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Abstract
Smoothness and low dimensional structures play
central roles in improving generalization and sta-
bility in learning and statistics. This work com-
bines techniques from semi-infinite constrained
learning and manifold regularization to learn rep-
resentations that are globally smooth on a man-
ifold. To do so, it shows that under typical con-
ditions the problem of learning a Lipschitz con-
tinuous function on a manifold is equivalent to
a dynamically weighted manifold regularization
problem. This observation leads to a practical
algorithm based on a weighted Laplacian penalty
whose weights are adapted using stochastic gradi-
ent techniques. It is shown that under mild con-
ditions, this method estimates the Lipschitz con-
stant of the solution, learning a globally smooth
solution as a byproduct. Experiments on real
world data illustrate the advantages of the pro-
posed method relative to existing alternatives. Our
code is available here.

1. Introduction
Learning smooth functions has been shown to be advan-
tageous in general and is of particular interest in physical
systems. This is because of the general observation that
close input features tend to be associated with close outputs
and of the particular fact that in physical systems, Lips-
chitz continuity of input-output maps translates to stability
and safety (Oberman & Calder, 2018; Finlay et al., 2018b;
Couellan, 2021; Finlay et al., 2018a; Pauli et al., 2021; Kr-
ishnan et al., 2020; Shi et al., 2019; Lindemann et al., 2021;
Arghal et al., 2021).
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To learn smooth functions one can require the parameter-
ization to be smooth. Such is the idea, e.g., of spectral
normalization of weights in neural networks (Miyato et al.,
2018; Zhao & Liu, 2020). Smooth parameterizations have
the advantage of being globally smooth, but they may be
restrictive because they impose smoothness for inputs that
are not necessarily realized in the data. This drawback mo-
tivates the use of Lipschitz penalties in risk minimization
(Oberman & Calder, 2018; Finlay et al., 2018b; Couellan,
2021; Pauli et al., 2021; Bungert et al., 2021), which offers
the opposite tradeoff. Since penalties encourage but do not
enforce small Lipschitz constants, we may learn functions
that are smooth on average, but with no global guarantees of
smoothness at every point in the support of the data (Bubeck
& Sellke, 2021; Bubeck et al., 2021). Formulations that
guarantee global smoothness can be obtained if the risk min-
imization problem is modified by the addition of a Lipschitz
constant constraint (Krishnan et al., 2020; Shi et al., 2019;
Lindemann et al., 2021; Arghal et al., 2021). This yields
formulations that guarantee Lipschitz smoothness in all pos-
sible inputs without the drawback of enforcing smoothness
outside of the input data distribution. Several empirical stud-
ies (Krishnan et al., 2020; Shi et al., 2019; Lindemann et al.,
2021; Arghal et al., 2021) demonstrated the advantage of
imposing global smoothness constraints on observed inputs.

In this paper we exploit the fact that data can be often mod-
eled as points in a low-dimensional manifold. We therefore
consider manifold Lipschitz constants in which function
smoothness is assessed with respect to distances measured
over the data manifold (Definition 1). Although this looks
like a minor difference, controlling Lipschitz constants over
data manifolds is quite different from controlling Lipschitz
constants in the ambient space. In Figure 1, we look at a
classification problem with classes arranged in two separate
half moons. Constraining Lipschitz constants in the ambient
space effectively assumes the underlying data is uniformly
distributed in space [cf. Figure 1(d)]. Constraining Lip-
schitz constants in the data manifold, however, properly
accounts for the data distribution [cf. Figure 1(a)].

This example also illustrates how constraining manifold Lip-
schitz constants is related to manifold regularization (Belkin
et al., 2005; Niyogi, 2013; Li et al., 2022). The difference is
that manifold regularization penalizes the average norm of
the manifold gradient. This distinction is significant because
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(a) Dataset
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(b) Manifold Lipschitz (ours)
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(c) Manifold Regularization
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(d) Ambient Regularization

Figure 1: Two moons dataset. The setting consists of a two dimensional classification problem of two classes with 1 labeled,
and 200 unlabeled samples per class. The objective is to correctly classify the 200 unlabeled samples. We consider two cases
(top) the estimated manifold has two connected components, and (bottom) the manifold is weakly connected (cf. Figure 1).
We plot the output of a one layer neural network trained using Manifold Regularization, Manifold/Ambient Lipschitz.

regularizing is more brittle than imposing constraints. In
the example in Figure 1, manifold regularization fails to
separate the dataset when the moons are close [cf. Figure
1-(c), bottom]. Classification with a manifold Lipschitz con-
stant constraint is more robust to this change in the data
distribution [cf. Figure 1-(a), bottom].

The advantages of constraining Lipschitz constants on man-
ifolds that we showcase in the synthetic example of Figure 1
manifest in the wild. To illustrate it, we empirically demon-
strate this fact with two physical experiments. The first
experiment entails learning a model for a differential drive
ground robot in a mix of complex terrains. The second
experiment consists of learning a dynamical model for a
quadrotor. In both of these experiments constraining Lips-
chitz constants on manifolds improves upon standard risk
minimization, manifold regularization, and the imposition
of Lipschitz constraints in ambient space.

Global constraints on the manifold gradient yield a statistical
constrained learning problem with an infinite and dense
number of constraints. This is a challenging problem to
approximate and solve. Here, we approach the solution of
this problem in the Lagrangian dual domain and establish
connections with manifold regularization that allow for the
use of point cloud Laplacians. Our contributions include:

(C1) We introduce a constrained statistical risk minimiza-
tion problem in which we learn a function that: (i)
attains a target loss and (ii) attains the smallest possi-
ble manifold Lipschitz constant among functions that
achieve this target loss (Section 2).

(C2) We introduce the Lagrangian dual problem and show
that its empirical version is a statistically consistent
approximation of the primal. These results do not
require the learning parametrization to be linear (Sec-
tion 3.1).

(C3) We generalize results from the manifold regulariza-
tion literature to show that under regularity conditions,
the evaluation of manifold Lipschitz constants can be
recast in a more amenable form utilizing a weighted
point cloud Laplacian (Proposition 3 in Section 3.2).

(C4) We present a dual ascent algorithm to find optimal
multipliers. The function that attains the target loss
and minimizes the manifold Lipschitz constant fol-
lows as a byproduct (Section 3.3).

(C5) We illustrate the merits of learning with global mani-
fold smoothness guarantees with respect to ambient
space and standard manifold regularization through
two physical experiments: (i) learning model mis-
matches in differential drive steering over non-ideal
surfaces and (ii) learning the motion dynamics of a
quadrotor (Section 4).

Related Work

This paper is at the intersection of learning with Lipschitz
constant constraints (Oberman & Calder, 2018; Finlay et al.,
2018b; Couellan, 2021; Pauli et al., 2021; Bungert et al.,
2021; Miyato et al., 2018; Zhao & Liu, 2020; Krishnan
et al., 2020; Shi et al., 2019; Lindemann et al., 2021; Arghal
et al., 2021) and manifold regularization (Belkin et al., 2005;
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Niyogi, 2013; Li et al., 2022; Hein et al., 2005; Belkin &
Niyogi, 2005). Relative to learning with Lipschitz con-
straints, we offer the ability to leverage data manifolds.
Since data manifolds are often obtained from unlabeled
data, as in (Kejani et al., 2020; Belkin & Niyogi, 2004;
Jiang et al., 2019; Kipf & Welling, 2016; Yang et al., 2016;
Zhu, 2005; Lecouat et al., 2018; Ouali et al., 2020; Cabannes
et al., 2021) we also use point-cloud Laplacian techniques
to compute the integral of the norm of the gradient.

Relative to the literature on manifold regularization, we
offer global smoothness assurances instead of an average
penalty of large manifold gradients. Similar to us, (Krishnan
et al., 2020) poses the problem of minimizing a Lipschitz
constant. However, they utilize a softer surrogate (i.e. p-
norm loss) which is a smoother version of the Lipschitz
constant. Their approach therefore, tradeoffs numerical sta-
bility (small p) with accurate Lipschitz constant estimation
(p = ∞). We do not work with surrogates and seek to
minimize the maximum norm of the gradient utilizing an
epigraph technique.

2. Globally Constraining Manifold Lipschitz
Constants

We consider data pairs (x, y) in which the input features
x ∈ M ⊂ RD lie in a compact oriented Riemannian man-
ifold M and the output features are real valued y ∈ R.
We study the regression problem of finding a function
fθ : M → R, parameterized by θ ∈ Θ ⊂ RQ that mini-
mizes the expectation of a nonnegative loss ℓ : R×R→ R+,
where ℓ(fθ(x), y) represents the loss of predicting out-
put fθ(x) when the world realizes the pair (x, y). Data
pairs (x, y) are drawn according to an unknown probabil-
ity distribution p(x, y) onM× R which we can factor as
p(x, y) = p(x)p(y|x).

We are interested in learning smooth functions, i.e. func-
tions with controlled variability over the manifoldM. We
therefore let ∇Mfθ(x) represent the manifold gradient of
fθ and introduce the following definition.

Definition 1 (Manifold Lipschitz Constant) Given a Rie-
mannian manifoldM, the function fθ :M→ R is said to
be L-Lipschitz continuous if there exists a strictly positive
constant L > 0 such that for all pairs of points x1, x2 ∈M,

|fθ(x1)− fθ(x2)| ≤ LdM(x1, x2), (1)

where dM(x1, x2) denotes the distance between x1 and x2

in the manifoldM. If the function fθ is differentiable on the
manifold, (1) is equivalent to requiring the gradient norm

to be bounded by L,

∥∇Mfθ(x)∥ := lim
δ→0

sup
x′∈M : x′ ̸=x,
dM(x,x′)≤δ

|fθ(x)− fθ(x
′)|

dM(x, x′)

≤ L, for all x ∈M. (2)

With Definition 1 in place and restricting attention to differ-
entiable functions fθ, our stated goal of learning functions
fθ with controlled variability over the manifoldM can be
written as

P ∗ = min
θ∈Θ,ρ≥0

ρ, (3)

subject to Ep(x,y)[ℓ (fθ(x), y)] ≤ ϵ,

∥∇Mfθ(z)∥2 ≤ ρ, p(z)-a.e., z ∈M.

In this formulation, the statistical loss Ep(x,y)[ℓ (fθ(x), y)]
is required to be below a target level ϵ. Of all functions
fθ that satisfy this loss requirement, Problem (3) defines
as optimal those that have the smallest Lipschitz constant
L =

√
ρ.

The goal of this paper is to develop methodologies to
solve (3) when the data distribution and the manifold are un-
known. To characterize the distribution, we use N sample
pairs (xn, yn) drawn independently from the joint distri-
bution p(x, y). To characterize the manifold, we use N

′

samples zn drawn from the marginal distribution p(x). This
includes the N samples xn from the (labeled) data pairs
(xn, yn), but may also include additional (unlabeled) sam-
ples zn, n = N + 1, . . . , N +N

′
.

Observe from (3) that the problems of manifold regulariza-
tion (Belkin et al., 2005; Niyogi, 2013; Kejani et al., 2020;
Li et al., 2022) and Lipschitz constant control (Oberman &
Calder, 2018; Finlay et al., 2018b; Couellan, 2021; Finlay
et al., 2018a; Pauli et al., 2021; Krishnan et al., 2020; Shi
et al., 2019; Lindemann et al., 2021; Arghal et al., 2021)
are related. This connection is important to understand the
merit of (3). To explain this better observe that there are
three motivations for the problem formulation in (3): (i) it
is often the case that if samples x1 and x2 are close, then
the conditional distributions p(y | x1) and p(y | x2) are
close as well. A function fθ with small Lipschitz constant
leverages this property, (ii) the Lipschitz constant of fθ is
guaranteed to be smaller than L =

√
ρ, this provides ad-

vantages in, e.g., physical systems where Lipschitz constant
guarantees translates to stability and safety assurances, (iii)
it leverages the intrinsic low-dimensional structure of the
manifoldM embedded in the ambient space. In particular,
this permits taking advantage of unlabeled data.

Motivations (i) and (ii) are tropes of the Lipschitz regulariza-
tion literature; e.g., (Oberman & Calder, 2018; Finlay et al.,
2018b; Couellan, 2021; Finlay et al., 2018a; Pauli et al.,
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2021; Krishnan et al., 2020; Shi et al., 2019; Lindemann
et al., 2021; Arghal et al., 2021). Indeed, the problem for-
mulation in (3) is inspired in similar problem formulations
in which the Lipschitz constant is regularized in the ambient
space,

minimize
θ∈Θ,L≥0

L, (4)

subject to Ep(x,y)[ℓ (fθ(x), y)] ≤ ϵ,

|fθ(w)− fθ(z)| ≤ L ∥w − z∥,
(w, z) ∼ p(w)× p(z).

A key difference between (3) and (4) is that the latter uses
a Lipschitz condition that does not require differentiabil-
ity. A more important difference is that in (4), the Lip-
schitz constant is regularized in the ambient space. The
distance between features w and z in (4) is the Euclidean
distance ∥w − z∥. This is disparate from the manifold
metric dM(w, z) that is implicit in the manifold gradient
constraint in (3). Thus, the formulation in (3) improves
upon (4) because it leverages the structure of the manifold
M [cf. motivation (iii)].

Motivations (i) and (iii) are themes of the manifold regular-
ization literature (Belkin et al., 2005; Niyogi, 2013; Kejani
et al., 2020; Li et al., 2022). And, indeed, it is ready to
conclude by invoking Green’s first identity (see Section 3.2)
that the formulation in (3) is also inspired in the manifold
regularization problem,

minimize
θ∈Θ

Ep(x,y)[ℓ (fθ(x), y)] (5)

+ γ

∫
M
∥∇Mfθ(z)∥2p(z)dV (z).

The difference between (3) and (5) is that the latter adds
the manifold Lipschitz constant as a regularization penalty.
This is disparate from the imposition of a manifold Lipschitz
constraint in (3). The regularization in (5) favors solutions
with small Lipschitz constant by penalizing large Lipschitz
constants, while the constraint in (3) guarantees that the
Lipschitz constant is bounded by

√
ρ. This is the distinction

between regularizing a Lipschitz constant and constraining
a Lipschitz constant. The constraint in (5) is also imposed at
all points in the manifold, whereas the regularization in (5)
is an average over the manifold. Taking an average allows
for large Lipschitz constants at some specific points if this is
canceled out by small Lipschitz constants in other points of
the manifold (Bubeck & Sellke, 2021; Bubeck et al., 2021).
Both of these observations imply that (3) improves upon
(5) because it offers global smoothness guarantees that are
important in, e.g., physical systems [cf. motivation (iii)].

Remark 1 (Manifold Lipschitz formulations) There are
three arbitrary choices in (3): (a) We choose to constrain
the average statistical loss Ep(x,y)[ℓ (fθ(x), y)] ≤ ϵ; (b)

we choose to constrain the pointwise Lipschitz constant
∥∇Mfθ(z)∥2 ≤ ρ; and (c) we choose as our objective to
require a target loss ϵ and minimize the Lipschitz constant
L =

√
ρ. We can alternatively choose to constrain the point-

wise loss ℓ (fθ(x), y) ≤ ϵ, to constrain the average Lipschitz
constant

∫
M ∥∇Mfθ(z)∥2p(z)dV (z) ≤ ρ [cf (5)], or to re-

quire a target smoothness L =
√
ρ and minimize the loss

ϵ. All of the possible eight combinations of choices are of
interest. We formulate (3) because it is the most natural in-
tersection between the regularization of Lipschitz constants
in ambient spaces [cf. (4)] and manifold regularization [cf.
(5)]. The techniques we develop in this paper can be adapted
to any of the other seven alternative formulations.

3. Learning with Global Lipschitz Constraints
Problem (3) is a constrained learning problem that we will
solve in the dual domain (Chamon & Ribeiro, 2020). To
that end, observe that (3) has statistical and pointwise con-
straints. The loss constraint Ep(x,y)[ℓ (fθ(x), y)] ≤ ϵ is said
to be statistical because it restricts the expected loss over
the data distribution. The Lipschitz constant constraints
∥∇Mfθ(z)∥2 ≤ ρ are said to be pointwise because they
are imposed for all individual points in the manifold except
perhaps for a set of zero measure. Consider then a La-
grange multiplier µ associated with the statistical constraint
Ep(x,y)[ℓ (fθ(x), y)] ≤ ϵ and a Lagrange multiplier distri-
bution λ(z) associated with the set of pointwise constraints
∥∇Mfθ(z)∥2 ≤ ρ. We define the Lagrangian L(θ, µ, λ)
associated with (3) as

L(θ, µ, λ) :=µ
(
E[ℓ
(
fθ(x), y

)
]− ϵ

)
+

∫
M

λ(z)∥∇Mfθ(z)∥2p(z)dV (z). (6)

The dual problem associated with (3) can then be written as

D∗ = max
µ,λ≥0

min
θ

L(θ, µ, λ), (7)

subject to
∫
M

λ(z)p(z)dV (z) = 1.

We point out that in (7) we remove ρ from the La-
grangian by incorporating the dual variable constraint∫
M λ(x)p(x)dV (x) = 1 (see Appendix A for details).

We henceforth use the dual problem (7) in lieu of (3).
Since we are interested in situations in which we do not
have access to the data distribution p(x, y), we further
consider empirical versions of (7). Given N i.i.d. sam-
ples (xn, yn) drawn from p(x, y), define the empirical La-
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grangian L̂(θ, µ̂, λ̂) as

L̂(θ, µ̂, λ̂) :=µ̂

(
1

N

N∑
n=1

ℓ
(
fθ(xn), yn

)
− ϵ

)

+
1

N ′

N
′∑

n=1

λ̂(zn)∥∇Mfθ(zn)∥2. (8)

and the empirical dual problem as

D̂⋆ = max
µ̂,λ̂≥0

min
θ

L̂(θ, µ̂, λ̂) (9)

subject to
1

N

N∑
n=1

λ̂(xn) = 1.

To simplify notation, we assume from now on that no unla-
beled samples are available. If unlabeled samples are given,
the modification is straightforward (see Appendix B).

The remainder of this section provides three technical con-
tributions:

In section 3.1 we address contribution C2: To justify the use
of (9) we must show statistical consistency with respect to
the primal problem (3). This is challenging for two reasons:
(i) since we do not assume the use of a linear parameteriza-
tion, (3) is not a linear problem in θ. Thus, the primal (3)
and dual (7) are not necessarily equivalent, (ii) since we are
maximizing over the dual variables µ and λ(z), we do not
know if the empirical dual formulation in (9) is close to the
statistical dual formulation in (7). We overcome these two
challenges and show that the empirical dual problem (9) is
a consistent approximation of the statistical primal problem
(Proposition 1).

In section 3.2 we address contribution C3: Solv-
ing (9) requires evaluating the gradient norm sum∑N

n=1 λ̂(xn)∥∇Mfθ(xn)∥2. We will generalize results
from the manifold regularization literature to show that
under regularity conditions on λ, the gradient norm inte-
gral can be computed in a more amenable form utilizing a
weighted point-cloud Laplacian (Proposition 3). (Contribu-
tion C3).

In section 3.3 we address contribution C4: We introduce a
primal-dual algorithm to solve (9).

3.1. Statistical consistency of the empirical dual problem

In this section, we show that (9) is close to (3) under the
following assumptions:

Assumption 1 The loss ℓ(·, y) is M -Lipschitz continuous,
[0, B]-valued, and convex for all y ∈ R.

Assumption 2 Let H = {fθ | θ ∈ Θ} with compact Θ ⊂
RQ be the hypothesis class and let H̄ = conv(H) be the

closure of its convex hull. For each ν > 0 and φ ∈ H̄, there
exists θ ∈ Θ such that simultaneously supz∈M |φ(z) −
fθ(z)| ≤ ν and supz∈M ∥∇Mφ(z)−∇Mfθ(z)∥ ≤ ν.

Assumption 3 The functions in the hypothesis classH sat-
isfy ∥∇Mfθ1(z)−∇Mfθ2(z)∥ ≤ G|fθ1(z)− fθ2(z)|, for
all θ1, θ2 ∈ Θ.

Assumption 4 There exists ζ(N, δ) ≥ 0, and ζ̂(N, δ) ≥ 0
monotonically decreasing with N , such that with probabil-
ity 1− δ over independent draws (xn, yn) ∼ p,∣∣∣∣E[ℓ (fθ(x), y)]− 1

N

N∑
n=1

ℓ
(
fθ(xn), yn

)∣∣∣∣ ≤ ζ(N, δ),

∣∣∣∣E[fθ(x)]− 1

N

N∑
n=1

fθ(xn)

∣∣∣∣ ≤ ζ̂(N, δ), (10)

for all θ ∈ Θ and all distributions p.

Assumption 5 There exists a feasible solution θ̃ ∈ Θ such
that E[ℓ(fθ̃(x), y)] < ϵ−Mν.

Assumption 1 holds for most losses utilized in practice.
Assumption 2 is a requirement on the richness of the
parametrization. In the particular case of neural networks,
the covering constant ν is upper bounded by the universal
approximation bound of the neural network. Assumption 3
also holds for neural networks with smooth nonlinearities
– e.g., hyperbolic tangents. The uniform convergence prop-
erty (10) is customary in learning theory to prove PAC learn-
ability and is implied by bounds on complexity measures
such as VC dimension or Rademacher complexity (Mohri
et al., 2018; Vapnik, 1999; Shalev-Shwartz & Ben-David,
2014). In fact, if it has bounded Rademacher complexity,
both ζ and ζ̂ are bounded due to Assumption 1. The follow-
ing proposition provides the desired bound.

Proposition 1 Let µ̂⋆, λ̂⋆ be solutions of the empirical dual
problem (9). Under assumptions 1–5, there exists θ̂⋆ ∈
argminθ L̂(θ, µ̂

⋆, λ̂⋆) such that, with probability 1− 5δ,

|P ⋆ − D̂⋆| ≤ O(ν) + (1 + ∆)ζ(N, δ) +O(ζ̂(N, δ)),
(11)

where ∆ = max(µ̂⋆, µ⋆) < ∞ and µ⋆, µ̂⋆ are solutions
of (7), (9) respectively.

Proposition 1 shows that the empirical dual problem 9 is
statistically consistent. That is to say, for any draw of N
samples according to p, the difference between the empir-
ical dual problem (9) and the statistical smooth learning
problem (3) decreases as N increases. This difference is
bounded in terms of the richness of the parametrization (ν),
the difficulty of the fit requirement (as expressed by the opti-
mal dual variables µ⋆, µ̂⋆), and the number of samples (N ).
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The guarantee has a form typical for constrained learning
problems (Chamon et al., 2023). Proposition 1 states that
we are able to predict what is the minimum norm of the
gradient that a function class can have while achieving an
expected loss of at most ϵ. This is important because we do
not require access to the distribution p, only a set of N sam-
ples from this distribution. On the other hand, Proposition 1
does not state that by solving the dual problem (9) we will
obtain a solution of the primal problem (3). The following
proposition provides a bound on the near feasibility of the
solution of (9) with respect to the solution of (3).

Proposition 2 Let µ̂⋆, λ̂⋆ be solutions of the empirical dual
problem (9). Under assumptions 1–5, there exists θ̂⋆ ∈
argminθ L̂(θ, µ̂

⋆, λ̂⋆) such that, with probability 1− 5δ,

max
n∈[N ]

∥∇Mfθ̂⋆(xn)∥2 ≤P ∗ +O(ν) + (1 + ∆)ζ(N, δ)

+O(ζ̂(N, δ)) (12)

+ µ̂∗
∣∣∣∣ 1N

N∑
n=1

ℓ(fθ̂∗(xn), yn)− ϵ

∣∣∣∣
and E[ℓ(fθ̂⋆(x), y)] ≤ϵ+ ζ(N, δ). (13)

where ∆ = max(µ̂⋆, µ⋆) < ∞ and µ⋆, µ̂⋆ are solutions
of (7), (9) respectively.

Proposition 2 provides near optimality and near feasibility
conditions for solutions θ̂∗ obtained through the empirical
dual problem (9). The difference between the maximum
gradient of the obtained solution θ and the optimal value
P ∗ is bounded by the number of samples N as well as
the empirical constraint violation. Notice that even though
the optimal dual variable µ̂ is not known, the constraint
violation can be evaluated in practice as it only requires to
evaluate the obtained function over the N given samples.

Remark 2 (Interpolators) In practice, the number of pa-
rameters in a parametric function (e.g., Neural Network)
tends to exceed the dimension of the input, which allows
functions to interpolate the data, i.e., to attain zero loss
on the dataset. Proposition 2 presents a connection to
interpolating functions. By setting ϵ = 0, if the func-
tion achieves zero error over the empirical distribution i.e.
ℓ(fθ̂∗(xn), yn) = 0, for all n ∈ [N ], then the dependency
on µ∗ disappears. This implies that within the classifiers
that interpolate the data, the one with the minimum Lips-
chitz constant over the available samples will probably be
the one with the minimum Lipschitz constant.

3.2. From Manifold Gradient to Discrete Laplacian

We derive an alternative way of computing the integral of
the norm of the gradient utilizing samples. To do so, we
define the normalized point-cloud Laplacian according a
probability distribution λ.

Definition 2 (Point-cloud Laplacian) Consider a set of
points x1, . . . , xN ∈ M, sampled according to the den-
sity λ :M → R. The normalized graph Laplacian of fθ
at z ∈M is defined as

Lt
λ,Nfθ(z) =

1

N

N∑
n=1

W (z, xn)
(
fθ(z)− fθ(xn)

)
, (14)

for W (z, xn) =
1

t

Gt(z, xn)√
ŵ(z)Ŵ (xn)

,

with Gt(z, xn) =
1

(4πt)d/2
e−

∥z−xn∥2
4t ,

ŵ(z) =
1

N

N∑
n=1

Gt(z, xn),

and Ŵ (xn) =
1

N − 1

∑
m ̸=n

Gt(xm, xn).

As long as the function considered is smooth enough, the
following convergence result holds:

Proposition 3 (Point-Cloud Estimate) Let Λ be the set of
probability densities defined on a compact d-dimensional
differentiable manifoldM isometrically embedded in RD

such that Λ = {λ : 0 < a ≤ λ(z) ≤ b < ∞, |∂λ∂x | ≤ c <

∞ and |∂
2λ

∂x2 | ≤ d < ∞ for all z ∈ M}, and let fθ, with
θ ∈ Θ, be a family of functions with uniformly bounded
derivatives up to order 3 vanishing at the boundary ∂M.
For any ϵ > 0, δ > 0, there exists N

′
, N such that

P

[
sup

λ∈Λ,θ∈Θ

∣∣∣∣ ∫ ∥∇Mfθ(z)∥2λ(z)dV (z)

− 1

N

N∑
i=1

fθ(zi)L
t
λ,N ′ fθ(zi)λ(zi)

∣∣∣∣ > ϵ

]
≤ δ

(15)

where the point-cloud Laplacian Lt
λ,N ′ fθ is as in Definition

2, with t = N
′− 1

d+2+α for any α > 0.

The proof of Proposition 3 relies on two steps. First, we
relate the integral of the norm of the gradient over the man-
ifold with the integral of the continuous Laplace-Beltrami
operator by virtue of Green’s identity. Second, we approx-
imate the value of the Laplace-Beltrami operator by the
point-cloud Laplacian. Proposition 3 connects the integral
of the norm of the gradient of function fθ with a point-cloud
Laplacian operator. This result connects the dual problem
(9), with the primal (3) while allowing for a more amenable
way of computing the integral.

Remark 3 (Laplacian Regularization) The dual prob-
lem (7) is closely related to the manifold regularization
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problem (5). In particular, the two become equivalent by
substituting ρ = µ−1 and utilizing a uniform distribution
for λ. The key difference between the problems is given by
the dual variable λ, which can be thought as a probability
distribution over the manifold that penalizes regions of the
manifold where the norm of the gradient of fθ is larger. The
standard procedure in Laplacian regularization is to cal-
culate the graph-Laplacian of the set of points L utilizing
the heat kernel and compute the integral by fTLf , where
f = [fθ(x1), . . . , fθ(xn)]

T . In the case of Manifold Lips-
chitz, the same product can be computed, but utilizing the
re-weighted point-cloud laplacian.

3.3. Dual Ascent Algorithm

We outline an iterative and empirical primal-dual algo-
rithm to solve the dual problem. Upon the initialization
of θ0, λ0 and µ0, we set out to minimize the dual function
using,

θk+1 = θk − ηθ∇θL(θk, µk, λk), (16)

where ηθ is a positive stepsize. Note that to compute (16),
we can either utilize the gradient version of the La-
grangian (9) or the point-cloud Laplacian (15). Consequent
to updating θ, we update the dual variables by

µk+1 =

[
µk + ηµ

(
1

N

N∑
n=1

ℓ(fθ(xn), yn)− ϵ

)]
+

,

(17)

λ̃k+1(xn) = λk(xn) + ηλ∥∇Mfθ(xn)∥2, n = 1, . . . , N
(18)

λk+1 = argmin
λ
∥λ̃k+1 − λk+1∥, (19)

subject to
N∑

n=1

λk+1(xn) = N,

where ηµ, ηλ are again a positive stepsize. Note that we
require a convex projection over λ̃ to satisfy the normalizing
constraint. In step (18), we need to estimate the norm of the
gradient at data point xn, which we do using neighboring
data points. Intuitively, the primal-dual procedure increases
the value of λ(xn) at points in which the norm of the gra-
dient is larger. The role of µ is to enforce the loss ℓ to be
smaller than ϵ, by adjusting the relative importance of the
loss ℓ over the norm of the integral (see Appendix F).

4. Experiments
To demonstrate the effectiveness of our method, we conduct
two real world experiments with physical systems. In Sec-
tion 4.1, we tackle a regression problem in which we try to
predict the error made when estimating the state of a ground
robot making turns in both pavement and grass. In Section

4.2 we learn the dynamics of a quadrotor when taking off
and making circles in open air. In both experiments, data is
acquired from real world robots and we compare our method
against standard Empirical Risk Minimization (ERM), Am-
bient Regularization, and Manifold Regularization.

4.1. Ground Robot Error Prediction

In this experiment, we seek to learn the error that a model
would make in predicting the dynamics of a ground robot by
looking at the states throughout a trajectory (Koppel et al.,
2016). The data acquisition of this experiment involves an
iRobot Packbot equipped with high resolution camera. The
setting of the data acquisition is a robot making turns on
both pavement and grass. The dynamics of the system are
govern by the discrete-time nonlinear state-space system

xk+1 = f(xk, uk) + g(uk), (20)

where xk is the state of the system, uk is the control input,
f(xk, uk) is the model prediction, and g(uk) is the non-
modelable error of the prediction. In this setting, the robot
state involves the position and the control inputs are linear
and angular velocities. The dynamics of the system are mod-
eled by f(xk, uk) and they involve the mass of the robot,
the radius of the wheel, and other known parameters of the
robot. In practice, the model f(xk, uk) is not perfect and the
model mismatch is given by the difference in friction with
the ground, delays in communications with the sensors, and
discrepancies in the robot specifications. To make matters
worse, some of the discrepancies are difficult to model or
intractable to compute in practice.

We possess trajectories in the form of time series of the con-
trol signals, i.e., linear and angular velocity of the robot. For
each trajectory, the average and variance of the mismatch
between the real and the model-predicted states is quantified.
Given a dataset of trajectories and errors made by the model,
the objective is to predict the error that the model will make
on a given trajectory.

In order to construct the point-cloud Laplacian, we mea-
sured the euclidean distance between samples and computed
(14). In this case we added a threshold, i.e. minimum mag-
nitude of Lij below which the value of Lij becomes 0. This
is to disregard the effect of samples that are far away, by
only considering neighborhoods of each sample. By doing
this we are constructing a manifold in which samples that
are sufficiently close will be forced to have similar outputs.
However, if samples are not sufficiently close, the similarity
between the outputs of the function will not be forced to
be small (to exemplify this point we have a toy example in
Appendix G.5). The manifold in this case is constructed by
time series that are sufficiently similar to each other. For
further details of the experiment and sample trajectories can
be found in Appendix G.2.
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Method Grass Pavement

ERM 0.42 0.0120
Ambient Regularization 0.31 0.0065
Manifold Regularization 0.38 0.0045
Manifold Lipschitz (ours) 0.25 0.0032

Table 1: Error prediction accuracy for the Ground Robot
Experiment.

As seen on Table 1, regularization improves the accuracy
over the standard ERM framework. This is related to the
fact that given that the underlying predictive model is the
same in all trajectories, similar trajectories will have similar
errors. However, our method improves upon both regular-
ization techniques. This is related to the idea that between
experiments only the velocities change (the environment is
fixed), so we can intuitively imagine a continuous transition
in the error made by the model. This explains why our
method (Manifold Lipschitz) by forcing the function to be
smooth over the trajectory space is significantly better in
both experiments. Our method also improves upon Ambi-
ent regularization because the euclidean distance is able to
approximate the distance on the manifold locally, but it is
not able to approximate it globally. For a better clarification
on this last point see Appendix G.5. In all, in this experi-
ment we show that our method improves the generalization
capabilities of a function.

4.2. Quadrotor Model Mismatch

In this section introduce a state prediction problem based
real world dynamics. The setting consists of a quadrotor
taking off and flying in circles for 12 seconds.

0.2
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5.2
0.0
0.1

0.2

0.3

0.4

0.5

Training Trajectory
Test Trajectory

Figure 2: Quadrotor Sample Trajectories

The experimental setup is to target a speed of 0.4m/s and
to track a circular trajectory of radius 0.5m. We con-
sider 2 trajectories of 12 seconds each, and the starting
position of the quadrotor is the same for both trajecto-

Method Error on Test Trajectory

ERM 0.00666
Ambient Regularization 0.00734
Manifold Regularization 0.00625
Manifold Lipschitz (ours) 0.00036

Table 2: State prediction error of a quadrotor flying in circles
on an unseen trajectory.

ries (the ground). For each time stamp t, we have mea-
surements of position, velocity and acceleration in R3, i.e.
[xt, yt, zt, ẋt, ẏt, żt, ẍt, ÿt, z̈t].

For the learning procedure we utilize the 6000 samples, and
we seek to minimize the mean square error loss between
the next state and the prediction given the current state. We
train a two layer neural network with different methods as
seen in Table 2. To test the accuracy of the learned function,
we compute the difference between the predicted state and
the next state on the test trajectory.

Analogous to experiment 4.1, to construct the point-cloud
Laplacian, we compute the euclidean distances in a neigh-
borhood of each sample. Intuitively, by looking at the tra-
jectories 2, we can expect next states to be similiar only on
samples that are sufficiently close. The euclidean distance
is able to approximate the manifold locally but fails when
it is too large. By looking at Figure 2 we can see that even
though the training and testing trajectories are not the same,
there is a close resemblance between the two of them. This
allows a manifold model to be effective in predicting the
next state. However, by looking at the results in Table 2,
we see that adding regularization does not always help, as
ambient regularization does not improve upon ERM. This is
related to the fact that the simple euclidean distance is not
necessarily a good measure of the how related two states
are. Instead, one conclusion of the results shown in Table 2
is that adding regularization on the manifold space always
improves upon ERM. In particular, our method give perfor-
mance an order of magnitude better than standard ERM and
standard Laplacian Regularization. This is a consequence
of adding extra information about the problem by group-
ing similar states together, which reduces the impact of the
noise in a particular sample. To conclude, we show that our
method obtains an improvement over all the techniques con-
sidered and that by predicting the next state of a quadrotor
from the current state utilizing smooth functions improves
generalization for noisy measurements.

5. Conclusion
In this work, we presented a constraint learning method to
obtain smooth functions over manifold data. We showed
that under mild conditions, the problem of finding smooth

8



Learning Globally Smooth Functions on Manifolds

functions over a manifold can be reformulated as a weighted
point-cloud Laplacian penalty over varying probability dis-
tributions whose dynamics are govern by the constraint
violations. Two experiments on real world data validate
the empirical advantages of obtaining functions that vary
smoothly over the data.
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A. Dual Problem Formulation
In Section 3 we introduce the optimization program in (7) as the dual of (3). Strictly speaking (7) is equivalent to the actual
dual problem of (3). This follows from a ready reformulation of the dual problem as we show in the following proposition.

Proposition 4 The optimization program in (7) is equivalent to the Lagrangian dual of (3).

Proof: The result is true because the dual problem is linear in ρ. To see this, recall that µ is the dual variable associated
with the statistical constraint Ep(x,y)[ℓ (fθ(x), y)] ≤ ϵ and that λ(z) is the Lagrange multiplier distribution associated with
the set of pointwise constraints ∥∇Mfθ(z)∥2 ≤ ρ. The Lagrangian L̃(ρ, θ, µ, λ) of (3) is therefore written as

L̃(θ, ρ, µ, λ) =ρ+ µ

(
E[ℓ (fθ(x), y)]− ϵ

)
+

∫
M

λ(z)

(
∥∇fθ(z)∥2 − ρ

)
p(z)dV (z) (21)

Reorder terms in (21) to group the two summands that involve ρ to write

L̃(θ, ρ, µ, λ) =ρ

(
1−

∫
λ(z)p(z)dV (z)dz

)
+ µ

(
Ep(x,y)[ℓ (fθ(x), y)]− ϵ

)
+

∫
λ(z)∥∇Mfθ(z)∥2p(z)dV (z). (22)

An important observation to make is that the Lagrangian decomposes in a term that involves only ρ and a term that involves
only fθ. Define then

L̃1(ρ, λ) := ρ

(
1−

∫
λ(z)p(z)dV (z)dz

)
,

L̃2(θ, µ, λ) := µ

(
Ep(x,y)[ℓ (fθ(x), y)]− ϵ

)
+

∫
λ(z)∥∇Mfθ(z)∥2p(z)dV (z), (23)

so that we can write the Lagrangian in (22) as L̃(θ, ρ, µ, λ) = L̃1(ρ, λ) + L̃2(θ, µ, λ).

The dual problem can now be written as the maximization over multipliers of the minimum of the Lagrangian over primal
variables

D̃∗ = max
µ,λ

min
θ,ρ
L̃(ρ, θ, µ, λ)

= max
µ,λ

[
min
ρ
L̃1(ρ, µ, λ) + min

θ
L̃2(θ, µ, λ)

]
. (24)

where we utilized the decomposition of the Lagrangian to write the second equality.

The important observation to make is that the minimization over ρ of L̃1(ρ, µ, λ) has an elementary solution. Indeed, as per
its definition we have

min
ρ
L̃1(ρ, µ, λ) = min

ρ
ρ

(
1−

∫
λ(z)p(z)dV (z)dz

)
. (25)

This minimization yields −∞ when
∫
λ(z)p(z)dV (z)dz ̸= 1 and 0 when

∫
λ(z)p(z)dV (z)dz = 1. Since in the dual

problem we are interested in the maximum over all dual variables, we know that: (i) The maximum will be attained for
a dual distribution that satisfies

∫
λ(z)p(z)dV (z)dz = 1. (ii) When dual variables satisfy this property we know that

minρ ρ(1−
∫
λ(z)p(z)dV (z)dz) = 0. It then follows that the dual problem in (24) is equivalent to

D̃∗ =max
µ,λ

min
θ
L̃2(θ, µ, λ),

subject to
∫
M

λ(z)p(z)dV (z) = 1. (26)

This is the problem in (7) given the definition of L̃2(θ, µ, λ) in (23) which is the same as the definition of L(θ, µ, λ) in (7).
■
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□

Notice that the constraint
∫
M λ(z)p(z)dV (z) = 1 implies that λ(z) is a probability distribution over the manifoldM. This

is an important observation for the connections we establish to manifold regularization in Section 3.2. It also implies that
even though the dual problem 7 is not an unconstrained problem, the constraint is easy to enforce as an orthogonal projection
on the space of probability distributions over the manifoldM. This is a simple normalization.

B. Empirical Dual Problem with unlabeled samples
In Section 3 we introduce the empirical dual program in (9) in the case in which unlabeled samples are unavailable. The
ability to leverage unlabeled samples is an important feature of this work and ready to incorporate in (9). Indeed, if in
addition to N i.i.d. labeled samples (xn, yn) with N ∈ [1, N ] drawn from p(x, y) we are also given N

′
i.i.d. unlabeled

samples xn with n ∈ [N + 1, N +N
′
] drawn from the input distribution p(x) we redefine (9) as

D̂⋆= max
µ̂,λ̂≥0

min
θ

L̂(θ, µ̂, λ̂) := µ̂

(
1

N

N∑
n=1

ℓ
(
fθ(xn), yn

)
− ϵ

)
+

1

N+N ′

N+N
′∑

n=1

λ̂(xn)∥∇Mfθ(xn)∥2,

subject to
1

N +N ′

N+N
′∑

n=1

λ̂(xn) = 1, (27)

Results in Section 3 hold with proper modifications.

C. Proof of Proposition 1
The proof in this appendix is a generalization of the proof in (Chamon et al., 2023). In order to show Proposition 1, we need
to introduce an auxiliary problem formulation over a functional domain of functions. In this case, we take the optimization
problem (3) over the convex hull of the domain of parametric functions ϕ ∈ H̄,

P̃ ∗
α = min

ϕ∈H̄,ρ≥0
ρ, (28)

subject to Ep(x,y)[ℓ (ϕ(x), y)] ≤ ϵ−Mα,

∥∇Mϕ(z)∥2 ≤ ρ, p(z)-a.e., z ∈M.

We can now show that problem (28) with α = ν is strongly dual as follows,

Lemma 1 Under the assumptions of Proposition 1, the functional smooth learning problem (28) with α = ν has zero
duality gap, i.e. P̃ ∗

ν = D̃∗
ν .

Proof Lemma 1: To begin with, the non-parametric space H̄ is convex as it is the convex hull of the space of parametric
functionsH, therefore the domain of the optimization problem is a convex set. Note that the objective is linear. Given that
the gradient of ϕ is a linear function of ϕ, and that by taking the norm we preserve convexity, the constraint ∥∇Mϕ(z)∥2 ≤ ρ
is convex. By Assumption 1, the loss ℓ is convex. Therefore, (3) is a semi-infinite convex problem. Moreover, since θ̃
from Assumption 5 belongs to the relative interior of the feasible set, andH ⊂ Ĥ, it suffices to take ϕ†(·) = f(θ̃, ·), and
ρ† > supz∈M ||∇Mfθ̃(z)||2, and by Slater’s condition as ϕ†, ρ† belongs to the interior of the feasible domain, problem
(28) has zero duality gap, i.e. it is strongly dual.

Now we need to define the supergradient of function d(µ, λ).

Definition 3 (Supergradient and Superdifferential) We say that c ∈ R is a supergradient of d at µ if,

d(µ
′
) ≤ d(µ) + c(µ

′
− µ) for all µ

′
∈ R. (29)

The set of all supergradients of d at µ is called the superdifferential, and we denote it ∂d(µ).

Lemma 2 (Danskin’s Theorem) Consider the function,

F (x) = sup
y∈Y

f(x, y). (30)

13
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where f : Rn × Y → R ∪ {−∞,+∞}, if the following conditions are satisfied

1. Function f(·, y) is convex for all y ∈ Y .

2. Function f(x, ·) is upper semicontinuous for all x in a certain neighborhood of a point x0.

3. The set Y ⊂ Rm is compact

Then,

∂F (x0) = conv

(
∪

y∈Ŷ (x0)
∂xf(x0, y)

)
(31)

where ∂xf(x0, y) denotes the subdifferential of the function f(·, y) at x0

Proof of Lemma 2: The proof can be found in (Ruszczynski, 2011)[Theorem 2.87].

Lemma 3 Let µ∗, λ∗ be a solution of dual problem D∗ (cf. (7)). Under the conditions of Proposition 1, there exists a
feasible θ† ∈ argminθ L(θ, µ∗, λ∗), such that the value D∗ is bounded by,

P ∗ − ν(µ∗
νM − 2

√
P̃ ∗
ν − ν) ≤ D∗ ≤ P ∗ (32)

where P̃ ∗
ν and µ∗

ν are the optimal value, and optimal dual variable of the functional version of problem (28) with constraint
α = ν.

Proof: First, we need to show that P ∗ is finite, which is equivalent to showing that there is a feasible θ ∈ Θ for problem
(3), which is verified by Assumption 4.

Now, we need to verify that there exists a Lagrangian minimizer θ† ∈ Θ†(µ∗, λ∗) that is feasible. To do so, We begin by
considering the set of Lagrange minimizers Θ†(µ∗, λ∗) as follows,

Θ†(µ∗, λ∗) = argmin
θ

L(θ, µ∗, λ∗) (33)

we can also define the constraint slack associated with parameters θ as follows,

c(θ) = [E[ℓ(fθ(x), y)]− ϵ]+. (34)

Therefore, to show that there exists a feasible solution, it is analogous to show that there is an element θ† of Θ†(µ̌∗, λ∗)
whose slack is equal to zero, i.e. c(θ†) = 0. To show that this element exists, by contradiction, we can say that if no element
of Θ(µ∗, λ∗) is feasible, then E[ℓ(fθ(x), y)]− ϵ > 0, for all θ ∈ Θ(µ∗, λ∗). From Lemma 2, we get that 0 /∈ ∂Θ†(µ∗, λ∗),
which contradicts the optimality of µ∗, λ∗. Given that the dual variable µ∗ is finite, considering the existence of a feasible
solution by Assumption 2. Hence, there must be at least one element of Θ(µ∗, λ∗) that is feasible.

Now we need to show that the inequality (32) holds. The upper bound is trivially verified by weak duality (Boyd et al.,
2004), i.e.,

D∗ ≤ P ∗ (35)

Now note that problem (28) with α = 0 is strongly dual by Lemma 1, i.e.,

P̃ ∗
ν = min

ϕ
maximize

µ,λ≥0
L̃ν(ϕ, µ, λ) = maximize

µ,λ≥0
min
ϕ

L̃ν(ϕ, µ, λ) = D̃∗
ν (36)

with the Lagrangian defined as,

L̃ν(ϕ, µ, λ) = µ
(
E[ℓ
(
ϕ(x), y

)
]− (ϵ−Mν)

)
+

∫
M

λ(x)∥∇Mϕ(x)∥2p(x)dV (x)),

for all λ that satisfy
∫
M

λ(x)p(x)dV (x) = 1,
(37)
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Coming back to the parametric dual problem (7), by optimality we know that,

D∗ ≥ min
θ∈Θ

L(θ, µ, λ), for all µ, λ. (38)

We thus utilize the optimal dual variables of the functional problem with constraints ϵ−Mν, i.e., µ∗
ν , λ

∗
ν , as follows,

D∗ ≥ min
θ∈Θ

L(θ, µ∗
ν , λ

∗
ν) (39)

≥ min
ϕ∈H̄

L(ϕ, µ∗
ν , λ

∗
ν) (40)

≥ min
ϕ∈H̄

L̃ν(ϕ, µ
∗
ν , λ

∗
ν)− µ∗

νMν (41)

= P̃ ∗
ν − µ∗

νMν. (42)

Equation (39) holds given thatH ⊆ H̄, and problem P ∗
ν is strongly dual by Lemma 1. To complete the proof we need to

show that,

P̃ ∗
ν ≥ P ∗ − 2ν

√
P̃ ∗
ν − ν2. (43)

Denoting ϕ∗
ν a solution to problem P ∗

ν , by Assumption 2, we know there is a parameterization θ̃∗ν such that simultaneously,

sup
z∈M

|ϕ∗
ν(z)− fθ̃∗

ν
(z)| ≤ ν (44)

sup
z∈M

∥∇Mϕ∗
ν(z)−∇Mfθ̃∗

ν
(z)∥ ≤ ν (45)

therefore, ∣∣∣E[ℓ(ϕ∗
ν(x), y)]− E[ℓ(fθ̃∗

ν
(x), y)]

∣∣∣ ≤ E
[
|ℓ(ϕ∗

ν(x), y)]− ℓ(fθ̃∗
ν
(x), y)|

]
(46)

≤ME
[
|ϕ∗

ν(x)− fθ̃∗
ν
(x)|

]
≤Mν (47)

Since ϕ∗
ν is feasible for Pν , this implies that fθ̃∗

ν
is feasible for Problem 3. We can now define the ρ∗

θ̃∗
ν

as the minimum ρ

obtained with fθ̃∗
ν

as follows,

P ∗
ν = min

ρ≥0
ρ, (48)

subject to Ep(x,y)[ℓ
(
fθ̃∗

ν
(x), y

)
] ≤ ϵ,

∥∇Mfθ̃∗
ν
(z)∥2 ≤ ρ, p(z)-a.e., z ∈M.

Returning to (39), and by optimality, P ∗ ≤ P ∗
ν ,

D∗ ≥ P̃ ∗
ν − µ∗

νMν (49)

≥ P̃ ∗
ν + P ∗ − P ∗

ν − µ∗
νMν (50)

Now we need to bound the difference P̃ ∗
ν − P ∗

ν . By compactness ofM, we know that there exist z1, z2 ∈ M such that
∥∇Mϕ∗

ν(z1)∥2 = P̃ ∗
ν and ∥∇Mfθ̃∗

ν
(z2)∥2 = P ∗

ν , by optimality,

P̃ ∗
ν − P ∗

ν = ∥∇Mϕ∗
ν(z1)∥2 − ∥∇Mfθ̃∗

ν
(z2)∥2 (51)

≥ ∥∇Mϕ∗
ν(z2)∥2 − ∥∇Mfθ̃∗

ν
(z2)∥2 (52)

Now we can add a subtract ∇Mϕ∗
ν(z2) to the second term, and use the triangle inequality twice to obtain

∥∇Mϕ∗
ν(z2)∥2 − ∥∇Mfθ̃∗

ν
(z2)∥2 ≥ ∥∇Mϕ∗

ν(z2)∥2 − (∥∇Mfθ̃∗
ν
(z2)−∇Mϕ∗

ν(z2)∥+ ∥∇Mϕ∗
ν(z2)∥)

(∥∇Mfθ̃∗
ν
(z2)−∇Mϕ∗

ν(z2)∥+ ∥∇Mϕ∗
ν(z2)∥) (53)

= −∥∇Mfθ̃∗
ν
(z2)−∇Mϕ∗

ν(z2)∥2 − 2∥∇Mfθ̃∗
ν
(z2)−∇Mϕ∗

ν(z2)∥∥∇Mϕ∗
ν(z2)∥

(54)
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Now, by noting that ∥∇Mfθ̃∗
ν
(z2)−∇Mϕ∗

ν(z2)∥2 ≤ ν2 by construction of θ̃∗ν , and that ∥∇Mϕ∗
ν(z2)∥ ≤

√
P̃ ∗
ν by optimality,

we end up obtaining,

P̃ ∗
ν − P ∗

ν ≥ −2ν
√

P̃ ∗
ν − ν2 (55)

Putting (50) and (55) together, we attain the desired result.

Proof of Proposition 1:

This proof follows the lines of (Chamon et al., 2023)[Proposition III.4]. We begin by considering µ∗, λ∗, and µ̂∗, λ̂∗,
solutions of (7), and (9), and we define the set of optimal dual minimizers as,

Θ(µ∗, λ∗) = argmin
θ∈Θ

L(θ, µ∗, λ∗) (56)

Θ̂(µ̂∗, λ̂∗) = argmin
θ∈Θ

L̂(θ, µ̂∗, λ̂∗) (57)

where L, and L̂ are as defined in 7, and 9. We can proceed to bound the difference between the values of the dual problems
as follows,

D∗ − D̂∗ = min
θ∈Θ

L(θ, µ∗, λ∗)−min
θ∈Θ

L̂(θ, µ̂∗, λ̂∗) (58)

≤ min
θ∈Θ

L(θ, µ∗, λ∗)−min
θ∈Θ

L̂(θ, µ∗, λ̄∗) (by optimality) (59)

≤ L(θ̂†, µ∗, λ∗)− L̂(θ̂†, µ∗, λ̄∗) (60)

where [λ̄∗(z)]n = λ∗(zn)/
∑N

n=1 λ
∗(zn), and we define θ̂† ∈ Θ̂(µ∗, λ̄∗). By utilizing the definition of the Lagrangian, we

obtain,

D∗ − D̂∗ ≤ |µ∗|
∣∣∣∣E[ℓ(fθ̂†(x), y)]−

1

N

N∑
i=1

ℓ(fθ̂†(xn), yn)

∣∣∣∣ (61)

+

∣∣∣∣Ez∼λ∗ [∥∇Mfθ̂†(z)∥2]−
1

N

N∑
n=1

λ̄∗(zn)∥∇Mfθ̂†(zn)∥2
∣∣∣∣ (62)

Note that the sampled dual variables converge to the continuous values as follows,

lim
N→∞

λ∗(z)
1
N

∑N
n=1 λ

∗(zn)
= λ∗(z) (63)

Given that limN→∞
1
N

∑N
n=1 λ

∗(zn) = 1.

Utilizing the same argument on the other direction of the inequality it yields,

D∗ − D̂∗ ≥ L(θ̂†, µ̂∗, λ̂∗)− L̂(θ̂†, µ̂∗, λ̂∗) (64)

≥ |µ̂∗|
∣∣∣∣E[ℓ(fθ̂†(x), y)]−

1

N

N∑
i=1

ℓ(fθ̂†(xn), yn)

∣∣∣∣ (65)

+

∣∣∣∣Ez∼¯̄λ∗ [∥∇Mfθ̂†(z)∥2]−
1

N

N∑
n=1

λ̂∗(zn)∥∇Mfθ̂†(zn)∥2
∣∣∣∣ (66)

Where ¯̄λ∗ = 1
N

∑N
n=1 λ̂

∗(xn)Bα(xn), and Bα(xn) is a ball of center xn, and radius α. By tending α→ 0, and N →∞,
given that ¯̄λ∗ is a simple function that approximates λ̂⋆, by the Monotone Convergence Theorem (Durrett, 2019), ¯̄λ∗

converges to λ̂⋆. Therefore, it holds,∣∣∣∣D∗ − D̂∗
∣∣∣∣ ≤ max

{
|L(θ̂†, µ∗, λ∗)− L̂(θ̂†, µ∗, λ̄∗)|, |L(θ̂†, µ̂∗, λ̂∗)− L̂(θ̂†, µ̂∗, λ̂∗)|

}
(67)
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Now we utilize the property of the gradients of∇Mfθ given by Assumption 2, and the fact that the set Θ is compact, and
the manifoldM is compact,∣∣∣∣∥∇Mfθ1(x)∥2 − ∥∇Mfθ2(x)∥2

∣∣∣∣ (68)

=

∣∣∣∣∥∇Mfθ1(x)∥2 − ∥∇Mfθ2(x) +∇Mfθ1(x)−∇Mfθ1(x)∥2
∣∣∣∣ (69)

=

∣∣∣∣∥∇Mfθ1(x)∥2 − ∥∇Mfθ2(x)−∇Mfθ1(x)∥2 − ||∇Mfθ1(x)∥2 + 2∥∇Mfθ2(x)−∇Mfθ1(x)∥||∇Mfθ1(x)∥
∣∣∣∣
(70)

=

∣∣∣∣− ∥∇Mfθ2(x)−∇Mfθ1(x)∥2 + 2∥∇Mfθ2(x)−∇Mfθ1(x)∥||∇Mfθ1(x)∥
∣∣∣∣ (71)

We can now bound ∥∇Mfθ2(x) − ∇Mfθ1(x)∥, and 2∥∇Mfθ1(x)∥ by 2maxθ∈{θ1,θ2},z∈M ∥∇Mfθ(z)∥, and therefore,
we obtain, ∣∣∣∣∥∇Mfθ1(x)∥2 − ∥∇Mfθ2(x)∥2

∣∣∣∣ (72)

≤ 2 max
θ∈{θ1,θ2},z∈M

∥∇Mfθ(z)∥∥∇Mfθ1(x)−∇Mfθ2(x)∥ (73)

We can now use Assumption 3 to obtain,∣∣∣∣∥∇Mfθ1(x)∥2 − ∥∇Mfθ2(x)∥2
∣∣∣∣ (74)

≤ 2 max
θ∈{θ1,θ2},z∈M

∥∇Mfθ(z)∥G|fθ1(x)− fθ2(x)| (by compactness and Assumption 3.) (75)

To complete the proof, we leverage Talagrand’s lemma (Mohri et al., 2018)[Lemma 5.7], and with probability 1− 2δ,∣∣∣∣D∗ − D̂∗
∣∣∣∣ ≤ max

{
|µ∗|, |µ̂∗|

}
ζ(N, δ) + 2max

{√
P ∗,

√
P̃ ∗
}
Gζ̂(N, δ) (76)

By leveraging Lemma 3 we attain the desired result.
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D. Proof Of Proposition 2
Proof of Proposition 2:

To prove that θ̂∗ is approximately feasible, we use the same argument that in Lemma 3. By contradiction, if there exists no
θ̂† ∈ Θ̂(µ̂∗, λ̂∗) that is feasible, the supergradient,

1

N

N∑
n=1

ℓ(fθ̂†(xn), yn) > ϵ (77)

and therefore 0 /∈ ∂Θ̂(θ̂∗, λ̂∗) which contradicts the optimality of θ̂∗, and λ̂∗. Therefore, there exists θ̂∗ ∈ Θ̂(µ̂∗, λ̂∗) such
that,

E[ℓ(fθ̂†(x), y)] ≤ ϵ+ ζ(N, δ) (78)

with probability 1− δ. We can analyze the term given by the summation of the dual variables λ, noting that if there is no
solution λ̂∗, such that

1

N

N∑
n=1

λ(xn)∥∇Mfθ(xn)∥2 = max
n∈[N ]

∥∇fθ(xn)∥2 (79)

then, utilizing the same argument, 0 /∈ ∂Θ̂(θ̂∗, λ̂∗), contradicting the optimality of θ̂∗.

Now, we can evaluate D̂∗ at θ̂∗ as follows,

D̂∗ = µ∗( N∑
n=1

ℓ(fθ̂∗(xn), yn)− ϵ
)
+

1

N

N∑
n=1

λ̂∗(xn)∥∇Mfθ̂∗(xn)∥2 (80)

= µ∗( N∑
n=1

ℓ(fθ̂∗(xn), yn)− ϵ
)
+ max

n∈[N ]
∥∇Mfθ̂∗(xn)∥2 (by optimality of λ̂∗) (81)

To conclude the proof, we leverage Proposition 1, in conjunction with (81) and we get that,

|P ∗ − max
n∈[N ]

∥∇Mfθ̂∗(xn)||2| ≤|µ̂∗|
∣∣ N∑
n=1

ℓ(fθ̂∗(xn), yn)− ϵ
∣∣

+O(ν) + max

{
|µ∗|, |µ̂∗|

}
ζ(N, δ) + 2max

{√
P ∗,

√
P̃ ∗
}
Gζ̂(N, δ) (82)

Completing the proof.

Corollary 1 Under the same conditions of Proposition 2, if additionally, the gradients of the parameterized functions
satisfy,

||∇Mfθ(z1)−∇Mfθ(z2)|| ≤ LdM(z1, z2), (83)

and for any dataset sampled according to p the following holds,

max
z∈M

min
n∈[N ]

dM(z, xn) ≤ ζ̃(N). (84)

Then,

max
z∈M

∥∇Mfθ̂⋆(z)∥2 ≤P ∗ +O(ν) + (1 + ∆)ζ(N, δ) +O(ζ̂(N, δ)) (85)

+ 2L
√

P̂ ζ̃(N) + L2ζ̃2(N) + µ̂∗
∣∣∣∣ 1N

N∑
n=1

ℓ(fθ̂∗(xn), yn)− ϵ

∣∣∣∣
and E[ℓ(fθ̂⋆(x), y)] ≤ϵ+ ζ(N, δ). (86)

where
√
P̂ ∗ = maxn∈[N ] ||∇Mfθ̂⋆(xn)||.
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Proof of Corollary 1: Building from Proposition 2, we need to relate the samples xn to the whole manifoldM. To do so,
we start from the tautological equality that holds for all z ∈M,

∥∇Mfθ̂⋆(z)∥ = ∥∇Mfθ̂⋆(z) +∇Mfθ̂⋆(xn)−∇Mfθ̂⋆(xn)∥ (87)
≤ ||∇Mfθ̂⋆(xn)∥+ ∥∇Mfθ̂⋆(z)−∇Mfθ̂⋆(xn)|| (88)
≤ ||∇Mfθ̂⋆(xn)∥+ LdM(z, xn) (89)
≤ ||∇Mfθ̂⋆(x̃n)∥+ L min

n∈[N ]
dM(z, xn) (90)

≤ max
x∈[N ]

||∇Mfθ̂⋆(xn)∥+ L min
n∈[N ]

dM(z, xn) (91)

≤ max
x∈[N ]

||∇Mfθ̂⋆(xn)∥+ Lmax
z∈M

min
xn

dM(z, xn) (92)

≤ max
x∈[N ]

||∇Mfθ̂⋆(xn)∥+ Lζ̂(N) (93)

where equation (88) holds by triangle inequality, and equation (89) by assumption 83. Given that equation (89) holds for all
xn, it also holds for x̃n = argminn∈[N ] dM(z, xn) i.e. equation (90). Equation (91) holds given that ||∇Mfθ̂⋆(xn)∥ ≤
maxx∈[N ] ||∇Mfθ̂⋆(xn)∥, and equation (92) holds by taking the maximum. Finally, equation (93) holds by assumption
(84). We can now take squares as follows,

∥∇Mfθ̂⋆(z)∥2 ≤
(
max
x∈[N ]

||∇Mfθ̂⋆(xn)∥+ Lζ̂(N)

)2

(94)

≤ max
n∈[N ]

||∇Mfθ̂⋆(xn)∥2 + L2ζ̂(N)2 + 2L
√
P̂ ∗ζ(N). (95)

were we used that the norm is non-negative, and the definition of
√

P̂ ∗. By substituting equation (95) in equation (82), we
complete the proof.
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E. Proof of Proposition 3
The proof of Proposition 3 utilizes the following Definitions. In this proof, we use the fact that the total volume of the
smooth ManifoldM is bounded given its compactness ,i.e.,

∫
M vol(x) = V. We also use the fact that the functions fθ(z)

are bounded up to the third derivative, and we denote F, F1, F2, and F3 their bounds respectively. We also require to define
the degree probability dt(z) and the continuous heat kearnel Laplacian L̃t

λfθ(z).

Definition 4 Given a probability distribution λ ∈ Λ defined over the manifoldM, we define the degree dt(x) as,

dt(p) =

∫
M

Gt(p, z)λ(z)vol(z) (96)

Definition 5 We define the continuous heat kernel laplacian L̃t
λfθ(z) associated with density function λ ∈ Λ, function

fθ, θ ∈ Θ and point z ∈M as,

L̃t
λfθ(z) =

1

t

∫
M

Gt(z, w)√
dt(z)

√
dt(w)

(fθ(z)− fθ(w))λ(w)vol(w) (97)

were dt is the degree function (cf. Definition 4).

Lemma 4 For a given point in the interior of the manifold, i.e., z ∈ int(M), and any open set B ⊂M, z ∈ B, in the same
conditions as in Proposition 3, we have that∣∣∣∣ ∫

B
e−

∥z−w∥2
4t λ(w)fθ(w)vol(w)−

∫
M

e−
∥z−w∥2

4t λ(w)fθ(w)vol(w)

∣∣∣∣ ≤ bVFe−
r2

4t , (98)

where r = infx/∈B,x∈M ∥z − w∥, and b in Λ.

Proof of Lemma 4: The proof is similar to Lemma 4.1 in (Belkin & Niyogi, 2005). The proof follows from bounding λ by

b from assumption, ∥fθ∥ by F, and the volume ofM−B by the volume ofM given by V, and bounding e−
∥p−z∥2

4t by
e−

d
4t . ■

Lemma 5 The limit of the degree function dt(x) (defined in Definition 4) when t→ 0 is lower bounded for probabilities
λ ∈ Λ as in Proposition 3,i.e.,

min
p∈M,λ∈Λ

lim
t→0

dt(x) = a. (99)

Proof of Lemma 5:

Now we can write down the definition of the degree function dt(x),

min
x∈M,λ∈Λ

lim
t→0

dt(x) = min
x∈M,λ∈Λ

lim
t→0

∫
M

Gt(x, z)λ(z)dV (z) (100)

= min
x∈M,λ∈Λ

lim
t→0

∫
M

1

(4πt)d/2
e−

∥x−z∥2
4t λ(z)dV (z) (101)

≥ min
x∈M

lim
t→0

a

∫
M

1

(4πt)d/2
e−

∥x−z∥2
4t dV (z) (102)

≥ min
x∈M

lim
t→0

a

∫
M

1

(4πt)d/2
e−

(x−z)⊺( 1
2t

I)(x−z)

2 dV (z) (103)

= min
x∈M

lim
t→0

a

∫
B

1

(4πt)d/2
e−

(x−z)⊺( 1
2t

I)(x−z)

2 dV (z) (104)

= min
x∈M

lim
t→0

a

∫
B̃

1

(4πt)d/2
e−

(v)⊺( 1
2t

I)(v)

2 dV (z) (105)

=
a

(4πt)d/2
((2π)d(2t)d)

1
2 = a (106)
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Now, we now that minz∈M,λ∈Λ λ(z) = a, which means that,

min
z∈M,λ∈Λ

lim
t→0

λ(z) ≤ a (107)

Noting that the integral of limt→0

∫
M Gt(x, z)dV (z) = 1, we have,

min
z∈M,λ∈Λ

lim
t→0

λ(z)

∫
M

Gt(x, z)dV (z) ≤ a (108)

min
z∈M,λ∈Λ

lim
t→0

∫
M

λ(z)Gt(x, z)dV (z) ≤ a (109)

min
z∈M,λ∈Λ

lim
t→0

dt(z) ≤ a (110)

By symmetry of Gt, we recover the desired result. Noting that both a ≥ dt, and dt ≥ a, then the limit holds and is equal to
a.

Lemma 6 For any two sufficiently close points p, q ∈ M, such that q = expp(v) = Rk, the relationship between the
Euclidean distance and geodesic distance is given by,

d2M(p, q) = ∥v∥2Rk (111)

Proof of Lemma 6: Consider a geodesic curve γ, that goes from γ(0) = p to γ(1) = q, this geodesic can be obtained by
γ(t) = expp(tv). The distance between p, q can be expressed as,

dM(p, q) =

∫ 1

0

∥γ
′
(t)∥dt = ∥v∥. (112)

given that the geodesic has constant derivative, and it is given by v by the definition of exponential map (see (Do Carmo &
Flaherty Francis, 1992)[Proposition 3.6]). ■

Lemma 7 Let Λ be the set of probability distributions defined on a compact d-dimensional differentiable manifoldM
isometrically embedded in RD such that Λ = {λ : 0 < a ≤ λ(z) ≤ b <∞, |∂λ∂x | ≤ c <∞ and |∂

2λ
∂x2 | ≤ d <∞ for all z ∈

M}, and let fθ, with θ ∈ Θ, be a family of functions with uniformly bounded derivatives up to order 3 vanishing at the
boundary ∂M. For a point z ∈M, the probability of the difference between the point-cloud Laplacian operator Lt

λ,Nfθ(z)
defined in definition (2) and the continuous heat kernel Laplacian is given by

P

(
sup

θ∈Θ,λ∈Λ
|L̃t

λfθ(z)− Lλ,Nfθ(z)| ≥ ϵ

)
≤ δ, (113)

where N is such that 2e−
ϵ2N
32 ( at

Fb )
2

+ 2e−
ϵ2N
32

(
ta2

2FGb2

)2
+ 2(N − 1)e−

ϵ2(N−1)
32

(
ta2

2FGb2

)2
≤ δ.

Proof of Lemma 7: The proof is similar to section 5.1 of Theorem 5.2 from (Belkin & Niyogi, 2005). To begin with, we
define a intermediate operator L̂λ,nfθ(z) as,

L̂λ,Nfθ(z) =
1

Nt

N∑
i=1

Gt(z, xi)√
dt(z)

√
dt(xi)

(fθ(z)− fθ(xi)) (114)
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Now we consider equation (113), adding and subtracting the intermediate operator L̂λ,nfθ(z) as follows,

P

(
sup

θ∈Θ,λ∈Λ
|L̃t

λfθ(z)− Lλ,Nfθ(z)| ≥ ϵ

)
(115)

= P

(
sup

θ∈Θ,λ∈Λ
|L̃t

λfθ(z)− L̂λ,nfθ(z) + L̂λ,nfθ(z)− Lλ,Nfθ(z)| ≥ ϵ

)
(116)

= 1− P

(
sup

θ∈Θ,λ∈Λ
|L̃t

λfθ(z)− L̂λ,nfθ(z) + L̂λ,nfθ(z)− Lλ,Nfθ(z)| ≤ ϵ

)
(117)

≤ 1− P

(
sup

θ∈Θ,λ∈Λ
|L̃t

λfθ(z)− L̂λ,nfθ(z)| ≤ ϵ/2 ∩ sup
θ∈Θ,z∈M,λ∈Λ

|L̂λ,nfθ(z)− Lλ,Nfθ(z)| ≤ ϵ/2

)
(118)

= 1−

(
1− P

(
sup

θ∈Θ,λ∈Λ
|L̃t

λfθ(z)− L̂λ,nfθ(z)| > ϵ/2 ∪ sup
θ∈Θ,z∈M,λ∈Λ

|L̂λ,nfθ(z)− Lλ,Nfθ(z)| > ϵ/2

))
(119)

≤ P

(
sup

θ∈Θ,λ∈Λ
|L̃t

λfθ(z)− L̂λ,nfθ(z)| > ϵ/2

)
+ P

(
sup

θ∈Θ,λ∈Λ
|L̂λ,nfθ(z)− Lλ,Nfθ(z)| > ϵ/2

)
(120)

where equation (117) holds by taking the complement, equation (118) holds given that it is a subset of the total probability,
equation (119) by taking complement again, and equation (120) by the union bound.

We will now focus on the complement of the first term of (120), i.e. P (supθ∈Θ,λ∈Λ |L̃t
λfθ(z) − L̂λ,Nfθ(z)| ≤ ϵ/2), as

follows,

P

(
sup

θ∈Θ,λ∈Λ
|L̃t

λfθ(z)− L̂λ,nfθ(z)| ≤ ϵ/2

)
(121)

= P

(
sup

θ∈Θ,λ∈Λ

∣∣∣∣ ∫
M

1

t

Gt(z, w)√
dt(z)

√
dt(w)

(fθ(z)− fθ(w))λ(w)dV (w)

− 1

tN

N∑
i=1

Gt(z, xi)√
dt(z)

√
dt(xi)

(fθ(z)− fθ(xi))

∣∣∣∣ ≤ ϵ/2

)
.

Now we can use the fact that sampling according to λ(z)dV (z) is equivalent to sampling x̃i according to dV (z) and then
multiplying by λ(xi), as follows,

P

(
sup

θ∈Θ,λ∈Λ
|L̃t

λfθ(z)− L̂λ,nfθ(z)| ≤ ϵ/2

)
(122)

= P

(
sup

θ∈Θ,λ∈Λ

∣∣∣∣ ∫
M

1

t

Gt(z, w)√
dt(z)

√
dt(w)

(fθ(z)− fθ(w))λ(w)dV (w)

− 1

tN

N∑
i=1

Gt(z, x̃i)√
dt(z)

√
dt(x̃i)

(fθ(z)− fθ(x̃i))λ(x̃i)

∣∣∣∣ ≤ ϵ/2

)
. (123)

We can now bound |fθ(z)| ≤ F, a < λ(z) < b, a < dt(z) < b with , Gt ≤ 1/(4πt)D/2 := G, to express (123) as,

P

(
sup

θ∈Θ,λ∈Λ
|L̃t

λfθ(z)− L̂λ,nfθ(z)| ≤ ϵ/2

)
≥ P

(
2Fb

at

∣∣∣∣ ∫
M

Gt(z, w)dV (w)− 1

N

N∑
i=1

Gt(z, x̃i)

∣∣∣∣ ≤ ϵ/2

)
(124)

Now, using the Hoeffding’s inequality we obtain,

P

(
sup

θ∈Θ,λ∈Λ
|L̃t

λfθ(z)− L̂λ,nfθ(z)| ≥ ϵ/2

)
< 2e−

ϵ2N
32 ( at

FGb )
2

(125)
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We will now focus on the second term of (120), i.e. P
(
supθ∈Θ,λ∈Λ |L̂t

λ,Nfθ(z)− Lλ,Nfθ(z)| > ϵ/2
)

, as follows,

P

(
sup

θ∈Θ,λ∈Λ
|L̂t

λ,Nfθ(z)− Lλ,Nfθ(z)| ≤ ϵ/2

)
(126)

= P

 sup
θ∈Θ,λ∈Λ

∣∣∣∣ 1

tN

N∑
i=1

Gt(z, xi)√
dt(z)

√
dt(xi)

(fθ(z)− fθ(xi))−
1

tN

N∑
i=1

Gt(z, xi)√
ŵ(z)

√
Ŵ (xi)

(fθ(z)− fθ(xi))

∣∣∣∣ ≤ ϵ/2

 .

(127)

Now, by bounding over fθ, and λ we obtain,

P

(
sup

θ∈Θ,λ∈Λ
|L̂t

λ,Nfθ(z)− Lλ,Nfθ(z)| ≤ ϵ/2

)
(128)

≤ P

sup
λ∈Λ

1

tN
2FG

N∑
i=1

∣∣∣∣ 1√
dt(z)

√
dt(xi)

− 1√
ŵ(z)

√
Ŵ (xi)

∣∣∣∣ ≤ ϵ/2


= P

sup
λ∈Λ

1

tN
2FG

N∑
i=1

∣∣∣∣
√
dt(z)(

√
Ŵ (xi)−

√
dt(xi)) +

√
Ŵ (xi)(

√
dt(z)−

√
ŵ(z))√

dt(z)
√
dt(xi)

√
ŵ(z)

√
Ŵ (xi)

∣∣∣∣ ≤ ϵ/2


Now bounding over d, ŵ, and Ŵ we obtain,

P

(
sup

θ∈Θ,λ∈Λ
|L̂t

λ,Nfθ(z)− Lλ,Nfθ(z)| ≤ ϵ/2

)
(129)

= P

(
sup
λ∈Λ

1

tN

2FG
√
b

a3/2

N∑
i=1

∣∣∣∣(√Ŵ (xi)−
√
dt(xi)) + (

√
dt(z)−

√
ŵ(z))

∣∣∣∣ ≤ ϵ/2

)
(130)

Now, we can split the probability as follows,

P

(
sup

θ∈Θ,λ∈Λ
|L̂t

λ,Nfθ(z)− Lλ,Nfθ(z)| ≤ ϵ/2

)
(131)

≤ P

(
sup
λ∈Λ

1

t

2FG
√
b

a3/2

∣∣∣∣√dt(z)−
√

ŵ(z)

∣∣∣∣ ≤ ϵ/4

)
+ P

(
sup
λ∈Λ

1

tN

2FG
√
b

a3/2

N∑
i=1

∣∣∣∣√dt(xi)−
√

Ŵ (xi)

∣∣∣∣ ≤ ϵ/4

)
(132)

Now, we can take a closer look at d(z), w(z), which we can express as,

P

(
sup
λ∈Λ

1

t

2FG
√
b

a3/2

∣∣∣∣√dt(z)−
√
ŵ(z)

∣∣∣∣ ≤ ϵ/4

)
(133)

= P

sup
λ∈Λ

1

t

2FG
√
b

a3/2

∣∣∣∣
√∫

M
Gt(z, w)λ(w)vol(w)−

√√√√ 1

N

N∑
n=1

Gt(z, xn)

∣∣∣∣ ≤ ϵ/4

 . (134)

We can once again use the fact that sampling according to λ(z)dV (z) is equivalent to sampling x̃i according to dV (z) and
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then multiplying by λ(xi) and then bound λ(z) to obtain,

P

(
sup
λ∈Λ

1

t

2FG
√
b

a3/2

∣∣∣∣√dt(z)−
√
ŵ(z)

∣∣∣∣ ≤ ϵ/4

)
(135)

= P

sup
λ∈Λ

1

t

2FG
√
b

a3/2

∣∣∣∣
√∫

M
Gt(z, w)λ(w)dV (w)−

√√√√ 1

N

N∑
n=1

Gt(z, x̃n)λ(x̃n)

∣∣∣∣ ≤ ϵ/4

 (136)

≤ P

1

t

2FG
√
b

a3/2

∣∣∣∣
√∫

M
Gt(z, w)dV (w)−

√√√√ 1

N

N∑
n=1

Gt(z, x̃n)

∣∣∣∣ ≤ ϵ/4

 . (137)

Now, given that Gt is bounded by G, and given that
∫
M Gt(z, w)dV (w) = 1 > 0, we can use the Hoeffding’s inequality as

follows,

P

(
1

t

2FG
√
b

a3/2

∣∣∣∣ ∫
M

Gt(z, w)dV (w)− 1

N

N∑
n=1

Gt(z, x̃n)

∣∣∣∣ ≥ ϵ/4

)
≤ 2e

− ϵ2N
32

(
ta3/2

2FG
√

b2

)2
(138)

Returning to (132), we can repeat the steps, and by the union bound we get,

P

 1

tN

2FG
√
b

a3/2

N∑
i=1

∣∣∣∣∫
M

Gt(xi, w)dV (w)− 1

N − 1

∑
n ̸=i

Gt(xi, x̃n)

∣∣∣∣ ≥ ϵ/4

 ≤ 2(N − 1)e
− ϵ2(N−1)

32

(
ta3/2

2FG
√

b2

)2
(139)

Finally, we obtain that with probability,

P

(
sup

θ∈Θ,λ∈Λ
|L̃t

λfθ(z)− Lλ,Nfθ(z)| ≥ ϵ

)
≤ 2e−

ϵ2N
32 ( at

FGb )
2

+ 2e
− ϵ2N

32

(
ta3/2

2FG
√

b2

)2
+ 2(N − 1)e

− ϵ2(N−1)
32

(
ta3/2

2FG
√

b2

)2
(140)

It suffices to pick N0 such that the right term is small than δ. ■

Lemma 8 Consider fθ with θ ∈ Θ, and λ ∈ Λ, for a point z ∈M, there is a uniform bound between the continuous heat
kernel Laplacian (cf .definition 5) and the the Laplace-Beltrami operator ∆λfθ = ∆fθ + ⟨∇Mfθ,∇Mλ⟩, where ∆ is the
Laplace-Beltrami operator, i.e.

sup
θ∈Θ,λ∈Λ

|L̃t
λfθ(z)−∆λfθ(z)| ≤ O(t1/2) (141)

with L̃t
λfθ(z) =

1
t

∫
M

Gt(z,w)√
dt(z)
√

dt(w)
(fθ(z)− fθ(w))λ(w)dV (w) .

Proof of Lemma 8: The proof is as follows, first we will compare the heat kernel Laplacian L̃t
λfθ(p) with the heat kernel

Laplacian with λ instead of dt. Next, we will consider the integral over a ball B, as opposed to the integral over the whole
manifoldM. Then, we will exploit the euclidean properties of the manifold at point p, which will allow us to convert
an integral over a manifold into an integral over the low dimensional structure of the manifold. In this low dimensional
manifold, we can compute the integrals, and obtain the desired result.
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To begin with, we will introduce the continuous heat kernel laplacian, but using the probability distribution λ as follows,

L̃t
λfθ(p) =

1

t

∫
M

Gt(p, z)√
dt(p)

√
dt(z)

(fθ(p)− fθ(z))λ(z)dV (z) (142)

≤ 1

t

∫
M

Gt(p, z)√
λ(p)

√
λ(z)

(fθ(p)− fθ(z))λ(z)dV (z) (143)

+ |1
t

∫
M

Gt(p, z)√
dt(p)

√
dt(z)

(fθ(p)− fθ(z))λ(z)dV (z)− (144)

1

t

∫
M

Gt(p, z)√
λ(p)

√
λ(z)

(fθ(p)− fθ(z))λ(z)dV (z)| (145)

≤ 1

t

∫
M

Gt(p, z)√
λ(p)

√
λ(z)

(fθ(p)− fθ(z))λ(z)dV (z) (146)

+
1

t

∫
M

Gt(p, z)|
1√

dt(p)
√
dt(z)

− 1√
λ(p)

√
λ(z)
||fθ(p)− fθ(z)|λ(z)dV (z) (147)

By compactness of manifoldM, and the fact that limt→0 dt(p) = λ(p) the following holds for any point p ∈M,

dt(p) = λ(p) +O(tg(p)) (148)

where g is a smooth function depending upon higher derivatives of λ, which is bounded by c. Therefore, we can write

d
−1/2
t (z) = (λ(z) +O(tg(z)))−1/2 = λ(z)−1/2 +O(t), (149)

where O(t) ≤ c|t|. Therefore, we can bound the right hand side of equation (147) by,

1

t

∫
M

Gt(p, z)|
1√

dt(p)
√

dt(z)
− 1√

λ(p)
√

λ(z)
||fθ(p)− fθ(z)|λ(z)dV (z) (150)

≤ 1

t

∫
M

Gt(p, z)ct|fθ(p)− fθ(z)|λ(z)dV (z) (151)

≤
∫
M

Gt(p, z)c|fθ(p)− fθ(z)|λ(z)dV (z) ≤ O(t) (152)

where the bound holds uniformly given the compactness of the manifoldM, and the upper bound on the derivative of fθ.
We now return to equation (147), by virtue of Lemma 4, we can convert the integral over the manifoldM, to an integral
over the ball B as follows,
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1

t

∫
M

Gt(x, y)√
λ(x)

√
λ(y)

(fθ(x)− fθ(y))λ(y)dV (y) (153)

=
1

t

∫
B

Gt(x, y)√
λ(x)

√
λ(y)

(fθ(x)− fθ(y))λ(y)dV (y) (154)

+
1

t

∫
M

Gt(x, y)√
λ(x)

√
λ(y)

(fθ(x)− fθ(y))λ(y)dV (y) (155)

− 1

t

∫
B

Gt(x, y)√
λ(x)

√
λ(y)

(fθ(x)− fθ(y))λ(y)dV (y) (156)

≤ 1

t

∫
B

Gt(x, y)√
λ(x)

√
λ(y)

(fθ(x)− fθ(y))λ(y)dV (y) (157)

+

∣∣∣∣1t
∫
M

Gt(x, y)√
λ(x)

√
λ(y)

(fθ(x)− fθ(y))λ(y)dV (y) (158)

− 1

t

∫
B

Gt(x, y)√
λ(x)

√
λ(y)

(fθ(x)− fθ(y))λ(y)dV (y)

∣∣∣∣ (159)

≤ 1

t

∫
B

Gt(x, y)√
λ(x)

√
λ(y)

(fθ(x)− fθ(y))λ(y)dV (y) + bVFe−
r2

4t (160)

We now consider the exponential coordinates exp around p, after introducing a ball B of radius r. Letting the change of
variables be expp : TpM→M. Letting B̃ be a ball in TpM, then B is the image of the ball under the exponential map. We
will use the exponential coordinates as v = expp(z), and f̃θ(v) = fθ(expp(v)), and f̃θ(0) = fθ(expp(0)).

1

t

∫
B

Gt(x, y)√
λ(x)

√
λ(y)

(fθ(x)− fθ(y))λ(y)dV (y) = (161)

1

t

1√
λ̃(0)

∫
B̃

e
∥expp(v)−expp(0)∥2

4t

(4πt)k/2

√
λ̃(v)(f̃θ(0)− f̃θ(v))det(g(v))dv (162)

where det(g(v)) is the determinant of the metric tensor in exponential coordinates. We can now expand
√
λ̃(v), and f̃θ(v)

by their Taylor expansions as follows,

λ̃1/2(v) ≤ λ̃1/2(0) +
1

2
λ̃−1/2(0)v⊺∇λ̃(0) +O(∥v∥2) (163)

f̃θ(v) = f̃θ(0) + v⊺∇f̃θ(0) +
1

2
v⊺Hv +O(∥v∥3) (164)

f̃θ(0)− f̃θ(v) ≤ −v⊺∇f̃θ(0)−
1

2
v⊺Hv +O(∥v∥3) (165)

Where ∇f̃ = ( ∂f̃
∂x1

, . . . , ∂f̃
∂xk

)⊺, and H its corresponding hessian matrix. Now note that given that the norm of the second
derivative λ and third derivative of fθ are uniformly bounded for all p ∈ M, θ ∈ Θ and λ ∈ Λ. With these two

approximations in hand, we also approximate the heat kernel e
∥expp(v)−expp(0)∥2

4t as follows,

e−
dM(expp(v)−p)2

4t = e−
∥v∥2
4t , (166)

given that y is close enough to p. We also approximate the determinant of the metric tensor in exponential coordinates
det(g(v)) using the fact that

det(g(v)) = 1− 1

6
z⊺Rv +O(∥v∥3) (167)

≤ 1 + k0∥v∥2. (168)
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where R is the Ricci curvature tensor which is uniformly bounded given the compactness ofM. The last inequality holds
uniformly for all p ∈M given the compactness ofM. Returning to 162, putting all the pieces together we obtain,

1

t

∫
B

Gt(x, y)√
λ(x)

√
λ(y)

(fθ(x)− fθ(y))λ(y)dV (y) (169)

≤ 1

t

1√
λ̃(0)

1

(4πt)k/2

∫
B̃
e

−∥v∥2
4t (λ̃1/2(0) +

1

2
λ̃−1/2(0)v⊺∇λ̃(v) + k1∥v∥2) (170)

(v⊺∇f̃θ(0) +
1

2
vtHv + k2∥v∥3)dv (171)

+
1

t

1√
λ̃(0)

1

(4πt)k/2

∫
B̃
e

−∥v∥2
4t (f̃(0)− f̃(v))k0∥v∥2dv (172)

Which can be split into 5 integrals as follows:

At =
1

t

1√
λ̃(0)

1

(4πt)k/2

∫
B̃
e−

∥v∥2
4t λ̃1/2(0)v⊺∇f̃θ(0)dv (173)

Bt =
1

t

1√
λ̃(0)

1

(4πt)k/2

∫
B̃
e−

∥v∥2
4t λ̃1/2(0)

1

2
vtHvdv (174)

Ct =
1

t

1√
λ̃(0)

1

(4πt)k/2

∫
B̃
e−

∥v∥2
4t

1

2
λ̃−1/2(0)v⊺∇λ̃(0)∇f̃θ(0)⊺vdv (175)

Dt =
1

t

1√
λ̃(0)

1

(4πt)k/2

∫
B̃
e−

∥v∥2
4t

1

2
λ̃−1/2(0)v⊺∇λ̃(0)1

2
v⊺Hvdv (176)

Et =
1

t

1√
λ̃(0)

1

(4πt)k/2

∫
B̃
e

−∥v∥2
4t (f̃(0)− f̃(v))k0∥v∥2dRk (177)

≤ 1

t

1√
λ̃(0)

1

(4πt)k/2

∫
B̃
e

−∥v∥2
4t k0∥v∥3dRk (178)

Where for Et we have used the fact that the first derivative has a uniform bound. Note that given the Gaussian kernel
integration, the following conditions are true, ∫

B̃

vie
− ∥v∥2

4t dv = 0 (179)∫
B̃

vivje
− ∥v∥2

4t dv = 0 (180)∫
B̃

viv
2
j e

− ∥v∥2
4t dv = 0 (181)

1

t

1

(4πt)k/2

∫
B̃

∥v∥3e−
∥v∥2
4t dv = O(t1/2) (182)

1

t

1

(4πt)k/2

∫
B̃

v2i e
− ∥v∥2

4t dv = 2 (183)

for i ̸= j given the zero mean Gaussian distribution with zero mean and diagonal covariance matrix. Using these conditions,
we can conclude that At = Dt = 0. From Bt and Ct, the only non-zero elements are given by the diagonal elements,
therefore, we obtain,

At +Bt + Ct +Dt + Et = −
k∑

i=1

∂2f̃(0)

∂x2
i

− 1

λ̃(0)

k∑
i=1

[∇λ̃(0)]i[∇f̃θ(0)]i +O(t1/2) (184)

= −∆f − 1

λ
⟨∇λ,∇fθ⟩Tp +O(t1/2) (185)
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Where we have used that ∆Mf(p) = ∆Rk f̃(0) = −
∑k

i=1
∂2f̃
∂x2

i
(0) (see Chapter 3 of (Rosenberg, 1997)). ■

Proof of Proposition 3: To begin with, utilizing Green’s identity, for the Laplacian ∆λ = ∆fθ +
1
λ ⟨∇λ,∇fθ⟩, given that

the function vanishes at the boundary, the following holds∫
M

fθ(z)∆λfθ(z)λ(z)dV (z) =

∫
M
∥∇Mfθ(z)∥2λ(z)dV (z) (186)

An equivalent statement of the proof is that for any ϵ > 0, and δ > 0, there exist N0 such that, for N ≥ N0

P

(
sup

λ∈Λ,θ∈Θ

∣∣∣∣ 1N
N∑
i=1

fθ(xi)λ(xi)L
tN
λ,Nfθ(xi)−

∫
M

fθ(z)(−∆λfθ(z))λ(x)dV (z)

∣∣∣∣ > ϵ

)
≤ δ (187)

By considering the complement of the event in (187), we obtain,

P

(
sup

λ∈Λ,θ∈Θ

∣∣∣∣ 1N
N∑
i=1

fθ(xi)λ(xi)L
tN
λ,Nfθ(xi)−

∫
M

fθ(z)(−∆λfθ(z))λ(x)dV (z)

∣∣∣∣ ≤ ϵ

)
≥ 1− δ (188)

We can now add and subtract 1
N

∑N
i=1 fθ(xi)λ(xi)∆λfθ(xi), and split the probability as follows,

P

(
sup

λ∈Λ,θ∈Θ

∣∣∣∣ 1N
N∑
i=1

fθ(xi)λ(xi)L
tN
λ,Nfθ(xi)−

∫
M

fθ(z)(−∆λfθ(z))λ(x)dV (z)

∣∣∣∣ ≤ ϵ

)
(189)

≥ P

(
sup

λ∈Λ,θ∈Θ

∣∣∣∣ 1N
N∑
i=1

fθ(xi)λ(xi)L
tN
λ,Nfθ(xi)−

1

N

N∑
i=1

fθ(xi)λ(xi)(−∆λfθ(xi))

∣∣∣∣ ≤ ϵ/2

)

+ P

(
sup

λ∈Λ,θ∈Θ

∣∣∣∣ 1N
N∑
i=1

fθ(xi)λ(xi)(−∆λfθ(xi))−
∫
M

fθ(z)(−∆λfθ(z))λ(x)dV (z)

∣∣∣∣ ≤ ϵ/2

)
(190)

Where equation (190) holds given that it is a subset of the event in (189). We can now focus on the second term of (190).
Given that the second derivatives of fθ are uniformly bounded for θ ∈ Θ, we can bound |∆fθ| ≤ F2, to obtain,

P

(
sup

λ∈Λ,θ∈Θ

∣∣∣∣ 1N
N∑
i=1

fθ(xi)λ(xi)(−∆λfθ(xi))−
∫
M

fθ(z)(−∆λfθ(z))λ(x)dV (z)

∣∣∣∣ ≤ ϵ/2

)

≥ P

(
sup

λ∈Λ,θ∈Θ

∣∣∣∣ 1N
N∑
i=1

fθ(xi)λ(xi)−
∫
M

fθ(z)λ(x)dV (z)

∣∣∣∣ ≤ ϵ

2K∆

)
. (191)

Now, for equation (191), we can use Assumption 4 with probability δ/2 as follows,

ζ̂(N, δ/2) ≤ ϵ

2K∆
. (192)

Returning to (190), we can also bound the value of |fθ(z)| ≤ F, and a ≤ λ ≤ b to obtain,

P

(
sup

λ∈Λ,θ∈Θ

∣∣∣∣ 1N
N∑
i=1

fθ(xi)λ(xi)L
tN
λ,Nfθ(xi)−

1

N

N∑
i=1

fθ(xi)λ(xi)(−∆λfθ(xi))

∣∣∣∣ ≤ ϵ/2

)
(193)

≥ P

(
sup

λ∈Λ,θ∈Θ

∣∣∣∣ 1N
N∑
i=1

LtN
λ,Nfθ(xi)−

1

N

N∑
i=1

(−∆λfθ(xi))

∣∣∣∣ ≤ ϵ

2bF

)
(194)

≥ P

(
sup

λ∈Λ,θ∈Θ

1

N

N∑
i=1

∣∣∣∣LtN
λ,Nfθ(xi)− (−∆λfθ(xi))

∣∣∣∣ ≤ ϵ

2bF

)
(195)

≥ P

( N⋂
i=1

sup
λ∈Λ,θ∈Θ

∣∣∣∣LtN
λ,Nfθ(xi)− (−∆λfθ(xi))

∣∣∣∣ ≤ ϵ

2bF

)
(196)

≥ 1−
N∑
i=1

P

(
sup

λ∈Λ,θ∈Θ

∣∣∣∣LtN
λ,Nfθ(xi)− (−∆λfθ(xi))

∣∣∣∣ ≥ ϵ

2bF

)
. (197)
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Where equation (195) holds by the triangle inequality, equation (196) holds by taking the intersection of the events, and
equation (197) holds by the union bound. Now we add and subtract the continuous L̃t

λfθ(xi) (cf. definition 5) as follows,

P

(
sup

λ∈Λ,θ∈Θ

∣∣∣∣LtN
λ,Nfθ(xi)− (−∆λfθ(xi))

∣∣∣∣ ≤ ϵ

2bF

)
(198)

= P

(
sup

λ∈Λ,θ∈Θ

∣∣∣∣LtN
λ,Nfθ(xi)− L̃t

λfθ(xi) + L̃t
λfθ(xi)− (−∆λfθ(xi))

∣∣∣∣ ≤ ϵ

2bF

)
(199)

≥ P

(
sup

λ∈Λ,θ∈Θ

∣∣∣∣LtN
λ,Nfθ(xi)− L̃t

λfθ(xi)

∣∣∣∣ ≤ ϵ

4bF

)
(200)

+ P

(
sup

λ∈Λ,θ∈Θ

∣∣∣∣L̃t
λfθ(xi)− (−∆λfθ(xi))

∣∣∣∣ ≤ ϵ

4bF

)
(201)

For term (200), we can use Lemma 8 with δ/4, and ϵ
′
= ϵ/4bF to obtain N

′

0 should be such that

2e−
ϵ
′2N

′
0

32 ( at
Fb )

2

+ 2e
− ϵ

′2N
′
0

32

(
ta3/2

2FG
√

b2

)2
+ 2(N

′

0 − 1)e
− ϵ

′2(N
′
0−1)

32

(
ta3/2

2FG
√

b2

)2
≤ δ/4N (202)

For term (201) can be bounded utilizing Lemma 8, and therefore N
′

needs to verify,

t1/2 ≤ δ

4N
and N

′− 1
d+2+α = t. (203)

To conclude, it suffices to pick N such that condition (192) is verified, and N
′

needs to be picked such that condition (202),
and (203) are meet. The total number of samples is then N0 +N

′

0. ■
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F. Dual Ascent Algorithm
In this section, we explore the two algorithms that we present to solve problem 7; the gradient based primal dual Algorithm
1 in subsection F.1, and the pointcloud laplacian based primal dual 2 in subsection F.2. The laplacian variant, presents a
computational advantage, but requires conditions on the dual variables λ that might be difficult to secure in practice. The
gradient based method on the other hand, presents a less restrictive algorithm at the expense of a higher computational cost.
It is important to note that the sole difference between the two relies on the gradient of the lagrangian with respect to θ,
that is to say, the update on the dual variables λ and µ remains the same. In this appendix section, we provide an verbose
explanation of the two procedures. Moreover, we elaborate on the estimator of the norm of the gradient F.3.

F.1. Gradient Based Primal Dual Ascent

On this subsection we elaborate on the gradient based method to update the primal variable θ. Upon showing that under
certain conditions problem (3) and problem (9) are close (see Proposition 1, and 2), we will introduce a dual ascent algorithm
to solve the later. The problem that we seek to solve is given by,

max
λ̂,µ̂

d̂G(λ̂, µ̂) := min
θ

1

N

N∑
n=1

(
ℓ
(
fθ(xn), yn

)
− µϵ

)
+ µ̂−1 1

N

N∑
n=1

λ̂(xn)∥∇Mfθ(xn)∥ (204)

subject to
1

N

N∑
n=1

λ(xn) = 1 (205)

We will procede with an iterative process that minimizes over θ, and maximizes over λ and µ. In short, for each value of µ,
λ, we seek to minimize the Lagrangian L̂(θ, µ̂, λ̂) by taking gradient steps as follows,

θk+1 = θk + ηθ∇θL̂(θ, µ̂, λ) (206)

= θk + ηθ∇θ

(
µ̂
1

N

N∑
n=1

ℓ
(
fθ(xn), yn

)
+

1

N

N∑
n=1

λ̂(xn)∥∇Mfθ(xn)∥2
)

(207)

The gradient base approach computes gradients with respect to the loss function ℓ, and with respect to the norm of the
gradient. After the dual function d̂(λ̂, µ̂) is minimized, in order to solve 7, we require to maximize the dual function d̂(λ̂, µ̂)

over both λ̂, and µ̂, which can be done by evaluating the constraint violation as follows,

λn ← λn + ηλ∂λ̂n
L̂(θ, µ̂, λ̂), with ∂λ̂n

L̂(θ, µ̂, λ̂) = ∥∇Mϕ(xn)∥2 (208)

µ̂← µ̂+ ηµ̂L̂(θ, µ̂, λ̂), with ∂µ̂L̂(θ, µ̂, λ̂) =
1

N

N∑
n=1

ℓ
(
fθ(xn), yn

)
− ϵ, (209)

where stepsizes ηλ, ηµ are positive numbers. Note that to evaluate the norm of the gradient on a particular point ∥∇Mϕ(xn)∥
we can look at its neighboring pointsN (xi), and estimate its norm. After updating the dual variables λ using gradient ascent,
we require |λ|1 = 1, which can be done by either normalizing, or projecting to the simplex (Wang & Carreira-Perpinán,
2013). How to compute the norm of the gradient will be explained in the sequel in subsection F.3. The overall procedure is
explained in Algorithm 1.

F.2. point-cloud Laplacian Dual Ascent

Our algorithm will take advantage of the Laplacian formulation given in Proposition 3. That is, we will estimate the gradient
of the lagrangian with respect to θ utilizing the point-cloud laplacian formulation. Formally, for a vector λ̂ ∈ RN

+ , such that
1
N

∑N
n=1 λ̂n = 1, and a constant µ̂ ∈ R+, the empirical dual function associated with the Lagrangian L̂(θ, µ̂, λ̂n) of the

empirical dual function associated with (7) is defined as,

d̂(λ̂, µ̂) = min
θ

1

N

N∑
n=1

ℓ
(
fθ(xn), yn

)
+ µ̂−1 1

N

N∑
n=1

fθ(xn)λ̂nL
tN
λp,Nfθ(xn), (210)

Note that in (210), we have omitted the term −µ̂ϵ as it is a constant term for a given µ̂, and we have divided over µ̂ which
renders an equivalent problem as long as µ̂ > 0. By taking the maximum of the dual function over µ̂, and λ̂, we recover the
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Algorithm 1 Gradient Based Smooth Learning on Data Manifold

1: Initialize parametric function θ, define neighborhoods N (p) for every p ∈ D
2: repeat
3: for primal steps k do
4: Estimate maximum norm of gradient for all xi: ∥∇Mfθ(xi)∥ = maxz∈N (xi)

∥fθ(xi)−fθ(z)∥
d(xi,z)

)

5: Update θ : θ ← θ − ηθ∇θ

(
µ 1

N

∑N
i=1 ℓ(fθ(xi), yi) +

1
N

∑N
i=1 λ(xi)∥∇Mfθ(xi)∥2

)
6: end for
7: Update dual variable µ: µ← [µ+ ηµ

1
N

∑N
i=1 ℓ(fθ(xi), yi)− ϵ)]+

8: Update dual variable λ(xi): λ(xi)← [λ(xi) + ηλ(maxz∈N (xi)
∥fθ(xi)−fθ(z)∥2

d(xi,z)2
)]+

9: Project λ : λ = argmin0≼λ̃ ∥λ̃− λ∥ s.t. |λ̃|1 = N
10: e = e+ 1
11: until convergence

Algorithm 2 point-cloud Laplacian Smooth Learning on Data Manifold

1: Initialize parametric function θ, fix temperature t
2: repeat
3: for primal steps k do
4: Update θ : θ ← θ − ηθ∇θ

(
µ 1

N

∑N
i=1 ℓ(fθ(xi), yi) +

1
N

∑N
i=1 fθ(xi)λ(xi)L

t
λp,Nfθ(xi)

)
5: end for
6: Update dual variable µ: µ← [µ+ ηµ

1
N

∑N
i=1 ℓ(fθ(xi), yi)− ϵ)]+

7: Update dual variable λ(xi): λ(xi)← [λ(xi) + ηλ(maxz∈N (xi)
∥fθ(xi)−fθ(z)∥2

d(xi,z)2
)]+

8: Project λ : λ = argmin0≼λ̃ ∥λ̃− λ∥ s.t. |λ̃|1 = N
9: e = e+ 1

10: until convergence

dual problem 9. For a given choice of dual variables, λ̂, µ̂, the dual function (210) is an unconstrained problem that only
depends on the parameters θ. Now, the link with Manifold Regularization (5) is seen; as considering λ̃(xn) = 1/N , and
µ̃ = γ, the problems become equivalent. In order to minimize (210), we can update the parameters θ following the gradient,

θ ← θ + ηθ∇θ

(
1

N

N∑
n=1

ℓ
(
fθ(xn), yn

)
+ µ̂−1 1

N

N∑
n=1

fθ(xn)λ̂nL
tN
λp,Nfθ(xn)

)
, (211)

where ηθ > 0 is a step-size. Note that the updates in 211 have two parts, one that relies on the loss ℓ which utilizes labeled
data, and another term given by λ̂nL

tN
λp,N , that penalizes the Lipschitz constant of the function, and can be computed

utilizing unlabeled data. A more succinct explanation of the algorithm is described in Algorithm 2.

F.3. Gradient Norm Estimate

For both Algorithms 1, and 2, we require to compute the norm of the gradient of fθ at sample point xn with respect to the
manifoldM. Leveraging the Lipschitz constant definition 1, in order to estimate the maximum norm of the gradient, we
require to evaluate the Lipschitz over the sample points in our dataset. To do so, we require to set a metric distance over the
manifold dM, with which we will define the neighborhood of sample xn as the samples that are sufficiently close,i.e.

N (xn) = {z ∈M : dM(z, xn) ≤ δ}. (212)

Note that our definition of neighborhood 212, requires a maximum distance δ. In practice, we can either choose δ, or set the
degree of the neighborhood,i.e. choose the knearest neighbors. Upon the selection of the neighborhood, the norm of the
gradient is computed as follows.

∥∇Mfθ(xi)∥ = max
z∈N (xi)

∥fθ(xi)− fθ(z)∥
d(xi, z)

(213)
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The selection of distance over the manifold is application dependent. In controls problems that involve physical systems, the
metric might involve the work required from two states to reach each other. On computer vision applications, common
choices of metrics can be perceptual losses (Zhang et al., 2018), or distances over embedding (Khrulkov et al., 2020).
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G. Experiments
G.1. Baselines

In all experiments, we compared our method with empirical risk minimization (ERM) (Vapnik, 1999), ambient regularization
(Krogh & Hertz, 1991) and manifold regularization (Belkin et al., 2005). Regarding memory allocation and computation,
both manifold regularization, and manifold Lipschitz, require to calculate and storage the point-cloud Laplacian matrix.
Moreover, our method also requires to save a real value variable for each sample. Regarding training times, our experiments
show that our method takes 10% more time than laplacian regularization, which over all takes twice as much time as ERM
and ambient regularization. We run experiments on both NVIDIA 2080, as well as 3090 GPUs.

G.2. Ground Robotic Vehicle Residual Learning

In this section we explain the residual learning experiment that involves a ground robot vehicle. The data acquisition of
this experiment involves an iRobot Packbot equipped with high resolution camera. The setting of the data acquisition, is a
robot making turns on both pavement, and grass. The dynamics of the system, are govern by the discrete-time nonlinear
state-space system of equations

xk+1 = f(xk, uk) + g(uk), (214)

where xk is the state of the system, and uk is the action taken, f(xk, uk) is the model prediction, and g(uk) is a non-
modellable error of the prediction. In this setting, the robot state involves the position, and the action taken is given by its
linear, and angular velocities. The dynamics of the system are modeled by f(xk, uk), and they involve the mass of the
robot, the radius of the wheel, among other known parameters of the robot. In practice, the model f(xk, uk) is not perfect,
and the model mismatch is given by the difference in friction with the ground, delays in communications with the sensors,
and discrepancies in the robot specifications. To make matters worse, some of the discrepancies, are difficult to model, or
intractable to compute in practice. Therefore, we seek to learn the model mismatch g(uk).

Figure 3 shows examples of trajectories given by time series xk, each of which is associated with an average error model
mismatch, and its corresponding variance,

µi =
1

K

K∑
k=1

∥xk+1 − f(xk, uk)∥, (215)

σi =

√√√√ 1

K − 1

K∑
k=1

∥µi − (xk+1 − f(xk, uk))∥2. (216)

In practice, samples from the grass dataset tend to have larger disturbance mean µ, given that pavement presents a more
uniform setting. For example, if we compare sample 3b to 3f, we can see that for similar trajectories, the error is larger in
the case of grass. Moreover, trajectories that involve larger magnitudes in velocities, also present larger disturbance means,
and variances (cf. 3a vs 3c). This is due to the fact that at high speeds, the non-modeled effects such as drift, and friction are
more significant.

For more details on the data acquisition, please refer to the original paper (Koppel et al., 2016).

G.2.1. NUMERICAL IMPLEMENTATION

We are equipped with two datasets, one for grass with 195 samples, and one for pavement with 224 samples. We partition
the datasets into 170 samples for training and 25 samples for testing, and 200 samples for training and 24 samples for
testing, for grass and pavement respectively. Each sample has associated a disturbance mean, and disturbance variance
vector [µ, σi] ∈ R2.

Regarding the optimization, we utilize the mean square error as a loss, and we train a 2 layer fully connected neural network
with 256 hidden dimensions and hyperbolic tangent as the non-linearity. We train for 10000 epochs, with a learning rate of
0.0015 in the case of pavement, and 0.00015 in the case of grass. For batch size, we utilize the whole training set. For the
case of ambient Lipschitz, we utilize weight decay wD = 0.3, and wD = 0.1 for grass and pavement respectively.

For the point-cloud laplacian, we utilize heat kernel with temperature t = 15, and t = 35 for grass and pavement respectively.
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(a) Grass sample 10 with average error µ =
0.288 and variance error σ = 0.088.
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(b) Grass sample 100 with average error
µ = 0.919 and variance error σ = 0.113.
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(c) Grass sample 120 with average error µ =
1.01 and variance error σ = 0.298.
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(d) Pavement sample 10 with average error
µ = 0.370 and variance error σ = 0.172.
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(e) Pavement sample 100 with average error
µ = 0.424 and variance error σ = 0.313.
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(f) Pavement sample 120 with average error
µ = 0.652 and variance error σ = 0.747.

Figure 3: Sample trajectories for grass, and pavement, with their corresponding average error, and variance error.

This gives us a point-cloud laplacian with one connected component. For the Laplacian regularization we utilize 1 ∗ 10−3,
and 1 ∗ 10−4 for grass and pavement respectively.

As for the Manifold Lipschitz, we utilize ηµ = 0.01, and ηλ = 0.1, and ϵ = 0.005, and 0.01 for grass and pavement
respectively. We initialize µ = 5, and λ uniform.

The final results are summarized in Table 1.

G.3. Quadrotor state prediction

In this section we present a state prediction problem based on a real world collected from a quadrotor tak-
ing off and flying in a circle for 12 seconds. The aerial robot is the open-source Crazyflie 2.1 quadrotor
(https://www.bitcraze.io/products/crazyflie-2-1/), which has a mass of 32 g, and a mass of size
9 cm2. The quadrotor communicates with a computer running on Intel i7 CPU, and the communication is established with
the Crazyradio PA and at a nominal rate of 500 Hz (Ts = 1/500). To measure the position of the quadrotor a VICON is
utilized. The position is obtained from the VICON, whereas the accelerations are obtained from the on-board accelerometers
and gyroscope sensors. For further information on this setup, please refer to (Jiahao et al., 2022; Chee et al., 2022; Jiahao
et al., 2021).

The experimental setup is to target a speed of 0.4m/s and to track a circular trajectory of radius 0.5m. We consider 2
trajectories of 12 seconds each (each trajectory has 6000 time stamps), and the starting position of the quadrotor is the
same for both trajectories. For each time stamp t, we have measurements of position, velocity and acceleration in R3, i.e.
[xt, yt, zt, ẋt, ẏt, żt, ẍt, ÿt, z̈t]. The problem consists on learning the dynamical system composed by the quadrotor. We
consider the dynamics given by the equation,

[xt+1, yt+1, zt+1, ẋt+1, ẏt+1, żt+1] = f([xt, yt, zt, ẋt, ẏt, żt, ẍt, ÿt, z̈t]). (217)

The learning problem consists of learning the dynamical system, i.e. we consider the dynamics given by the equation (217).
For the learning procedure we utilize the 6000 samples, and we seek to minimize the mean square error loss between the
next state and the prediction given the current state (cf. equation 217). We train a two layer neural network with different
methods as seen in Table 2. To test the neural network, we compute the difference between the predicted state, and the
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Figure 4: Point-cloud Laplacian

next state on the test trajectory. Note that even though the training, and testing trajectories are not the same, there is a
resemblance between the two of them. Te begin with, we can conclude that adding regularization not always helps, as
ambient regularization does not improve upon the ERM prediction method. A salient conclusion of the results shown in
Table 2, is that adding regularization on the manifold space always improves upon ERM. In particular, our method is almost
3 times better than standard ERM, and more than 2 times better than standard Laplacian Regularization.

To conclude with, we show that our method obtains an improvement over all the techniques considered. This allows us to
conclude that in predicting the next state of a quadrotor from the current state under noisy measurements utilizing smooth
functions improves generalization.

G.3.1. DETAILS ON NUMERICAL IMPLEMENTATION

For the state prediction problem of a quadrotor we utilized a two layer fully connected neural network with 8192 hidden
units, hyperbolic tangent as the non-linearity, and bias term. For the optimizer, we utilized a learning rate of 10−5, and
the full dataset per batch. We trained until convergence in all cases with number of epochs e = 1000. For the ambient
regularization we used weight decay 0.1. For the construction of the Laplacian, we utilized temperature coefficient t = 0.01.
For Laplacian regularization we utilized γ = 10−6. For our method, we utilized µ dual step 0.5, ϵ = 0.003, and λ dual step
0.1. In all cases we trained until convergence with e = 10000 epochs.

G.4. Two-Moons Dataset

In this subsection we provide the details of the experiment with the Two-moons data set utilized in 1.

To generate the data we utilized sklearn library, and we utilize 1 labeled, and 200 unlabeled samples per class (i.e. moon),
and we added noise σ = {0.05, 0.1}. For the neural network, we utilized a two layer fully connected neural network with
64 hidden neurons with bias term, and hyperbolic tangent as the non-linearity. For the optimizer, we utilized a learning
rate of 0.9, and no momentum. For the ambient regularization, we added a weight decay of 0.1. For the construction of the
Laplacian of Figure 1 we utilized a heat kernel temperature of t = 0.005, and we normalize it. For Laplacian regularization,
we set γ = 0.5. For Manifold Lipschitz (our method), a µ dual step of 0.5, and a λ dual step of 0.1. An ablation study over
different values of temperature coefficient t can be found in sections I. As seen in figure 1, Ambient Regularization fails to
classify the unlabeled samples, given that ignores the distribution of samples given by the Manifold. The case in which
the manifold has two connected component (cf. Figure 1a), our method works as good as Manifold Regularization, due
to the fact that the Lipschitz constant will be made small in both components separately. However, when the manifold is
weakly connected, Manifold Regularization fails to recognize the transition between the components, as it will penalize
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large gradients across the manifold, converging to a plane that connects the two samples. Our Manifold Lipschitz method,
as it requires the Lipschitz constant to be small, forces a sharp transition along the point with maximal separation.

G.5. Navigation Controls Problem

In this section, we consider the problem of continuous navigation of an agent. The agent’s objective is to reach a goal while
avoiding obstacles. The state space of the agent is S = [0, 20]× [0, 10], which represents the x and y axis respectively. The
agent navigates by taking actions on the velocity v ∈ R2, and the state evolves according to the dynamics st+1 = st + vtTs

where Ts = 0.1s. We construct a square grid of points in the environment that are on the free space i.e. outside of the
obstacles, and utilize Dijkstra’s algorithm to find the shortest path for two starting [1, 9]T , [14, 1]T positions, and goal
[19, 1]T along the grid. For those two grid trajectories, we compute the optimal actions to be taken at each point in order to
follow the trajectory.

The learner is equipped with both the labeled trajectories, as well as the unlabeled point grid. To leverage the manifold
structure of the data, we consider the grid of points, and we construct the point-cloud Laplacian considering adjacent points
in the grid. We train a two layer neural network using the mean square error loss over the optimal set of points and actions
for ERM, ERM with ambient Lipschitz regularizer, Manifold Regularization, and our method Manifold Lipschitz method.

Method Trajectories

ERM 85
Ambient Reg. 66
Manifold Reg. 77

Manifold Lipschitz 94

Table 3: Number of successful trajectories from
100 random starting points.

To evaluate the performance, we randomly chose 100 starting points
and compute the trajectories generated by each learned function. A
trajectory is successful if it reaches the goal without colliding with
the obstacles or the walls. The results are summarized in table 3, and
showcase the benefit of implementing manifold lipschitz. Our method
outperforms the 3 other methods due to the fact that it minimizes the
gradient of the function over the domain of the data. As opposed to
ERM, our method generates a smooth function outside of the labeled
trajectory. Ambient Lipschitz regularization fails due to the fact that
the euclidean distance ignores the real distance between samples
across wall, forcing similar outputs for points that should take different
actions. Manifold regularization is able to capture the similarity between points, but it fails to properly capture the sharp
turns near the edges off the obstacles. The success of Manifold Lipschtiz, can be explained by its dual variables λ shown in
figure 5c. In this figure, the radius of each ball represents the value of the dual variable, which is larger close to the corners
of the obstacles due to the fact that the problem requires larger gradients to make sharp turns over it. Besides, the fact that
we can disentangle the loss on the labeled data, from the Lipschitz constant, allows us to overfit the data as much as we
require. As measure of merit, we take 100 random points and we compute the trajectories. A trajectory is successful if it
achieves the goal without colliding. The results are shown in Table 3, and the learned functions in Figure 5.
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H. Further References
Since we introduce the Lipschitz constant as a constraint to the learning problem our reformulation and solution methodolo-
gies are framed within the constrained learning paradigm (Chamon & Ribeiro, 2020; Chamon et al., 2023; Yang, 2019).
Central to the solution of constrained learning problems is the use of dual formulations and dual ascent learning algorithms.
These are finding increasing applicability as evidenced by their use in, e.g., adversarial robustness (Robey et al., 2021), graph
neural networks (Cervino et al., 2022; Arghal et al., 2021), federated learning (Shen et al., 2021), active learning (Elenter
et al., 2022), reinforcement learning (Paternain et al., 2019; 2022; Castellano et al., 2021; Bai et al., 2021; Hasanbeig et al.,
2018), and wireless communications (Eisen et al., 2019).

In the context of adversarial attacks to neural networks, manifold based regularization techniques have shown a vast amount
of empirical and theoretical evidence of its utility, improving its adversarial robustness(Zhang et al., 2021; Khoury &
Hadfield-Menell, 2018; Ma et al., 2018; Moosavi-Dezfooli et al., 2019; Jin & Rinard, 2020; Lassance et al., 2021). Some
works seek to obtain manifold attacks, which are more realistic attacks than utilizing the norm-∞ ball, given the high
dimensionality of the input and the low dimensional structure of the data (Stutz et al., 2019). Smooth function have also
been studied in the context of robustness (Rosca et al., 2020; Bubeck & Sellke, 2021; Bubeck et al., 2021).

Our work, is based on previous results that show convergence of graph laplacians to Laplace-Beltrami operators. There
exists a vast amount of work on that validates the convergence results for point-cloud operators over Manifolds (Hein et al.,
2005; 2007; Dunson et al., 2021; Wu & Wu, 2018).

Regarding Lipschitz constant estimation for neural networks, (Fazlyab et al., 2019) has formulated the problem as a convex
optimization problem.
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(a) Dataset
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(b) Manifold Lipschitz.
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(c) Dual variables λ.
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(d) ERM.
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(e) Ambient Regularization.
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(f) Manifold Regularization.

Figure 5: Figure 5a shows the training dataset, blue stars depict unlabeled point, and blue arrow the optimal action at the red
star. Figure 5b shows the learned function using Manifold Learning, and 5c its associated dual variables associated. Figures
5d, 5e, 5f show the functions learned using ERM, ambient regularization, and Manifold regularization respectively.
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I. Ablation Study on Laplacian Construction
In this section we study the impact of the temperature coefficient t in the construction of the Laplacian. To do so we repeat
the setting of Figure 1, and we vary the value of the temperature t. We consider the two moons dataset problem with 1
labeled, and 200 unlabeled samples per class. We vary the value of the temperature coefficient, which varies the number of
cross-manifold edges, and therefore makes the problem more challenging.

Value of
Heat Kernel

Connected
Components

Number of
Cross-Manifold Edges

Manifold
Regularization

Manifold Gradient
(Ours)

0.0040 2 0 100% 100%
0.0050 1 2 N/A 100%
0.0060 1 3 N/A 100%
0.0070 1 10 N/A 100%
0.0080 1 20 N/A 100%
0.0090 1 27 N/A 100%
0.0100 1 42 N/A 100%
0.0150 1 124 N/A 100%
0.0175 1 176 N/A 100%
0.0180 1 192 N/A 100%
0.0190 1 217 N/A 100%
0.0200 1 251 N/A N/A

Table 4: Ablation study on the temperature of the heat kernel t. We plot the accuracy when it achieves 100%, and N/A
otherwise, given that an accuracy of less than 100% is not representative as the method fails to capture the manifold structure
of the problem.

As seen in table 4, Laplacian regularization fails to achieve a perfect accuracy when the number of connected components is
less than 2. That is to say, manifold regularization achieves a perfect accuracy when each class has a connected component.
However, once the components become connected, Laplacian regularization smoothness the integral of the gradient, and
therefore does no properly identify the transition between components.

As can be seen in table 4, our method is more robust to non-exact manifolds. Which means that if the manifold is not
calculated perfectly, and as a result we obtain 1 connected component as opposed to 2 separate moons, our method still
works.

It is important to remark that our method still works when the connected components have cross-manifold edges in different
places of the manifold. As an example, take the Laplacian with heat kernel t = 0.007, there are edges on both side of the
manifold. Moreover, our method is able to distinguish between the two classes even with edges in the middle of the two
manifold as can be seen with t = 0.0150, and t = 0.0175 (cf. 6h).

Our method brakes once the manifold structure vanishes and most of the points are interconnected, as can be seen with
t = 0.02. In this case there are 251 cross manifold edges, and the low-dimensional structure of the problem disappears.

In all, our proposed solution is more robust to imperfect estimation of the manifold. Even when the number of cross-edges
is large, our method is able to create a partition between classes given that it finds the points with maximal separation, and
allows the function to change values between them.
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(c) t = 0.006.

1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.5

0.0

0.5

1.0

(d) t = 0.007.
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(e) t = 0.008.
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(f) t = 0.009.
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(h) t = 0.015.
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Figure 6: Laplacian for different values of temperature coefficient t.
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J. Laplacian Spectral Embedding
In figure 7 we show the result of projecting the 2 moons dataset to the 2 eigenvector associated with the 2 smallest eigenvalues
larger than 0 of the unweighted Laplacian L in 7b, and the Laplacian multiplied by the dual variables diag(λ)L in 7a. The
dual variable λ is obtained by utilizing our method and reaching 100% accuracy.

If we compare the spectral embedding induced by the unweighted Laplacian (i.e., Laplacian eigenmap) and the re-weighted
Laplacian for the two moons dataset, we notice that the latter displays better separation between the classes. It is worth
noting, however, that this experiment is unfair in our favour, since the weighted Laplacian uses extra information from
the primary task, namely, labeled data. Nevertheless, comparing the Laplacian spectral embeddings do provide another
illustration as to the importance of considering the underlying data geometry (manifold) when imposing smoothness.
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(a) Our Laplacian.
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Figure 7: Laplacian Eigenmaps. In figures 7a,7b we project the points in the dataset to the 2 largest eigenvalues of the
Laplacian L, and diag(λ) ∗ L respectively. The colors correspond to the classes predicted. In figure 1a we show the dataset.
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