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Abstract

In this paper we consider the contextual bandit problem in metric spaces. We design and
analyse an algorithm that can handle the fully adversarial problem in which no assumptions
are made about the space itself, or the generation of contexts and losses. In addition to
analysing our performance on general metric spaces, we further analyse the important special
case in which the space is euclidean, and furthermore analyse the i.i.d. stochastic setting.
Unlike previous work our algorithm is adaptive to the local density of contexts and the
smoothness of the decision boundary of the comparator policy, as well as other quantities.
Our algorithm is highly efficient - having a per-trial time polylogarithmic in both the number
of trials and the number of actions when the dimensionality of the metric space is bounded.
We also give the results of real world experiments, demonstrating the excellent performance
of our algorithm.

1 Introduction

We consider the contextual bandit problem in metric spaces. In this problem we have some (potentially
unknown) metric space of bounded diameter. We assume that we have access to an oracle for computing
distances between pairs of points. On each trial ¢ we are given a context x; belonging to the space, and must
choose an action a; before observing the loss/reward generated by that action. In this paper the contexts
are considered implicit and we define A ; to be the distance between x, and ;.

This problem has been well-studied in the i.i.d. stochastic case (see e.g. [Slivkins (2009)), Reeve et al.| (2018)),
Perchet & Rigollet| (2011) and references therein). Although [Slivkins (2009)) also study a non-stochastic
version, they place strong constraints on the generation of the contexts and losses and do not bound the
regret with respect to an arbitrary policy. In this paper we consider the fully adversarial problem in which
no assumptions are made at all about the metric space, context sequence, or loss sequence. As far as we
are aware the first result for the fully adversarial problem was given by Pasteris et al.| (2023) who give an
algorithm that we refer to as NN and bound the cumulative loss with respect to that of any policy (i.e any
mapping of the trials/contexts to actions). This regret bound is fantastic when the contexts partition into
well separated clusters and the policy is constant on each cluster. However, the bound is poor when there
exist many contexts lying close to the decision boundary of the comparator policy. In order to (partially)
rectify this, they proposed using binning as a preprocessing step. The process of binning involves, at the
start of each trial ¢, finding an approximate nearest-neighbour z’ of the current context z; in the set of all
contexts seen so far. If the distance from the z; to x’ is no greater than some constant called the binning
radius then x; is replaced by x’. The paper gave no method to automatically tune the binning radius, whose
optimal value depends on the context density and the smoothness of the decision boundary of the comparator
policy. Even if one were to choose the optimal binning radius, it would be constant across the whole space,
meaning that the algorithm does not locally adapt to the density and smoothness. This inability to adapt
can result in an extreme loss of performance: as we show in Section In this paper we fully rectify this
problem, designing a new (but related) algorithm HNN which (implicitly) automatically adapts to the local
density, smoothness and other quantities. In Section we give an example of how we dramatically improve
over NN (when NN has the optimal binning radius).
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As in NN, HNN utilises the algorithm CBNN of [Pasteris et al.| (2023]) which receives, on each trial ¢t > 1,
only some p; € [t — 1] (denoted n(t) in [Pasteris et al|(2023))). For NN, p, was chosen such that z,, is an
approximate nearest neighbour of x; in the set {z,|s € [t — 1]}. In this paper we use a different choice of p;
which we call an approximate hierarchical nearest neighbour. For approximate hierarchical nearest neighbour
we will construct, online, a partition of the trials seen so far into different levels. On each trial ¢ the algorithm
then finds an approximate nearest neighbour on each level. p; will then be chosen, in a specific way, from
these approximate nearest neighbours. As HNN is based on CBNN, it inherits its extreme computational
efficiency: having a per trial time complexity polylogarithmic in both the number of trials and number
of actions when the dataset has an aspect ratio polynomial in the number of trials (which is enforced by
binning) and our metric space has bounded doubling dimension. Due to the extreme complexity of CBNN|,
its description is outside the scope of this paper. Instead, inspired by the use of standard belief propagation
in Pasteris et al| (2023), we detail how the online belief propagation of |Delcher et al| (1995) can be used
instead, giving a slight decrease in efficiency.

We note that the process of inserting a given trial/context into our data-structure is very similar to the
process of constructing a new bin in |Slivkins| (2009). However, the algorithms themselves are very different
and they are analysed in very different ways (our analysis being far more involved than that of [Slivkins
(2009)). Nevertheless, we cite |Slivkins| (2009) as an inspiration for this paper.

1.1 Additional Related Work

The bandit problem Lattimore & Szepesvari (2020) was first studied by |Robbins|(1952) in the non-contextual
case, where we receive no side information at the beginning of each trial - we simply select an action and
see it’s loss. The first algorithms for this simple problem only worked in the stochastic case |[Lai & Robbins
(1985); [Agrawall (1995); |Auer et al. (2002a)) in which, for each action, the loss associated with that action
on any trial is drawn from a fixed probability distribution. The constraint that this probability distribution
is fixed is a strong one, and for many applications is not satisfied. The first algorithm to work when this
constraint is not satisfied was the EXP3 algorithm of |Auer et al. (2002b), which is a modification of the
classic HEDGE algorithm of [Freund & Schapire| (1997) for the full-information variant of the problem (where
the losses associated with all actions are revealed after every trial). The Exp3 setting is fully adversarial,
in which (apart from the losses being bounded) no assumptions are made on the generation of the loss
vectors. The same paper |Auer et al. (2002b) also introduced the Exp4 algorithm, which generalises the
Exp3 algorithm to allow for expert advice (upon which action to take) to be given at the start of each trial.
ExP4 gives bounds on the cumulative loss relative to that of following the advice of any particular expert.
This experts framework can be viewed as contextual bandits with an implicit context. i.e. the experts are
functions mapping the context space to the action set - on each trial a context is observed and each expert
gives to us the action that it associates with that context. However, given that we know all contexts a-priori,
being able to bound the cumulative loss with respect to that of any mapping of contexts to actions requires
an exponential number of experts: meaning that Exp4 takes a time exponential in the number of trials 7.
As noted in Herbster et al.| (2021, when given a tree structure over the contexts and a specifically crafted
initial weighting (defined by the tree) of the possible experts, we can use belief propagation Pearl| (1982)
to implement EXP4 in a per trial time of O(KT) where K is the number of actions. When a parameter
known as the learning rate is tuned appropriately, the cumulative loss of this algorithm is bounded above by
that of any mapping of contexts to actions plus O(v/®KT), where ® is the cut-size of that mapping with
respect to the tree-structure. Given any graph over the contexts, by first sampling a random spanning-tree
Herbster et al.| (2008); |Cesa-Bianchi et al.| (2010), we can utilise this tree-structured algorithm to obtain loss
bounds with respect to labelings of the initial graph by actions. However, the per-trial time complexity of
O(KT) can be prohibitive, so Herbster et al.| (2021) utilised the methodology of specialists [Freund et al.
(1997); Koolen et al.,| (2012)) in order to develop efficient algorithms (called the GABA algorithms) for this
problem: one based on belief propagation (with a time complexity of O(K In(T"))) and one based on the
specialist set described in Herbster & Robinson| (2018) (with a per-trial time complexity of O(In(K) In(T"))).
The work |[Pasteris et al.| (2023]) then considered the problem in which, instead of the contexts being vertices
of a known graph, they instead come from an arbitrary metric space of finite doubling dimension, and are
not known to Learner a-priori. They noted that a tree can be formed by connecting each context to an
approximate nearest neighbour in the set of all contexts seen previously: which can be found efficiently
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online with data-structures such as navigating nets [Krauthgamer & Lee| (2004). If this tree was known
a-priori then either of the GABA algorithms could be used. However, since the tree is not known a-priori,
the GABA algorithms fail to work. Hence, Pasteris et al.| (2023)) introduced the CBNN algorithm which runs
in a per-trial time of O(In(K)In(T)?) and works with any tree constructed in an online fashion. Although
CBNN, which utilises the rebalancing ternary tree of Matsuzaki & Morihatal (2008]) and the online belief
propagation algorithm of [Delcher et al.| (1995), borrows elements from both of the GABA algorithms it is
radically different, introducing several new data-structures. [Pasteris et al.| (2023)) analysed the case in which
the tree is constructed by the approximate nearest neighbour method given above. In this paper we utilise
CBNN but construct the tree in a different way.

1.2 Notation

We define N to be the set of natural numbers, not including 0. Given N € N we define [N] := {i € N|i < N}.
Given a predicate P we define [P] := 0 if P is false and define [P] := 1 if P is true.

2 Problem Description

We consider the following game between Nature (our adversary) and Learner (our algorithm). We have T
trials and K actions. Nature first chooses a matrix A € [0,1]7%7 satisfying the following conditions:

o Forall s,t € [T] we have Ay, = Ay 5.
o Forallt € [T] we have A, =0.

o Forall r,s,t € [T] we have A, < A, s+ A, ;. This property is called the triangle inequality.

For all s,t € [T] we call Ay, the distance between trials s and ¢. This distance represents the similarity
between trials s and ¢: a smaller distance indicating a greater degree of similarity. Intuitively, we implicitly
have some metric space and every trial ¢ € [T] is implicitly associated with a contezt x; in the metric space.
A is then the distance from x, to z; in the metric space.

For all trials ¢ € [T] and actions a € [K], Nature chooses a probability distribution l1.o over [0,1] and a loss
;4 is then drawn from ¢, ,. We note that Learner has knowledge of only T' and K (although the requirement
of knowledge of T' can be removed by a simple doubling trick).

The game then proceeds in 7" trials. On trial ¢ the following happens:

1. For all s € [t] the distance A, is revealed to Learner.
2. Learner stochastically chooses an action a; € [K].

3. The loss ¢, ,, is revealed to Learner.

Our measurement of Learner’s performance is by the following notion of regret. A policy is any vector
y € [K]7 in which for all s,t € [T] with A;; = 0 we have y5 = y;. That is: a policy y associates each trial ¢
with an action y;, where trials with identical implicit contexts are associated with identical actions (as they
are indistingishable). Given such a policy y, we define the regret of Learner, with respect to y, as:

R(y) = > Ellta, — iy,
]

te[T

which is the expected difference between the cumulative loss of Learner and that which would have been
obtained by following policy y. A policy vy is (informally) considered natural if typically ys = y; when Ay,
is small. The inductive bias is towards more natural policies: i.e. a more natural policy y should yield a
smaller regret R(y).
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Note that, since Nature has complete control over each distribution gt,a, our problem generalises the fully
adversarial problem (which is the special case in which each distribution Zt,a is a delta function). We
are considering this generalised problem in order for our bound to be better when there is an element of
stochasticity in Nature’s choices.

3 The Algorithm

We now describe our algorithm HNN. The algorithm takes parameters ¢ > 1, ¢ > 0 and p > 0. Our
performance is best when ¢ = 1 and € = 0. However, we allow these parameters to take on higher values in
order to make our algorithm more efficient. Specifically, whenever ¢ > 1 and € is polynomial in 1/7 our per
trial time complexity is O(K In(7)?) when the dimensionality is bounded. We will briefly describe how one
can use the methodology [Pasteris et al.| (2023)) to speed up the algorithm to O(In(K)In(T)?) time per trial,
referring the interested reader to that paper.

3.1 The Tree

HNN works by maintaining a growing rooted tree T where, at the start of each trial ¢ > 1, 7 contains, as
its vertices, the set [t — 1]. The root of the tree is equal to 1, which is its single vertex on trial 1. Given any
t € [T], once t has been added to T we define p; to be the parent of ¢. In order to grow 7 we will maintain
a number h € NU {0} initialised equal to 0 as well as, for all d € [h] U {0}, a set Hq C [T] initialised so that
Ho = 1.

We now describe how the tree T is updated at the start of each trial ¢ > 1. To do this we first define, for
any non-empty set H C [T] and any trial ¢t € [T], a c-nearest neighbour of t in H to be any trial s € H in
which:

Agy <cmin{A,,|r € H}.

At the start of each trial £ > 1 HNN does the following:

1. For all d € [h] U {0} let s4 be a c-nearest neighbour of ¢ in Hg .
2. If there exists d € [h] U {0} with Ag, + < e then p; < sq for any such d.

3. If A, > eforall d e [h]U{0} then:

(a) § < max{d € [h]| Ay, < 1/24}.
(b) If § = h then:
i h<h+1.
ii. Hp < 0.
(¢) Hot1 < Hor1 U{t}.
(d) pr + ss5.

We note that step [2| of this subroutine is a binning step: if A, ; < € for some d then we treat trial ¢ as
if it had an implicit context identical to that of trial s;. However, care must be taken so that the tree T
does not become too deep. This is achieved by setting p; := s4 and then excluding ¢ from the sets Hy. It is
crucial that t is not added to any such set since we have an identical trial s; in the data-structure already.
We note that the only effect that this binning will have on our bounds is by moving the implicit contexts by
a distance of up to €. The purpose of binning is it that it bounds the minimum distance between trials in
the data-structure by €/c: which is required for the tree T to be not too deep and also required in order to
find the approximate nearest neighbours efficiently, as we now describe.

Given that ¢ > 1, € is polynomial in 1/7", and the metric A has bounded doubling dimension, we can run
the above subroutine in time O(In(7)?) by maintaining the navigating net of Krauthgamer & Lee| (2004)
over each set H,4. Specifically, since the aspect ratio (ratio between the maximum and minimum inter-trial
distances) of Hgy is always at least €/c¢, and hence polynomial in 1/T, the navigating net allows us to find
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the c-nearest neighbour of ¢ in Hg in time O(In(7)). By the same argument, the navigating net can also
update in a time of O(In(T)) whenever a trial is added to Hg4. Since, due to the binning step, we always
have h € O(In(T')) we obtain the per-trial time complexity of O(In(T)?).

3.2 Belief Propagation

On any trial ¢, once ¢t has been added to the tree 7 we select a; and then incorporate the loss ¢; ,, via the
online belief propagation algorithm of Delcher et al.| (1995)) but incorporating the fact that 7 is growing.
To do this we maintain, for each s € [T], a dynamic (in that it changes from trial to trial) vector e; € R
initialised so that e; , = 1 for all a € [K]. For all a,b € [K] we define the quantity:

rap = [a = 1] <1;>+[a¢bﬂ([(_1l)T.

We note that for any vector v € R we can compute the vector v/ € R¥ defined by v, := ZGG[K} Vg Tq,b I
time O(K). Specifically, we have:

(L +(Zaem“a)‘”b
Y= 7)™ (K - 1T

On any trial ¢t € [T], once t has been added to the tree T we do as follows.

1. For all a € [K] set:
Pl,a < 1.

2. Descend the tree T from 1 (i.e. the root) to t. When at a vertex s # 1 set, for all a € [K], the

quantities:
195,(1 — Z €5,bTb,a
be[K)
(p 87be 37b
Ps,a Z (pﬂ P )Tbﬂ.
be[K] 8,
3. For all a € [K] set:
- Pt,a

=
Zbe[K] Pt.b

4. Sample a; such that for all a € [K] we have a; = a with probability 7.
5. Receive the loss €y q,.

6. For all a € [K] set:
—[[at = a]]ﬂt,at>
pra VKT '

7. Ascend the tree T from ¢ to 1 (i.e. the root). When at a vertex s # 1 set, for all a € [K], the

quantities:
!
7-95’(1 — Z €5.bTh,a
be[K]

€t,a < exp (

!/
ﬁs,aeps,a

€ps.,a
Pe> 1987(1

Note that running online belief propagation on any trial takes a time of O(hK) which is O(K In(T)) under
the above conditions.
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3.3 Utilising CBNN

In order to achieve, under the above conditions, a per-trial time complexity of O(In(K)In(T)?), we can
utilise the CBNN algorithm of [Pasteris et al.| (2023) instead of belief propagation. The CBNN algorithm
itself is complex and outside the scope of this paper so we refer the interested reader to |Pasteris et al.| (2023)).
To utilise CBNN we simply choose, for all ¢ > 1, the number n(t) (as defined in [Pasteris et al. (2023)) to
be equal to py.

We note that CBNN works on what it calls ternary search trees to improve efficiency when the tree is deep.
However, in HNN the tree 7 has a depth of only O(In(c/€)) so we don’t need to use ternary search trees,
instead maintaining contractions (as described in [Pasteris et al.| (2023])) over the original tree instead.

4 Performance in Euclidean Space

Before we give our general regret bound we will first give, as an illustration, a corollary of it for the important
special case in which our implicit contexts lie in a euclidean space. We call this special case the euclidean
bandit problem. We also give an almost matching lower bound, highlight our improvement over NN, and give
a bound for the i.i.d. stochastic special case. We note that our more general bound in Section [f] improves
on the bound of this section, as well as generalising it to arbitrary metrics.

4.1 The Euclidean Bandit Problem

In the euclidean bandit problem there exists some constant d which is the dimensionality of the dataset. For
all z € R? let ||z|| be the euclidean norm of x. Given z € R? and r > 0 we define the ball with centre x and
radius r as:

B(z,r):={z' e R |||z —2'|| < r}.

We define X := B(0,1/2). Nature chooses, a-priori, a sequence of contexts:
(xp|te[T)) CX
unknown to Learner. The matrix A is then defined such that for all s,t € [T] we have:

A= s — 4]

4.2 Regret

Our regret bound for the euclidean bandit problem is based on the following concept of a boundary cover
which is (informally) any set of balls covering the decision boundary of the comparator policy. Formally,
take some arbitrary policy y € [K]T. An extension of y is any function  : X — [K] such that §(x;) = y:
for all t € [T]. A decision boundary of y is defined as a set:

{zeX|Vr>0,32" € B(z,r)NX:g(z') # g(x)}

where 7 is some arbitrary extension of y. Finally, we define a boundary cover of y as any set of balls which
covers a decision boundary of y.

With the definition of a boundary cover in hand, we have the following bound on the regret of HNN.

Theorem 4.1. Let C > 0 and £ > 1 be arbitrary constants and assume HNN is run on the euclidean bandit
problem with any ¢ > 1, any ¢ < (¢ —1)T~/2 and any p > 0. Then given any policy y € [K]T and any
boundary cover:
{B(vi,ri) i € [N]}
of y with:
min{r; |i € [N]} >T~¢

we have:

R(y) < |M+(’~)<(,0+ZZ> \/ﬁ)
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Figure 1: An example with K = 2 and d = 2. Here we have N = 5. The black curve is a decision
boundary of y. The purple balls are those in the boundary cover {B(v;,r;)|i € [N]} and the green balls
are those in {B(v;,&r;) | € [N]}. The grey contexts are those in {x; |t € M}, the red contexts are those in
{z¢|t € [T)\ M A y: = 1}, and the blue contexts are those in {z;|t € [T]\ M A y = 2}. Note that the
purple balls cover the decision boundary and the grey contexts are those covered by the green balls.

where:

M= te[T]

Ty € U B(vs, &ri)

1€[N]
Proof. A corollary of Theorem See Appendix [C| O

Theorem is illustrated in Figure 1. Note that N is the number of balls in the boundary cover and |M]|
is the number of contexts lying inside the balls of the boundary cover when each is expanded by a factor &.

We note that Theorem[f:]is a corollary of Theorem[5.1] However, using Theorem [5.2]instead can significantly
reduce the term | M| that appears in the regret. This improvement allows us to exploit Holder continuity in
the i.i.d. stochastic bound coming up in Section

4.3 Lower Bound

We note that we have the following regret lower bound which is extremely close to our upper bound in

Theorem when p = V'N.

Theorem 4.2. For any algorithm, given any £ > 1 and r > 0 with 8&r < 1, and any N’ € N less than the
2¢r-packing number of X and any M < T/2, then if T > 2N'K there exists:

o A policy y € [K]T.
o A boundary cover of y of cardinality N € O(N') in which each ball has radius .

o A choice of contexts and losses by Nature such that, when M is defined from & and the boundary
cover as in Theorem[{.1, we have [M| = M.

such that:
R(y) > IM|/2+ Q(VNKT)

Proof. See Appendix O

We also note that for any algorithm we require, for Theorem [4.1]to hold, the condition that £ > 1. Specifically,
we have the following theorem:
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Figure 2: An example of when NN performs poorly. The colour of a context represents the action assigned
to it by the comparator policy.

Theorem 4.3. Given any algorithm there exists a policy y, a boundary cover of y with cardinality 2, and
a choice of contexts and losses by Nature, in which no context lies in either ball of the boundary cover and
R(y) >T/2.

Proof. See Appendix [E] O

4.4 Comparison to Nearest Neighbour

We now compare the regret bound of HNN in euclidean space, as given in Theorem to that of NN,
which is, as far as we are aware, the only other algorithm that can handle the fully adversarial problem. We
assume here that NN is using the optimal binning radius (which it must know a-priori).

The regret bound of NN is like that in Theorem [4.1] except with the restriction that all the balls in the
boundary cover must have the same radii (a constant multiple of the binning radius). This is essentially
proved in the proof of Theorem 3.9 of [Pasteris et al| (2023)). The restriction of all balls having the same
radii severely limits NN: meaning that, unlike HNN, it cannot adapt to the context density and decision
boundary smoothness. We now give an illustrative example of its inability to adapt to context density.

For simplicity let’s assume that the parameter p, of NN and HNN, is set equal to a constant, although the
argument easily extends to tuned parameter values as well. Consider two disjoint balls B, B’ in R? with radii
equal to 1 and r < 1 respectively (noting that the diameter of the dataset in our problem can actually be
any constant). Assume that each ball has T'/2 contexts distributed uniformly over it. Suppose we have two
actions and a comparator policy such that the decision boundary (of the policy) on each ball is a straight
line going through the ball’s centre. This is depicted in Figure 2.

First let’s analyse NN when working on each ball as a seperate problem. Given a binning radius of ¢, the
regret of NN on B is O(VT /¢ + ¢T) and the regret of NN on B’ is O(rVT /¢ + ¢T/r). For both these
problems the optimal value of ¢ leads to a regret of O(T/4).

However, things change when NN is working on both balls at the same time. In this case, given a binning
radius of ¢, the regret of NN is:

O((VT /o +¢T) + (rVT o+ ¢T/r)) = O(NT /¢ + ¢T/r)

i.e. the sum of the regrets on both balls. This means that the optimal value of ¢ leads to a regret of
@(T3/ 4p=1/ 2) which can be dramatically higher than if the balls were learnt separately. In fact, when
r < T~1/2 this bound is vacuous. Our algorithm HNN, however, has a regret of O(T%/4) whenever 1/r is
polynomial in T' - the same as if the balls were learnt seperately.
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When working in R” for D > 2, the improvement of HNN over NN is even stronger. To see this note that
the regret of NN when working on both balls is:

O((VT /P~ + T) + (VT (r/o)P ™' + ¢T/r)) = ONT /P~ + oT/r)

so that the optimal value of ¢ gives us a regret of O (r_(D_l)/DT(QD_l)/(QD)) which becomes vacuous at
r < T-1/(2D=2) HNN, on the other hand, achieves a regret of O(T(2P~1/(2P)) whenever 1/r is polynomial

in T' - the same as if the balls were learnt seperately. Note that p is set to a constant here: when, instead,
p=TP~D/2(D+1) then HNN achieves a regret of O(TP/(P+1)),

4.5 Stochastic Bandits

Even though HNN is designed for the adversarial problem, we will now show that that in the i.i.d. stochastic
special case it is competitive against algorithms designed purely for that special case, sometimes even out-
performing. In fact, our experimental results in Section [6] show that HNN can outperform such algorithms
in real world i.i.d. stochastic problems. For HNN the bound we give is crude, and we believe it can also be
obtained by NN (with the optimal binning radius). Our bound improves on the stochastic bound of NN
given in |Pasteris et al.| (2023]) by allowing for the Bayes decision boundary to have fractal dimension greater
than d — 1 and by becoming adaptive to Holder continuous mean losses.

We maintain the notation and problem description given at the start of this section. In the i.i.d. stochastic
special case we have an unknown probability density v over the space X x [0,1]% and for every trial t € [T
the pair (x¢,£;) is drawn from v. We assume that v is bounded above by a constant. Given z € X and
a € [K] we define:
Ua(z) = E(m/’e/)ml,[ffz |x’ = x]
which is the mean loss of action a when given context x. We define the Bayes optimal classifier § : X — [K]
such that for all x € X we have:
3(w) = argming c | 7a(2)

and define the Bayes decision boundary D as the set:
{zeX|Vr>0,32" € B(z,r)NX:g(z') # g(x)}

Furthermore, we define the decision boundary dimension ¥ such that the exists ¢’ > 0 such that for all » > 0
we have that D can be covered by ¢/r~? balls of radius . Finally we define the Holder complexity ¢ such
that there exists ¢ > 0 such that for all z,2’ € X we have:

max |, (z) — v, (2)] < é|lx — 2'||?
a€[K]
We now state the performance of HNN.

Theorem 4.4. When HNN is run with € < 1/T and the optimal value of p in the i.i.d. stochastic bandit
problem as described above then given the policy y is such that y; = §(x¢) for allt € [T], we have:

E[R(y)] € O (T(K/T)%% )
where the O suppresses a constant dependent on v.
Proof. A corollary of Theorem [5.2] See Appendix [F] O

We note that this bound is crude and does not account for the ability of HNN to adapt to varying density
and varying values of ¢ and ¥ (along with their corresponding constants ¢’ and &) across the space. However,
we believe it to be novel, in some cases improving over bounds attained by algorithms designed specifically
for the i.i.d. stochastic problem. In particular, we now compare it to the bound of the ABSE algorithm of
Perchet & Rigollet| (2011) which is, as far as we are aware, the state of the art for i.i.d. stochastic bandits in
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euclidean space. Unlike our bound, the bound of ABSE depends upon a quantity a > 0 defined as follows.
First define, for all z € X, the gap as:

xT) = min Vo (%) — Vg (
g( ) ae[K]5l7a(m)?él7@(z)(z)( ( ) a( )( ))

and then let o be equal to the minimum value of @’ such that there exists ¢/ > 0 such that for all § > 0 we
have: |
Poeynlg(@) < 0] < cf6”

We believe that typically we will have:
a<(d-1)/¢

Given a > 0, the bound obtained by ABSE is then:

E[R(y)] € O (T(k/T) %)

Note that this is, in general, incomparable to our bound in Theorem [I.4] For example, as ¢ approaches 0
whilst ¥ < d and « stay constant, or when « approaches 0 whilst ¥ < d and ¢ stay constant, our bound is
an improvement.

5 Performance in General Metric Spaces

We now bound the expected regret of HNN for general matrices A. The final bound also improves on the
bound in Theorem [£.1] when in euclidean space. We will assume here that the parameter € is set equal to 0.
This is without loss of generality as for € > 0 the result is the same but such that distances have been shifted
by up to 2e (which is typically negligible). In what follows, given ¢, we have universal constants A > 1 and
z > 0.

Theorem [£.] involved a set of trials M whose contexts lay near the decision boundary of the comparator
policy. In general, a margin is any set M C [T] in which for all s € M and all ¢t € [T] with A, ; = 0 we have
t € M. Our general bound will hold for any possible margin M C [T]. So suppose we have any arbitrary
policy y € [K]T and margin M C [T]. Note that the algorithm has no knowledge of either y or M.

5.1 Packing Complexity

Here we give our first, simpler, general regret bound. For all ¢ € [T] we define:
Ve i=min{Ag i [s € [T\ M A ys # yi}
which is the minimum distance from ¢ to any trial s ¢ M with a differing label. We also define:
A:=min{y |t € [T]}.
which can be viewed as the width of the margin.

We define the packing complexity ¥ as the maximum cardinality of any set S C [T] in which for all s,t € S
with s # t we have:
As,t > ZY¢ -

Note that the packing complexity is the maximum cardinality of any packing of balls such that, if a ball’s
centre is ¢, then its radius is z7y;. Here we define a packing to mean that the centre of any ball is not contained
inside any other ball.

With the definition of packing complexity in hand, we now present our first general regret bound.

Theorem 5.1. Given any policy y € [K|* and any margin M C [T, then if ¥ and A are defined as above
we have that HNN with € = 0 has an expected regret of:

R(y) < |M|+(§(<p+ W) x/ﬁ) :

10
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Proof. An immediate corollary of Theorem [5.2 O

When M = () (and the aspect ratio is polynomial in T') our bound is similar to that of [Pasteris et al.| (2023)
(without binning) except that their equivalent of ¥ is a covering number rather than a packing number (the
radii of the balls in the covering/packing being a constant factor different in the two bounds). However,
we have a big advantage over [Pasteris et al.| (2023)) in that we can choose any margin M C [T] which we
can essentially hold out in the computation of the values ;. As the margin increases the values 7; increase,
meaning that ¥ decreases. In return for the decrease in ¥, the factor | M| is added to the regret. There
is a sweet-spot: the optimal margin. The purpose of our margin is essentially the same purpose as using
binning in |Pasteris et al.| (2023)). However, since our margin can be any set we have much more flexibility
(compared to the constant binning radius of |[Pasteris et al.| (2023)), allowing us to adapt locally to the density
of contexts and smoothness of decision boundary: as was illustrated in Section [£.4]

5.2 Excesses

We will now tighten the regret bound in Theorem by reducing the term | M|, which is what allows us to
exploit Holder continuity in Theorem [£:4] To do this we will now define, for all ¢ € M, a quantity yu; that
we call the excess of trial ¢. First define:

0, := min{A,,|s € [T]\ M}
which is the minimum distance from ¢ to any trial not in the margin. Define:
Vii=A{ys|s € [T] N Agy < N4}
which is the set of labels of trials within a distance of A@; from ¢. Finally define:
pe = max{E[l; , — ;]| a € Vi }

which is the difference between maximum expected loss, on trial ¢, of any action in ), and the expected
loss, on trial ¢, of the action ;.
We have now defined all the quantities needed to present our second general regret bound:

Theorem 5.2. Given any policy y € [K|T and any margin M C [T, then if ¥, A and {u; |t € M} are
defined as above then HNN with € = 0 has an expected regret of:

R(y)SZut+@<(p+mn(;/A)2) \/ﬁ) .

teM

Proof. See Appendix O

To compare against Theorem we note that |[M| has been replaced by >, pe. Typically D, 1, gt is
much less than |M]| since, for any trial ¢ € M, any action a € Y is typically equal to ys for some s close
to t. If y is a good comparator policy then, typically, ys and y; are good actions for s and t respectively.
Hence, by the inductive bias and since s is close to ¢ we often have that E[¢; , ] is similar to E[¢; ,,]. Hence,
1 is often close to 0. However, since the setting is fully adversarial, it may not be.

We note that, unlike NN, our algorithm HNN is also adaptive to factors that influence the values of the
excesses, such as the local Holder complexity and its constant in i.i.d. stochastic bandits (as defined in

Section .

6 Experiments

In Figure [3| we give the results of two real-world experiments comparing the performance of HNN to that
of NN and three state of the art algorithms for the i.i.d. stochastic problem. It is important to note that

11
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(a) Cumulative loss averaged over 10 runs for the UCI (b) Cumulative loss averaged over 10 runs for the
firewall dataset. CICIDS2017 intrusion dataset experiment.

Figure 3: Comparison of cumulative loss across two real-world datasets. Solid lines represent the average
over 10 independent runs. Shaded regions indicate +1 standard deviation. For most methods in Figure
the standard deviation is very small and, as such, not visually obvious in the plot.

these experiments are on i.i.d. stochastic datasets (although the second experiment has an environment
that changes at a few points), whereas HNN was built for the more general adversarial problem, yet in
both experiments HNN manages to outperform the algorithms designed specifically for the i.i.d. stochastic
problem.

The details of the experiments, which are both for problems in cyber-defence, are given in Appendix [A] We
note that in the first experiment NN and NN with a binning radius of 0.1 achieve the best performance, but
are followed closely by HNN. In the second experiment, HNN achieves the best performance, even when
compared with NN with various binning radii.

7 Conclusion

Inspired by [Pasteris et al.[(2023) and |Slivkins (2009), we designed a novel algorithm for the adversarial bandit
problem in metric spaces. Unlike the algorithm of |Pasteris et al.| (2023)), our algorithm is locally adaptive to
the density of contexts and the smoothness of the decision boundary of the comparator policy. We analysed
the regret of our algorithm with respect to any possible comparator policy, and analysed further the special
case of Euclidean space, for both adversarial and stochastic bandits. We gave the results of real-world
experiments, demonstrating the brilliant performance of our algorithm.
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A Experiment Details

We ran experiments on two real-life firewall datasets to empirically compare HNN with NN and with three
other state of the art contextual bandit algorithms, K-Nearest Neighbours with UCB (KNN__UCB), K-Nearest
Neighbours with KL divergence and UCB (KNN_KL_UCB) Reeve et al|(2018) and contextual bandits with
similarity information (Slivkin’s) Slivkins| (2009). It is important to note that these are i.i.d. stochastic
datasets (although the second experiment has an environment that changes at a few points), whereas HNN
was built for the adversarial case, yet in both experiments HNN manages to outperform algorithms designed
specifically for the i.i.d. stochastic problem.

Both sets of experiments involved using classification datasets, randomly shuffled and run multiple times to
get the average cumulative loss of each algorithm. The loss was determined by whether the action chosen
matched the label from the dataset, with a loss of 1 if it did not, and 0 otherwise.

For our first experiment, we used the UCI ML Firewall dataset [int| (2019), which is internet firewall data.
We used the Action column as the actions for the bandits. The dataset includes the actions Allow, Block,
Drop and Reset-All, but we removed the Reset-All data due to the extreme sparsity of this class (less
than 1% of the dataset). We used the following features: SourcePort, DestinationPort, NATSourcePort,
NATDestinationPort, BytesSent, pkts_sent. We removed features that we believed would not be acces-
sible at the point of decision for a bandit if it was being utilised in the real-world (e.g. features such as
ElapsedTime).

For the distance metric, we took the Euclidean difference of each of the non-categorical features. For the
categorical features (the Port features) we used a distance measure of 0 if the value was identical and 1 if it
was not. For each feature, we independently scaled the pairwise differences to the [0,1/6] range (6 being the
total number of features), to ensure that all features contributed equally to the overall distance computation
(i.e. we had no weightings across the features). The final distances were constrained to the [0, 1] range.

We compared HNN with the other contextual bandits with no binning. We also compared against NN with
binning radii of 0.1 and 0.2. The results are shown in Figure noting that the standard deviation for all
but KNN_KI_UCB are very minimal and as such not visible on the plot. NN with a binning radius of 0.1
has the lowest cumulative loss, followed by NN and then closely by HNN. Both NN and HNN outperform
the other state of the art bandits, even in this stochastic setting.

For the second experiment, we used another real-world dataset, using a subset of the CICIDS2017 intrusion
dataset [Sharafaldin et al.| (2018). For this experiment, we used the machine learning CVE data, which
consisted of the network traffic flows. We took a subset of only the DoS attack type data and the benign
data. We gave the bandits two actions, Allow or Block, and we used the label from the dataset to determine
which action was most appropriate (allow for benign, block for attack). We used the top 35 features from
Kurniabudi et al. [Kurniabudi et al.| (2020), where the features were ranked by their information gain. We
simulated mild concept drift by gradually introducing the different DoS attack types. We did this using
5 distinct subsets each with an 80:20 split of benign to DoS data, and each set contained one DoS attack
type. The algorithms received the subsets in approximately the order the attack type evolved, to simulate
the real-world concept drift that occurs. To average the results over 10 runs, we shuffled the 5 subsets
independently, with the order they were shown to the algorithms kept the same.

We used a similar distance measure as for the first dataset, where the categorical data (IP address) had a
distance of 0 if it was the same or 1 otherwise, and for the non-categorical features, we took the Euclidean
difference. We again independently scaled the pairwise differences to the [0,1/35] range, so that all features
contributed equally to the overall distance computation. The overall distances were again constrained to the
[0, 1] range.

Figure[3b|shows that HNN clearly outperforms all the other algorithms, including NN both without binning
and also with binning radii of 0.1 and 0.05.
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B Proof of Theorem [5.2

We now prove Theorem

Without loss of generality we assume that for all s,¢ € [T] with s # ¢ we have A;; # 0 which, since € = 0,
implies that the binning step in the construction of 7 is never invoked. This is without loss of generality
as if there was to exist s > t with A;; = 0 we simply define §; := g, in this proof. Also without loss of
generality assume there exists s,t € [T] \ M with ys # y; else the result is trivial (by choosing §; to be the
same for all ¢ € [T])

Let ¢ be an arbitrary number in (0,1). We define:
=12 5 Bi=2/¢
A= (88 +(1L+8)/)/(B(1-9))

and:

2= 1 =1)f/(2c(1+5)).

In this analysis we will often use the fact that, for all ¢ € [T], we have d,, = d; — 1 and A, < fé—1.

Definition B.1. Consider the rooted tree with vertex set [T] such that, for all t € [T]\ {1}, we have that
py is the parent of t. Let £ be the set of leaves of this tree. Given t € [T'] we then define D, to be the set of
all descendants of ¢ and define A; to be the set of all ancestors of t.

Lemma B.2. For allr,t € [T] with r #t and d, = d; we have that A, ; > fi/ec.

Proof. Suppose, for contradiction, the converse: that A, ; < fdr /c. Without loss of generality assume r < t.
Let h := max{d, |s € [t — 1]} and for all d € [h] let sq be as created by the algorithm on trial ¢t. Let ¢ := sg4,.
Since ¢ is a c-nearest neighbour of ¢ in the set {s € [t — 1] |ds = d,} (which contains r) we must have that
Ayt <Ay < f%. But from the algorithm we have that d; — 1 is the maximum value of d € [h] such that
Ag,t < f¢ so since d; — 1 = d, — 1 < d, we have a contradiction. O

Definition B.3. Define U to be the set of all trials ¢ € [T in which for all r, s € [T] \ M with A,., < Bf%
and A, < Bf% we have y, = ys,.

Lemma B.4. Given s,t € [T] with s €U and t € Dy we have t € U.

Proof. Noting that d; > ds we fix s and prove by induction on d;. When d; = ds we have t = s so the result
is immediate. Now suppose, for some d > ds, that the inductive hypothesis holds for all ¢t with d; = d. Now
take ¢ with dy = d + 1. Since t € D, and t # s we have p; € D,. So since d,, = d we have, by the inductive
hypothesis, that p, € U. Now take any ¢, € [T]\ M with A, ; < Bf% and A,.; < Bf%. From the algorithm
we have that A, ,, < f%=1 and hence, by the triangle inequality, we have:

Ahpt < Ant + At,pt < det + fdt_l = (ﬁf + 1)fdt_1 < »det_l

Similarly we have A, ,, < Bf%“~1. So since d, = d; — 1 and p; € U we must have that y, = y,. Hence, we
must have that ¢t € U so the result holds by induction. O

Definition B.5. Let V be the set of all ¢ € [T] such that either:

e tcland p, ¢ U
e teLandt¢U

Definition B.6. Let VW be the set of all ¢t € V such that there does not exist s € V with d, > d; and
Ay < (f% = f%)/(2¢)
Definition B.7. For any t € W let Q; be equal to the set of all s € V' \ W in which A, < fd=/(2¢c)

Lemma B.8. Given s € V\W and d € N we either have that there exists t € W with s € Q, or that there
exists some r € V\W with d, > d and A, 5 < (f% — f4)/(2c)
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Proof. 1If there exists t € W with s € Q; then we’re done so assume otherwise. We prove by induction on d.
We immediately have the result for d = 0 by choosing r := s. Now suppose, for some d’ € NU {0}, that the
inductive hypothesis holds when d = d’ and consider the case that d = d’ + 1. By the inductive hypothesis
choose ¢ € V\ W with d, > d’ and A, s < (f% — f9)/(2¢). Since ¢ € V \ W we have, by definition of W,

that there exists u € V with d,, > d, and A, 4 < (f%2 — f«)/(2¢). By the triangle inequality we then have:

Aus S Bug+ Bgs < (F% = f9)/(2¢) + (F% = f4)/(2c) = (% = £")/(2)

If it was the case that u € W we would have, from this inequality, that s € Q, which is a contradiction.
Hence, we have u € V \ W. Since d,, > d, and dy > d’ we have d,, > d' + 1 = d. By the above inequality we
then have the result by choosing r := u. This completes the inductive proof. O

Lemma B.9. Given s € V\ W there exists t € W with s € Q.

Proof. Suppose, for contradiction, the converse. By Lemma[B.§ we then have, for all d € N, that there exists
some r € V\ W with d, > d. By choosing d := T we then have that there exists r € [T] with d,, > T which
is impossible. O

Lemma B.10. For allt € W and s € Q; we have dgs < d;.

Proof. Suppose, for contradiction, that there exists t € W and s € Q; with ds > d;. Then by definition of
Q; we have s € V and A, < f% /(2¢). Since d; < d, — 1 we then have:

(f = f)/(2¢) = (71 = f4)/(20) = (1/f = 1)f%/(2¢) = (1/f = DAy

So since f = 1/2 we have Ay < (f9 — f4)/(2¢) which, since ds > d; and s € V, contradicts the fact that
tew. O

Lemma B.11. For allt € W we have |Q;| < d; + 1.

Proof. By Lemma all we need to prove is that if ¢,r € Q; are such that ¢ # r then d, # d,. We
now prove this by considering the converse: that d, = d,.. By definition of Q; we have A, < f% /(2c) and
A,.; < f4 /(2¢c) so by the triangle inequality we have:

Agr < Dgi+ Ary < fP/(2¢) + [/ (2¢) = fh/c
which, since d, = d,., contradicts Lemma [B.2] O

Lemma B.12. For all t € V we have f% > ~,f/(1+ f3)

Proof. By definition of V we immediately have that either t ¢ U or p; ¢ U. By Lemma we then have
that p; ¢ U. Hence, by definition of ¢/ and since d,, = d; —1, we can choose 7, s € [T]\ M with y, # y, and
Ay p, < Bf%~1 and Agp, < Bf%~1. Since y, # y, we can, without loss of generality, assume that v, #
which means, since s ¢ M, that A;; > . By the triangle inequality and the fact that A, < fh=1 we
then have:

Ve < Dy < DNy + Dyt S BFU 4 fT = (14 B) f4/ f

Rearranging then gives us the desired result. O

Lemma B.13. For all s,t € W with s # t we have Agy > zmax(ys,Ve)-

Proof. Without loss of generality assume ds; > d;. If d; = d; then we have, from Lemma that A, >
f%/c. On the other hand, if d, > d; then we have, from the definition of W and the fact that s € V, that:

A > (f4 = f9)/(2¢) 2 (f% = f2H)/(20) = (1 = f) f*/(20)
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In either case we have that A,; > (1 — f)f%/(2¢) and hence, since f% < fd  we also have that Ag; >
(1 — £)f%/(2¢). From Lemma we then have that:

A > (1= f)f%/(20) 2 (1 = ) f/(2c(1 + B)) = 27

and
Age> (1= f)f%/(2¢) > v(1 = £)f/(2c(1+ B)) = 275

as required. O

Lemma B.14. We have |W| < ¥

Proof. Immediate from Lemma and the definition of ¥. O
Lemma B.15. For allt € V we have d; € O(In(1/A))

Proof. By Lemma and definition of A we have:

FU = /(1+B) = Af/(1+B)
Taking logarithms gives us the result. O
Lemma B.16. We have |V| € O(¥1n(1/A))

Proof. By Lemma we have:

v=wulJ %
tew
so that:
VI<Vi+ > 19l
tew
By lemmas and we have |Q;] € O(In(1/A)) for all £ € W. Substituting into the above inequality
gives us |V| < O(JW|In(1/A)). Lemma [B.14] then gives us the result. O

Lemma B.17. Suppose we have some t € [T] such that for all s € Ay we have s ¢ V. Thent ¢ U.

Proof. We prove by induction on d;. If d; = 0 then we have ¢ = 1 so that we immediately have t ¢ U (since
there exists r, s € [T]\ M with y, # ys). Given some d > 0 suppose that the inductive hypothesis holds for
all t with d; = d. Now consider any ¢t with d; = d + 1. Note that for all s € A4,, we have s € A; so that
s ¢ V. Since dp,, = d; — 1 = d we then have, by the inductive hypothesis, that p; ¢ U. If it was the case that
t € U we would then have, by definition of V, that ¢ € V. But since t € A; this would be a contradiction.
Hence, t ¢ U. This completes the inductive proof. O]

Lemma B.18. For allt € [T] there exists s € V such that t € Dy U Aj.
Proof. Assume, for contradiction, the converse: that there exists no s € V with t € Dy, U As. This means
that for all s € D, U A; we have s ¢ V. So choose some r € D; N L. Since A, C Dy U A; we have, for all

s € A, that s ¢ V. By Lemma we hence have that r ¢ Y. But since r € £ this would mean that r € V
which, since t € D, U A, , is a contradiction. O

Definition B.19. Define the policy ¢ € [K]T such that:

o Ift ¢ U then §; := y:.

o If t € U and there exists s € [T] \ M with A, ; < Bf9 then §; = ys. Note that by definition of U
we have that ¢; is uniquely defined.

o If t € U and there does not exist s € [T] \ M with A, < Bf%, we have §; := 9,,. Since 1 ¢ U this
is defined.
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Lemma B.20. Gwen t € [T]\ {1} with §; # Up, there exists s € V with t € As.

Proof. By Lemma [B.18| choose s € V such that ¢ € Dy U A,. Assume, for contradiction, that ¢ ¢ As. Then
we must have t € D, \ {s}. This means that s ¢ £ and hence, by definition of V, we have that s € U. So
since we have both ¢ € D, and p; € Ds we have, by Lemma that both t € U and p;, € U. Since G # Yp,
we must then have, by definition of ¢, that there exists ¢ € [T] \ M with A,, < 8f%. Since A;,, < f®~!
we have, by the triangle inequality, that:

Agp, S ABgr+Agp, < Bt + fht = (Bf + 1)fdt_1 < Bt

so since dp, = d; — 1 and ¢ ¢ M we have, by definition of § and since p; € U, that §,, = y,. We also have,
by definition of ¢ and since both A, < 3 f% and t € U, that g, = Yq- But this means that §; = ¢,, which
is a contradiction. We have hence shown that t € A,. O

Lemma B.21. We have:
> 9 # 9] € O(¥In(1/A)?)
te[TI\{1}

Proof. Given t € ¥V we have, by Lemma that d; € O(In(1/A)) and hence that |A:| € O(In(1/A)). By
lemmas and we then have that:

U A

seV

S lge# ] <
te[T\{1}

< 1A € O(VIIn(1/A)) € O(¥ In(1/A)?)

seV

as required. O

Lemma B.22. We have:

S Ellia, — 5] < O (<p _ W) Vﬁ)

te[T]

Proof. From Pasteris et al.| (2023), when using either belief propagation or CBNN, we have, when taking
expectations on their result, that:

> Eltra, — gl €0 <<p L el # ?mﬂ) \/ﬁ>

te[T] P

Substituting in Lemma [B:21] gives us the result. O
Lemma B.23. For allt € [T] with §; # y: we have t € M NU.

Proof. Suppose, for contradiction, that there does exist ¢ € [T] with ¢t ¢ M NU and §; # y;. Since §; # y;
we must have, by definition of g, that ¢ € U. Hence, we must also have ¢t ¢ M. Since both ¢t € U and t ¢ M
with A, ; = 0 < Bf% we must have, by definition of §, that §; = vy, which is a contradiction. O

Lemma B.24. For all s,t € [T] with s € D; we have Ay < ¢Bf%

Proof. We hold s fixed and prove by reverse induction on d; (i.e. from ds to 0). When d; = ds; we have
s =t and hence Ay, = 0 so the result holds trivially. Now suppose, for some d € [d;], that the inductive
hypothesis holds when d; = d. We now show that it holds when d; = d — 1 which will complete the inductive
proof. So take t with d; = d — 1. Let r be such that s € D,. and p,, = t. Note that we have d,. = d so by the
inductive hypothesis we have A, < ¢3f?. Since A,p, < f4 =1 we then have, by the triangle inequality,
that:

Do Do+ Brp =Dy + Dy, OB+ 11 = (98F + 1)1 = 0817

since f =2/¢ and f =1/2. O
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Lemma B.25. For allt € M NU we have §; € V;.

Proof. Let S be the set of all r € [T] such that there exists ¢ € [T]\ M with A, < Bf%. Define:
s:i=argmin.c 4, ny dr  ; V1= argmax,c 4, ns dr

noting that these both exist since t € Ay N U and 1 € A, N S. Since 1 ¢ U (which comes directly from the
fact that there exists g,7 € [T]\ M with y; # y,) we have that s # 1 and hence p, exists so let d := d,,.
Since ps € A; with d,,, < ds, we have ps ¢ U so by definition of U there exists r € [T]\ M with A,.,,. < Bf<.
This means that p; € S and hence that v € D). Define:

w = argmingepp\ pm Dt

so that Ay = ;.

We have two cases. First consider the case that v = ¢t. In this case we have t € S so that there exists
q € [T]\ M such that A, ; < Bf%. By definition of w we have that A, ; < Ay 50 A,y < Bf% and hence,
by definition of & and since t € Y and w ¢ M, we have §, = y,,. Since A,,; < A\d; we have, by definition of
V;, that y,, € Vs . Hence, 9§; € ), as required.

Next consider the case that v # ¢. Choose u € [T] as follows:

o If v = p, then since ps ¢ U, choosing u = v gives us, by definition of §, that §, = yu.

o If v # p, then, since v € Dy, and s,v € A;, we have v € D, so, since s € U, we have, by Lemmal@l
that v € 4. So v € U N'S and so, by definition of § and S, choose u € [T] such that A, , < Bf%
and @v = Yu-

Either way, we have A, , < 8f% and 9, = y,. Since v € A; \ {t} let ¢ € A; be such that p, = v. We have,
by Lemma and the triangle inequality, that:

Aw,q S Aw,t + At,q S 9t + (bﬁqu
Since ¢ € A; and d, > d,, we must have, by definition of v, that ¢ ¢ S so since w ¢ M we also have:
Ayg > Bf

Substituting this inequality into the previous and rearranging gives us:

0 > Bf% — @B f% = B(1 — @) f%

so that:
[l <0:/(B(1—9))

Since dy = dq —1 and Ay, < % (as v = pg) we then have, from the triangle inequality and Lemma
that:

At,u S At,q + Aq,'u + A'u,u S ¢ﬁqu + fdv + ﬁfdv
= (¢8+ (1 +B)/f)f"

< (#8+ (1+8)/1)0:/(B(1 = ¢))
=\

So that y, € V. Since §, = vy, , all that is left to do now is to prove that ¢, = ¢,. To prove this we need
only show that for all r € (D, \ {v}) N A; we have §, = gp,. To show this take any such r € (D, \ {v}) N A;.
Since v € D, and s,v € A; we must have r € Dy and hence, by Lemma @ and the fact that s € U, we
have r € U. Since d, > d, and r € A; we have, by definition of v, that » ¢ S. So r € U \ S and hence, by
definition of ¢4 and S, we have g, = g, as required. O
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Lemma B.26. We have:

Z E[ftyilt - ft,yt] < Z Ht

te[T] teM

Proof. By Lemma [B:23] we have:

Z E[gt,ﬂt - Et,yt} = Z E[gt,yt - Etﬂ!t] =0

te[T|\M te[T\M

By Lemma we have, for all t € M\ U, that §; = y; € V4. So by Lemma we have, for all t € M,
that 4; € V;. Hence, we have:

> Elleg, — by <Y max Ellyq = liy,] =>
teM tem 45t temM
Combining these two (in)equalities gives us:

ZE&M Et,yt Z ]Egtyt gtyt +Z]E€tyt ftyt<0+ZMt Zﬂt

te[T) te[T\M teM teM teM

as required. O
Lemma B.27. We have:

Ry)SZut+@<<p+W>\/ﬁ>.

teM P

Proof. By linearity of expectations we have:

R(y) = Z E[gtﬂt - étﬂl/t] = Z ]E[gt,at - ft»@t] + Z ]E[gt,@t - Z7571/t]

te[T] te[T] te(T]

Substituting in lemmas and then gives us the result. O

This completes the proof. |

C Proof of Theorem [4.1]

We first note that the only effect that e has on the bound is that the contexts can be moved by a distance
of up to e. Since € < (1 — &) min;epny73/2 and § > 1 is arbitrary when can hence assume, without loss of
generality, that € = 0. We can hence apply Theorem [5.2] with our choice of margin M.

Let § be an extension of y such that {B(v;,r;)|i € [N]} covers the decision boundary of §. Let D be the
decision boundary of 3.

Definition C.1. For all t € [T] let ¢; be the minimiser of A, ; out of all s € [T \ M with y, # y;. Since
§(xt) # §(zq, ) choose by € D such that b, lies on the straight line from x; to z4,. Since b; € D choose i; € [N]
such that b, € B(v;,,7i,).

Definition C.2. Define J := Clog,(T). For all t € [T] define j; as the minimum number in [J] U {0} such
that z; € B(v;,,27¢¢r;,). Note that since r;, > T~ this is defined.

Lemma C.3. Given t € [T] with j; > 0 we have v > 27t=1(& — L)r;,.

Proof. By definition of j; we have that z; ¢ B(v;,, 27t~ 1¢r;,) so since b, € B(v;,,r;,) we have, by the triangle
inequality, that:

lwe = bell > llwe = vi, || = llbr = w3, | = 277 s, — 73, > 27716 = D,
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Since b, is on the straight line from x; to x4, we have ||z; — zq,|| > ||zx — bs||. By definition of ¢; we have
|z — xq, || = At,q, = 71 Putting together gives us:

% = Nl — aq |l 2 e — bell > 2771 (&~ Dy,
as required. O
Lemma C.4. For all t € [T] with j; =0 we have v > 2771 — 1)ry, .
Proof. Since q; ¢ M we have q; ¢ B(v;,,&r;,) so since by € B(v;,,7;,) we have, by the triangle inequality,

that:
H‘er - bt” > Hth - UitH - ”bt - ’UitH > grit — Ty = (5 - 1)Tit :

Since b; is on the straight line from x; to x4, we have ||z, — z4,|| > ||z4, — b||. By definition of ¢; we have
|z — xq, || = Atq, = 71- Putting together gives us:

"= ||xt - x‘h” > ||th - th > (g - 1)”1, > 2jt71(£ - ]‘)rit
as required. O

Definition C.5. Let S be a subset of [T] of maximum cardinality subject to the condition that for all
s,t € S with s # t we have A, ; > zy;.

Definition C.6. For all i € [N] and j € [J] U {0} define:
Sij={teSlip=1 N ji=j}
Lemma C.7. For alli € [N] and j € [J] U{0} we have |S; ;| € O(1)

Proof. Let 1/ :=2/¢r; and w := 2(£ — 1)/2¢. By lemmasand we have, for all t € S; ;, that:
v > 2T E =Dy, = 27— D)y = w2

s0, by definition of S, we have, for all s,¢t € S; ; with s # ¢, that ||z, — x| > wr’. Also, for all ¢t € S, ; we
have, by definition of j;, that:

Ty € B(’U’iﬁzjtgrit) = B(vi? QjEri) = B(Uiar/)

So all the elements of S, ; are contained in a ball of radius r’ and are all of distance at least wr’ apart. Since
w is a positive constant and the dimensionality is a constant we have the result. O

Lemma C.8. We have ¥ € O(N In(T)).

Proof. We have:

s=U U s

i€[N] je[J]u{o}

so that by Lemma we have |S| € O(NJ). Since C is a constant we have J € O(In(T")) and hence
|S| € O(N In(T)). By definition of ¥ and S we have that ¥ = |S| which completes the proof. O

Lemma C.9. We have In(1/A) € O(In(T))

Proof. Let t be the element of [T] that minimises 7; so that A = ;. By lemmas and we have
A= VMt > 2jt_1(§ - 1)rit > Tiy (g - 1)/2 € Q(Tit)

so since r;, > T~ (where C is a constant) we have the result. O

Since the desired bound is vacuous when N > T we can assume otherwise so that by lemmas and
we have:
Tln(1/A)* € O(N In(T)?)

Substituting this into Theorem whilst noting that p; < 1 for all t € M, then gives us the result. [ |
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D Proof of Theorem

Choose a set of N’ + 1 disjoint balls of radius 2£r whose union is a subset of X'. Let the centre of the k-th
ball be denoted zj. Now partition [T/2] into N’ sets each of size ©(T/N’). Let the k-th such set be denoted
Pi. For each k € [N'] and ¢t € Py let ; := 2. By applying the lower bound on the multi-armed bandit
problem (see Lattimore & Szepesvari| (2020)) independently to each of these sets of trials, Nature can choose
some sequence of losses and a sequence (Ji | k € [N']) C [K] such that for all k& € [N’] we have:

5 Bt~ te) € (VETRH) = 0 (VET/V)
tEPk

For all k € [N’] and all t € Py, define y; := §r. Summing the above equation over all k € [N'] gives us:

3 Ellia, — iy €0 (\/N’KT)
te[T/2]
Let M := [T/2+1,T/2 + M]. For all t € M choose z; € B(zn/41,7) in such a way that z, # z; for all
s,t € M. It is straightforward for Nature to choose losses and a sequence (y; |t € M) such that:

Z E[ét,ﬂt, - gﬁyt} > ‘M|/2
teM

For all t € [T/2+ M + 1,T] choose z; := z; and y; := 1.

Note that we now have:

R(y) = IM|/2 + Q(VN'KT)

For all k € [N'] let Dy, be the boundary of the k-th ball. i.e. Dy, is the set of all z € X with ||z — zi|| = 2¢r.
Note that Dy, can be covered by ©(1) balls of radius r such that none of the centres in {2z |k € [N']} are
contained in the union of these balls, when each is enlarged by a factor &.

Since B(zn'41,7)UUJ re[n’] Dr covers a decision boundary of y we have now shown the existence of a boundary
cover of cardinality ©(N') in which each ball in the cover has radius r and the only trials ¢ in which z; is

in the union of the balls in the cover, when each is enlarged by a factor £, are those trials ¢ € M. This
completes the proof.

E Proof of Theorem 4.3

Without loss of generality assume that d = K = 2. Given any algorithm we will now devise a strategy for
Nature. On each trial ¢ € [T] we shall maintain values py, ¢; € [—1/2,1/2] with p; < ¢;. We initialise with
p1:=—1/2 and ¢; := 1/2. On trial ¢ we choose:

x = ((pe +q)/2,0)

We then choose y; € [2] so that P[a; = y;] < 1/2. Next we choose @1 and @2 as follows. If y; = 1 then ft,l
and /; o are concentrated entirely on 0 and 1 respectively and if y, = 2 then ¢;; and /; > are concentrated
entirely on 1 and 0 respectively. Note that:

E[gt,at - gt’yt] > 1/2

If y; = 1 then we define p;41 := 2 and ¢i41 := ¢:. On the other hand, if y; = 2 we define pyy1 := py and
Gt+1 := x¢. Finally define:

7:= ((pr+1 +97+1)/2,0)
Note that the set {(7,0) |0 € [-1/2,1/2]} is a decision boundary of y. Hence the pair of balls B((7,1/4),1/4)
and B((r,—1/4),1/4) is a boundary cover of y. Since neither of these balls contains any context in (x; |t €
[T]) we have the result.
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F Proof of Theorem [4.4]

The proof proceeds as in that of Theorem but using the sharper Theorem instead of Theorem [5.1
Since € < 1/T the binning step moves the contexts by such a small amount that we can, without loss of
generality, assume € = 0. Define:

r= (K/T) 2¢+21>d—19

Note that by definition of ¥ we can choose some set C with |C| € O(r~?) such that the union of the set of
balls of radius r with centres in C covers D. Append C onto the end of the trial sequence (with associated
losses drawn from v). Since |C| < T we can ignore the increase in the time horizon caused by this appending.
Now define the margin M to be the set of all ¢ € [T'] such that z; ¢ C but =z, is within a distance of 2r from
an element of C. Following the proof of Theorem [.1] we have:

¥ € O(C|In(1/r)) € O~ In(T)) (1)

Note that, since the density v is bounded, we have that for all z € C the expected number of trials ¢ € [T
in which x; is within distance 2r of x is in O(r?T). Hence, we have that:

E[|M]] € O(|c|riT) € O(r¢=T) (2)

Now take any ¢t € M. Since z; is at distance at most 2r from an element of C, we have A;; < 2r for some
s € [T] \ M. Hence, we have that:

e =Bl y, — Ly = Bl gey) — g = Vglay) (Tt) = Vga,) (T1) (3)

for some ¢ € [T] with:
[zq — 2]l = Agr € O(As ) € O(r) (4)

By Equation we have:

V() (20) < Vyag) () + Olllzg = 2l7) = Vyay) () + OF) = min va(z) + O(r%) < ¥ja) (q) + OF)

which, upon substitution into Equation and noting Equation , gives us:
fit < Vg(a) (Tq) = Vg (21) + O(rF) € O[[xg — 24| +7%) = O(r¥)
Substituting into Equation then gives us:

E[Z/H

teM

€ O(r#+i=7T)

So, by combining with Equation (I} we have, by Theorem that:
E[R(y)] € O (r#*="T + (p+ 17" /p) VKT)
and hence, given the optimal tuning of p, we have:
E[R(y)] € O (W*d_ﬂT + W)

which, noting the definition of r, gives us the result.
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