
Published in Transactions on Machine Learning Research (10/2025)

A Hierarchical Nearest Neighbour Approach to Contextual
Bandits

Stephen Pasteris spasteris@turing.ac.uk
The Alan Turing Institute, London, UK

Madeleine Dwyer mdwyer@turing.ac.uk
The Alan Turing Institute, London, UK

Chris Hicks c.hicks@turing.ac.uk
The Alan Turing Institute, London, UK

Vasilios Mavroudis vmavroudis@turing.ac.uk
The Alan Turing Institute, London, UK

Reviewed on OpenReview: https: // openreview. net/ forum? id= 4bJMIrI5oX

Abstract

In this paper we consider the contextual bandit problem in metric spaces of bounded di-
ameter. We design and analyse an algorithm that can handle the fully adversarial problem
in which no assumptions are made about the space itself, or the generation of contexts and
losses. In addition to analysing our performance on general metric spaces, we further anal-
yse the important special case in which the space is euclidean, and furthermore analyse the
i.i.d. stochastic setting. Unlike previous work our algorithm is adaptive to the local density
of contexts and the smoothness of the decision boundary of the comparator policy, as well
as other quantities. Our algorithm is highly efficient - having a per-trial time polylogarith-
mic in both the number of trials and the number of actions when the dimensionality of the
metric space is bounded. We also give the results of real world experiments, empirically
demonstrating the performance of our algorithm.

1 Introduction

We consider the contextual bandit problem in metric spaces. In this problem we have some (potentially
unknown) metric space of bounded diameter. We assume that we have access to an oracle for computing
distances between pairs of points. On each trial t we are given a context xt belonging to the space, and must
choose an action at before observing the loss/reward generated by that action. In this paper the contexts
are considered implicit and we define ∆s,t to be the distance between xs and xt.

This problem has been well-studied in the i.i.d. stochastic case where contexts and losses are drawn i.i.d. from
a fixed distribution. Whilst some works (e.g. Slivkins (2009), Reeve et al. (2018), Perchet & Rigollet (2011)
and references therein) solve the problem directly, others (e.g. Agarwal et al. (2014) and Foster & Rakhlin
(2020)) reduce the stochastic bandit problem to supervised learning and hence utilise a classification or
regression oracle. Although Slivkins (2009) also study a non-stochastic version, they place strong constraints
on the generation of the contexts and losses and do not bound the regret with respect to an arbitrary policy.
In this paper we consider the fully adversarial problem in which no assumptions are made at all about
the metric space, context sequence, or loss sequence. As far as we are aware the first result for the fully
adversarial problem was given by Pasteris et al. (2023) who give an algorithm that we refer to as NN and
bound the cumulative loss with respect to that of any policy (i.e any mapping of the trials/contexts to
actions). This regret bound is good when the contexts partition into well separated clusters and the policy

1

https://openreview.net/forum?id=4bJMIrI5oX

Published in Transactions on Machine Learning Research (10/2025)

is constant on each cluster. However, the bound is poor when there exist many contexts lying close to the
decision boundary of the comparator policy. In order to (partially) rectify this, they proposed using binning
as a preprocessing step. The process of binning involves, at the start of each trial t, finding an approximate
nearest-neighbour x′ of the current context xt in the set of all contexts seen so far. If the distance from the
xt to x′ is no greater than some constant called the binning radius then xt is replaced by x′. The paper
gave no method to automatically tune the binning radius, whose optimal value depends on the context
density and the smoothness of the decision boundary of the comparator policy. Even if one were to choose
the optimal binning radius, it would be constant across the whole space, meaning that the algorithm does
not locally adapt to the density and smoothness. This inability to adapt can result in an extreme loss of
performance: as we show in Section 4.4. In this paper we fully rectify this problem, designing a new (but
related) algorithm HNN which (implicitly) automatically adapts to the local density, smoothness and other
quantities. In Section 4.4 we give an example of how we dramatically improve over NN (when NN has the
optimal binning radius).

As in NN, HNN utilises the algorithm CBNN of Pasteris et al. (2023) which receives, on each trial t > 1,
some previous trial pt ∈ [t − 1] (which is a similar trial and is denoted n(t) in Pasteris et al. (2023)). For
NN, pt was chosen such that xpt is an approximate nearest neighbour of xt in the set {xs | s ∈ [t − 1]}. In
this paper we use a different choice of pt which we call an approximate hierarchical nearest neighbour. For
approximate hierarchical nearest neighbour we will construct, online, a partition of the trials seen so far into
different levels. On each trial t the algorithm then finds an approximate nearest neighbour on each level.
pt will then be chosen, in a specific way, from these approximate nearest neighbours. As HNN is based on
CBNN, it inherits its extreme computational efficiency: having a per trial time complexity polylogarithmic
in both the number of trials and number of actions when the dataset has an aspect ratio polynomial in the
number of trials (which is enforced by binning) and our metric space has bounded doubling dimension. Due
to the extreme complexity of CBNN, its description is outside the scope of this paper. Instead, inspired by
the use of standard belief propagation in Pasteris et al. (2023), we detail how the online belief propagation
of Delcher et al. (1995) can be used instead, giving a slight decrease in efficiency.

We note that the process of inserting a given trial/context into our data-structure is very similar to the
process of constructing a new bin in Slivkins (2009). However, the algorithms themselves are very different
and they are analysed in very different ways (our analysis being far more involved than that of Slivkins
(2009)). Nevertheless, we cite Slivkins (2009) as an inspiration for this paper.

1.1 Additional Related Work

The bandit problem Lattimore & Szepesvári (2020) was first studied by Robbins (1952) in the non-contextual
case, where we receive no side information at the beginning of each trial - we simply select an action and
see it’s loss. The first algorithms for this simple problem only worked in the stochastic case Lai & Robbins
(1985); Agrawal (1995); Auer et al. (2002a) in which, for each action, the loss associated with that action
on any trial is drawn from a fixed probability distribution. The constraint that this probability distribution
is fixed is a strong one, and for many applications is not satisfied. The first algorithm to work when this
constraint is not satisfied was the Exp3 algorithm of Auer et al. (2002b), which is a modification of the
classic Hedge algorithm of Freund & Schapire (1997) for the full-information variant of the problem (where
the losses associated with all actions are revealed after every trial). The Exp3 setting is fully adversarial, in
which (apart from the losses being bounded) no assumptions are made on the generation of the loss vectors.

The paper Auer et al. (2002b) also introduced the Exp4 algorithm, which generalises the Exp3 algorithm
to allow for expert advice (upon which action to take) to be given at the start of each trial. Exp4 gives
bounds on the cumulative loss relative to that of following the advice of any particular expert. This experts
framework can be viewed as contextual bandits with an implicit context. i.e. the experts are functions
mapping the context space to the action set - on each trial a context is observed and each expert gives to
us the action that it associates with that context. However, given that we know all contexts a-priori, being
able to bound the cumulative loss with respect to that of any mapping of contexts to actions requires an
exponential number of experts: meaning that Exp4 takes a time exponential in the number of trials T .

2

Published in Transactions on Machine Learning Research (10/2025)

As noted in Herbster et al. (2021), when given a tree structure over the contexts and a specifically crafted
initial weighting (defined by the tree) of the possible experts, we can use belief propagation Pearl (1982) to
implement Exp4 in a per trial time of O(KT) where K is the number of actions. When a parameter known
as the learning rate is tuned appropriately, the cumulative loss of this algorithm is bounded above by that
of any mapping of contexts to actions plus Õ(

√
ΦKT) , where Φ is the cut-size of that mapping with respect

to the tree-structure. Given any graph over the contexts, by first sampling a random spanning-tree Herbster
et al. (2008); Cesa-Bianchi et al. (2010), we can utilise this tree-structured algorithm to obtain loss bounds
with respect to labelings of the initial graph by actions. However, the per-trial time complexity of O(KT)
can be prohibitive, so Herbster et al. (2021) utilised the methodology of specialists Freund et al. (1997);
Koolen et al. (2012) in order to develop efficient algorithms (called the Gaba algorithms) for this problem:
one based on belief propagation (with a time complexity of O(K ln(T))) and one based on the specialist set
described in Herbster & Robinson (2018) (with a per-trial time complexity of O(ln(K) ln(T))).

The work Pasteris et al. (2023) then considered the problem in which, instead of the contexts being vertices
of a known graph, they instead come from an arbitrary metric space of finite doubling dimension, and are
not known to Learner a-priori. They noted that a tree can be formed by connecting each context to an
approximate nearest neighbour in the set of all contexts seen previously: which can be found efficiently
online with data-structures such as navigating nets Krauthgamer & Lee (2004). If this tree was known
a-priori then either of the Gaba algorithms could be used. However, since the tree is not known a-priori,
the Gaba algorithms fail to work. Hence, Pasteris et al. (2023) introduced the CBNN algorithm which runs
in a per-trial time of Õ(ln(K) ln(T)2) and works with any tree constructed in an online fashion. Although
CBNN, which utilises the rebalancing ternary tree of Matsuzaki & Morihata (2008) and the online belief
propagation algorithm of Delcher et al. (1995), borrows elements from both of the Gaba algorithms it is
radically different, introducing several new data-structures. Pasteris et al. (2023) analysed the case in which
the tree is constructed by the approximate nearest neighbour method given above. In this paper we utilise
CBNN but construct the tree in a different way.

1.2 Notation

We define N to be the set of natural numbers, not including 0. Given N ∈ N we define [N] := {i ∈ N | i ≤ N}.
Given a predicate P we define JP K := 0 if P is false and define JP K := 1 if P is true. Please see Appendix A
for a table of the notation that will be introduced in this paper.

2 Problem Description

We consider the following game between Nature (our adversary) and Learner (our algorithm). We have T
trials and K actions. Nature first chooses a matrix ∆ ∈ [0, 1]T ×T satisfying the following conditions:

• For all s, t ∈ [T] we have ∆s,t = ∆t,s .

• For all t ∈ [T] we have ∆t,t = 0 .

• For all r, s, t ∈ [T] we have ∆r,t ≤ ∆r,s + ∆s,t . This property is called the triangle inequality.

For all s, t ∈ [T] we call ∆s,t the distance between trials s and t. This distance represents the similarity
between trials s and t: a smaller distance indicating a greater degree of similarity. Intuitively, we implicitly
have some metric space and every trial t ∈ [T] is implicitly associated with a context xt in the metric space.
∆s,t is then the distance from xs to xt in the metric space.

For all trials t ∈ [T] and actions a ∈ [K] , Nature chooses a probability distribution ℓ̃t,a over [0, 1] and a loss
ℓt,a is then drawn from ℓ̃t,a. We note that Learner has knowledge of only T and K (although the requirement
of knowledge of T can be removed by a simple doubling trick).

The game then proceeds in T trials. On trial t the following happens:

1. For all s ∈ [t] the distance ∆s,t is revealed to Learner.

3

Published in Transactions on Machine Learning Research (10/2025)

2. Learner stochastically chooses an action at ∈ [K].

3. The loss ℓt,at
is revealed to Learner.

Our measurement of Learner’s performance is by the following notion of regret. A policy is any vector
y ∈ [K]T in which for all s, t ∈ [T] with ∆s,t = 0 we have ys = yt. That is: a policy y associates each trial t
with an action yt, where trials with identical implicit contexts are associated with identical actions (as they
are indistingishable). Given such a policy y, we define the regret of Learner, with respect to y, as:

R(y) :=
∑

t∈[T]

E[ℓt,at − ℓt,yt]

which is the expected difference between the cumulative loss of Learner and that which would have been
obtained by following policy y. A policy y is (informally) considered natural if typically ys = yt when ∆s,t

is small. The inductive bias is towards more natural policies: i.e. a more natural policy y should yield a
smaller regret R(y).

Note that, since Nature has complete control over each distribution ℓ̃t,a , our problem generalises the fully
adversarial problem (which is the special case in which each distribution ℓ̃t,a is a delta function). We
are considering this generalised problem in order for our bound to be better when there is an element of
stochasticity in Nature’s choices.

3 The Algorithm

We now describe our algorithm HNN. The algorithm takes parameters c ≥ 1, ϵ ≥ 0 and ρ > 0. Our
performance is best when c = 1 and ϵ = 0. However, we allow these parameters to take on higher values in
order to make our algorithm more efficient. Specifically, whenever c > 1 and ϵ is polynomial in 1/T our per
trial time complexity is O(K ln(T)2) when the dimensionality is bounded. We will briefly describe how one
can use the methodology Pasteris et al. (2023) to speed up the algorithm to O(ln(K) ln(T)2) time per trial,
referring the interested reader to that paper.

3.1 The Tree

HNN works by maintaining a growing rooted tree T where, at the start of each trial t > 1 , T contains, as
its vertices, the set [t− 1]. The root of the tree is equal to 1, which is its single vertex on trial 1. Given any
t ∈ [T], once t has been added to T we define pt to be the parent of t. The difference between HNN and
NN is the way in which T is constructed - whereas NN chooses pt to be an approximate nearest neighbour
of t in [t− 1], HNN utilises a more complex method (inspired by Slivkins (2009)) to find pt.

In order to grow T we will maintain a number h ∈ N∪{0} initialised equal to 0 as well as, for all d ∈ [h]∪{0},
a set Hd ⊆ [T] initialised so that H0 = 1. We now describe how the tree T is updated at the start of each
trial t > 1. To do this we first define, for any non-empty set H ⊆ [T] and any trial t ∈ [T], a c-nearest
neighbour of t in H to be any trial s ∈ H in which:

∆s,t ≤ c min{∆r,t | r ∈ H} .

At the start of each trial t > 1 HNN does the following:

4

Published in Transactions on Machine Learning Research (10/2025)

Algorithm: First part of trial t.

1. For all d ∈ [h] ∪ {0} let sd be a c-nearest neighbour of t in Hd .

2. If there exists d ∈ [h] ∪ {0} with ∆sd,t ≤ ϵ then pt ← sd for any such d.

3. If ∆sd,t > ϵ for all d ∈ [h] ∪ {0} then:

(a) δ ← max{d ∈ [h] |∆sd,t ≤ 1/2d} .
(b) If δ = h then:

i. h← h + 1 .
ii. Hh ← ∅ .

(c) Hδ+1 ← Hδ+1 ∪ {t} .
(d) pt ← sδ .

We note that step 2 of this subroutine is a binning step: if ∆sd,t ≤ ϵ for some d then we treat trial t as
if it had an implicit context identical to that of trial sd. However, care must be taken so that the tree T
does not become too deep. This is achieved by setting pt := sd and then excluding t from the sets Hd. It is
crucial that t is not added to any such set since we have an identical trial sd in the data-structure already.
We note that the only effect that this binning will have on our bounds is by moving the implicit contexts by
a distance of up to ϵ. The purpose of binning is it that it bounds the minimum distance between trials in
the data-structure by ϵ/c : which is required for the tree T to be not too deep and also required in order to
find the approximate nearest neighbours efficiently, as we now describe.

Given that c > 1 , ϵ is polynomial in 1/T , and the metric ∆ has bounded doubling dimension, we can run
the above subroutine in time O(ln(T)2) by maintaining the navigating net of Krauthgamer & Lee (2004)
over each set Hd. Specifically, since the aspect ratio (ratio between the maximum and minimum inter-trial
distances) of Hd is always at least ϵ/c, and hence polynomial in 1/T , the navigating net allows us to find
the c-nearest neighbour of t in Hd in time O(ln(T)). By the same argument, the navigating net can also
update in a time of O(ln(T)) whenever a trial is added to Hd. Since, due to the binning step, we always
have h ∈ O(ln(T)) we obtain the per-trial time complexity of O(ln(T)2).

3.2 Belief Propagation

On any trial t, once t has been added to the tree T we select at and then incorporate the loss ℓt,at
via the

online belief propagation algorithm of Delcher et al. (1995) but incorporating the fact that T is growing.
To do this we maintain, for each s ∈ [T], a dynamic (in that it changes from trial to trial) vector es ∈ RK

initialised so that es,a = 1 for all a ∈ [K]. For all a, b ∈ [K] we define the quantity:

τa,b := Ja = bK
(

1− 1
T

)
+ Ja ̸= bK

1
(K − 1)T .

We note that for any vector v ∈ RK we can compute the vector v′ ∈ RK defined by v′
b :=

∑
a∈[K] vaτa,b in

time O(K). Specifically, we have:

v′
b =

(
1− 1

T

)
vb +

(∑
a∈[K] va

)
− vb

(K − 1)T

On any trial t ∈ [T], once t has been added to the tree T we do as follows.

5

Published in Transactions on Machine Learning Research (10/2025)

Algorithm: Second part of trial t (when using belief propagation).

1. For all a ∈ [K] set:
φ1,a ← 1 .

2. Descend the tree T from 1 (i.e. the root) to t. When at a vertex s ̸= 1 set, for all a ∈ [K], the
quantities:

ϑs,a ←
∑

b∈[K]

es,bτb,a ; φs,a ←
∑

b∈[K]

(
φps,beps,b

ϑs,b

)
τb,a .

3. For all a ∈ [K] set:
πa ←

φt,a∑
b∈[K] φt,b

.

4. Sample at such that for all a ∈ [K] we have at = a with probability πa.

5. Play at.

6. Receive the loss ℓt,at .

7. For all a ∈ [K] set:

et,a ← exp
(
−Jat = aKℓt,at

ρπa

√
KT

)
.

8. Ascend the tree T from t to 1 (i.e. the root). When at a vertex s ̸= 1 set, for all a ∈ [K], the
quantities:

ϑ′
s,a ←

∑
b∈[K]

es,bτb,a ; eps,a ←
ϑ′

s,aeps,a

ϑs,a
.

To aid the reader, we now give a brief verbal overview of online belief propagation. As explained above, we
maintain a vector es ∈ RK for each vertex/trial s. These vectors are initialised such that each component
is equal to 1. For each trial t there are two phases: the first phase selects the action at and the second
phase updates some of the vectors in {es | s ∈ [t]} after receiving the loss ℓt,at

. The first phase proceeds by
descending the tree along the path from vertex/trial 1 to vertex/trial t. For each vertex/trial s encountered
during the descent, a vector φs ∈ RK is computed. When s = 1 (i.e. s is the root) φs is defined to be
the vector with all components equal to 1, and when s ̸= 1 (so that s has a parent ps and φps

has already
been computed) φs is computed from φps

, es and eps
(see Line 2). Once φt has been constructed, it is

normalised to form a probability vector π from which at is then drawn. In the second phase, ℓt,at
is first

received and used to update et (see Line 7). The tree is then climbed up the path from t to 1. When at a
non-root vertex/trial s on this path, eps

is updated based on its old value and the new and old values of es

(see Line 8, noting that ϑs was constructed in Line 2).

Note that running online belief propagation on any trial takes a time of O(hK) which is O(K ln(T)) under
the above conditions.

3.3 CBNN

In order to achieve, under the above conditions, a per-trial time complexity of O(ln(K) ln(T)2), we can utilise
the CBNN algorithm of Pasteris et al. (2023) instead of belief propagation. CBNN solves the following
problem. A-priori Nature chooses, for each trial t ∈ [T], a loss vector ℓt ∈ [0, 1]K and, when t > 1, a trial
n(t) ∈ [t− 1]. The idea is that the trial n(t) is in some way similar to the trial t. On each trial t ∈ [T] the
following happens:

1. If t > 1 then n(t) is revealed to Learner.

2. Learner chooses an action at ∈ [K].

6

Published in Transactions on Machine Learning Research (10/2025)

3. The loss ℓt,at
is revealed to Learner.

CBNN is an algorithm for Learner in this problem. It takes a parameter ρ > 0 and, given any policy
y ∈ [K]T , achieves: ∑

t∈[T]

E[ℓt,at
− ℓt,yt

] ∈ O
((

ρ + Φ(y)
ρ

)√
KT

)

where:
Φ(y) := 1 +

∑
t∈[T]\{1}

Jyt ̸= yn(t)K .

The time complexity of CBNN is only O(ln(K) ln(T)2) per trial. We refer the reader to Pasteris et al.
(2023) for a complete description of the mechanics of CBNN.

HNN utilises CBNN by setting n(t) := pt for all t ∈ [T] \ {1}. The losses revealed to CBNN are those
received by HNN. The parameter ρ of CBNN is identical to that of HNN. The actions selected by HNN
are those selected by CBNN.

We note that CBNN works on what it calls ternary search trees to improve efficiency when the tree is deep.
However, in HNN the tree T has a depth of only O(ln(c/ϵ)) so we don’t need to use ternary search trees,
instead maintaining contractions (as described in Pasteris et al. (2023)) over the original tree instead.

3.4 Computational Complexity

The following theorem states the time complexities of the various versions of HNN.
Theorem 3.1. For metric spaces of bounded dimensionality and with ϵ polynomial in 1/T and c > 1,
the per-trial time complexities of HNN with belief propagation and CBNN are O(ln(T)2 + K ln(T)) and
O(ln(K) ln(T)2) respectively. For general metric spaces the per-trial time complexities of HNN with belief
propagation and CBNN are O(KT) and Õ(T) respectively.

4 Performance in Euclidean Space

Before we give our general regret bound we will first give, as an illustration, a corollary of it for the important
special case in which our implicit contexts lie in a euclidean space. We call this special case the euclidean
bandit problem. We also give an almost matching lower bound, highlight our improvement over NN, and give
a bound for the i.i.d. stochastic special case. We note that our more general bound in Section 5 improves
on the bound of this section, as well as generalising it to arbitrary metrics.

4.1 The Euclidean Bandit Problem

In the euclidean bandit problem there exists some constant d which is the dimensionality of the dataset. For
all x ∈ Rd let ∥x∥ be the euclidean norm of x. Given x ∈ Rd and r > 0 we define the ball with centre x and
radius r as:

B(x, r) := {x′ ∈ Rd | ∥x− x′∥ ≤ r} .

We define X := B(0, 1/2). Nature chooses, a-priori, a sequence of contexts:

⟨xt | t ∈ [T]⟩ ⊆ X

unknown to Learner. The matrix ∆ is then defined such that for all s, t ∈ [T] we have:

∆s,t := ∥xs − xt∥

7

Published in Transactions on Machine Learning Research (10/2025)

Figure 1: An example with K = 2 and d = 2. Here we have N = 5. The black curve is a decision
boundary of y. The purple balls are those in the boundary cover {B(vi, ri) | i ∈ [N]} and the green balls
are those in {B(vi, ξri) | i ∈ [N]}. The grey contexts are those in {xt | t ∈ M}, the red contexts are those in
{xt | t ∈ [T] \M ∧ yt = 1}, and the blue contexts are those in {xt | t ∈ [T] \M ∧ yt = 2}. Note that the
purple balls cover the decision boundary and the grey contexts are those covered by the green balls.

4.2 Regret

Our regret bound for the euclidean bandit problem is based on the following concept of a boundary cover
which is (informally) any set of balls covering the decision boundary of the comparator policy. Formally,
take some arbitrary policy y ∈ [K]T . An extension of y is any function ỹ : X → [K] such that ỹ(xt) = yt

for all t ∈ [T]. A decision boundary of y is defined as a set:

{x ∈ X | ∀r > 0 , ∃x′ ∈ B(x, r) ∩ X : ỹ(x′) ̸= ỹ(x)}

where ỹ is some arbitrary extension of y. Finally, we define a boundary cover of y as any set of balls which
covers a decision boundary of y.

With the definition of a boundary cover in hand, we have the following bound on the regret of HNN.
Theorem 4.1. Let C > 0 and ξ > 1 be arbitrary constants and assume HNN is run on the euclidean bandit
problem with any c ≥ 1, any ϵ ≤ (ξ − 1)T −C/2 and any ρ > 0. Then given any policy y ∈ [K]T and any
boundary cover:

{B(vi, ri) | i ∈ [N]}
of y with:

min{ri | i ∈ [N]} ≥ T −C

we have:
R(y) ≤ |M|+ Õ

((
ρ + N

ρ

)√
KT

)
where:

M :=

t ∈ [T]
∣∣∣∣xt ∈

⋃
i∈[N]

B(vi, ξri)


Proof. A corollary of Theorem 5.1. See Appendix D.

Theorem 4.1 is illustrated in Figure 1. Note that N is the number of balls in the boundary cover and |M|
is the number of contexts lying inside the balls of the boundary cover when each is expanded by a factor ξ.

We note that Theorem 4.1 is a corollary of Theorem 5.1. However, using Theorem 5.2 instead can significantly
reduce the term |M| that appears in the regret. This improvement allows us to exploit Holder continuity in
the i.i.d. stochastic bound coming up in Section 4.5.

8

Published in Transactions on Machine Learning Research (10/2025)

4.3 Lower Bound

We note that we have the following regret lower bound which is extremely close to our upper bound in
Theorem 4.1 when ρ =

√
N .

Theorem 4.2. For any algorithm, given any ξ > 1 and r > 0 with 8ξr < 1, and any N ′ ∈ N less than the
2ξr-packing number of X and any M ≤ T/2, then if T ≥ 2N ′K there exists:

• A policy y ∈ [K]T .

• A boundary cover of y of cardinality N ∈ Θ(N ′) in which each ball has radius r.

• A choice of contexts and losses by Nature such that, when M is defined from ξ and the boundary
cover as in Theorem 4.1, we have |M| = M .

such that:
R(y) ≥ |M|/2 + Ω(

√
NKT)

Proof. See Appendix E

We also note that for any algorithm we require, for Theorem 4.1 to hold, the condition that ξ > 1. Specifically,
we have the following theorem:
Theorem 4.3. Given any algorithm there exists a policy y, a boundary cover of y with cardinality 2, and
a choice of contexts and losses by Nature, in which no context lies in either ball of the boundary cover and
R(y) ≥ T/2.

Proof. See Appendix F

4.4 Comparison to Nearest Neighbour

We now compare the regret bound of HNN in euclidean space, as given in Theorem 4.1, to that of NN,
which is, as far as we are aware, the only other algorithm that can handle the fully adversarial problem. We
assume here that NN is using the optimal binning radius (which it must know a-priori).

The regret bound of NN is like that in Theorem 4.1 except with the restriction that all the balls in the
boundary cover must have the same radii (a constant multiple of the binning radius). This is essentially
proved in the proof of Theorem 3.9 of Pasteris et al. (2023). The restriction of all balls having the same
radii severely limits NN: meaning that, unlike HNN, it cannot adapt to the context density and decision
boundary smoothness. We now give an illustrative example of its inability to adapt to context density.

For simplicity let’s assume that the parameter ρ, of NN and HNN, is set equal to a constant, although the
argument easily extends to tuned parameter values as well. Consider two disjoint balls B,B′ in R2 with radii
equal to 1 and r < 1 respectively (noting that the diameter of the dataset in our problem can actually be
any constant). Assume that each ball has T/2 contexts distributed uniformly over it. Suppose we have two
actions and a comparator policy such that the decision boundary (of the policy) on each ball is a straight
line going through the ball’s centre. This is depicted in Figure 2.

First let’s analyse NN when working on each ball as a seperate problem. Given a binning radius of φ, the
regret of NN on B is Õ(

√
T/φ + φT) and the regret of NN on B′ is Õ(r

√
T/φ + φT/r). For both these

problems the optimal value of φ leads to a regret of Õ(T 3/4).

However, things change when NN is working on both balls at the same time. In this case, given a binning
radius of φ, the regret of NN is:

Õ((
√

T/φ + φT) + (r
√

T/φ + φT/r)) = Õ(
√

T/φ + φT/r)

i.e. the sum of the regrets on both balls. This means that the optimal value of φ leads to a regret of
Õ(T 3/4r−1/2) which can be dramatically higher than if the balls were learnt separately. In fact, when

9

Published in Transactions on Machine Learning Research (10/2025)

2

2r

Figure 2: An example of when NN performs poorly. The colour of a context represents the action assigned
to it by the comparator policy.

r ≤ T −1/2 this bound is vacuous. Our algorithm HNN, however, has a regret of Õ(T 3/4) whenever 1/r is
polynomial in T - the same as if the balls were learnt seperately.

When working in RD for D > 2 , the improvement of HNN over NN is even stronger. To see this note that
the regret of NN when working on both balls is:

Õ((
√

T/φD−1 + φT) + (
√

T (r/φ)D−1 + φT/r)) = Õ(
√

T/φD−1 + φT/r)

so that the optimal value of φ gives us a regret of Õ
(
r−(D−1)/DT (2D−1)/(2D)) which becomes vacuous at

r ≤ T −1/(2D−2). HNN, on the other hand, achieves a regret of Õ(T (2D−1)/(2D)) whenever 1/r is polynomial
in T - the same as if the balls were learnt seperately. Note that ρ is set to a constant here: when, instead,
ρ = T (D−1)/2(D+1) then HNN achieves a regret of Õ(T D/(D+1)).

4.5 Stochastic Bandits

Even though HNN is designed for the adversarial problem, we will now show that that in the i.i.d. stochastic
special case it is competitive against algorithms designed purely for that special case, sometimes even out-
performing. In fact, our experimental results in Section 6 show that HNN can outperform such algorithms
in real world i.i.d. stochastic problems. For HNN the bound we give is crude, and we believe it can also be
obtained by NN (with the optimal binning radius). Our bound improves on the stochastic bound of NN
given in Pasteris et al. (2023) by allowing for the Bayes decision boundary to have fractal dimension greater
than d− 1 and by becoming adaptive to Holder continuous mean losses.

We maintain the notation and problem description given at the start of this section. In the i.i.d. stochastic
special case we have an unknown probability density ν over the space X × [0, 1]K and for every trial t ∈ [T]
the pair (xt, ℓt) is drawn from ν. We assume that ν is bounded above by a constant. Given x ∈ X and
a ∈ [K] we define:

ν̄a(x) := E(x′,ℓ′)∼ν [ℓ′
a |x′ = x]

which is the mean loss of action a when given context x. We define the Bayes optimal classifier ỹ : X → [K]
such that for all x ∈ X we have:

ỹ(x) := argmina∈[K] ν̄a(x)
and define the Bayes decision boundary D as the set:

{x ∈ X | ∀r > 0 , ∃x′ ∈ B(x, r) ∩ X : ỹ(x′) ̸= ỹ(x)}

Furthermore, we define the decision boundary dimension ϑ such that the exists c′ > 0 such that for all r > 0
we have that D can be covered by c′r−ϑ balls of radius r. Finally we define the Holder complexity φ such
that there exists ĉ > 0 such that for all x, x′ ∈ X we have:

max
a∈[K]

|ν̄a(x)− ν̄a(x′)| ≤ ĉ∥x− x′∥φ

10

Published in Transactions on Machine Learning Research (10/2025)

We now state the performance of HNN.
Theorem 4.4. When HNN is run with ϵ ≤ 1/T and the optimal value of ρ in the i.i.d. stochastic bandit
problem as described above then given the policy y is such that yt = ỹ(xt) for all t ∈ [T], we have:

E [R(y)] ∈ Õ
(

T (K/T)
φ+d−ϑ

2φ+2d−ϑ

)
where the Õ suppresses a constant dependent on ν.

Proof. A corollary of Theorem 5.2. See Appendix G.

We note that this bound is crude and does not account for the ability of HNN to adapt to varying density
and varying values of φ and ϑ (along with their corresponding constants c′ and ĉ) across the space. However,
we believe it to be novel, in some cases improving over bounds attained by algorithms designed specifically
for the i.i.d. stochastic problem. In particular, we now compare it to the bound of the ABSE algorithm of
Perchet & Rigollet (2011) which is, as far as we are aware, the state of the art for i.i.d. stochastic bandits in
euclidean space. Unlike our bound, the bound of ABSE depends upon a quantity α > 0 defined as follows.
First define, for all x ∈ X , the gap as:

g(x) := min
a∈[K] : ν̄a(x) ̸=ν̄ỹ(x)(x)

(ν̄a(x)− ν̄ỹ(x)(x))

and then let α be equal to the minimum value of α′ such that there exists c† > 0 such that for all δ > 0 we
have:

P(x,ℓ′)∼ν [g(x) ≤ δ] ≤ c†δα′

Given α > 0, the bound obtained by ABSE is then:

E [R(y)] ∈ Õ
(

T (K/T)
φ(1+α)

2φ+d

)
Note that this is, in general, incomparable to our bound in Theorem 4.4. For example, as φ approaches 0
whilst ϑ < d and α stay constant, or when α approaches 0 whilst ϑ < d and φ stay constant, our bound is
an improvement.

5 Performance in General Metric Spaces

We now bound the expected regret of HNN for general matrices ∆. The final bound also improves on the
bound in Theorem 4.1 when in euclidean space. We will assume here that the parameter ϵ is set equal to 0.
This is without loss of generality as for ϵ > 0 the result is the same but such that distances have been shifted
by up to 2ϵ (which is typically negligible). In what follows, given c, we have universal constants λ > 1 and
z > 0.

Theorem 4.1 involved a set of trials M whose contexts lay near the decision boundary of the comparator
policy. In general, a margin is any setM⊂ [T] in which for all s ∈M and all t ∈ [T] with ∆s,t = 0 we have
t ∈ M. Our general bound will hold for any possible margin M ⊆ [T]. So suppose we have any arbitrary
policy y ∈ [K]T and margin M⊆ [T]. Note that the algorithm has no knowledge of either y or M.

5.1 Packing Complexity

Here we give our first, simpler, general regret bound. For all t ∈ [T] we define:

γt := min{∆s,t | s ∈ [T] \M ∧ ys ̸= yt}

which is the minimum distance from t to any trial s /∈M with a differing label. We also define:

Λ := min{γt | t ∈ [T]} .

11

Published in Transactions on Machine Learning Research (10/2025)

which can be viewed as the width of the margin.

We define the packing complexity Ψ as the maximum cardinality of any set S ⊆ [T] in which for all s, t ∈ S
with s ̸= t we have:

∆s,t > zγt .

Note that the packing complexity is the maximum cardinality of any packing of balls such that, if a ball’s
centre is t, then its radius is zγt. Here we define a packing to mean that the centre of any ball is not contained
inside any other ball.

With the definition of packing complexity in hand, we now present our first general regret bound.
Theorem 5.1. Given any policy y ∈ [K]T and any margin M⊆ [T], then if Ψ and Λ are defined as above
we have that HNN with ϵ = 0 has an expected regret of:

R(y) ≤ |M|+ Õ
((

ρ + Ψ ln(1/Λ)2

ρ

)√
KT

)
.

Proof. An immediate corollary of Theorem 5.2.

WhenM = ∅ (and the aspect ratio is polynomial in T) our bound is similar to that of Pasteris et al. (2023)
(without binning) except that their equivalent of Ψ is a covering number rather than a packing number (the
radii of the balls in the covering/packing being a constant factor different in the two bounds). However,
we have a big advantage over Pasteris et al. (2023) in that we can choose any margin M ⊆ [T] which we
can essentially hold out in the computation of the values γt. As the margin increases the values γt increase,
meaning that Ψ decreases. In return for the decrease in Ψ, the factor |M| is added to the regret. There
is a sweet-spot: the optimal margin. The purpose of our margin is essentially the same purpose as using
binning in Pasteris et al. (2023). However, since our margin can be any set we have much more flexibility
(compared to the constant binning radius of Pasteris et al. (2023)), allowing us to adapt locally to the density
of contexts and smoothness of decision boundary: as was illustrated in Section 4.4.

5.2 Excesses

We will now tighten the regret bound in Theorem 5.1 by reducing the term |M|, which is what allows us to
exploit Holder continuity in Theorem 4.4. To do this we will now define, for all t ∈ M, a quantity µt that
we call the excess of trial t. First define:

θt := min{∆s,t | s ∈ [T] \M}

which is the minimum distance from t to any trial not in the margin. Define:

Yt := {ys | s ∈ [T] ∧ ∆s,t ≤ λθt}

which is the set of labels of trials within a distance of λθt from t. Finally define:

µt := max{E[ℓt,a − ℓt,yt
] | a ∈ Yt}

which is the difference between maximum expected loss, on trial t, of any action in Yt , and the expected
loss, on trial t, of the action yt.

We have now defined all the quantities needed to present our second general regret bound:
Theorem 5.2. Given any policy y ∈ [K]T and any margin M ⊆ [T], then if Ψ, Λ and {µt | t ∈ M} are
defined as above then HNN with ϵ = 0 has an expected regret of:

R(y) ≤
∑
t∈M

µt + Õ
((

ρ + Ψ ln(1/Λ)2

ρ

)√
KT

)
.

Proof. See Appendix C.

12

Published in Transactions on Machine Learning Research (10/2025)

0 5k 10k 15k 20k
0

2k

4k

6k

8k

10k

12k Slivkins
KNN_KL_UCB
KNN_UCB
NN
NN with 0.1 br
NN with 0.2 br
HNN

Time Steps

C
um

ul
at

iv
e

Lo
ss

(a) Cumulative loss averaged over 10 runs for the
UCI firewall dataset. The lines represent the average
over 10 independent runs. Shaded regions indicate
±1 standard deviation. For most methods, the stan-
dard deviation is very small and, as such, not visually
obvious in the plot.

0 10k 20k 30k 40k 50k

0

5k

10k

15k

20k

25k

30k

Slivkins
KNN_KL_UCB
KNN_UCB
NN
NN with 0.05 br
NN with 0.1 br
HNN

Time Steps

C
um

ul
at

iv
e

Lo
ss

(b) Cumulative loss for the CICIDS2017 intrusion
dataset experiment.

Figure 3: Comparison of cumulative loss across two real-world datasets.

To compare against Theorem 5.1 we note that |M| has been replaced by
∑

t∈M µt. Typically
∑

t∈M µt is
much less than |M| since, for any trial t ∈ M, any action a ∈ Yt is typically equal to ys for some s close
to t. If y is a good comparator policy then, typically, ys and yt are good actions for s and t respectively.
Hence, by the inductive bias and since s is close to t we often have that E[ℓt,ys

] is similar to E[ℓt,yt
]. Hence,

µt is often close to 0. However, since the setting is fully adversarial, it may not be.

We note that, unlike NN, our algorithm HNN is also adaptive to factors that influence the values of the
excesses, such as the local Holder complexity and its constant in i.i.d. stochastic bandits (as defined in
Section 4.5).

6 Experiments

In Figure 3 we give the results of two real-world experiments comparing the performance of HNN to that
of NN and three state of the art algorithms for the i.i.d. stochastic problem (Figure 3a) and a real-world
adversarial problem (Figure 3b). It is important to note that the first of these experiments is on an i.i.d.
stochastic dataset, whereas HNN was built for the more general adversarial problem, yet in both experiments
HNN manages to outperform the algorithms designed specifically for the i.i.d. stochastic problem.

The details of the experiments, which are both for problems in cyber-defence, are given in Appendix B. We
note that in the first experiment, NN and NN with a binning radius of 0.1 achieve the best performance,
HNN attains the next-best results, surpassing the other three bandits and NN with a binning radius of 0.2.
In the second experiment, HNN achieves the best performance, even when compared with NN with various
binning radii.

7 Conclusion

Inspired by Pasteris et al. (2023) and Slivkins (2009), we designed a novel algorithm for the adversarial bandit
problem in metric spaces. Unlike the algorithm of Pasteris et al. (2023), our algorithm is locally adaptive to

13

Published in Transactions on Machine Learning Research (10/2025)

the density of contexts and the smoothness of the decision boundary of the comparator policy. We analysed
the regret of our algorithm with respect to any possible comparator policy, and analysed further the special
case of Euclidean space, for both adversarial and stochastic bandits. We gave the results of real-world
experiments that empirically demonstrate the performance of our algorithm.

References
Internet Firewall Data. UCI Machine Learning Repository, 2019. DOI: https://doi.org/10.24432/C5131M.

Alekh Agarwal, Daniel J. Hsu, Satyen Kale, John Langford, Lihong Li, and Robert E. Schapire. Taming
the monster: A fast and simple algorithm for contextual bandits. ArXiv, abs/1402.0555, 2014. URL
https://api.semanticscholar.org/CorpusID:12549076.

Rajeev Agrawal. Sample mean based index policies by o(log n) regret for the multi-armed bandit problem.
Advances in Applied Probability, 27:1054 – 1078, 1995.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47:235–256, 2002a.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM J. Comput., 32:48–77, 2002b.

Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale, and Giovanni Zappella. Random spanning trees and the
prediction of weighted graphs. In International Conference on Machine Learning, 2010.

Arthur L. Delcher, Adam J. Grove, Simon Kasif, and Judea Pearl. Logarithmic-time updates and queries in
probabilistic networks. J. Artif. Intell. Res., 4:37–59, 1995.

Dylan J. Foster and Alexander Rakhlin. Beyond ucb: Optimal and efficient contextual bandits with regression
oracles. ArXiv, abs/2002.04926, 2020. URL https://api.semanticscholar.org/CorpusID:211082940.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an appli-
cation to boosting. In European Conference on Computational Learning Theory, 1997.

Yoav Freund, Robert E. Schapire, Yoram Singer, and Manfred K. Warmuth. Using and combining predictors
that specialize. In Symposium on the Theory of Computing, 1997.

Mark Herbster and James Robinson. Online prediction of switching graph labelings with cluster specialists.
In Neural Information Processing Systems, 2018.

Mark Herbster, Guy Lever, and Massimiliano Pontil. Online prediction on large diameter graphs. In Neural
Information Processing Systems, 2008.

Mark Herbster, Stephen Pasteris, Fabio Vitale, and Massimiliano Pontil. A gang of adversarial bandits. In
Neural Information Processing Systems, 2021.

Wouter M. Koolen, Dmitry Adamskiy, and Manfred K. Warmuth. Putting bayes to sleep. In NIPS, 2012.

Robert Krauthgamer and James R. Lee. Navigating nets: simple algorithms for proximity search. In ACM-
SIAM Symposium on Discrete Algorithms, 2004.

Tze Leung Lai and Herbert E. Robbins. Asymptotically efficient adaptive allocation rules. Advances in
Applied Mathematics, 6:4–22, 1985.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. 2020.

Kiminori Matsuzaki and Akimasa Morihata. Mathematical engineering technical reports balanced ternary-
tree representation of binary trees and balancing algorithms. 2008.

Stephen Pasteris, Chris Hicks, and Vasilios Mavroudis. Nearest neighbour with bandit feedback. In NeurIPS,
2023.

14

https://api.semanticscholar.org/CorpusID:12549076
https://api.semanticscholar.org/CorpusID:211082940

Published in Transactions on Machine Learning Research (10/2025)

Judea Pearl. Reverend bayes on inference engines: A distributed hierarchical approach. Probabilistic and
Causal Inference, 1982.

Vianney Perchet and Philippe Rigollet. The multi-armed bandit problem with covariates. ArXiv,
abs/1110.6084, 2011.

Henry W. J. Reeve, Joseph Charles Mellor, and Gavin Brown. The k-nearest neighbour ucb algorithm for
multi-armed bandits with covariates. ArXiv, abs/1803.00316, 2018.

Herbert E. Robbins. Some aspects of the sequential design of experiments. Bulletin of the American
Mathematical Society, 58:527–535, 1952.

Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. Toward generating a new intrusion detection
dataset and intrusion traffic characterization. In Proceedings of the 4th ICISSP, 2018.

Aleksandrs Slivkins. Contextual bandits with similarity information. ArXiv, abs/0907.3986, 2009.

A Notation Table

We now give a table of some of the notation used in this paper.

Symbol Meaning

R Set of all real numbers
N Set of all natural numbers excluding 0
[n] {m ∈ N |m ≤ n}
JP K Equal to 1 if predicate P is true and equal to 0 otherwise
xt Context at trial t (usually considered implicit)
ℓt,a Loss of action a on trial t

at Action selected by the algorithm on trial t

∆s,t Distance from xs to xt

ϵ Binning radius
c Approximation quality of nearest neighbour search algorithm
ρ Learning rate (parameter of the algorithm)
T Number of trials
K Number of actions
d Dimensionality of Euclidean space
y An arbitrary policy in [K]T , which associates an action yt with each trial t

R(y) Regret of the algorithm with respect to policy y

T Growing tree (with trials as vertices) constructed by the algorithm
X Euclidean ball centered at 0 with radius 1/2

B Experiment Details

We ran experiments on two real-life firewall datasets to empirically compare HNN with NN and with three
other state of the art contextual bandit algorithms, K-Nearest Neighbours with UCB (KNN_UCB), K-Nearest
Neighbours with KL divergence and UCB (KNN_KL_UCB) Reeve et al. (2018) and contextual bandits with
similarity information (Slivkin’s) Slivkins (2009). It is important to note that the first experiment is on an
i.i.d. stochastic dataset, whereas HNN was built for the adversarial case, yet in both experiments HNN
manages to outperform algorithms designed specifically for the i.i.d. stochastic problem.

15

Published in Transactions on Machine Learning Research (10/2025)

Both sets of experiments involved using classification datasets. The loss was determined by whether the
action chosen matched the label from the dataset, with a loss of 1 if it did not, and 0 otherwise.

For our first experiment, we used the UCI ML Firewall dataset int (2019), which is internet firewall data. We
randomly shuffled and ran the dataset multiple times to get the average cumulative loss of each algorithm.
We used the Action column as the actions for the bandits. The dataset includes the actions Allow, Block,
Drop and Reset-All, but we removed the Reset-All data due to the extreme sparsity of this class (less
than 1% of the dataset). We used the following features: SourcePort, DestinationPort, NATSourcePort,
NATDestinationPort, BytesSent, pkts_sent. We removed features that we believed would not be accessible
at the point of decision for a bandit if it was being utilised in the real-world for intrusion detection (e.g.
features such as ElapsedTime).

For the distance metric, we took the Euclidean difference of each of the non-categorical features. For the
categorical features (the Port features) we used a distance measure of 0 if the value was identical and 1 if it
was not. For each feature, we independently scaled the pairwise differences to the [0, 1/6] range (6 being the
total number of features), to ensure that all features contributed equally to the overall distance computation
(i.e. we had no weightings across the features). The final distances were constrained to the [0, 1] range.

We compared HNN with the other contextual bandits with no binning. We also compared against NN with
binning radii of 0.1 and 0.2. The results are shown in Figure 3a, noting that the standard deviation for all
but KNN_KL_UCB are very minimal and as such not visible on the plot. NN with a binning radius of 0.1
has the lowest cumulative loss, followed by NN and then closely by HNN. Both NN and HNN outperform
the other state of the art bandits, even in this stochastic setting.

For the second experiment, we used another real-world dataset, using a subset of the CICIDS2017 intrusion
dataset Sharafaldin et al. (2018). For this experiment, we used the machine learning CVE data, which
consisted of the network traffic flows. The CICIDS2017 dataset has multiple days of data, on each day, there
is benign and attack traffic. We took a subset of the Wednesday data which contained multiple different DoS
attacks, we maintained the temporal order from the original dataset so that the experiment was conducted
in the adversarial setting.

We gave the bandits two actions, Allow or Block, and we used the label from the dataset to determine
which action was most appropriate (allow for benign, block for attack). We used all 77 features of the
dataset (dropping the duplicate column of "Fwd Header Length").

We used a similar distance measure as for the first dataset, where the categorical data (IP address) had a
distance of 0 if it was the same or 1 otherwise, and for the non-categorical features, we took the Euclidean
difference. We again independently scaled the pairwise differences to the [0, 1/77] range, so that all features
contributed equally to the overall distance computation. The overall distances were again constrained to the
[0, 1] range.

Figure 3b shows that HNN clearly outperforms all the other algorithms, including NN both without binning
and also with binning radii of 0.1 and 0.05.

C Proof of Theorem 5.2

We now prove Theorem 5.2. We note that we use the results of Pasteris et al. (2023) as a black box in this
analysis.

Without loss of generality we assume that for all s, t ∈ [T] with s ̸= t we have ∆s,t ̸= 0 which, since ϵ = 0,
implies that the binning step in the construction of T is never invoked. This is without loss of generality
as if there was to exist s > t with ∆s,t = 0 we simply define ŷs := ŷt in this proof. Also without loss of
generality assume there exists s, t ∈ [T] \M with ys ̸= yt else the result is trivial (by choosing ŷt to be the
same for all t ∈ [T])

Let ϕ be an arbitrary number in (0, 1). We define:

f := 1/2 ; β := 2/ϕ

16

Published in Transactions on Machine Learning Research (10/2025)

λ := (ϕβ + (1 + β)/f)/(β(1− ϕ))

and:
z := (1− f)f/(2c(1 + β)) .

In this analysis we will often use the fact that, for all t ∈ [T] , we have dpt
= dt − 1 and ∆t,pt

≤ fdt−1.
Definition C.1. Consider the rooted tree with vertex set [T] such that, for all t ∈ [T] \ {1}, we have that
pt is the parent of t. Let L be the set of leaves of this tree. Given t ∈ [T] we then define Dt to be the set of
all descendants of t and define At to be the set of all ancestors of t.
Lemma C.2. For all r, t ∈ [T] with r ̸= t and dr = dt we have that ∆r,t > fdr /c.

Proof. Suppose, for contradiction, the converse: that ∆r,t ≤ fdr /c. Without loss of generality assume r < t.
Let h := max{ds | s ∈ [t−1]} and for all d ∈ [h] let sd be as created by the algorithm on trial t. Let q := sdr

.
Since q is a c-nearest neighbour of t in the set {s ∈ [t − 1] | ds = dr} (which contains r) we must have that
∆q,t ≤ c∆r,t ≤ fdr . But from the algorithm we have that dt − 1 is the maximum value of d ∈ [h] such that
∆sd,t ≤ fd so since dt − 1 = dr − 1 < dr we have a contradiction.

Definition C.3. Define U to be the set of all trials t ∈ [T] in which for all r, s ∈ [T] \M with ∆r,t ≤ βfdt

and ∆s,t ≤ βfdt we have yr = ys.
Lemma C.4. Given s, t ∈ [T] with s ∈ U and t ∈ Ds we have t ∈ U .

Proof. Noting that dt ≥ ds we fix s and prove by induction on dt. When dt = ds we have t = s so the result
is immediate. Now suppose, for some d ≥ ds , that the inductive hypothesis holds for all t with dt = d. Now
take t with dt = d + 1. Since t ∈ Ds and t ̸= s we have pt ∈ Ds. So since dpt

= d we have, by the inductive
hypothesis, that pt ∈ U . Now take any q, r ∈ [T]\M with ∆q,t ≤ βfdt and ∆r,t ≤ βfdt . From the algorithm
we have that ∆t,pt

≤ fdt−1 and hence, by the triangle inequality, we have:

∆r,pt ≤ ∆r,t + ∆t,pt ≤ βfdt + fdt−1 = (βf + 1)fdt−1 ≤ βfdt−1

Similarly we have ∆q,pt ≤ βfdt−1. So since dpt = dt − 1 and pt ∈ U we must have that yq = yr. Hence, we
must have that t ∈ U so the result holds by induction.

Definition C.5. Let V be the set of all t ∈ [T] such that either:

• t ∈ U and pt /∈ U

• t ∈ L and t /∈ U

Definition C.6. Let W be the set of all t ∈ V such that there does not exist s ∈ V with ds > dt and
∆s,t ≤ (fdt − fds)/(2c)
Definition C.7. For any t ∈ W let Qt be equal to the set of all s ∈ V \W in which ∆s,t ≤ fds/(2c)
Lemma C.8. Given s ∈ V \W and d ∈ N we either have that there exists t ∈ W with s ∈ Qt or that there
exists some r ∈ V \W with dr ≥ d and ∆r,s ≤ (fds − fdr)/(2c)

Proof. If there exists t ∈ W with s ∈ Qt then we’re done so assume otherwise. We prove by induction on d.
We immediately have the result for d = 0 by choosing r := s. Now suppose, for some d′ ∈ N∪ {0} , that the
inductive hypothesis holds when d = d′ and consider the case that d = d′ + 1. By the inductive hypothesis
choose q ∈ V \ W with dq ≥ d′ and ∆q,s ≤ (fds − fdq)/(2c). Since q ∈ V \ W we have, by definition of W,
that there exists u ∈ V with du > dq and ∆u,q ≤ (fdq − fdu)/(2c). By the triangle inequality we then have:

∆u,s ≤ ∆u,q + ∆q,s ≤ (fdq − fdu)/(2c) + (fds − fdq)/(2c) = (fds − fdu)/(2c)

If it was the case that u ∈ W we would have, from this inequality, that s ∈ Qu which is a contradiction.
Hence, we have u ∈ V \W. Since du > dq and dq ≥ d′ we have du ≥ d′ + 1 = d. By the above inequality we
then have the result by choosing r := u. This completes the inductive proof.

17

Published in Transactions on Machine Learning Research (10/2025)

Lemma C.9. Given s ∈ V \W there exists t ∈ W with s ∈ Qt.

Proof. Suppose, for contradiction, the converse. By Lemma C.8 we then have, for all d ∈ N, that there exists
some r ∈ V \W with dr ≥ d. By choosing d := T we then have that there exists r ∈ [T] with dr ≥ T which
is impossible.

Lemma C.10. For all t ∈ W and s ∈ Qt we have ds ≤ dt.

Proof. Suppose, for contradiction, that there exists t ∈ W and s ∈ Qt with ds > dt. Then by definition of
Qt we have s ∈ V and ∆s,t ≤ fds/(2c). Since dt ≤ ds − 1 we then have:

(fdt − fds)/(2c) ≥ (fds−1 − fds)/(2c) = (1/f − 1)fds/(2c) ≥ (1/f − 1)∆s,t

So since f = 1/2 we have ∆s,t ≤ (fdt − fds)/(2c) which, since ds > dt and s ∈ V, contradicts the fact that
t ∈ W.

Lemma C.11. For all t ∈ W we have |Qt| ≤ dt + 1.

Proof. By Lemma C.10 all we need to prove is that if q, r ∈ Qt are such that q ̸= r then dq ̸= dr. We
now prove this by considering the converse: that dq = dr. By definition of Qt we have ∆q,t ≤ fdq /(2c) and
∆r,t ≤ fdr /(2c) so by the triangle inequality we have:

∆q,r ≤ ∆q,t + ∆r,t ≤ fdq /(2c) + fdr /(2c) = fdq /c

which, since dq = dr , contradicts Lemma C.2.

Lemma C.12. For all t ∈ V we have fdt ≥ γtf/(1 + β)

Proof. By definition of V we immediately have that either t /∈ U or pt /∈ U . By Lemma C.4 we then have
that pt /∈ U . Hence, by definition of U and since dpt

= dt− 1 , we can choose r, s ∈ [T] \M with yr ̸= ys and
∆r,pt

≤ βfdt−1 and ∆s,pt
≤ βfdt−1. Since yr ̸= ys we can, without loss of generality, assume that ys ̸= yt

which means, since s /∈ M, that ∆s,t ≥ γt. By the triangle inequality and the fact that ∆t,pt
≤ fdt−1 we

then have:
γt ≤ ∆s,t ≤ ∆s,pt + ∆pt,t ≤ βfdt−1 + fdt−1 = (1 + β)fdt/f

Rearranging then gives us the desired result.

Lemma C.13. For all s, t ∈ W with s ̸= t we have ∆s,t > z max(γs, γt).

Proof. Without loss of generality assume ds ≥ dt. If ds = dt then we have, from Lemma C.2, that ∆s,t >
fdt/c. On the other hand, if ds > dt then we have, from the definition of W and the fact that s ∈ V, that:

∆s,t > (fdt − fds)/(2c) ≥ (fdt − fdt+1)/(2c) = (1− f)fdt/(2c)

In either case we have that ∆s,t > (1 − f)fdt/(2c) and hence, since fds ≤ fdt , we also have that ∆s,t >
(1− f)fds/(2c). From Lemma C.12 we then have that:

∆s,t > (1− f)fdt/(2c) ≥ γt(1− f)f/(2c(1 + β)) = zγt

and
∆s,t > (1− f)fds/(2c) ≥ γs(1− f)f/(2c(1 + β)) = zγs

as required.

Lemma C.14. We have |W| ≤ Ψ

Proof. Immediate from Lemma C.13 and the definition of Ψ.

Lemma C.15. For all t ∈ V we have dt ∈ O(ln(1/Λ))

18

Published in Transactions on Machine Learning Research (10/2025)

Proof. By Lemma C.12 and definition of Λ we have:

fdt ≥ γtf/(1 + β) ≥ Λf/(1 + β)

Taking logarithms gives us the result.

Lemma C.16. We have |V| ∈ O(Ψ ln(1/Λ))

Proof. By Lemma C.9 we have:
V =W ∪

⋃
t∈W
Qt

so that:
|V| ≤ |W|+

∑
t∈W
|Qt|

By lemmas C.11 and C.15 we have |Qt| ∈ O(ln(1/Λ)) for all t ∈ W. Substituting into the above inequality
gives us |V| ≤ O(|W| ln(1/Λ)). Lemma C.14 then gives us the result.

Lemma C.17. Suppose we have some t ∈ [T] such that for all s ∈ At we have s /∈ V. Then t /∈ U .

Proof. We prove by induction on dt. If dt = 0 then we have t = 1 so that we immediately have t /∈ U (since
there exists r, s ∈ [T] \M with yr ̸= ys). Given some d > 0 suppose that the inductive hypothesis holds for
all t with dt = d. Now consider any t with dt = d + 1. Note that for all s ∈ Apt we have s ∈ At so that
s /∈ V. Since dpt

= dt− 1 = d we then have, by the inductive hypothesis, that pt /∈ U . If it was the case that
t ∈ U we would then have, by definition of V, that t ∈ V. But since t ∈ At this would be a contradiction.
Hence, t /∈ U . This completes the inductive proof.

Lemma C.18. For all t ∈ [T] there exists s ∈ V such that t ∈ Ds ∪ As.

Proof. Assume, for contradiction, the converse: that there exists no s ∈ V with t ∈ Ds ∪ As. This means
that for all s ∈ Dt ∪ At we have s /∈ V. So choose some r ∈ Dt ∩ L. Since Ar ⊆ Dt ∪ At we have, for all
s ∈ Ar , that s /∈ V. By Lemma C.17 we hence have that r /∈ U . But since r ∈ L this would mean that r ∈ V
which, since t ∈ Dr ∪ Ar , is a contradiction.

Definition C.19. Define the policy ŷ ∈ [K]T such that:

• If t /∈ U then ŷt := yt.

• If t ∈ U and there exists s ∈ [T] \M with ∆s,t ≤ βfdt then ŷt = ys. Note that by definition of U
we have that ŷt is uniquely defined.

• If t ∈ U and there does not exist s ∈ [T] \M with ∆s,t ≤ βfdt , we have ŷt := ŷpt
. Since 1 /∈ U this

is defined.

Lemma C.20. Given t ∈ [T] \ {1} with ŷt ̸= ŷpt there exists s ∈ V with t ∈ As.

Proof. By Lemma C.18 choose s ∈ V such that t ∈ Ds ∪ As. Assume, for contradiction, that t /∈ As. Then
we must have t ∈ Ds \ {s}. This means that s /∈ L and hence, by definition of V, we have that s ∈ U . So
since we have both t ∈ Ds and pt ∈ Ds we have, by Lemma C.4, that both t ∈ U and pt ∈ U . Since ŷt ̸= ŷpt

we must then have, by definition of ŷ, that there exists q ∈ [T] \M with ∆q,t ≤ βfdt . Since ∆t,pt
≤ fdt−1

we have, by the triangle inequality, that:

∆q,pt
≤ ∆q,t + ∆t,pt

≤ βfdt + fdt−1 = (βf + 1)fdt−1 ≤ βfdt−1

so since dpt = dt − 1 and q /∈ M we have, by definition of ŷ and since pt ∈ U , that ŷpt = yq. We also have,
by definition of ŷ and since both ∆q,t ≤ βfdt and t ∈ U , that ŷt = yq. But this means that ŷt = ŷpt which
is a contradiction. We have hence shown that t ∈ As.

19

Published in Transactions on Machine Learning Research (10/2025)

Lemma C.21. We have: ∑
t∈[T]\{1}

Jŷt ̸= ŷpt
K ∈ O(Ψ ln(1/Λ)2)

Proof. Given t ∈ V we have, by Lemma C.15, that dt ∈ O(ln(1/Λ)) and hence that |At| ∈ O(ln(1/Λ)). By
lemmas C.20 and C.16 we then have that:

∑
t∈[T]\{1}

Jŷt ̸= ŷpt
K ≤

∣∣∣∣∣⋃
s∈V
As

∣∣∣∣∣ ≤∑
s∈V
|As| ∈ O(|V| ln(1/Λ)) ∈ O(Ψ ln(1/Λ)2)

as required.

Lemma C.22. We have: ∑
t∈[T]

E[ℓt,at
− ℓt,ŷt

] ≤ Õ
((

ρ− Ψ ln(1/Λ)2

ρ

)√
KT

)

Proof. From Pasteris et al. (2023), when using either belief propagation or CBNN, we have, when taking
expectations on their result, that:

∑
t∈[T]

E[ℓt,at
− ℓt,ŷt

] ∈ Õ
((

ρ−
1 +

∑
t∈[T]\{1}Jŷt ̸= ŷpt

K
ρ

)
√

KT

)

Substituting in Lemma C.21 gives us the result.

Lemma C.23. For all t ∈ [T] with ŷt ̸= yt we have t ∈M∩ U .

Proof. Suppose, for contradiction, that there does exist t ∈ [T] with t /∈ M∩ U and ŷt ̸= yt. Since ŷt ̸= yt

we must have, by definition of ŷ, that t ∈ U . Hence, we must also have t /∈M. Since both t ∈ U and t /∈M
with ∆t,t = 0 ≤ βfdt we must have, by definition of ŷ, that ŷt = yt which is a contradiction.

Lemma C.24. For all s, t ∈ [T] with s ∈ Dt we have ∆s,t ≤ ϕβfdt

Proof. We hold s fixed and prove by reverse induction on dt (i.e. from ds to 0). When dt = ds we have
s = t and hence ∆s,t = 0 so the result holds trivially. Now suppose, for some d ∈ [ds] , that the inductive
hypothesis holds when dt = d. We now show that it holds when dt = d−1 which will complete the inductive
proof. So take t with dt = d− 1. Let r be such that s ∈ Dr and pr = t. Note that we have dr = d so by the
inductive hypothesis we have ∆s,r ≤ ϕβfd. Since ∆r,pr ≤ fdr−1 we then have, by the triangle inequality,
that:

∆s,t ≤ ∆s,r + ∆r,t = ∆s,r + ∆r,pr
≤ ϕβfd + fd−1 = (ϕβf + 1)fd−1 = ϕβfd−1

since β = 2/ϕ and f = 1/2.

Lemma C.25. For all t ∈M∩ U we have ŷt ∈ Yt.

Proof. Let S be the set of all r ∈ [T] such that there exists q ∈ [T] \M with ∆q,r ≤ βfdr . Define:

s := argminr∈At ∩ U dr ; v := argmaxr∈At ∩ S dr

noting that these both exist since t ∈ At ∩ U and 1 ∈ At ∩ S. Since 1 /∈ U (which comes directly from the
fact that there exists q, r ∈ [T] \M with yq ̸= yr) we have that s ̸= 1 and hence ps exists so let d := dps

.
Since ps ∈ At with dps

< ds , we have ps /∈ U so by definition of U there exists r ∈ [T]\M with ∆r,ps
≤ βfd.

This means that ps ∈ S and hence that v ∈ Dps . Define:

w := argminq∈[T]\M ∆q,t

20

Published in Transactions on Machine Learning Research (10/2025)

so that ∆w,t = θt.

We have two cases. First consider the case that v = t. In this case we have t ∈ S so that there exists
q ∈ [T] \M such that ∆q,t ≤ βfdt . By definition of w we have that ∆w,t ≤ ∆q,t so ∆w,t ≤ βfdt and hence,
by definition of ŷ and since t ∈ U and w /∈ M, we have ŷt = yw. Since ∆w,t < λθt we have, by definition of
Yt , that yw ∈ Yt . Hence, ŷt ∈ Yt as required.

Next consider the case that v ̸= t. Choose u ∈ [T] as follows:

• If v = ps then since ps /∈ U , choosing u = v gives us, by definition of ŷ, that ŷv = yu.

• If v ̸= ps then, since v ∈ Dps
and s, v ∈ At , we have v ∈ Ds so, since s ∈ U , we have, by Lemma C.4

that v ∈ U . So v ∈ U ∩ S and so, by definition of ŷ and S, choose u ∈ [T] such that ∆u,v ≤ βfdv

and ŷv = yu.

Either way, we have ∆u,v ≤ βfdv and ŷv = yu. Since v ∈ At \ {t} let q ∈ At be such that pq = v. We have,
by Lemma C.24 and the triangle inequality, that:

∆w,q ≤ ∆w,t + ∆t,q ≤ θt + ϕβfdq

Since q ∈ At and dq > dv we must have, by definition of v, that q /∈ S so since w /∈M we also have:

∆w,q > βfdq

Substituting this inequality into the previous and rearranging gives us:

θt > βfdq − ϕβfdq = β(1− ϕ)fdq

so that:
fdq < θt/(β(1− ϕ))

Since dv = dq − 1 and ∆q,v ≤ fdv (as v = pq) we then have, from the triangle inequality and Lemma C.24,
that:

∆t,u ≤ ∆t,q + ∆q,v + ∆v,u ≤ ϕβfdq + fdv + βfdv

= (ϕβ + (1 + β)/f)fdq

< (ϕβ + (1 + β)/f)θt/(β(1− ϕ))
= λθt

So that yu ∈ Yt. Since ŷv = yu , all that is left to do now is to prove that ŷt = ŷv. To prove this we need
only show that for all r ∈ (Dv \ {v})∩At we have ŷr = ŷpr . To show this take any such r ∈ (Dv \ {v})∩At.
Since v ∈ Dps

and s, v ∈ At we must have r ∈ Ds and hence, by Lemma C.4 and the fact that s ∈ U , we
have r ∈ U . Since dr > dv and r ∈ At we have, by definition of v, that r /∈ S. So r ∈ U \ S and hence, by
definition of ŷ and S, we have ŷr = ŷpr

as required.

Lemma C.26. We have: ∑
t∈[T]

E[ℓt,ŷt
− ℓt,yt

] ≤
∑
t∈M

µt

Proof. By Lemma C.23 we have:∑
t∈[T]\M

E[ℓt,ŷt − ℓt,yt] =
∑

t∈[T]\M

E[ℓt,yt − ℓt,yt] = 0

By Lemma C.23 we have, for all t ∈ M \ U , that ŷt = yt ∈ Yt. So by Lemma C.25 we have, for all t ∈ M,
that ŷt ∈ Yt. Hence, we have:∑

t∈M
E[ℓt,ŷt − ℓt,yt] ≤

∑
t∈M

max
a∈Yt

E[ℓt,a − ℓt,yt] =
∑
t∈M

µt

21

Published in Transactions on Machine Learning Research (10/2025)

Combining these two (in)equalities gives us:∑
t∈[T]

E[ℓt,ŷt
− ℓt,yt

] =
∑

t∈[T]\M

E[ℓt,ŷt
− ℓt,yt

] +
∑
t∈M

E[ℓt,ŷt
− ℓt,yt

] ≤ 0 +
∑
t∈M

µt =
∑
t∈M

µt

as required.

Lemma C.27. We have:

R(y) ≤
∑
t∈M

µt + Õ
((

ρ + Ψ ln(1/Λ)2

ρ

)√
KT

)
.

Proof. By linearity of expectations we have:

R(y) =
∑

t∈[T]

E[ℓt,at
− ℓt,yt

] =
∑

t∈[T]

E[ℓt,at
− ℓt,ŷt

] +
∑

t∈[T]

E[ℓt,ŷt
− ℓt,yt

]

Substituting in lemmas C.22 and C.26 then gives us the result.

This completes the proof. ■

D Proof of Theorem 4.1

We first note that the only effect that ϵ has on the bound is that the contexts can be moved by a distance
of up to ϵ. Since ϵ ≤ (1 − ξ) mini∈[N] ri/2 and ξ > 1 is arbitrary when can hence assume, without loss of
generality, that ϵ = 0. We can hence apply Theorem 5.2 with our choice of margin M.

Let ỹ be an extension of y such that {B(vi, ri) | i ∈ [N]} covers the decision boundary of ỹ. Let D be the
decision boundary of ỹ.
Definition D.1. For all t ∈ [T] let qt be the minimiser of ∆s,t out of all s ∈ [T] \M with ys ̸= yt. Since
ỹ(xt) ̸= ỹ(xqt

) choose bt ∈ D such that bt lies on the straight line from xt to xqt
. Since bt ∈ D choose it ∈ [N]

such that bt ∈ B(vit
, rit

).
Definition D.2. Define J := C log2(T). For all t ∈ [T] define jt as the minimum number in [J] ∪ {0} such
that xt ∈ B(vit

, 2jtξrit
). Note that since rit

≥ T −C this is defined.
Lemma D.3. Given t ∈ [T] with jt > 0 we have γt ≥ 2jt−1(ξ − 1)rit

.

Proof. By definition of jt we have that xt /∈ B(vit , 2jt−1ξrit) so since bt ∈ B(vit , rit) we have, by the triangle
inequality, that:

∥xt − bt∥ ≥ ∥xt − vit
∥ − ∥bt − vit

∥ ≥ 2jt−1ξrit
− rit

≥ 2jt−1(ξ − 1)rit

Since bt is on the straight line from xt to xqt
we have ∥xt − xqt

∥ ≥ ∥xt − bt∥. By definition of qt we have
∥xt − xqt

∥ = ∆t,qt
= γt. Putting together gives us:

γt = ∥xt − xqt
∥ ≥ ∥xt − bt∥ ≥ 2jt−1(ξ − 1)rit

as required.

Lemma D.4. For all t ∈ [T] with jt = 0 we have γt > 2jt−1(ξ − 1)rit
.

Proof. Since qt /∈ M we have qt /∈ B(vit , ξrit) so since bt ∈ B(vit , rit) we have, by the triangle inequality,
that:

∥xqt
− bt∥ ≥ ∥xqt

− vit
∥ − ∥bt − vit

∥ ≥ ξrit
− rit

= (ξ − 1)rit
.

Since bt is on the straight line from xt to xqt we have ∥xt − xqt∥ ≥ ∥xqt − bt∥. By definition of qt we have
∥xt − xqt∥ = ∆t,qt = γt. Putting together gives us:

γt = ∥xt − xqt
∥ ≥ ∥xqt

− bt∥ ≥ (ξ − 1)rit
> 2jt−1(ξ − 1)rit

as required.

22

Published in Transactions on Machine Learning Research (10/2025)

Definition D.5. Let S be a subset of [T] of maximum cardinality subject to the condition that for all
s, t ∈ S with s ̸= t we have ∆s,t > zγt.
Definition D.6. For all i ∈ [N] and j ∈ [J] ∪ {0} define:

Si,j = {t ∈ S | it = i ∧ jt = j}

Lemma D.7. For all i ∈ [N] and j ∈ [J] ∪ {0} we have |Si,j | ∈ O(1)

Proof. Let r′ := 2jξri and w := z(ξ − 1)/2ξ. By lemmas D.3 and D.4 we have, for all t ∈ Si,j , that:

γt ≥ 2jt−1(ξ − 1)rit = 2j−1(ξ − 1)ri = wr′/z

so, by definition of S, we have, for all s, t ∈ Si,j with s ̸= t, that ∥xs − xt∥ > wr′. Also, for all t ∈ Si,j we
have, by definition of jt, that:

xt ∈ B(vit
, 2jtξrit

) = B(vi, 2jξri) = B(vi, r′)

So all the elements of Si,j are contained in a ball of radius r′ and are all of distance at least wr′ apart. Since
w is a positive constant and the dimensionality is a constant we have the result.

Lemma D.8. We have Ψ ∈ O(N ln(T)).

Proof. We have:
S =

⋃
i∈[N]

⋃
j∈[J]∪{0}

Si,j

so that by Lemma D.7 we have |S| ∈ O(NJ). Since C is a constant we have J ∈ O(ln(T)) and hence
|S| ∈ O(N ln(T)). By definition of Ψ and S we have that Ψ = |S| which completes the proof.

Lemma D.9. We have ln(1/Λ) ∈ O(ln(T))

Proof. Let t be the element of [T] that minimises γt so that Λ = γt. By lemmas D.3 and D.4 we have

Λ = γt ≥ 2jt−1(ξ − 1)rit
≥ rit

(ξ − 1)/2 ∈ Ω(rit
)

so since rit
≥ T −C (where C is a constant) we have the result.

Since the desired bound is vacuous when N > T we can assume otherwise so that by lemmas D.8 and D.9
we have:

Ψ ln(1/Λ)2 ∈ O(N ln(T)3)
Substituting this into Theorem 5.2, whilst noting that µt ≤ 1 for all t ∈M, then gives us the result. ■

E Proof of Theorem 4.2

Choose a set of N ′ + 1 disjoint balls of radius 2ξr whose union is a subset of X . Let the centre of the k-th
ball be denoted zk. Now partition [T/2] into N ′ sets each of size Θ(T/N ′). Let the k-th such set be denoted
Pk. For each k ∈ [N ′] and t ∈ Pk let xt := zk. By applying the lower bound on the multi-armed bandit
problem (see Lattimore & Szepesvári (2020)) independently to each of these sets of trials, Nature can choose
some sequence of losses and a sequence ⟨ŷk | k ∈ [N ′]⟩ ⊆ [K] such that for all k ∈ [N ′] we have:∑

t∈Pk

E[ℓt,at
− ℓt,ŷk

] ∈ Ω
(√

K|Pk|
)

= Ω
(√

KT/N ′
)

For all k ∈ [N ′] and all t ∈ Pk define yt := ŷk. Summing the above equation over all k ∈ [N ′] gives us:∑
t∈[T/2]

E[ℓt,at
− ℓt,yt

] ∈ Ω
(√

N ′KT
)

23

Published in Transactions on Machine Learning Research (10/2025)

Let M := [T/2 + 1, T/2 + M]. For all t ∈ M choose xt ∈ B(zN ′+1, r) in such a way that xs ̸= xt for all
s, t ∈M. It is straightforward for Nature to choose losses and a sequence ⟨yt | t ∈M⟩ such that:∑

t∈M
E[ℓt,at − ℓt,yt] ≥ |M|/2

For all t ∈ [T/2 + M + 1, T] choose xt := z1 and yt := ŷ1.

Note that we now have:
R(y) ≥ |M|/2 + Ω(

√
N ′KT)

For all k ∈ [N ′] let Dk be the boundary of the k-th ball. i.e. Dk is the set of all x ∈ X with ∥x− zk∥ = 2ξr.
Note that Dk can be covered by Θ(1) balls of radius r such that none of the centres in {zk′ | k′ ∈ [N ′]} are
contained in the union of these balls, when each is enlarged by a factor ξ.

Since B(zN ′+1, r)∪
⋃

k∈[N ′]Dk covers a decision boundary of y we have now shown the existence of a boundary
cover of cardinality Θ(N ′) in which each ball in the cover has radius r and the only trials t in which xt is
in the union of the balls in the cover, when each is enlarged by a factor ξ, are those trials t ∈ M. This
completes the proof.

■

F Proof of Theorem 4.3

Without loss of generality assume that d = K = 2. Given any algorithm we will now devise a strategy for
Nature. On each trial t ∈ [T] we shall maintain values pt, qt ∈ [−1/2, 1/2] with pt < qt. We initialise with
p1 := −1/2 and q1 := 1/2. On trial t we choose:

xt := ((pt + qt)/2, 0)

We then choose yt ∈ [2] so that P[at = yt] ≤ 1/2. Next we choose ℓ̃t,1 and ℓ̃t,2 as follows. If yt = 1 then ℓ̃t,1
and ℓ̃t,2 are concentrated entirely on 0 and 1 respectively and if yt = 2 then ℓ̃t,1 and ℓ̃t,2 are concentrated
entirely on 1 and 0 respectively. Note that:

E[ℓt,at − ℓt,yt] ≥ 1/2

If yt = 1 then we define pt+1 := xt and qt+1 := qt. On the other hand, if yt = 2 we define pt+1 := pt and
qt+1 := xt. Finally define:

τ := ((pT +1 + qT +1)/2, 0)

Note that the set {(τ, σ) |σ ∈ [−1/2, 1/2]} is a decision boundary of y. Hence the pair of balls B((τ, 1/4), 1/4)
and B((τ,−1/4), 1/4) is a boundary cover of y. Since neither of these balls contains any context in ⟨xt | t ∈
[T]⟩ we have the result.

■

G Proof of Theorem 4.4

The proof proceeds as in that of Theorem 4.1, but using the sharper Theorem 5.2 instead of Theorem 5.1.
Since ϵ ≤ 1/T the binning step moves the contexts by such a small amount that we can, without loss of
generality, assume ϵ = 0. Define:

r := (K/T)
1

2φ+2d−ϑ

Note that by definition of ϑ we can choose some set C with |C| ∈ Õ(r−ϑ) such that the union of the set of
balls of radius r with centres in C covers D. Append C onto the end of the trial sequence (with associated
losses drawn from ν). Since |C| ≤ T we can ignore the increase in the time horizon caused by this appending.

24

Published in Transactions on Machine Learning Research (10/2025)

Now define the marginM to be the set of all t ∈ [T] such that xt /∈ C but xt is within a distance of 2r from
an element of C. Following the proof of Theorem 4.1 we have:

Ψ ∈ O(|C| ln(1/r)) ⊆ O(r−ϑ ln(T)) (1)

Note that, since the density ν is bounded, we have that for all x ∈ C the expected number of trials t ∈ [T]
in which xt is within distance 2r of x is in O(rdT). Hence, we have that:

E[|M|] ∈ O(|C|rdT) ⊆ O(rd−ϑT) (2)

Now take any t ∈ M. Since xt is at distance at most 2r from an element of C, we have ∆s,t ≤ 2r for some
s ∈ [T] \M. Hence, we have that:

µt = E[ℓt,yq
− ℓt,yt

] = E[ℓt,ỹ(xq) − ℓt,ỹ(xt)] = ν̄ỹ(xq)(xt)− ν̄ỹ(xt)(xt) (3)

for some q ∈ [T] with:
∥xq − xt∥ = ∆q,t ∈ O(∆s,t) ⊆ O(r) (4)

By Equation (4) we have:

ν̄ỹ(xq)(xt) ≤ ν̄ỹ(xq)(xq) +O(∥xq − xt∥φ) = ν̄ỹ(xq)(xq) +O(rφ) = min
a∈[K]

ν̄a(xq) +O(rφ) ≤ ν̄ỹ(xt)(xq) +O(rφ)

which, upon substitution into Equation (3) and noting Equation (4), gives us:

µt ≤ ν̄ỹ(xt)(xq)− ν̄ỹ(xt)(xt) +O(rφ) ∈ O(∥xq − xt∥φ + rφ) = O(rφ)

Substituting into Equation (2) then gives us:

E

[∑
t∈M

µt

]
∈ O(rφ+d−ϑT)

So, by combining with Equation (1) we have, by Theorem 5.2, that:

E [R(y)] ∈ Õ
(

rφ+d−ϑT +
(
ρ + r−ϑ/ρ

)√
KT

)
and hence, given the optimal tuning of ρ, we have:

E [R(y)] ∈ Õ
(

rφ+d−ϑT +
√

r−ϑKT
)

which, noting the definition of r, gives us the result.

■

25

	Introduction
	Additional Related Work
	Notation

	Problem Description
	The Algorithm
	The Tree
	Belief Propagation
	CBNN
	Computational Complexity

	Performance in Euclidean Space
	The Euclidean Bandit Problem
	Regret
	Lower Bound
	Comparison to Nearest Neighbour
	Stochastic Bandits

	Performance in General Metric Spaces
	Packing Complexity
	Excesses

	Experiments
	Conclusion
	Notation Table
	Experiment Details
	Proof of Theorem 5.2
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Theorem 4.4

