification. Interestingly, o4-Mini operates the best at response level; Table 4
in App. C shows o4-Mini has relatively high and balanced TPR and TNR at the response level
compared to GPT-5, which tends to be overly critical for correct responses.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

GPT-
5

Gem
ini 

2.5
 Pr

o

GPT-
5-M

ini

gp
t-o

ss-
12

0B o3

gp
t-o

ss-
20

B

o4
-m

ini

Dee
pS

ee
k-R

1

Clau
de

 So
nn

et 
4

Qwen
3-2

35
B-A22

B

Byte
Dan

ce-
Se

ed
-OSS

-36
B

Qwen
3-N

ext
-80

B-A3B

Qwen
3-3

0B
-A3B

Qwen
3-3

2B

Kim
i K

2

Qwen
3-1

4B

GLM
-4.

5-A
ir

Qwen
3-8

B

GPT-
4.1

Qwen
2.5

-14
B-In

str
uct

Lla
ma-3

.3-
70

B-In
str

uct

Qwen
2.5

-7B
-In

str
uct

Qwen
2.5

-72
B-In

str
uct

20

40

60

80

100

Pe
rc

en
ta

ge
Balanced F1
TPR
TNR

Figure 4: Weaker models are unable to find mistakes, eventually considering all steps correct: TNR
tends toward 0 while TPR tends towards 1.

Among larger open-weight models, the gpt-oss series are clear standouts, with gpt-oss-120B beating
GPT-5 in terms of well-rounded behavior. Recent larger Qwen3 models and DeepSeek-R1 challenge
for second place. Notably, Llama-3.3-70B, which performs admirably on ProcessBench (Fig. 1)
performs extremely poorly, achieving only 2.80 on Balanced F1 for the error identification task.

Among smaller models, gpt-oss-20B performs extremely well on step-level and response-level tasks,
but falters in identifying errors. ByteDance Seed-OSS-36B and Qwen3-30B-A3B are the next best
performers, but barely perform above random guessing levels (50%) in error identification.

Finally, even state-of-the-art PRMs, like the Qwen2.5-Math-PRM series struggle immensely on
Hard2Verify, performing significantly below random guess performance in error identification. For
example, in terms of balanced accuracy, Qwen2.5-72B achieves only 43.85%.

What separates strong verifiers from weak verifiers? To provide additional insights into perfor-
mance variations across different models, Fig. 4 plots the TPR and TNR for all generative critics
models, sorted in performance from weakest (left) to strongest (right) in terms of Balanced F1 Score.
A clear trend emerges: Verifier performance degrades because TNR drops quickly to 0, while TPR
rises gradually to 1. This indicates that all steps are labeled as correct, revealing that weaker veri-
fiers cannot catch errors. Notably, the order of models from left to right approximately correlates
with mathematical generation ability, i.e., the ability to solve extremely difficult math problems. As
such, this may indicate that a baseline level of solving ability is a necessary prerequisite for verifi-
cation. App. C.2 shows this trend holds similarly for Response-Level and ErrorID tasks.

Low Medium High Low Medium High Low Medium High
0

10

20

30

40

50

60

70

80

90

Ba
la

nc
ed

 F
1 

Sc
or

e

62.32 65.78
71.11 66.92 68.66

78.38 79.92 82.79 83.33

gpt-oss-20B gpt-oss-120B GPT-5

4 6 8 10 12 14 16
N for Best-of-N

0

10

20

30

40

50

60

70

80

90

St
ep

-le
ve

l B
al

an
ce

d 
F1 gpt-oss-20B, Low, N=1 (62.32) gpt-oss-20B, High (71.11)

Figure 5: Top: Scaling inference-time compute sequentially leads to higher performance in GPT-5
and gpt-oss models, with large gains for gpt-oss-20B (62.32→71.11) and 120B (66.92 → 78.38)
in terms of step-level Balanced F1. Bottom: Parallel decoding has little effect on step-level F1
performance for gpt-oss-20B, failing to bridge the gap vs. gpt-oss-20B at high-reasoning effort.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 ADDITIONAL ANALYSIS

5.1 HOW SHOULD WE SCALE VERIFIER INFERENCE-TIME COMPUTE?

Here, we experiment with scaling verifier inference-time compute along via sequential and parallel
approaches. We find sequential scaling brings substantive gains, whereas parallel scaling does not.

Sequential inference-time compute scaling. Here we explore scaling inference-time compute se-
quentially by letting the verifier output more tokens when verifying, focusing on the Step-Level
task. We use gpt-oss-20B, gpt-oss-120B, and GPT-5, which all have three distinct reasoning levels:
low, medium, and high. In Fig. 5 (top), we plot Balanced F1. Affording the verifier to generate more
“thinking” tokens at inference time generally improves performance, with gpt-oss-120B improving
the most from low (66.92) to high (78.38) and gpt-oss-20B likewise improving significantly. Gains
for GPT-5 are more mild, with approximately 5% relative improvement from low to high.

Parallel inference-time compute scaling. Here, we attempt to match the performance of gpt-oss-
20B at high reasoning effort by sampling N outputs in parallel from gpt-oss-20B at low reasoning
effort. To do so, we sample 32 responses per sample from gpt-oss-20B and aggregate predicted step-
level labels via majority vote, breaking ties arbitrarily. Fig. 5 (bottom) shows the mean and standard
deviation of 10 bootstrap sampling trials for each N , sweeping N from 4 to 16. We also plot the
baseline gpt-oss-20B performance at low and high reasoning efforts. Surprisingly, Best-of-N does
not meaningfully improve over sampling 1 response as N increases. An intuitive explanation for
this phenomenon is that step-level verification is inherently a sequential task: Each step must be
processed one-after-another. As such, affording the verifier more time to “think” about each step is
more effective than sampling multiple “rushed” judgments.

5.2 HOW DO VERIFIERS VERIFY THEIR OWN RESPONSES?

Here, we investigate the dynamics of self-verification, focusing on GPT-5, Gemini 2.5 Pro, and
Claude Sonnet 4 as verifiers. Fig. 6 plots the step-level TPR and TNR performance based on response
generator. The results here notably depend on verifier strength: Table 2 show that GPT-5 and Gemini
2.5 Pro are the top two performers, whereas Claude Sonnet 4 is a relatively weak proprietary verifier.

For GPT-5 and Gemini 2.5 Pro, TPR tends to correlate inversely with model strength. Both models
can reliably identify correct steps from the weaker Claude Sonnet 4, but begin to label correct steps
as incorrect as generator strength increases. Claude Sonnet 4, on the other hand, overwhelmingly
assigns “Correct” as a label, leading to high TPRs regardless of generator. The TNR of GPT-5 and
Gemini 2.5 Pro reveal that catching errors in self-produced solutions is harder than finding errors in
other solutions, but the degree of difficulty depends on the model. For GPT-5, the TNR on GPT-
5 generated responses is nearly 8.6 points lower that on other generators, whereas for Gemini, the
drop is less than 2 points. This result is consistent with recent work analyzing self-reflection (Stechly
et al., 2023; 2024; Huang et al., 2023), where LLMs were shown to have difficulties correcting their

Claude Sonnet 4 Gemini 2.5 Pro GPT-5
Generator

Cl
au

de
 S

on
ne

t 4
Ge

m
in

i 2
.5

 P
ro

GP
T-

5
Ve

rif
ie

r

97.16 97.46 97.90

90.39 88.25 78.74

93.23 87.62 82.94

TPR

Claude Sonnet 4 Gemini 2.5 Pro GPT-5
Generator

Cl
au

de
 S

on
ne

t 4
Ge

m
in

i 2
.5

 P
ro

GP
T-

5
Ve

rif
ie

r

55.75 32.19 36.25

79.75 78.08 81.25

80.50 82.19 71.88

TNR

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

40

50

60

70

80

Figure 6: Verifier TPR and TNR based on response generator model. For strong verifiers (GPT-5,
Gemini 2.5 Pro), TPR is inversely correlated with generator strength, while TNR is lower for self-
generated responses. The latter indicates difficulties in catching self-generated errors.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of correctly generated steps

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 c

or
re

ct
ly

ve
rif

ie
d 

st
ep

s

Verification
is easier

Verification
is harder

Claude Gemini GPT-5 y = x

Figure 7: Each generators evaluates self-produced responses, and the fraction of steps correctly
solved vs. fraction of steps correctly verified for a given question is plotted. In general, we find that
models are more successful in catching mistakes than generating error-free responses. However, this
becomes harder given fully correct solutions.

own mistakes in challenging reasoning settings. In contrast, Claude Sonnet 4 as a relatively weaker
verifier cannot identify errors in stronger model responses.

5.3 IS VERIFYING PROBLEMS EASIER THAN SOLVING PROBLEMS?

Here, we examine if generating a solution is easier than verifying the same solution. We split
Hard2Verify into three subsets corresponding to each of the three generator models and have the
generators verify their own responses. For each response, we record the fraction of correctly gen-
erated steps (“solve rate”), as deemed by human annotators, and the fraction of correctly verified
steps (“verification rate”), as deemed by agreement with human annotators. In Fig. 7, we plot the
verification rate against the solve rate. We observe that the verification rate is consistently higher
than the solve rate across all models when the solve rate is relatively low, i.e., < 0.6. However, for
problems that are correctly solved, we find that verification becomes harder. Notably, this trend is
seen typically for the stronger GPT-5 and Gemini 2.5 Pro, directly reflecting the TPR trends in § 5.2.

5.4 CASE STUDY: WHERE DO MODELS AND HUMANS DISAGREE?

We inspect outputs from a relatively strong open-source verifier, ByteDance Seed-OSS-36B (Team,
2025) on multiple IMO-level problems and found a recurring theme: The verifier incorrectly ac-
cepts partial or under-justified claims as correct. We provide two concrete examples below. These
mismatches reflect larger systematic behavior in verifiers, revealed in § 4: Current verifiers are too
generous, with TPR rate tending towards 1 and TNR tending toward 0, indicating that a vast majority
steps are considered correct.

On IMO 2023 Shortlist, question A6, Gemini 2.5 Pro makes a generalized claim, but only proves the
claim for a single input. Human annotators catch this mistake, noting “The equality holds only at one
point ... not a polynomial identity, so coefficients need not match.” Seed-OSS-36B considers this
step correct without mentioning the unfounded generalization. Similarly, on IMO 2024 Shortlist,
question A1, Claude Sonnet 4 as generator constructs a proof by cases by invoking Weyl’s equidis-
tribution theorem, but considers only a single case: “if α is not an even integer, then α = m+β with
m odd and 2/3 ≤ β < 1...”. Seed-OSS-36B greenlights this step as correct, whereas human annota-
tors find it incomplete: “The case analysis ignores the branch where m is even and 0 < β < 1/3,...”.
Further, the theorem invocation itself is deemed under-specified: “justification [for invoking Weyl’s
equidistribution theorem] should explicitly specify the estimate and the choice of n”.

6 CONCLUSION

We introduce Hard2Verify, a human-annotated, step-level benchmark aimed to assess how step-level
verifiers operate in frontier settings. We focus our data curation on recent open-ended math prob-
lems, sampling responses from frontier LLMs. The end result of over 500 hours of human annotation
effort is a benchmark that challenges many current open-source verifiers, which are unable to match
the performance of larger, proprietary models.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Anthropic. Introducing claude 4. 2025. URL https://www.anthropic.com/news/
claude-4.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark
for large language models. arXiv preprint arXiv:2410.07985, 2024.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caro-
line Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, et al. Fron-
tiermath: A benchmark for evaluating advanced mathematical reasoning in ai. arXiv preprint
arXiv:2411.04872, 2024.

Google. Gemini 2.5: Our most intelligent ai model. https://blog.google/technology/google-
deepmind/gemini-model-thinking-updates-march-2025/, 2025a.

Google. Advanced version of gemini with deep think officially achieves gold-medal standard
at the international mathematical olympiad. https://deepmind.google/discover/blog/advanced-
version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-
mathematical-olympiad/, 2025b.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024a.

Jujie He, Tianwen Wei, Rui Yan, Jiacai Liu, Chaojie Wang, Yimeng Gan, Shiwen Tu, Chris Yuhao
Liu, Liang Zeng, Xiaokun Wang, Boyang Wang, Yongcong Li, Fuxiang Zhang, Jiacheng Xu,
Bo An, Yang Liu, and Yahui Zhou. Skywork-o1 open series, November 2024b. URL https:
//doi.org/10.5281/zenodo.16998085.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Yichen Huang and Lin F Yang. Gemini 2.5 pro capable of winning gold at imo 2025. arXiv preprint
arXiv:2507.15855, 2025.

10

https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://doi.org/10.5281/zenodo.16998085
https://doi.org/10.5281/zenodo.16998085


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zixuan Ke, Fangkai Jiao, Yifei Ming, Xuan-Phi Nguyen, Austin Xu, Do Xuan Long, Minzhi Li,
Chengwei Qin, Peifeng Wang, Silvio Savarese, et al. A survey of frontiers in llm reasoning:
Inference scaling, learning to reason, and agentic systems. arXiv preprint arXiv:2504.09037,
2025.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Shalev Lifshitz, Sheila A McIlraith, and Yilun Du. Multi-agent verification: Scaling test-time com-
pute with multiple verifiers. arXiv preprint arXiv:2502.20379, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv preprint arXiv:2406.06592, 2024.

Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative reward models. arXiv preprint
arXiv:2410.12832, 2024.

MMA. (american invitational mathematics examination). https://maa.org, 2025.

OpenAI. Gpt-5 system card. 2025a. URL https://cdn.openai.com/
gpt-5-system-card.pdf.

OpenAI. Openai o3 and o4-mini system card. 2025b. URL https://
cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/
o3-and-o4-mini-system-card.pdf.

OpenAI. Introducing GPT-4.1 in the api. https://openai.com/index/gpt-4-1/, April
2025. Accessed: 2025-09-25.

OpenAI. Openai imo 2025 proofs. https://github.com/aw31/openai-imo-2025-proofs, 2025.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for LLM reasoning. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=A6Y7AqlzLW.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Mingyang Song, Zhaochen Su, Xiaoye Qu, Jiawei Zhou, and Yu Cheng. Prmbench: A fine-grained
and challenging benchmark for process-level reward models. arXiv preprint arXiv:2501.03124,
2025.

Kaya Stechly, Matthew Marquez, and Subbarao Kambhampati. Gpt-4 doesn’t know it’s wrong: An
analysis of iterative prompting for reasoning problems. arXiv preprint arXiv:2310.12397, 2023.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. On the self-verification limitations
of large language models on reasoning and planning tasks. arXiv preprint arXiv:2402.08115,
2024.

11

https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://openai.com/index/gpt-4-1/
https://openreview.net/forum?id=A6Y7AqlzLW


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiaoyu Tan, Tianchu Yao, Chao Qu, Bin Li, Minghao Yang, Dakuan Lu, Haozhe Wang, Xihe Qiu,
Wei Chu, Yinghui Xu, et al. Aurora: Automated training framework of universal process reward
models via ensemble prompting and reverse verification. arXiv preprint arXiv:2502.11520, 2025.

ByteDance Seed Team. Seed-oss open-source models. https://github.com/
ByteDance-Seed/seed-oss, 2025.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv
preprint arXiv:2312.08935, 2023.

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, and Pengfei Liu. Evaluating mathematical
reasoning beyond accuracy. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 27723–27730, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Fei Yu, Yingru Li, and Benyou Wang. Scaling flaws of verifier-guided search in mathematical
reasoning. arXiv preprint arXiv:2502.00271, 2025.

Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
models. arXiv preprint arXiv:2508.06471, 2025.

Zhongshen Zeng, Pengguang Chen, Shu Liu, Haiyun Jiang, and Jiaya Jia. Mr-gsm8k: A meta-
reasoning benchmark for large language model evaluation. arXiv preprint arXiv:2312.17080,
2023.

Zhongshen Zeng, Yinhong Liu, Yingjia Wan, Jingyao Li, Pengguang Chen, Jianbo Dai, Yuxuan Yao,
Rongwu Xu, Zehan Qi, Wanru Zhao, et al. Mr-ben: A comprehensive meta-reasoning benchmark
for large language models. arXiv e-prints, pp. arXiv–2406, 2024.

Kaiwen Zha, Zhengqi Gao, Maohao Shen, Zhang-Wei Hong, Duane S Boning, and Dina Katabi.
Rl tango: Reinforcing generator and verifier together for language reasoning. arXiv preprint
arXiv:2505.15034, 2025.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agar-
wal. Generative verifiers: Reward modeling as next-token prediction. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025a. URL https://openreview.net/
forum?id=Ccwp4tFEtE.

Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying, Liang He, and Xipeng Qiu. Evaluating the
performance of large language models on gaokao benchmark. arXiv preprint arXiv:2305.12474,
2023.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025b.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical rea-
soning. arXiv preprint arXiv:2412.06559, 2024.

12

https://github.com/ByteDance-Seed/seed-oss
https://github.com/ByteDance-Seed/seed-oss
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://openreview.net/forum?id=Ccwp4tFEtE
https://openreview.net/forum?id=Ccwp4tFEtE


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595–46623, 2023.

Jiaru Zou, Ling Yang, Jingwen Gu, Jiahao Qiu, Ke Shen, Jingrui He, and Mengdi Wang. Reasonflux-
prm: Trajectory-aware prms for long chain-of-thought reasoning in llms. arXiv preprint
arXiv:2506.18896, 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A STATEMENTS

Use of LLMs. We minimally used LLMs during the writing process, only to check for grammar,
spelling, and writing mistakes.

Reproducibility Statement. We plan to open-source our dataset and will ensure the release is
well-documented.

B DETAILED DATASET SOURCES

In table App. B we provide the distribution of the 80 problems we sourced from different olympiads
along with the date the olympiads were conducted. For the IMO-shortlist, it is the earliest date the
set of questions were made public.

Contest Date of Olympiad Number of Q
IMO - Shortlist 2023 21 July 2024 10
IMO - Shortlist 2024 23 July 2025 29
Putnam 7 Dec 2024 12
EGMO (European Girls’ Mathematical Olympiad) 17 April 2025 6
IMO (International Mathematical Olympiad) 20 July 2025 6
BMO (British Mathematical Olympiad) 22 Jan 2025 4
CMO (Canadian Mathematical Olympiad) 6 March 2025 4
USA-JMO (Junior Mathematical Olympiad) 20 March 2025 4
INMO (Indian National Mathematical Olympiad) 19 Jan 2025 3
USAMO (United States of America Mathematical Olympiad) 20 March 2025 2

Total 80

Table 3: Distribution of questions from various Olympiads with Year-wise Splits

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 COMPLETE EXPERIMENTAL RESULTS

We report TPR and TNR for all evaluated models in Table 4, alongside our aggregate metrics pre-
sented in § 4.

C.2 ADDITIONAL TPR AND TNR RESULTS FOR OTHER TASKS

Here, we demonstrate that the Step-Level trends in TPR and TNR shown in Fig. 4 hold for
other tasks as well. Fig. 8 show that TNR is the primary driver in poor Balanced F1 performance:
The weaker the verifier, the more it struggles in identifying mistakes, opting to mark every step as
correct.

D PROMPTS FOR GENERATION AND EVALUATION

In this section we provide the prompts used for querying frontier models to generate responses
for the olympiad questions, as well as for evaluation of the solutions by verifier for step level and
ErrorID task.

14

https://www.imo-official.org/problems/IMO2023SL.pdf
https://www.imo-official.org/problems/IMO2024SL.pdf
https://maa.org/putnam/
https://www.egmo.org/
https://www.imo-official.org/year_info.aspx?year=2025
https://bmos.ukmt.org.uk/
https://cms.math.ca/competitions/cmo/
https://maa.org/student-programs/youth-program-awards-winners
https://olympiads.hbcse.tifr.res.in/mathematical-olympiad-2024-2025/
https://maa.org/student-programs/youth-program-awards-winners


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: Complete metrics for our three evaluation tasks, reporting Balanced Accuracy, Balanced
F1, TPR, and TNR.

Step-Level Response-Level ErrorID
Bal. Accuracy Bal. F1 TPR TNR Bal. Accuracy Bal. F1 TPR TNR Bal. Accuracy Bal. F1 TPR TNR

Generative Critics, proprietary models

GPT-5 83.60 83.33 88.30 78.90 76.61 73.43 61.02 92.20 60.02 59.92 57.63 62.41
Gemini 2.5 Pro 82.85 82.74 85.96 79.75 74.42 69.83 55.93 92.91 48.14 47.45 42.37 53.90
Claude Sonnet 4 71.97 62.93 97.49 46.46 78.74 76.67 91.53 65.96 55.49 40.07 84.75 26.24
gpt-5-mini 80.93 79.29 92.46 69.41 77.44 76.93 71.19 83.69 60.55 58.04 72.88 48.23
o3 77.95 74.99 93.15 62.75 76.93 76.91 77.97 75.89 61.32 56.81 77.97 44.68
o4-mini 75.22 70.57 93.93 56.52 80.38 79.26 89.83 70.92 58.33 46.37 84.75 31.91
gpt-4.1 59.39 33.60 98.53 20.25 62.77 40.68 100.00 25.53 53.35 23.55 93.22 13.48

Generative Critics, large (≥ 70B) models

Kimi K2 64.19 46.46 97.92 30.45 68.66 55.85 98.31 39.01 51.20 43.39 71.19 31.21
DeepSeek-R1 73.75 68.37 93.67 53.82 71.67 69.86 83.05 60.28 54.53 48.35 72.88 36.17
Qwen3-235B-A22B 71.85 62.57 97.66 46.03 74.21 71.60 88.14 60.28 56.36 48.08 77.97 34.75
Qwen3-Next-80B-A3B 70.09 59.45 97.40 42.78 75.77 73.16 89.83 61.70 51.33 42.29 72.88 29.79
DeepSeek-R1 73.75 68.37 93.67 53.82 71.67 69.86 83.05 60.28 54.53 48.35 72.88 36.17
Qwen2.5-72B-Instruct 52.12 13.69 96.88 7.37 57.09 24.84 100.00 14.18 45.98 4.16 89.83 2.13
GLM-4.5-Air 61.73 41.12 97.40 26.06 66.82 56.40 93.22 40.43 48.62 24.23 83.05 14.18
openai-gpt-oss-120b 80.50 78.38 93.59 67.42 82.17 82.16 81.36 82.98 60.36 59.81 66.10 54.61
Llama-3.3-70B-Instruct 54.43 18.72 98.53 10.34 56.82 28.94 96.61 17.02 49.01 2.80 96.61 1.42

Generative Critics, small/medium (< 70B) models

Qwen3-32B 63.83 47.68 95.93 31.73 68.38 58.08 94.92 41.84 54.14 30.60 89.83 18.44
Qwen3-30B-A3B 66.42 53.24 96.01 36.83 70.59 64.37 91.53 49.65 55.36 41.50 83.05 27.66
ByteDance Seed-OSS-36B 69.19 59.64 94.89 43.48 68.67 62.16 89.83 47.52 56.50 47.00 79.66 33.33
openai-gpt-oss-20b 75.43 71.11 93.50 57.37 78.27 78.14 81.36 75.18 39.84 39.83 40.68 39.01
Qwen3-14B 63.31 43.83 98.44 28.19 68.30 55.12 98.31 38.30 49.19 28.15 81.36 17.02
Qwen3-8B 60.19 36.44 98.01 22.38 62.78 49.63 91.53 34.04 46.92 24.08 79.66 14.18
Qwen2.5-14B-Instruct 52.44 27.91 88.30 16.57 62.38 58.81 47.46 77.30 45.92 13.09 84.75 7.09
Qwen2.5-7B-Instruct 51.71 15.42 95.03 8.39 52.15 29.60 86.44 17.86 35.04 10.43 64.41 5.67

Proces Reward Models, open-source models

Qwen2.5-Math-PRM-72B 54.89 30.46 91.51 18.27 66.54 65.76 59.32 73.76 43.85 38.38 59.32 28.37
Qwen2.5-Math-PRM-7B 55.04 37.46 86.14 23.94 59.92 52.60 38.98 80.85 31.55 29.80 38.98 24.11
Skywork-PRM-7B 42.94 39.30 55.45 30.43 51.39 19.19 10.71 92.06 11.31 11.28 10.71 11.9
Skywork-PRM-1.5B 42.41 14.36 76.91 7.92 51.69 16.31 8.93 94.44 9.23 9.22 8.93 9.52
ReasonFlux-PRM-7B 52.84 19.79 94.63 11.05 54.60 50.54 69.49 39.72 42.19 24.53 69.49 14.89
UniversalPRM-7B 61.61 57.31 77.90 45.33 56.39 44.51 30.51 82.27 26.96 26.49 30.51 23.40

gp
t-o

ss-
12

0B

o4
-m

ini

gp
t-o

ss-
20

B

GPT-
5-M

ini o3

Clau
de

 So
nn

et 
4

GPT-
5-H

igh

Qwen
3-N

ext
-80

B-A3B

Qwen
3-2

35
B-A22

B

Dee
pS

ee
k-R

1

Gem
ini 

2.5
 Pr

o

Qwen
3-3

0B
-A3B

Byte
Dan

ce-
Se

ed
-OSS

-36
B

Qwen
2.5

-14
B-In

str
uct

Qwen
3-3

2B

GLM
-4.

5-A
ir

Kim
i K

2

Qwen
3-1

4B

Qwen
3-8

B

GPT-
4.1

Qwen
2.5

-7B
-In

str
uct

Lla
ma-3

.3-
70

B-In
str

uct

Qwen
2.5

-72
B-In

str
uct

20

40

60

80

100

Pe
rc

en
ta

ge

Balanced F1
TPR
TNR

GPT-
5-H

igh

gp
t-o

ss-
12

0B

GPT-
5-M

ini o3

Dee
pS

ee
k-R

1

Qwen
3-2

35
B-A22

B

Gem
ini 

2.5
 Pr

o

Byte
Dan

ce-
Se

ed
-OSS

-36
B

o4
-m

ini

Kim
i K

2

Qwen
3-N

ext
-80

B-A3B

Qwen
3-3

0B
-A3B

Clau
de

 So
nn

et 
4

op
en

ai-
gp

t-o
ss-

20
b

Qwen
3-3

2B

Qwen
3-1

4B

GLM
-4.

5-A
ir

Qwen
3-8

B

GPT-
4.1

Qwen
2.5

-14
B-In

str
uct

Qwen
2.5

-7B
-In

str
uct

Qwen
2.5

-72
B-In

str
uct

Lla
ma-3

.3-
70

B-In
str

uct
0

20

40

60

80

100

Pe
rc

en
ta

ge

Balanced F1
TPR
TNR

Figure 8: Response-Level and ErrorID tasks follow similar trends in TPR and TNR, with
weaker verifiers unable to identify mistakes.

Prompt used to generate responses to olympiad questions

You are a careful, rigorous math proof assistant. Provide correct,
detailed, and complete proofs.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Solve the following math problem formally. Return a detailed and
formal solution that can be verified by a grader.

Use start the proof with <start> followed by each step with
<step>...</step>, and end with <end>.

Only return the solution, in detailed steps, no headers, no
explanations, no other text, only the <start> <step>...</step>
<step>...</step> ... <end> tags.

Prompt used for evaluating step level solutions

The following is a math problem and a solution (split into steps,
enclosed with tags and indexed from 0):

[Math Problem]

problem

[Solution]

steps

Your task is to review and critique the solution step-by-step.

For each step, determine if it is correct or incorrect. A correct
step is one where all of the content is correct, and is logically
consistent with all previous steps and information given in the
problem.

An incorrect step is one where the content is incorrect, or is not
logically consistent with all previous steps and information given in
the problem, or is based on an error in a previous step.

Important: Any step that contains or is based on an error is
considered incorrect. That is, if the error is carried forward
from a previous step or is based on an error in the previous step,
consider the step incorrect.

Provide reasoning for your correctness determinations. Your final
verdict should be a comma-separated list of yes and no’s, where
each yes or no corresponds to a step’s correctness, with yes meaning
correct and no meaning incorrect.

Please use the following format to return your answer:

Reasoning: <your reasoning for each step>

Verdict: <your comma-separated list of yes and no’s>

Do not use any other formatting, including markdown, bold text, code
blocks, or any other formatting. If your formatting is incorrect,
your evaluation will be affected.

Prompt used for Step-level ERROR ID task

The following is a math problem and a solution (split into steps,
enclosed with tags and indexed from 0):

[Math Problem]

problem

[Solution]

steps

Your task is to identify the first incorrect step in the solution.

Instructions:

- Review each step carefully to determine if it is correct or
incorrect

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

- A correct step is one where all content is mathematically sound and
logically consistent with previous steps

- An incorrect step contains mathematical errors, logical
inconsistencies, or is based on errors from previous steps

- Find the INDEX (0-based) of the FIRST step that is incorrect

- If ALL steps are correct, return -1

Provide your reasoning and then give your final answer as a single
number in the specified format.

Please use the following format to return your answer:

Reasoning: <your detailed reasoning explaining which steps are
correct/incorrect and why>

<prm>NUMBER</prm>

Where NUMBER is: - The 0-based index of the first incorrect step
(e.g., 0, 1, 2, 3, ...)

- OR -1 if all steps are correct

Examples: - If step 0 is the first incorrect step: <prm>0</prm>

- If step 3 is the first incorrect step: <prm>3</prm>

- If all steps are correct: <prm>-1</prm>

Do not use any other formatting. The PRM value must be enclosed in
<prm></prm> tags.

E ANNOTATION DETAILS

Each sample was annotated over four rounds: An initial annotation round and three rounds of re-
views to resolve disagreements. A total of 52 annotators were employed for grading, with 35 having
at least a graduate degree in mathematics or related fields. On average, a model response took 90
minutes to grade and 63 minutes to review, with the longest response taking up to 4 hours. Anno-
tators were given access to external tools, such as the internet, python, Wolfram Mathematica, and
LLMs strictly as assistive aids.

We present the detailed annotation guidelines provided to the math experts for step-by-step evalua-
tion of each model solution below.

Annotation instructions to human annotators

When annotating, refer to the reference answer(s) as possible
solution(s)/proof(s). Each question may have multiple valid
approaches, as these are open-ended questions. The provided
reference answer(s) is an example of a valid approach; it may not
be the only such valid approach.

Base your correctness decision off of the following criteria:

Correct: A step is considered correct if it is:

Computationally valid: There are no mistakes in rote mathematical
operations, such as addition or computing values of known functions
(e.g., sin(pi/2))

Logically valid: The step follows logically from previous steps
and information present in the original question. There are no
intermediate mistakes in the reasoning. Any and all conclusions
in the step must be logically deducible from previous correct steps.

If a step invokes any third-party mathematical results, such as
known theorems / lemmas (e.g., fundamental theorem of calculus) or
intermediate results from previous steps, then annotators must verify
that the result is used in a valid way:

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(1) all assumptions of the result (theorem) are met

(2) the consequence of the result (theorem) is correctly described
and applied to the specific problem

Important: Do not apply \Error carried forward" grading.

If a current step is derived from a previous step that is incorrect,
consider the current step incorrect, even if the logic/computation of
the step is correct.

Example:

Step 1: 1 + 1 = 3 [Incorrect]

Step 2: We now must add 5 to Step 1’s result, which gives us 8
[Incorrect, even though the computation in the step is correct; It
is based on an incorrect Step 1]

Extra note:

\Hand-waviness": If a model produces a \hand-wavy" argument, wherein
they say that a new result follows by similar logic/computation as
a previously established result, then annotators must verify that
the hand-wavy argument in-fact holds. This means verifying (1)
The previously established result’s assumptions are met by the new
result scenario (2) The previously established computation/logic is
applicable to the new

Example:

Step N: A valid proof of Case 1, yielding Result 1

Step N+1: Case 2 follows by a similar argument to Case 1, yielding
Result 2.

[This is \hand-wavy", as the exact computation is omitted by
appealing to previously computed Steps]

Incorrect: A step is considered incorrect if it is:

Based in any way on an incorrect past step.

Logically invalid: The model’s output contains a reasoning error or
mistake. Examples: Unfounded logical leap

Incorrectly invoking a mathematical result or past result when
assumptions/conditions are not satisfied

Incorrect application of a mathematical result when conditions are
met, i.e., mis-applying a theorem.

Failing to consider/cover a scenario or case within a proof, i.e.,
the proof concludes without covering all scenarios and is incomplete.

If the top-level proof misses a case/scenario: As this case involves
text not in the model output, there is no concrete step to mark as
incorrect. As a result, mark the conclusion of the proof (i.e., last
step) as incorrect and provide corresponding justification.

If an intermediate result is stated, but the derivation of the
intermediate result misses a case/scenario: Mark the step that
states the intermediate result as incorrect (as well as any
subsequent steps that depend on the intermediate result). As a
concrete toy example Say a model is doing Proof by Cases for all
real numbers.

It splits its analysis into 2 cases, Case 1 (positives) and Case
2 (negatives). For Case 1, it proves the claim for all positive
integers, but does not consider non-integer reals.

Mark the step that contains the conclusion of Case 1 incorrect, as
well as any subsequent steps that depend on Case 1.

Computationally invalid: Makes an operation / value computation
mistake. This should be relatively easy to spot, but please verify

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

all complex expressions, such as integrals, trigonometric functions,
etc.

Note: This is not an exhaustive list of errors. Verify all
computations, and document any error that occurs, no matter how
minor.

F EVALUATED BASELINES

Here we provide a comprehensive list of models that were evaluated on our benchmark.

• OpenAI: GPT-5, GPT-5-Mini (OpenAI, 2025a), o3, o4-Mini (OpenAI, 2025b), GPT-
4.1 (OpenAI, 2025), gpt-oss-120b, gpt-oss-20b (Agarwal et al., 2025)

• Google: Gemini 2.5 Pro (Google, 2025a)
• Anthropic: Claude Sonnet 4 (Anthropic, 2025)
• Moonshot (Kimi): Kimi K2 (Team et al., 2025)
• DeepSeek: DeepSeek-R1 (Guo et al., 2025)
• Alibaba Qwen: Qwen3-235-A22B, Qwen3-Next-80B-A3B, Qwen3-32B, Qwen3-30B-

A3B, Qwen3-14B, Qwen3-8B (Yang et al., 2025), Qwen2.5-72B-Instruct, Qwen2.5-14B-
Instruct, Qwen2.5-7B-Instruct (Team, 2024), Qwen2.5-Math-PRM-72B, Qwen2.5-Math-
PRM-7B (Zhang et al., 2025b)

• Zhipu GLM: GLM-4.5-Air (Zeng et al., 2025)
• Meta: Llama-3.3-70B-Instruct (Grattafiori et al., 2024)
• ByteDance: ByteDance Seed-OSS-36B (Team, 2025)
• Skywork: Skywork-PRM-7B, Skywork-PRM-1.5B (He et al., 2024b)
• ReasonFlux-PRM-7B (Zou et al., 2025)
• UniversalPRM-7B (Tan et al., 2025)

F.1 PRM THRESHOLD TUNING

To decide the cutoff threshold for evaluated PRMs, we select 100 responses at random from our
benchmark and tune PRM performance against this subset, following (Zheng et al., 2024). The
same 100 responses are kept fixed across all baselines, and we sweep the threshold from 0.1 to
0.9 in increments of 0.05. To select the threshold, we compute the harmonic mean of the three
task-specific Balanced F1 Scores, prioritizing selecting a threshold that yields strong yet balanced
performance. We find that PRM performance can vary considerably based on chosen threshold.

19


	Introduction
	Background and Related Work
	The Hard2Verify Benchmark
	Design philosophy
	Curating hard questions
	Response generation
	Ensuring high-quality annotations
	Overall dataset statistics.
	Evaluation tasks

	Experiments
	Evaluation Metrics
	Evaluated models
	Main evaluation results

	Additional Analysis
	How should we scale verifier inference-time compute?
	How do verifiers verify their own responses?
	Is verifying problems easier than solving problems?
	Case study: Where do models and humans disagree?

	Conclusion
	Statements
	Detailed Dataset Sources
	Additional Experimental Results
	Complete Experimental Results
	Additional TPR and TNR results for other tasks

	Prompts for Generation and Evaluation
	Annotation details
	Evaluated baselines
	PRM Threshold Tuning


